Digitala Vetenskapliga Arkivet

Change search
Refine search result
12345 1 - 50 of 227
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ablieieva, Iryna
    et al.
    Linköping University, Department of Thematic Studies, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences. Linköping University, Biogas Solutions Research Center. Sumy State University, Ukraine.
    Chernysh, Yelizaveta
    Sumy State University, Ukraine; Czech University of Life Sciences Prague, Czech Republic.
    Chubur, Viktoriia
    Sumy State University, Ukraine; Czech University of Life Sciences Prague, Czech Republic.
    Skvortsova, Polina
    Sumy State University, Ukraine.
    Roubik, Hynek
    Czech University of Life Sciences Prague, Czech Republic.
    Biopotential of Agricultural Waste: Production of Biofertilizers and Biofuels2022In: 22nd International Multidisciplinary Scientific Geoconference: Energy and Clean Technologies, SGEM 2022, Vienna, 6 December 2022 - 8 December 2022 / [ed] Trofymchuk O., Rivza B., Vienna, 2022, Vol. 22, 4.2, p. 39-47Conference paper (Refereed)
    Abstract [en]

    This article is focused on performing a SWOT analysis of agricultural waste management methods. This approach can be applied in the biogas technology strategic planning process in Ukraine, which can solve the issue of implementation of environmental guidelines for the development of biofuels and biofertilizers. The main factors that determine how digestate is used are its quality, local conditions, regulations, and documents. Fertilizing fields with digestate provides many advantages, for example: reduced demand for plant protection products, reduction of unpleasant odor, and destruction of possible pathogens. The strengths and weaknesses of the implementation of biogas plants in Ukraine have been identified, and opportunities and threats have been considered. In general, the introduction of biogas technology is a very promising solution for the agricultural sector. Taking into account that a biogas plant is considered a potentially hazardous object for workers, it is necessary to constantly monitor the parameters of reactor operation in order to ensure the technological and environmental safety of the engineering facilities. For Ukraine, there is a shortage of specialists to set up an effective operation of biogas equipment and bring it to the industrial scale. It is necessary to consult with medium and small farms interested in the feasibility study and implementation of biogas technologies. 

  • 2.
    Abolhosseini, Shahrouz
    et al.
    College of Engineering, TEMEP, Seoul National University, Seoul, South Korea.
    Heshmati, Almas
    Jönköping University, Jönköping International Business School, JIBS, Economics, Finance and Statistics.
    The main support mechanisms to finance renewable energy development2014In: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 40, p. 876-885Article, review/survey (Refereed)
    Abstract [en]

    Considering that the major part of greenhouse gases is carbon dioxide, there is a global concern aimed at reducing carbon emissions. In addition, major consumer countries are looking for alternative sources of energy to avoid the impact of higher fossil fuel prices and political instability in the major energy supplying countries. In this regard, different policies could be applied to reduce carbon emissions, such as enhancing renewable energy deployment and encouraging technological innovation and the creation of green jobs. This study compares three main support mechanisms employed by governments to finance renewable energy development programs: feed-in-tariffs, tax incentives, and tradable green certificates. Considering that many of the promising technologies to deploy renewable energy require investment in small-scale energy production systems, these mechanisms could be used to enhance renewable energy development at the desired scale. Employing a carbon emission tax or emission trading mechanism could be considered ideal policies to mitigate emissions at the lowest cost. The comparison of feed-in-tariffs and renewable portfolio standard policies showed that the former is good when a policy to develop renewable energy sources with a low level of risk for investors is considered. However, the latter is an appropriate policy when a market view policy is applied by the government. Finally, considering technological progress and the cost reduction for power generation by renewable energy sources, we suggest that support mechanism policies should be reconsidered from the financial point of view. (C) 2014 Elsevier Ltd. All rights reserved.

  • 3. Ahlgren, S.
    et al.
    Röös, E.
    Di Lucia, L.
    Sundberg, Cecilia
    Hansson, P. -A
    EU sustainability criteria for biofuels: Uncertainties in GHG emissions from cultivation2012In: Biofuels, ISSN 1759-7269, E-ISSN 1759-7277, Vol. 3, no 4, p. 399-411Article in journal (Refereed)
    Abstract [en]

    Background: Cultivation of raw material represents a large proportion of biofuelś GHG emissions. The EU renewable energy directive 2009/28/EC specifies a GHG emission default value for cultivation of biofuel raw material (23 g CO2-e/MJ ethanol for wheat). The aim of this study was to quantify the uncertainty in GHG emissions for wheat cultivation in Sweden, considering uncertainty and variability in data at farm level. Results: Two levels of data collection at farm level were analyzed; simple (only yield and amount of N) and advanced (also including amounts and types of energy). The 2.5-97.5 percentile uncertainty for Swedish winter wheat was 20-27 g CO 2-e/MJ, which can be considered large in the context of the Directives threshold of 23 g (to two significant figures). Conclusion: It is concluded that quantifying GHG emissions in order to regulate biofuels is a difficult task, especially emissions from cultivation, since these are biological systems with large variability.

  • 4.
    Ajjan Godoy, Fátima Nadia
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Biohybrid Polymer Electrodes for Renewable Energy Storage2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Daily and seasonally fluctuating energy supply and demand requires adequate energy storage solutions. In recent years electrochemical supercapacitors have attracted considerable attention due to their ability to both store and deliver electrical energy efficiently. Our efforts are focused on developing and optimizing sustainable organic electrode materials for supercapacitors based on renewable bioorganic materials, offering a cheap, environmentally friendly and scalable alternative to store energy. In particular, we are using the second most abundant biopolymer in nature, lignin (Lig), which is an insulating material. However, when used in combination with electroactive and conducting polymers such as polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT), the biohybrid electrodes PPy/Lig and PEDOT/Lig display significantly enhanced energy storage performance as compared to the pristine conducting polymers without the lignin. Redox cyclic voltammetry and galvanostatic charge/discharge measurements indicate that the enhanced performance is due to the additional pseudocapacitance generated by the quinone moieties in lignin. Moreover, a conjugated redoxpolymer poly(aminoanthraquinone) PAAQ, with intrinsic quinone functions and excellentstability, has been combined with lignin and PEDOT resulting in a trihybrid bioelectrode. PEDOT compensates the low conductivity of PAAQ and provides electrical pathways to the quinone groups. The electrochemically generated quinones undergo a two electron, two protonredox process within the biohybrid electrodes as revealed by FTIR spectroelectrochemistry.These remarkable features reveal the exciting potential of a full organic energy storage device with long cycle life. Therefore, supercapacitor devices were designed in symmetric or asymmetric two electrode configuration. The best electrochemical performance was achieved by the asymmetric supercapacitor based on PEDOT+Lignin/PAAQ as the positive electrode and PEDOT/PAAQ as the negative electrode. This device exhibits superior electrochemical performance and outstanding stability after 10000 charge/discharge cycles due to the synergistic effect of the two electrodes. Finally, we have characterized the response of this supercapacitor device when charged with the intermittent power supply from an organic photovoltaic module. We have designed charging/discharging conditions such that reserve power was available in the storage device at all times. This work has resulted in an inexpensive fully organic system witht he dual function of energy conversion and storage.

    Download (pdf)
    omslag
    Download (jpg)
    presentationsbild
  • 5.
    Amiri, Shahnaz
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy engineering. Department of Management and Engineering, Division of Energy Systems, Linköping University, Linköping, Sweden.
    Henning, Dag
    Optensys Energianalys, Linköping, Sweden .
    Karlsson, Björn G.
    Department of Management and Engineering, Division of Energy Systems, Linköping University, Linköping, Sweden .
    Simulation and introduction of a CHP plant in a Swedish biogas system2013In: Renewable energy, ISSN 0960-1481, E-ISSN 1879-0682, Vol. 49, p. 242-249Article in journal (Refereed)
    Abstract [en]

    The objectives of this study are to present a model for biogas production systems to help achieve a more cost-effective system, and to analyse the conditions for connecting combined heat and power (CHP) plants to the biogas system. The European electricity market is assumed to be fully deregulated. The relation between connection of CHP. increased electricity and heat production, electricity prices, and electricity certificate trading is investigated. A cost-minimising linear programming model (MODEST) is used. MODEST has been applied to many energy systems, but this is the first time the model has been used for biogas production. The new model, which is the main result of this work, can be used for operational optimisation and evaluating economic consequences of future changes in the biogas system. The results from the case study and sensitivity analysis show that the model is reliable and can be used for strategic planning. The results show that implementation of a biogas-based CHP plant result in an electricity power production of approximately 39 GW h annually. Reduced system costs provide a profitability of 46 MSEK/year if electricity and heat prices increase by 100% and electricity certificate prices increase by 50%. CO2 emission reductions up to 32,000 ton/year can be achieved if generated electricity displaces coal-fired condensing power.

  • 6.
    Anbalagan, Anbarasan
    et al.
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center. University of Valladolid, Dr. Mergelina s/n, Valladolid, Spain.
    Toledo-Cervantes, A.
    University of Valladolid, Dr. Mergelina s/n, Valladolid, Spain.
    Posadas, E.
    University of Valladolid, Dr. Mergelina s/n, Valladolid, Spain.
    Rojo, E. M.
    University of Valladolid, Dr. Mergelina s/n, Valladolid, Spain.
    Lebrero, R.
    University of Valladolid, Dr. Mergelina s/n, Valladolid, Spain.
    González-Sánchez, A.
    University of Valladolid, Dr. Mergelina s/n, Valladolid, Spain.
    Nehrenheim, Emma
    Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
    Muñoz, R.
    University of Valladolid, Dr. Mergelina s/n, Valladolid, Spain.
    Continuous photosynthetic abatement of CO2 and volatile organic compounds from exhaust gas coupled to wastewater treatment: Evaluation of tubular algal-bacterial photobioreactor2017In: Journal of CO2 Utilization, ISSN 2212-9820, E-ISSN 2212-9839, Vol. 21, p. 353-359Article in journal (Refereed)
    Abstract [en]

    The continuous abatement of CO2 and toluene from the exhaust gas by an indigenous microalgal-bacterial consortium was investigated in a pilot tubular photobioreactor interconnected to an absorption column using diluted centrate in seawater as a free nutrient source. The removal efficiency of CO2 and toluene was maximised in the vertical absorption column by identifying an optimum liquid to gas (L/G) ratio of 15. The photobioreactor supported steady-state nitrogen and phosphorus removals of 91 ± 2% and 95 ± 4% using 15% diluted centrate at 14 and 7 d of hydraulic retention time (HRT), respectively. A decrease in the removal efficiencies of nitrogen (36 ± 5%) and phosphorus (58 ± 10%) was recorded when using 30% diluted centrate at 7 d of HRT. The volumetric biomass productivities obtained at an HRT of 7 d accounted for 42 ± 11 and 80 ± 3 mg TSS L-1 d-1 using 15 and 30% centrate, respectively. Stable CO2 (76 ± 7%) and toluene removals (89 ± 5%) were achieved at an L/G ratio of 15 regardless of the HRT or centrate dilution. Hence, this study demonstrated the potential of algal-bacterial systems for the continuous removal of CO2 and volatile organic compounds from exhaust gas coupled with the simultaneous treatment of centrate. 

  • 7.
    Andersson, Johan
    et al.
    RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
    Nordberg, Åke
    SLU Swedish University of Agricultural Sciences, Sweden.
    Westin, Gunnar
    RISE - Research Institutes of Sweden, Bioeconomy, Processum.
    Askfilter för rening av svavelväte i deponigas2017Report (Other academic)
    Abstract [en]

    Landfill gas is formed under anaerobic conditions in landfills by microbial degradation of organic material. The gas composition can vary, but at Swedish landfills the gas generally consists of 40-60% methane, 30-40% carbon dioxide and 5-20% nitrogen. Hydrogen sulphide (H2S) is a highly toxic and corrosive gas, which occur in landfill gas in varying concentrations, from 10 to 30,000 ppm (equivalent to 0.001 to 3.0%). It is desirable that the landfill gas is used for electricity and/or heat production, but to do that there is a need to clean the gas to reach <200 ppm H2S. High levels of H2S increases wear on the engine/boiler and thus the frequency of servicing. This leads to expensive maintenance costs, and ultimately shortens the economic life of the plant. To reduce corrosion, it is common to adjust the flue gas temperature, but this also leads to a lower efficiency and thus reduces the energy utilization of the gas. In some cases the gas concentration of H2S is judged to be too high to be used for energy production at all. In 2015, approximately 53 GWh of landfill gas was flared in Sweden, which in many cases is due to problems with high levels of H2S.

     

    Cleaning of landfill gas from H2S leads to several values; the gas energy is used efficiently, maintenance and service costs of the engines/boiler are reduced, and emissions of acidifying sulphur dioxide from combustion of landfill gas decreases. There are commercial cleaning technologies for H2S but they are expensive, both in terms of capital cost and operating cost. Thus, there is a need to develop new cost efficient cleaning technologies that improve the economic outcome at landfills and that enables landfill gas with high H2S concentrations to be utilized for valuable energy transformation.

     

    RISE (formerly JTI – Swedish Institute of Agricultural and Environmental Engineering) together with SLU develops new, potentially cost-efficient methods for upgrading biogas to fuel quality. One of the methods is based on the gas passing through a bed of moist ash (a so-called ash filter), where carbon dioxide and H2S are fixed. The hypothesis of this project was that ashes originating from the incineration of waste, recycled waste wood etc., can be used to clean the high levels of H2S in landfill gas. This type of ashes will usually be disposed of in landfills anyway and if the treatment effect is good, it would generate synergy effects in the form of the ash first being used to clean landfill gas from sulphur before it is used as a construction material at landfills.

     

    This project performed two trials in pilot scale at a Swedish landfill with very high concentration of H2S, approximately 15,000 ppm. Different gas flow rates were studied (0.7 to 7.6 m3 / h), while the volume of ash used were similar in the two trials, 0,37 m3. The concentration of H2S in the cleaned gas was consistently very low during treatment, < 10 ppm at low gas flow rates and < 200 ppm at high gas flow rates. Two types of ash were investigated and both proved to have very good capacity to fix H2S, 44-61 g H2S/kg dry ash. In comparison with literature values, there is only one study showing an uptake capacity in the same order. Other studies report an order of magnitude lower uptake capacity.

    Based on the experimental results, the technical and economic potential for an ash filter as the cleaning method was assessed. The calculations were made for various typical landfills to cover the different range of landfills. For normal sized landfills with gas flow rates of 100-1 000 m3/h and H2S concentrations between 100 and 1 000 ppm, the amount of ash needed is 10-130 tons of dry ash per year. For the special case where the H2S concentration is extremely high, the amount of ash increases and a plant with 15 000 ppm H2S and a gas flow rate of 200 m3/h requires approximately 800 tons of dry ash per year. However, overall modest amounts of ash is required and considering all Swedish landfills the requirement of ash would be only 0.2-0.3% of the annual production of ash in Sweden.

     

    The economic calculations show that the ash filter is a competitive method for removal of H2S. For the special case of extremely high levels of H2S, it turned out that the cost of the ash filter is approximately 20% lower in comparison with the cheapest feasible conventional cleaning technology on the market. Also for the cleaning of landfill gas at more normal levels of H2S, the ash filter is competitive. At low gas flow rates (100 m3/h), the ash filter is clearly competitive compared to literature values for conventional cleaning technologies. The economy of scale seems to be higher for the conventional cleaning technologies, and consequently the difference between the cost of ash filter cleaning and other technologies is less at higher gas flow rates.

     

    The low treatment cost of the ash filter reveals opportunities for landfills that currently do not clean the gas from H2S. During the project 15 Swedish landfills was contacted and none of these reported any form of H2S cleaning. When using cleaning, the landfill gas can be used effectively, i.e. reduced flaring, increased efficiency of electricity and heat production with reduced wear on boilers and combustion equipment as well as reduced emissions of sulphur into the atmosphere, which also reduces the potential odour problems around the landfill.

     

    For further development, the design of an ash filter module prototype at full-scale is important. Furthermore, the treated ashes should be analysed for leaching characteristics, storability and usability as construction materials or as cover landfills along with an assessment of the overall environmental impact. Further tests at full scale should be made at other landfills with various gas flow rates and H2S concentrations to verify the performance of the conducted pilot tests.

    Download full text (pdf)
    Askfilter för rening av svavelväte från deponigas
  • 8.
    Andersson, Johanna
    Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences.
    Optimering av driftstemperatur vid mesofil rötning av slam: - funktionskontroll vid Uppsalas reningsverk2019Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Energy efficient processes and the use of fossil free fuels play an important role in order to reduce the impact of climate change. Anaerobic digestion is a common way for stabilizing sewage sludge at wastewater treatment plants (WWTP). One of the benefits with anaerobic digestion is that it also produces biogas, a fossil free fuel with low greenhouse gas emissions. An operational temperature within the mesophilic range has proven to give a stable process with an unfluctuating production of gas. The mesophilic temperature range between 25-40°C but most processes are operated between 35-40°C. This study investigates the opportunity to lower the temperature within the mesophilic range in order to reduce energy consumption. It is important to maintain the production of biogas with a lower temperature. Therefore, the reduction in VS-content (VS-volatile solids), methane yield and time for degradation was determined by a BMP-experiment (BMP-Biochemical Methane Potential) in three different temperatures (32, 34.5 and 37.5°C). In order to quantify the reduction in heat consumption with lower operational temperatures the change in heat balance for a full-scale WWTP in Uppsala was calculated. A major part of the operational cost is dewatering of sludge and it is therefore important that it does not deteriorate with a lower temperature. The effect on the dewaterability at different temperatures was examined by a filterability test measuring CST (capillary suction time). The results from the study showed no significant difference in methane yield between 37.5°C and 34.5°C. The methane yield at 32°C was 11 % lower compared to 37.5°C but the degradation kinetic was not affected by a temperature change. The reduction in heat consumption was 14 % when the temperature was reduced to 34.5°C and 27 % when it was reduced to 32°C. The filterability test did not show a deterioration with lower temperatures. The study showed that it is possible to reduce the operational temperature for anaerobic digestion at the WWTP in Uppsala in order to reduce the energy consumption. To confirm these results a continuously experiment should be done, but this study shows that it is possible to get a successful degradation in a lower mesophilic temperature. This leads the way for further investigations within the mesophilic range and could lead to optimizing anaerobic digestion and the opportunity to get an energy efficient production of biogas.

    Download full text (pdf)
    fulltext
  • 9.
    Asperö Lind, Mikael
    KTH, School of Industrial Engineering and Management (ITM), Industrial Ecology.
    Biologisk behandling av matavfall med avfallskvarn: En systemanalys2009Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The municipal sewage treatment plant Käppalaverket and municipally owned waste handling company SÖRAB, both located in the northern part of Stockholm Sweden, have together started the BOA project. BOA means “Biologisk behandling av Organiskt matavfall medhjälp av Avfallskvarnar” which is translated to biological treatment of organic food waste using food waste macerators. The initiative stems from one of Sweden’s national environmental goals: Saying that at least 35 percent of all the organic waste produced byhouseholds and companies shall be treated biologically by the year 2010 and that the nutrients from this waste should be used as fertilizer.

    In the first phase of the project, seven different scenarios on how to transport the food waste from the households to the digestion chamber were described. To be able to evaluate these scenarios from a societal and sustainability perspective, seven criteria were chosen:technology, environment, work environment, economy, quality, law, and acceptance. The first part of the thesis consisted of formulating indicators from these criteria, through meetings and discussions with different working groups, all consisting of people in the waste and wastewater field. After that, a review of available tools was done to find the ones that were best suited for each chosen indicator.

    For the indicators that required calculations, Substance Flow Analysis, Life Cycle Analysis, Energy Analysis and Life Cycle Costing were chosen. After the tools had been used the results were given grades depending on how big impact they would have on society. For some of the indicators calculations were not possible and instead a qualitative grading system was used, in which the different working groups graded each scenario depending on the indicator and the grades were weighted and summed together.

    Finally, a multi criteria analysis was made together with the project managers from Käppalaverket and SÖRAB, in which the different indicators were discussed and weighted depending on how important they were considered to be. The final result of the multi criteria analysis was that one scenario could be chosen as the most suited for transport of food waste, from the perspective of the chosen indicators and their given weight.

    The scenario in which food waste is collected in bins and then transported by car to a centralprocessing plant, and finally transported by car to Käppalaverkets digestion chambers, got the highest score in the multi criteria analysis and is therefore the best scenario from the perspective of the chosen indicators and given weight. But from the multi criteria analysis onecould also see that none of the scenarios were given a particularly low score. This opens upfor the possibility of combined scenarios were all the residents of the SÖRAB region are given the possibility to recycle their food waste with a bin collecting system, but were there isa will to use systems with a kitchen food waste disposer instead it can be accepted as long as they do not become too popular.

    During the work of this thesis several questions have been raised that needs further investigation. One is what happens with the food waste when it is transported in the sewagesystem and another is how it will change during storage longer than four days. Also, the final results have shown that the impact on climate change from the scenarios could besignificantly decreased if a leakage free methane production could be assured and the possibility to use renewable fuels for the collecting cars was investigated.

  • 10.
    Baas, Leenard
    et al.
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, Faculty of Science & Engineering.
    Mirata, Murat
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, Faculty of Science & Engineering.
    Bio-resource production on the basis of Industrial Ecology in four European harbours, harbour cities and their region2015In: Économie Circulaire et Écosystémes Portuaires (Circular Economy and Port Ecosystems) / [ed] Yann Alix, Nicolas Mat, Juliette Cerceau, Paris: Foundation Sefacil , 2015, 1, p. 223-242Chapter in book (Refereed)
    Abstract [en]

    This chapter re ects the design and starting performance of the Symbiotic bio- Energy Port Integration with Cities by 2020 project (EPIC 2020). The EPIC 2020 project is coordinated by the city of Malmö and is performed in four harbour cities: Malmö in Sweden, Mantova in Italy, Navipe-Akarport in Greece, and Wismar (including Rostock) in Germany. A number of expert organisations and energy companies also take part in the project.

    The overall objectives of EPIC 2020 are to build operational and strategic capacity and know-how to promote ef cient use of available bioenergy resources, ef cient conversion technologies and interactions between different biomass supply chains. EPIC 2020 targets the untapped bioenergy resource potential of ports and port regions and the challenge of generating urban economic growth based on bioenergy resources. The project applies the industrial symbiosis approach to achieve its overall objectives.

    Ports provide crossing points between transport modes of goods and resources, with connections to hinterland and on-site industrial activities and a nearby urban setting. This means that ports, despite their limited areal footprint, have access to signi cant quantities of bio wastes, surrounding bioenergy resources, biomass from crossing supply chains and energy from intensive activities. The aim is to create platforms for the transformation of port areas to ef cient and carbon-neutral urban-integrated energy systems, where residual bio and energy resources and linear biomass supply chains are utilized as local and network resources.

    The EPIC 2020 project is halfway the 3-year performance framework. Re ection to primary results is provided. 

  • 11.
    Baran, Tomasz
    et al.
    SajTom Light Future, Wężerów 37/1, 32-090 Wężerów, Poland.
    Visibile, Alberto
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden.
    Busch, Michael
    Department of Chemistry and Material Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland.
    He, Xiufang
    Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
    Wojtyla, Szymon
    SajTom Light Future, Wężerów 37/1, 32-090 Wężerów, Poland.
    Rondinini, Sandra
    Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
    Minguzzi, Alessandro
    Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
    Vertova, Alberto
    Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
    Copper Oxide-Based Photocatalysts and Photocathodes: Fundamentals and Recent Advances2021In: Molecules, ISSN 1431-5157, E-ISSN 1420-3049, Vol. 26, no 23, article id 7271Article in journal (Refereed)
  • 12. Batidzirai, B.
    et al.
    Johnson, Francis X.
    Stockholm University, Stockholm Resilience Centre, Stockholm Environment Institute.
    Energy Security, Agroindustrial Development, and International Trade: The Case of Sugarcane in Southern Africa2012In: Socioeconomic and Environmental Impacts of Biofuels: Evidence from Developing Nations / [ed] Alexandros Gasparatos; Per Stromberg, Cambridge: Cambridge University Press, 2012, p. 254-277Chapter in book (Other academic)
    Abstract [en]

    For most of the Southern African Development Community (SADC) countries, energy security is a key developmental issue, given the limited capacity and supply of modern energy services. Fortunately, the region is bequeathed with abundant natural resources that can potentially be developed to support a thriving biomass energy industry. The development of modern biomass energy is likely to contribute to solving energy security concerns, improving rural livelihoods, and mitigating a number of environmental and socioeconomic impacts of current energy systems. This chapter explores the numerous opportunities and challenges associated with an expansion of biofuel production from the sugar industry as well as potential international trade implications. Current analysis shows that land is not a limiting constraint to bioenergy production from sugar resources. This chapter discusses possible implementation mechanisms to maximize the benefits of sugar resources through multiproduct strategies. One of the key issues to emerge from the analysis is the implementation of regional biofuel strategies to take better advantage of the complementarities in local, regional, and global biofuel markets.

  • 13.
    Berghel, Jonas
    et al.
    Karlstad University, Sweden.
    Frodeson, Stefan
    Karlstad University, Sweden.
    Granström, Karin Maria
    Karlstad University, Sweden.
    Renström, Roger
    Karlstad University, Sweden.
    Ståhl, Magnus
    Karlstad University, Sweden.
    Nordgren, Daniel
    RISE, Innventia.
    Tomani, Per E.
    RISE, Innventia.
    The effects of kraft lignin additives on wood fuel pellet quality, energy use and shelf life2013In: Fuel processing technology, ISSN 0378-3820, E-ISSN 1873-7188, p. 64-69Article in journal (Refereed)
    Abstract [en]

    In 2011, the total consumption of pellets in Sweden amounted to 1.9 million tons, which represents an energy value of 9 TWh. The pellets are used in large-scale as well as in small-scale applications, and increased demands on pellet quality are likely to force pellet producers to improve on the pellet properties. One way of increasing pellet quality is by using additives. The purpose of this article, therefore, is to examine kraft lignin as an additive. Pellets were produced in a small industrial pellet press located at Karlstad University, Karlstad, Sweden, and 1-4% of kraft lignin was added to the pellets. The results indicate that the addition of an increased amount of kraft lignin to the pellets increases their mechanical durability and their lengths. The results also indicate that dry kraft lignin yields pellets with higher durability as compared to wet kraft lignin. The energy demand was unaffected by the increased use of kraft lignin. The general results presented in this paper are useful for producers of lignin, pellet producers and end-users of pellets, who are interested in developing their products and/or improving the production processes.

  • 14.
    Berglin, Niklas
    et al.
    RISE, Innventia.
    von Schenck, Anna
    RISE, Innventia.
    Hoffstedt, Christian
    RISE, Innventia.
    Co-production of renewable polymers and ethanol from eucalyptus-based pulp mills2012Conference paper (Refereed)
  • 15. Berndes, Göran
    et al.
    Börjesson, Pål
    Cederberg, Christel
    Englund, Oskar
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Ecotechnology and Suistainable Building Engineering.
    Mer bioenergi och mindre negativa miljöeffekter från jordbruket. Executive summary.2022Report (Other academic)
  • 16. Berndes, Göran
    et al.
    Börjesson, Pål
    Cederberg, Christel
    Englund, Oskar
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Ecotechnology and Suistainable Building Engineering.
    Reducing negative impacts from biomass production while producing more biomass. Final report.2022Report (Other academic)
  • 17.
    Björn (Fredriksson), Annika
    Linköping University, Department of Thematic Studies, Tema Environmental Change. Linköping University, Biogas Research Center. Linköping University, Faculty of Arts and Sciences.
    Process and technology development for sustainable biogas solutions2019Conference paper (Other academic)
  • 18.
    Bohman, Mattias
    et al.
    Grontmij AB.
    Berglund Odhner, Peter
    Grontmij AB.
    Schabbauer, Anna
    Grontmij AB.
    Karlsson, Niklas
    Halmstad University, School of Business and Engineering (SET), Biological and Environmental Systems (BLESS).
    Mattsson, Marie
    Halmstad University, School of Business and Engineering (SET), Biological and Environmental Systems (BLESS).
    Rundstedt, Johan
    Halmstad University, School of Business and Engineering (SET), Biological and Environmental Systems (BLESS).
    Biogas i Halland: Förbehandling av substrat och simulering av biogasflöden2011Report (Other academic)
    Abstract [sv]

    Bioenergicentrum i Halland (BEH) är ett projekt som ligger inom ramen för EU:s strukturfondsprogram. Projektet genomförs i Region Hallands regi som är regionens välfärds- och utvecklingsorganisation. Arbetet som bedrivs inom BEH syftar speciellt till att driva utvecklingen mot en ökad produktion och användning av bioenergi till biogas och i förlängningen fordonsgas. Genom att satsa på att skapa förutsättningar för innovation, kunskapsutveckling och samverkan främjas tillväxt och hållbar utveckling.

    Vid naturbruksgymnasiet i Plönninge utanför Halmstad finns idag en biogasanläggning som beskickas med bl.a. nötgödsel och matavfall. Dessutom finns en mindre pilotanläggning som är tänkt att fungera som en del av test- och verifieringsanläggning som BEH vill bygga upp i Plönninge. Som ett led i att utveckla dessa anläggningar och kunna erbjuda möjligheten till kunskapsinsamling genomfördes projektet som beskrivs i denna rapport. Uppdraget var att genomföra försöksrötningar på labb, använda resultaten för att skapa en modell som sedan kan nyttjas som ett verktyg i det inledande arbetet med att investera i en biogasanläggning som beskickas med lantbruksbaserade substrat. Högskolan i Halmstad (HH) genomförde försöksrötningarna och Grontmij (GM) använde sedan resultaten för att skapa en modell där bl.a. substrat, förbehandlingsteknik och driftkostnader finns med.

    Sammanfattningsvis kan sägas att majs som substrat fungerar bäst med de valda förbehandlingsmetoderna; kemisk behandling, termisk behandling och ultraljudsbehandling. Alla förbehandlingsmetoder med majs som substrat visade på ett positivt resultat, d.v.s. det ökade gasutbytet och dess värde (kr/kWh) översteg kostnaderna för de olika förbehandlingarna. Vad som måste beaktas är att produktionskostnaderna överlag är höga, med och utan förbehandling.

    Modellen har konstruerats på ett sådant sätt att den ska vara användarvänlig och med möjlighet att enkelt lägga till ytterligare substrat och förbehandlingsmetoder. Upprepningar av de försöksrötningar som genomförts kommer att öka tillförlitligheten hos modellen. Den fungerar som ett verktyg i att beräkna investeringsmarginalen för förbehandlingsutrustningen baserat på det valda substratet. På detta vis kan intressenter få en första indikation på om det är ekonomiskt rimligt att gå vidare med det tänkta substratet, den valda förbehandlingsmetoden, de planerade mängderna substrat etc.

    En investeringskalkyl har tagits fram för en gårdsanläggning som hanterar 5 000 ton substrat eller gödsel årligen. Det motsvarar 2-3 stycken medelstora mjölkgårdar. Kalkylen är översiktlig och syftar till att ge en första indikation på kostnader för de stora komponenterna såsom substratlager, rötkammare och rötrestlager. Kringarbeten såsom utredningar, markarbeten och geoundersökningar är inte med i kalkylen då dessa omkostnader till stor del avgörs av lokalisering och de förutsättningar som finns på platsen redan från start. Generellt kan dock sägas att den absolut billigaste och enklaste gårdsbaserade biogasanläggningen innebär en investering på 2,7-4 MSEK för flytgödsel från 100-300 mjölkkor.

    För BEH är det viktigt att skapa en plattform där intressenter kan komma för att genomföra försöksrötningar, byta erfarenheter och samla kunskap. För att uppnå detta är det nödvändigt att kunna erbjuda kunden kompletta och kompetenta lösningar på en och samma plats. Detta innebär ett erbjudande som innefattar försöksrötningar på labb-, pilot och fullskala. Ett förslag på konstruktion av pilotanläggning med övergripande principskiss ingår i denna rapport och fungerar som ett inledande arbete i projekteringen av en större pilotanläggning. Nödvändiga driftanalyser av rötrest ska kunna göras på plats i Plönninge på laboratoriet; analyser såsom enskilda organiska syror ska kunna skickas till lämpligt laboratorium. Personal ska kunna tillhandahållas för att driva och optimera rötningen enligt kundens syften och önskemål. På detta vis fungerar Region Halland som en länk mellan teori ochpraktik, mellan liten och stor skala och mellan aktörer från olika discipliner och geografiska områden.

    Download full text (pdf)
    Rapport Biogas i Halland -förbehandling av substrat och simulering av biogasflöden
  • 19.
    Bozaghian, Marjan
    et al.
    Swedish University of Agricultural Sciences, Department of Forest Biomaterials and Technology.
    Rebbling, Anders
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Larsson, Sylvia H.
    Swedish University of Agricultural Sciences, Department of Forest Biomaterials and Technology.
    Xiong, Shaojun
    Swedish University of Agricultural Sciences, Department of Forest Biomaterials and Technology.
    Skoglund, Nils
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Combustion characteristics of barley straw stored with CaCO3 using olivine and quartz as bed materials in fluidized bed combustion2017Conference paper (Other academic)
  • 20.
    Bozaghian, Marjan
    et al.
    Swedish University of Agricultural Sciences, Department of Forest Biomaterials and Technology.
    Rebbling, Anders
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Larsson, Sylvia H.
    Swedish University of Agricultural Sciences, Department of Forest Biomaterials and Technology.
    Xiong, Shaojun
    Swedish University of Agricultural Sciences, Department of Forest Biomaterials and Technology.
    Skoglund, Nils
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Combustion characteristics of barley straw stored with CaCO3 using quartz and olivine as bed materials in fluidized-bed combustion2017Conference paper (Other academic)
  • 21.
    Brandin, Jan
    Linnaeus University, Faculty of Technology, Department of Building and Energy Technology.
    Usage of Biofuels in Sweden2013In: CSR-2 Catalyst for renewable sources: Fuel, Energy, Chemicals Book of Abstracts / [ed] Vadim Yakovlev, Boreskov Institute of Catalysis, Novosibrisk, Russia: Boreskov Institute of Catalysis , 2013, p. 5-7Conference paper (Refereed)
    Abstract [en]

    In Sweden, biofuels have come into substantial use, in an extent that are claimed to be bigger than use of fossil oil. One driving force for this have been the CO2-tax that was introduced in 1991 (1). According to SVEBIO:s calculations (2) based on the Swedish Energy Agency´s prognosis, the total energy consumption in Sweden 2012 was 404 TWh. If the figure is broken down on the different energy sources (figure 1) one can see that the consumption roughly distribute in three different, equally sized, blocks, Biofuels, fossil fuels and water & nuclear power. The major use of the fossil fuels is for transport and the water & nuclear power is used as electric power. The main use of the biofuels is for heating in the industrial sector and as district heating. In 2009 the consumption from those two segments was 85 TWh, and 10 TWh of bio power was co-produced giving an average biomass to electricity efficiency of 12%. This indicates a substantial conversion potential from hot water production to combined heat and power (CHP) production. in Sweden 2013 broken down on the different energy sources. In 2006 the pulp, paper and sawmill industry accounted for 95% of the bio energy consumption in the industrial sector, and the major biofuel consumed was black liquor (5). However, the pulp and paper industries also produced the black liquor in their own processes. The major energy source (58%) for district heating during 2006 was woody biomass (chips, pellets etc.) followed by waste (24%), peat (6%) and others (12%) (5). The use of peat has probably decreased since 2006 since peat is no longer regarded as a renewable energy source. While the use of biofuel for heating purpose is well developed and the bio-power is expected to grow, the use in the transport sector is small, 9 TWh or 7% in 2011. The main consumption there is due to the mandatory addition (5%) of ethanol to gasoline and FAME to diesel (6). The Swedish authorities have announced plans to increase the renewable content to 7.5 % in 2015 on the way to fulfill the EU’s goal of 10 % renewable transportation fuels in 2020. However the new proposed fuel directive in EU says that a maximum of 5% renewable fuel may be produced from food sources like sugars and vegetable oils. Another bothersome fact is that, in principle, all rape seed oil produced in Sweden is consumed (95-97%) in the food sector, and consequently all FAME used (in principle) in Sweden is imported as FAME, rape seed oil or seed (6). In Sweden a new source of biodiesel have emerged, tall oil diesel. Tall oil is extracted from black liquor and refined into a diesel fraction (not FAME) and can be mixed into fossil diesel, i.e. Preem Evolution diesel. The SUNPINE plant in Piteå have a capacity of 100 000 metric tons of tall oil diesel per annum, while the total potential in all of Sweden is claimed to be 200 000 tons (7). 100 000 tons of tall oil corresponds to 1% of the total diesel consumption in Sweden. in Sweden for 2010 and a prognosis for 2014. (6). Accordingly, the profoundest task is to decrease the fossil fuel dependency in the transport sector, and clearly, the first generation biofuels can´t do this on its own. Biogas is a fuel gas with high methane content that can be used in a similar way to natural gas; for instance for cooking, heating and as transportation fuel. Today biogas is produced by fermentation of waste (municipal waste, sludge, manure), but can be produced by gasification of biomass, for instance from forest residues such as branches and rots (GROT in Swedish). To get high efficiency in the production, the lower hydrocarbons, mainly methane, in the producer gas, should not be converted into synthesis gas. Instead a synthesis gas with high methane content is sought. This limits the drainage of chemically bonded energy, due to the exothermic reaction in the synthesis step (so called methanisation). In 2011 0.7 TWh of biogas was produced in Sweden by fermentation of waste (6) and there were no production by gasification, at least not of economic importance. The potential seems to be large, though. In 2008 the total potential for biogas production, in Sweden, from waste by fermentation and gasification was estimated to 70 TWh (10 TWh fermentation and 60 TWh gasification) (8). This figure includes only different types of waste and no dedicated agricultural crops or dedicated forest harvest. Activities in the biogas sector, by gasification, in Sweden are the Göteborgs energi´s Gobigas project in Gothenburg and Eon´s Bio2G-project, now pending, in south of Sweden. If the producer gas is cleaned and upgraded into synthesis gas also other fuels could be produced. In Sweden methanol and DME productions are planned for in the Värmlands metanol-project and at Chemrecs DME production plant in Piteå.

    Download (pdf)
    extended abstract
  • 22.
    Brandin, Jan
    et al.
    Linnaeus University, Faculty of Technology, Department of Building and Energy Technology.
    Hulteberg, Christian
    Lunds Tekniska Högskola .
    Leveau, Andreas
    Biofuel-Solutions AB.
    Selective Catalysts for Glycerol Dehydration2013In: CRS-2, Catalysis for Renewable Sources: Fuel,Energy,ChemicalsBook of Abstracts / [ed] Vadim Yakovlev, Boreskov Institute of Catalysis, Novosibirsk, Russia: Boreskov Institute of Catalysis , 2013, p. 17-18Conference paper (Refereed)
    Abstract [en]

     There has been an increased interest over the last decade for replacing fossil based feedstock’s with renewable ones. There are several such feedstock’s that are currently being investigated such as cellulose, lignin, hemicellulose, triglycerides etc. However, when trying to perform selective reactions an as homogeneous feedstock as possible is preferable. One such feedstock example is glycerol, a side-product from biofuels production, which is a tri-alcohol and thus has much flexibility for reactions, e.g. dehydration, hydrogenation, addition reactions etc. Glycerol in itself is a good starting point for fine chemicals production being non-toxic and available in rather large quantities [1-2]. A key reaction for glycerol valorisation is the dehydration of glycerol to form acrolein, an unsaturated C3 aldehyde, which may be used for producing acrylic acid, acrylonitrile and other important chemcial products. It has recently been shown that pore-condensation of glycerol is an issue under industrial like conditions, leading to liquid-phase reactions and speeding up the catalyst activity and selectivity loss [3]. To address this issue, modified catalyst materials have been prepared where the relevant micro and meso pores have been removed by thermal sintering; calculations have shown that pores below 45 Å may be subject to pore condensation. The catalyst starting material was a 10% WO3 by weight supported on ZrO2 in the form of beads 1–2 mm and it was thermally treated at 400°C, 500°C, 600°C, 700°C, 700°C, 800°C, 850°C, 900°C and 1000°C for 2 hours. The catalysts were characterised using nitrogen adsorption, mercury intrusion porosimetry (MIP), Raman spectroscopy and ammonia temperature programmed desorption. The thermal sintered catalysts show first of all a decreasing BET surface area with sintering commencing between 700°C and 800°C when it decreases from the initial 71 m2/g to 62 m2/g and at 1000°C there is a mere 5 m2/g of surface area left. During sintering, the micro and meso-porosity is reduced as evidenced by MIP and depicted in figure 1. As may be seen in the figure, sintering decrease the amount of pores below and around 100 Å is reduced at a sintering temperature of 800°C and above. The most suitable catalyst based on the MIP appears to be the one sintered at 850°C which is further strengthened by the Raman analysis. There is a clear shift in the tungsten structure from monoclinic to triclinic between 850°C and 900°C and it is believed that the monoclinic phase is important for activity and selectivity. Further, the heat treatment shows that there is an increase in catalyst acidity measured as mmol NH3/(m2/g) but a decrease in the acid strength as evidenced by a decrease in the desorption peak maximum temperature.

     

    Download full text (pdf)
    fulltext
  • 23.
    Brandin, Jan
    et al.
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Odenbrand, Ingemar
    Lund University .
    Poisoning of SCR Catalysts used in Municipal Waste Incineration Applications2017In: Topics in catalysis, ISSN 1022-5528, E-ISSN 1572-9028, Vol. 60, no 17-18, p. 1306-1316Article in journal (Refereed)
    Abstract [en]

    A commercial vanadia, tungsta on titania SCRcatalyst was poisoned in a side stream in a waste incinerationplant. The effect of especially alkali metal poisoning was observed resulting in a decreased activity at long times of exposure. The deactivation after 2311 h was 36% whilet he decrease in surface area was only 7.6%. Thus the major cause for deactivation was a chemical blocking of acidic sites by alkali metals. The activation–deactivation model showed excellent agreement with experimental data. The model suggests that the original adsorption sites, from the preparation of the catalyst, are rapidly deactivated but are replaced by a new population of adsorption sites due to activation of the catalyst surface by sulphur compounds (SO2, SO3) in the flue gas.

  • 24.
    Böhlenius, Henrik
    et al.
    Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, SE-234 56 Alnarp, Sweden.
    Öhman, Marcus
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Granberg, Fredrik
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Persson, Per-Ove
    Persson f.N.B. AB, SE-54197, Lerdala, Sweden.
    Biomass production and fuel characteristics from long rotation poplar plantations2023In: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 178, article id 106940Article in journal (Refereed)
    Abstract [en]

    One of the key elements in this transition is the securing of a large supply of sustainable biomass. In this study, the feedstock potential of long rotation poplar plantations (12–30 years with diameter of 15 of 30 cm) was determined and the properties of poplar biomass fuel were analyzed with the aim of using thermochemical conversion methods to produce biofuel. Our results demonstrate that Sweden has great potential for producing biofuels from long rotation poplar plantations, with a total of 1.8 million hectares (ha) consisting of arable (0.5 million ha) and forested arable land (1.3 million ha). Based on available land and biomass production potential, our results indicate that 10 million Mg DW could be produced annually. Regions in mid/southern Sweden have the largest potential (larger areas and higher biomass production. Our results further suggest that poplar biomass from these plantations has fuel characteristics similar to forest fuels from other conifer tree species, making the biomass suitable as feedstock for biofuel production based on thermochemical conversion methods. If 25% of the available land were used, 7.6 TWh methanol biofuels could be produced annually from 16 biofuel plants, using 160,000 Mg DW yr−1, primarily located in the southern part of Sweden. Two counties (Skåne and Västra Götaland) would be able to support their biofuel plants using poplar plantations as feedstock. Stable biofuel production in the other counties would depend on collaborating with neighboring counties.

    Download full text (pdf)
    fulltext
  • 25.
    Cansu Ertem, Funda
    et al.
    Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany.
    Wang, Liqian
    Shanghai Institute of Applied Physics, Shanghai, China.
    Mattsson, Marie
    Halmstad University, School of Business, Engineering and Science, The Rydberg Laboratory for Applied Sciences (RLAS).
    Analyzing the impacts of inoculums to substrate ratio and pretreatment methods on the anaerobic biogas production from sugar beets2016In: ETIKUM 2016: Proceedings, Novi Sad: Faculty of technical sciences department of production engineering , 2016, p. 113-116Conference paper (Refereed)
    Abstract [en]

    This study evaluates the impacts of three different pretreatment methods on the biogas production from sugar beet, when it is anaerobically digested with a variety of inoculum mixing ratios. In this context, this research focuses on the influences of different pretreatment methods and inoculum on the digestibility on the digestibility. Sugar beet was anaerobically digested at 37°C. Actively digested cow manure slurry, vegetable and fruit residues mix was used as inoculum. The series of laboratory experiments using 32 digesters (each 1 L) were performed in batch operation mode. The results prove that inoculum and pretreatments could either enhance the biogas potential or totally inhibit the digestion. Key words: sugar beet, inoculum, pretreatment methods, biogas production.

  • 26.
    Casimir, Justin
    et al.
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Gunnarsson, Carina
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Farmers current practices, and their opinion on supplying straw for production of second-generation biofuels in Sweden2020Report (Other academic)
    Abstract [en]

    This report presents results from the EU project AGROinLOG (Grant Agreement 727921) and especially focuses on the results from a survey looking at the current practices with straw use in Sweden as well as the farmer’s opinion on supplying straw for the production of second-generation biofuel. The survey was developed as a collaboration between LRF (Federation of Swedish farmers) RISE and Lantmännen.The reader can first read about the context within which the survey was developed and analysed. The questions and the methodology are then presented. The main part of the report presents the questionnaire results before drawing conclusions in line with the project’s objectives.The survey shows that about 60% of the straw from farmers participating in the survey, remains in the field while 40% is harvested mostly for animal production. The county of Skåne, the “ÖSÖ” region (Östergötland, Södermanland, and Örebro counties), the region including Uppsala, Stockholm and Västmanland counties, and the county of Västra Götaland have the largest potential for collection of straw for industrial processes in Sweden. However, farmers from these regions are the most concerned about the decrease of soil quality due to straw removal. The current common practices for straw handling in Sweden, including baling, collection, transport, storage and sale, are highlighted.Some interesting conclusions are drawn concerning the logistics needed for the handling of straw for the biobased industry. Moreover, the answers from the survey give some insights concerning a potential “straw contract” between Lantmännen and the farmers. The report also highlights the aspects to be further researched.More information concerning the Swedish contribution to the AGROinLOG project can be found in the public report AGROinLOG (2020a).

    Download full text (pdf)
    fulltext
  • 27.
    Casimir, Justin
    et al.
    RISE - Research Institutes of Sweden (2017-2019), Bioscience and Materials, Agrifood and Bioscience.
    Jamieson, Max
    HIR Skåne, Sweden.
    Elmquist, Helena
    Odling i Balans, Sweden.
    Persson, Ingvar
    LRF konsult, Sweden.
    Bergman, Niklas
    LRF, Sweden.
    Färdplan för effektivisering och egenförsörjning av energi i lantbruket2018Report (Other academic)
    Abstract [en]

    The greenhouse gas emissions connected to energy use in the Swedish agriculture (excluding greenhouse cultures) represents 0,6 Mton CO2eq which is about 4% of the agriculture greenhouse gas emission in Sweden (Jordbruksverket, 2018). The “All Party Committee for environmental objectives” (miljömålsberedning) suggested that by 2045 Sweden should has a zero-net-emission of greenhouse gases. The parliament (Riksdag) adopted this political framework for climate issues which entered into force the 1st of January 2018. To reach this ambitious goal, all sectors including agriculture must undertake measures.

    The project developed a roadmap in the form of a list of measures leading the Swedish agriculture towards a sustainable status in line with the Swedish Environmental Goals. This roadmap was developed using a backcasting methodology. It means that first the goals were set and then the measures needed to move from the present status to the goals were developed. Based on political goals as well sustainability principles, a vision of the future for Swedish agriculture has been developed. The vision is:

    In the future, agriculture is energy effective, independent from fossil resources, deliver energy to the society and is profitable. Agricultural enterprises have access to knowledge, competences, and decision support. Collaboration within the agricultural sector as well as with other sectors is comprehensive for energy.

    To analyse the current situation, four studies were implemented within the project: (i) a survey of farmers view and interest, (ii) a survey of agrarian education, (iii) identification of bottlenecks with research and development (R&D), and (iv) an analysis of how relevant tools for energy are communicated. A selection of observation positive for the energy and climate questions are as follow: more agricultural enterprises have solar cells today than three years ago, 25% of the respondents have attend an eco-driving course, large farms have done most energy surveys and, investment in fossil free energy is seen as positive for both enterprise and the environment. Negative observations are that farmers miss a long-term regulation for energy production and feel a lack of knowledge about energy efficiency and production. Only 8% of the respondents uses high blends biofuels. In addition, respondents have expressed a lack of collaboration and inquire for a joint communication for R&D results concerning energy efficiency and production. In the agrarian education the interest in energy efficiency and production is low.

    A range of measures contributing to reach the vision were suggested. These measures vary between different communication strategies, improved advisory services and need for regulatory simplification to minimize the hassle with permissions and administration. Simple and accessible key figures as well as better statistics would make it easier to follow the different energy flows. It is up to decision-making authorities, advisory organisations, institutions of higher education, agricultural organisations and agriculture themselves to implement these measures.

    The greenhouse gas emissions connected to energy use in the Swedish agriculture (excluding greenhouse cultures) represents 0,6 Mton CO2eq which is about 4% of the agriculture greenhouse gas emission in Sweden (Jordbruksverket, 2018). The “All Party Committee for environmental objectives” (miljömålsberedning) suggested that by 2045 Sweden should has a zero-net-emission of greenhouse gases. The parliament (Riksdag) adopted this political framework for climate issues which entered into force the 1st of January 2018. To reach this ambitious goal, all sectors including agriculture must undertake measures.

    The project developed a roadmap in the form of a list of measures leading the Swedish agriculture towards a sustainable status in line with the Swedish Environmental Goals. This roadmap was developed using a backcasting methodology. It means that first the goals were set and then the measures needed to move from the present status to the goals were developed. Based on political goals as well sustainability principles, a vision of the future for Swedish agriculture has been developed. The vision is:

    In the future, agriculture is energy effective, independent from fossil resources, deliver energy to the society and is profitable. Agricultural enterprises have access to knowledge, competences, and decision support. Collaboration within the agricultural sector as well as with other sectors is comprehensive for energy.

    To analyse the current situation, four studies were implemented within the project: (i) a survey of farmers view and interest, (ii) a survey of agrarian education, (iii) identification of bottlenecks with research and development (R&D), and (iv) an analysis of how relevant tools for energy are communicated. A selection of observation positive for the energy and climate questions are as follow: more agricultural enterprises have solar cells today than three years ago, 25% of the respondents have attend an eco-driving course, large farms have done most energy surveys and, investment in fossil free energy is seen as positive for both enterprise and the environment. Negative observations are that farmers miss a long-term regulation for energy production and feel a lack of knowledge about energy efficiency and production. Only 8% of the respondents uses high blends biofuels. In addition, respondents have expressed a lack of collaboration and inquire for a joint communication for R&D results concerning energy efficiency and production. In the agrarian education the interest in energy efficiency and production is low.

    A range of measures contributing to reach the vision were suggested. These measures vary between different communication strategies, improved advisory services and need for regulatory simplification to minimize the hassle with permissions and administration. Simple and accessible key figures as well as better statistics would make it easier to follow the different energy flows. It is up to decision-making authorities, advisory organisations, institutions of higher education, agricultural organisations and agriculture themselves to implement these measures.

    Download full text (pdf)
    fulltext
  • 28.
    Celander, Filip
    et al.
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology.
    Haglund, Johan
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology.
    Energy and nutrient recovery from dairy manure: Process design and economic performance of a farm based system2014Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    This thesis assessed the technical and economic premises for installing systems that process manure in order to recover nutrients and inherent energy. The main purpose of recovering nutrients was to extract phosphorus from the manure, so as to be able to distribute more of the manure on the farm without exceeding the phosphorus regulation. Three other scenarios were included as reference; conventional manure handling, solid-liquid separation only and solid-liquid separation including energy recovery. Since most important parameters for modeling scenarios in agriculture are site-specific (e.g. soil type, crop rotation and manure composition), the thesis results were based on a case farm. The case farm is a 675 ha dairy farm with approx. 1400 milking cows, located in Östergötland, Sweden.

    As for the results, it was first concluded that the central characteristics of manure were the content of dry matter (DM), nitrogen (N), phosphorus (P) and potassium (K). The higher the DM content, the more fuel for energy recovery, and the higher the N:P-ratio, the more on-farm N can be utilized before having to consider the P regulation. The technical premises for farm-scale nutrient recovery were limited to commercial techniques from companies operating in Sweden, and included various possible processing methods, such as; pH modification, anaerobic digestion, coagulation-flocculation, precipitation, filtration and reverse osmosis. However, most methods were either too costly or simply not realistic to install on stand-alone farms, resulting in only two feasible options; struvite precipitation and secondary solid-liquid separation with a decanter centrifuge.

    The comparison in economic performance for all scenarios resulted as follows: nutrient recovery by struvite precipitation was the most profitable scenario of all, if struvite was allowed to replace mineral P fertilizer (i.e. end-product on-farm utilization). If not, it was more profitable to invest in only energy recovery, as nutrient recovery by secondary solid-liquid separation or struvite precipitation with end-product sales were not as profitable. However, the absolutely largest increase in profitability lies within investing in a primary solid-liquid separation. As for the case farm, this investment reduced costs by more than 2 MSEK, while any of the latter scenarios reduce costs by 0,1-0,2 MSEK. Furthermore, the possible utilization of the waste heat from energy recovery increased profitability by a factor of ten.

    Download full text (pdf)
    Celander_Haglund_2014_Energy and nutrient recovery from dairy manure
  • 29. Celaya, J.
    et al.
    Bridgwater, A.V.
    Toven, K.
    RISE, Innventia, PFI – Paper and Fiber Research Institute.
    Fast pyrolysis bio-oil production from Scandinavian forest residues2012Conference paper (Refereed)
  • 30. Celaya, J.
    et al.
    Bridgwater, A.V.
    Toven, K.
    RISE, Innventia, PFI – Paper and Fiber Research Institute.
    Fast pyrolysis bio-oil production from Scandinavian forest residues2012Conference paper (Refereed)
  • 31. Cerutti, P. O.
    et al.
    Sola, P.
    Chenevoy, A.
    Iiyama, M.
    Yila, J.
    Zhou, W.
    Djoudi, H.
    Atyi, R. E.
    Gautier, D. J.
    Gumbo, D.
    Kuehl, Y.
    Levang, P.
    Martius, C.
    Matthews, R.
    Nasi, R.
    Neufeldt, H.
    Njenga, M.
    Petrokofsky, G.
    Saunders, M.
    Shepherd, G.
    Sonwa, D. J.
    Sundberg, Cecilia
    Van Noordwijk, M.
    The socioeconomic and environmental impacts of wood energy value chains in Sub-Saharan Africa: A systematic map protocol2015In: Environmental Evidence, E-ISSN 2047-2382, Vol. 4, no 1, article id 4Article in journal (Refereed)
    Abstract [en]

    Background: The vast majority of households in Sub-Saharan Africa (SSA) depend on wood energy - comprising firewood and charcoal - for their daily energetic needs. Such consumption trends are expected to remain a common feature of SSA's wood energy production and supply chains, at least in the short- to medium-terms. Notwithstanding its importance, wood energy generally has low priority in SSA national policies. However, the use of wood energy is often considered a key driver of unsustainable management and negative environmental consequences in the humid and dry forests. To date, unsystematic assessments of the socio-economic and environmental consequences of wood energy use have underplayed its significance, thus further hampering policy debates. Therefore, a more balanced approach which considers both demand and supply dynamics is needed. This systematic map aims at providing a comprehensive approach to understanding the role and impacts of wood energy across all regions and aspects in SSA. Methods: The objective of this systematic map is to collate evidence from studies of environmental and socio-economic impacts of wood energy value chains, by considering both demand and supply within SSA. The map questions are framed using a Populations, Exposure, Comparators and Outcomes (PECO) approach. We name the supply and demand of wood energy as the "exposure," composed of wood energy production, harvesting, processing, and consumption. The populations of interest include both the actors involved in these activities and the forest sites where these activities occur. The comparator is defined as those cases where the same wood energy activities occur with i) available/accessible alternative energy sources, ii) regulatory frameworks that govern the sector and iii) alternative technologies for efficient use. The outcomes of interest encompass both socioeconomic and environmental impacts that can affect more than the populations named above. For instance, in addition to the direct socioeconomic impacts felt by participants in the wood energy value chain, forest dwellers may experience livelihood changes due to forest degradation caused by external harvesters. Moreover, intensified deforestation in one area may concurrently lead to forest regeneration in another.

  • 32.
    Cetecioglu, Zeynep
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Resource recovery.
    Dolfing, Jan
    Newcastle Univ, Sch Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England..
    Taylor, Jessica
    Univ Warwick, Sch Life Sci, Coventry CV4 7AL, W Midlands, England..
    Purdy, Kevin J.
    Univ Warwick, Sch Life Sci, Coventry CV4 7AL, W Midlands, England..
    Eyice, Ozge
    Queen Mary Univ London, Sch Biol & Chem Sci, London E1 4NS, England..
    COD/sulfate ratio does not affect the methane yield and microbial diversity in anaerobic digesters2019In: Water Research, ISSN 0043-1354, E-ISSN 1879-2448, Vol. 155, no A Z, 1986, APPLIED AND ENVIRONMENTAL MICROBIOLOGY, V51, P572 rdy KJ, 2003, FEMS MICROBIOLOGY ECOLOGY, V44, P361, p. 444-454Article in journal (Refereed)
    Abstract [en]

    Anaerobic digestion of organic matter is the major route of biomethane production. However, in the presence of sulfate, sulfate-reducing bacteria (SRB) typically outcompete methanogens, which may reduce or even preclude methane production from sulfate-containing wastewaters. Although sulfate reduction and methanogenesis can occur simultaneously, our limited understanding of the microbiology of anaerobic digesters treating sulfate-containing wastewaters constrains improvements in the production of methane from these systems. This study tested the effects of carbon sources and chemical oxygen demand-to-sulfate ratio (COD/SO42-) on the diversity and interactions of SRB and methanogens in an anaerobic digester treating a high-sulfate waste stream. Overall, the data showed that sulfate removal and methane generation occurred in varying efficiencies and the carbon source had limited effect on the methane yield. Importantly, the results demonstrated that methanogenic and SRB diversities were only affected by the carbon source and not by the COD/SO42- ratio. 

  • 33. Chacha, N.
    et al.
    Toven, K.
    RISE, Innventia, PFI – Paper and Fiber Research Institute.
    Mtui, G.
    Katima, J.
    Mrema, G.
    Steam pretreatment of pine (Pinus patula) for fuel ethanol production in Tanzania2011Conference paper (Refereed)
  • 34.
    Chen, Tianyang
    et al.
    Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
    Banda, Harish
    Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
    Yang, Luming
    Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
    Li, Jian
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. Berzelii Center EXSELENT on Porous Materials, Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden.
    Zhang, Yugang
    Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA.
    Parenti, Riccardo
    Automobili Lamborghini S.p.A., 40019 Sant'Agata Bolognese, Italy.
    Dincă, Mircea
    Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
    High-rate, high-capacity electrochemical energy storage in hydrogen-bonded fused aromatics2023In: Joule, E-ISSN 2542-4351, Vol. 7, no 5, p. 986-1002Article in journal (Refereed)
    Abstract [en]

    Designing materials for electrochemical energy storage with short charging times and high charge capacities is a longstanding challenge. The fundamental difficulty lies in incorporating a high density of redox couples into a stable material that can efficiently conduct both ions and electrons. We report all-organic, fused aromatic materials that store up to 310 mAh g−1 and charge in as little as 33 s. This performance stems from abundant quinone/imine functionalities that decorate an extended aromatic backbone, act as redox-active sites, engage in hydrogen bonding, and enable a delocalized high-rate energy storage with stability upon cycling. The extended conjugation and hydrogen-bonding-assisted bulk charge storage contrast with the surface-confined or hydration-dependent behavior of traditional inorganic electrodes.

  • 35.
    Chodkowska-Miszczuk, Justyna
    et al.
    Nicolaus Copernicus University in Toruń, Poland.
    Biegańska, Jadwiga
    University of Gothenburg, Sweden.
    Martinat, Stanislav
    Institute of Geonics of the Czech Academy of Sciences, Czech Republic.
    Dymitrow, Mirek
    University of Gothenburg, Sweden.
    Rogatka, Krzysztof
    Nicolaus Copernicus University in Toruń, Polan.
    Biogas enterprises: A chance or a challenge for rural development?2018In: Challenged Ruralities: Welfare States under PressureConference Book – Fifth Nordic Rural Research Conferenc / [ed] Hanne W. Tanvig;Lise Herslund, 2018Conference paper (Refereed)
    Abstract [en]

    This paper addresses the question whether biogas plants (businesses based on renewable energy) often marketed as a great opportunity for rural development can at the same time pose a hidden challenge. Departing from the concept of embeddedness of enterprises in the local environment, our objective is realized with the help of two models of biogas plants. In the first model, biogas plants operate as an integral part of agricultural farms (biogas on-farm model); in the second model, they operate as independent companies established through investments by external entrepreneurs (biogas off-farm model). The two models have proven to affect the economies of particular biogas enterprises very differently. In the first model, the support of existing agricultural farms is of great importance as those usually are important for local stakeholders. In the second model, biogas plants that emerge as new external investments must build interactions with local entities from scratch. From an economic point of view, the lack of functioning mechanisms in this sense may influence further directions of development for many rural areas traditionally associated with agriculture.

  • 36.
    Cintas, Olivia
    et al.
    Chalmers University of Technology.
    Berndes, Göran
    Chalmers University of Technology.
    Englund, Oskar
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Ecotechnology and Suistainable Building Engineering. Chalmers University of Technology.
    Filip, Johnsson
    Chalmers University of Technology.
    Geospatial supply-demand modeling of lignocellulosic biomass for electricity and biofuels in the European Union2021In: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 144, article id 105870Article in journal (Refereed)
    Abstract [en]

    Bioenergy can contribute to achieving European Union (EU) climate targets while mitigating impacts from current agricultural land use. A GIS-based modeling framework (1000 m resolution) is employed to match biomass supply (forest and agricultural residues, complemented by lignocellulosic energy crops where needed)with biomass demand for either electricity or bio-oil production on sites currently used for coal power in the EU-28, Norway, and Switzerland. The framework matches supply and demand based on minimizing the field-to-gate costs and is used to provide geographically explicit information on (i) plant-gate supply cost; (ii) CO2 savings;and (iii) potential mitigation opportunities for soil erosion, flooding, and eutrophication resulting from the introduction of energy crops on cropland. Converting all suitable coal power plants to biomass and assuming that biomass is sourced within a transport distance of 300 km, would produce an estimated 150 TW h biomass-derived electricity, using 1365 PJ biomass, including biomass from energy crops grown on 6 Mha. Using all existing coal power sites for bio-oil production in100-MW pyrolysis units could produce 820 PJ of bio-oil, using 1260 PJ biomass, including biomass from energy crops grown on 1.8 Mha. Using biomass to generate electricity would correspond to an emissions reduction of135 MtCO2, while using biomass to produce bio-oil to substitute for crude oil would correspond to a reduction of59 MtCO2. In addition, energy crops can have a positive effect on soil organic carbon in most of the analyzed countries. The mitigation opportunities investigated range from marginal to high depending on location.

  • 37. Corbin, Kendall R.
    et al.
    Hsieh, Yves S. Y.
    University of Adelaide, Australia.
    Betts, Natalie S.
    Byrt, Caitlin S.
    Henderson, Marilyn
    Stork, Jozsef
    DeBolt, Seth
    Fincher, Geoffrey B.
    Burton, Rachel A.
    Grape marc as a source of carbohydrates for bioethanol: Chemical composition, pre-treatment and saccharification.2015In: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976, Vol. 193, p. 76-83, article id S0960-8524(15)00816-0Article in journal (Refereed)
    Abstract [en]

    Global grape production could generate up to 13 Mt/yr of wasted biomass. The compositions of Cabernet Sauvignon (red marc) and Sauvignon Blanc (white marc) were analyzed with a view to using marc as raw material for biofuel production. On a dry weight basis, 31-54% w/w of the grape marc consisted of carbohydrate, of which 47-80% was soluble in aqueous media. Ethanol insoluble residues consisted mainly of polyphenols, pectic polysaccharides, heteroxylans and cellulose. Acid and thermal pre-treatments were investigated for their effects on subsequent cellulose saccharification. A 0.5M sulfuric acid pre-treatment yielded a 10% increase in the amount of liberated glucose after enzymatic saccharification. The theoretical amount of bioethanol that could be produced by fermentation of grape marc was up to 400 L/t. However, bioethanol from only soluble carbohydrates could yield 270 L/t, leaving a polyphenol enriched fraction that may be used in animal feed or as fertilizer.

  • 38.
    Dahlquist, Erik
    et al.
    School of Sustainable Development of Society and Technology, Mälardalen University, Västerås, Sweden.
    Bundschuh, Jochen
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering. University of Southern Queensland (USQ), Toowoomba, Australia.
    Biomass in different biotopes - an extensive resource2013In: Biomass as Energy Source: Resources, Systems and Applications, CRC Press , 2013, p. 87-107Chapter in book (Other academic)
  • 39.
    Dahlquist, Erik
    et al.
    School of Sustainable Development of Society and Technology, Mälardalen University, Västerås, Sweden.
    Bundschuh, Jochen
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering. University of Southern Queensland (USQ), Toowoomba, Australia.
    Introduction and context: Global biomass resources - types of biomass, quantities and accessibility. Biomass from agriculture, forestry, energy crops and organic wastes2013In: Biomass as Energy Source: Resources, Systems and Applications, CRC Press , 2013, p. 5-33Chapter in book (Other academic)
  • 40.
    Dahlquist, Erik
    et al.
    School of Sustainable Development of Society and Technology, Mälardalen University, Västerås, Sweden.
    Bundschuh, Jochen
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering. University of Southern Queensland (USQ), Toowoomba, Australia.
    Pulp and paper industry - trends for the future2013In: Biomass as Energy Source: Resources, Systems and Applications, CRC Press , 2013, p. 229-233Chapter in book (Other academic)
  • 41.
    Dahlquist, Erik
    et al.
    School of Sustainable Development of Society and Technology, Mälardalen University, Västerås, Sweden.
    Bundschuh, Jochen
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering. University of Southern Queensland (USQ), Toowoomba, Australia.
    System aspects of biomass use in complex applications: Biorefineries for production of heat, electric power and chemicals2013In: Biomass as Energy Source: Resources, Systems and Applications, CRC Press , 2013, p. 137-139Chapter in book (Other academic)
  • 42.
    de Castro, J. Cunha
    et al.
    Univ Fed Rio de Janeiro, Brazil.
    Resende, E.
    Univ Fed Rio de Janeiro, Brazil.
    Taveira, Igor
    Univ Fed Rio de Janeiro, Brazil.
    Enrich Prast, Alex
    Linköping University, Department of Thematic Studies, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences. Linköping University, Biogas Solutions Research Center. Fed Univ Sao Paulo IMar UNIFESP, Brazil.
    Abreu, F.
    Univ Fed Rio de Janeiro, Brazil.
    Nanotechnology boosts the production of clean energy via nanoparticle addition in anaerobic digestion2024In: FRONTIERS IN NANOTECHNOLOGY, ISSN 2673-3013, Vol. 6, article id 1406344Article in journal (Refereed)
    Abstract [en]

    Biogas production via anaerobic digestion is an established and robust technology that produces energy and recycles nutrients. Several biotechnological attempts have been applied to this process to increase biogas production, including adding nanoparticles, but several discrepancies have been reported. To elucidate the contradictory results, we performed a literature review followed by a meta-analysis to evaluate the effect of adding natural nanoparticles to biogas sludge. Our results showed that adding nanoparticles can increase biogas production by up to two orders of magnitude. Considering that, we attribute these results to variability in the nanoparticles applied, leading to less reliable, consistent, and even contradictory results. We observed that the magnetite nanoparticles are the most tested ones with the most promising positive effects. In addition, we observed that concentrations of nanoparticles higher than 100 mg/L can have adverse effects, with an overall decrease in biogas production. The findings in this study highlight the need for a proper characterization of the nanomaterials type and concentration applied to the process to understand the interactions and effects on the microbial communities and dynamics that lead to an overall increase or decrease in biogas yield.

  • 43.
    de Toro, Alfredo
    et al.
    Independent Researcher, Sweden.
    Gunnarsson, Carina
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Jonsson, Nils
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Sundberg, Martin
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Effects of variable weather conditions on baled proportion of varied amounts of harvestable cereal straw, based on simulations2021In: Sustainability, E-ISSN 2071-1050, Vol. 13, no 16, article id 9449Article in journal (Refereed)
    Abstract [en]

    All harvestable cereal straw cannot be collected every year in regions where wet periods are probable during the baling season, so some Swedish studies have used 'recovery coefficients’ to estimate potential harvestable amounts. Current Swedish recovery coefficients were first formu-lated by researchers in the early 1990s, after discussions with crop advisors, but there are no recent Swedish publications on available baling times and recovery proportions. Therefore, this study evaluated baling operations over a series of years for representative virtual farms and machine systems in four Swedish regions, to determine the available time for baling, baled straw ratio and annual variation in both. The hourly grain moisture content of pre-harvested cereals and swathed straw was estimated using moisture models and real weather data for 22/23 years, and the results were used as input to a model for simulating harvesting and baling operations. Expected available baling time during August and September was estimated to be 39–49%, depending on region, with large annual variation (standard deviation 22%). The average baling coefficient was estimated to be 80– 86%, with 1400 t·year−1 harvestable straw and 15 t·h−1 baling capacity, and the annual variation was also considerable (s.d. 20%). © 2021 by the authors. 

  • 44.
    Dererie, Debebe Yilma
    et al.
    Sveriges lantbruksuniversitet.
    Trobro, Stefan
    Institutionen för Molekylärbiologi, Sveriges Lantbruksuniversitet.
    Momeni, Majid Haddad
    Sveriges lantbruksuniversitet.
    Hansson, Henrik
    Sveriges lantbruksuniversitet.
    Blomqvist, Johanna
    Sveriges lantbruksuniversitet.
    Passoth, Volkmar
    Sveriges lantbruksuniversitet.
    Schnürer, Anna
    Sveriges lantbruksuniversitet.
    Sandgren, Mats
    Sveriges lantbruksuniversitet.
    Ståhlberg, Jerry
    Sveriges lantbruksuniversitet.
    Improved bio-energy yields via sequential ethanol fermentation and biogas digestion of steam exploded oat straw2011In: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976, Vol. 102, no 6, p. 4449-4455Article in journal (Refereed)
    Abstract [en]

    Using standard laboratory equipment, thermochemically pretreated oat straw was enzymatically saccharified and fermented to ethanol, and after removal of ethanol the remaining material was subjected to biogas digestion. A detailed mass balance calculation shows that, for steam explosion pretreatment, this combined ethanol fermentation and biogas digestion converts 85-87% of the higher heating value (HHV) of holocellulose (cellulose and hemicellulose) in the oat straw into biofuel energy. The energy (HHV) yield of the produced ethanol and methane was 9.5-9.8 MJ/(kg dry oat straw), which is 28-34% higher than direct biogas digestion that yielded 7.3-7.4 MJ/(kg dry oat straw). The rate of biogas formation from the fermentation residues was also higher than from the corresponding pretreated but unfermented oat straw, indicating that the biogas digestion could be terminated after only 24 days. This suggests that the ethanol process acts as an additional pretreatment for the biogas process.

  • 45. Drews, M.
    et al.
    Larsen, M. A. D.
    Pena Balderrama, J. Gabriela
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy Systems Analysis.
    Projected water usage and land-use-change emissions from biomass production (2015–2050)2020In: Energy Strategy Reviews, ISSN 2211-467X, E-ISSN 2211-4688, Vol. 29, article id 100487Article in journal (Refereed)
    Abstract [en]

    Increased biomass for energy production features as a key part of the transition to a competitive low-carbon EU energy system. Not all energy strategies however will lead to reduced emissions, and extensive biomass production inherently compete with, e.g., agricultural systems for key natural resources like water and land. This paper investigates the ramifications of three potential energy pathways for Europe developed by the H2020 REEEM project, ambitiously aimed at reducing CO2 emissions to 80–95% compared to 1990, using different mixes of biomass. Their environmental footprint for 2015–2050 in terms of land-use-change emissions and water consumption are confronted with near-term climate change projections. Finally, potential implications for the implementation and robustness of future European energy strategies are discussed, highlighting in particular the role of uncertainties in estimating the performance of biomass systems.

  • 46. Dyrset, N.
    et al.
    Øyaas, K.
    RISE, Innventia, PFI – Paper and Fiber Research Institute.
    Hobley, T.J.
    Alfrén, J.
    Hreggvidson, G.
    Uusitalo, J.
    Schenck, A.V.
    RISE, Innventia.
    Sustainable Biofuel: Innovations in Bioethanol Production Technologies (SusBioFuel)2012Conference paper (Refereed)
  • 47. Dyrset, Nils
    et al.
    Öyaas, Karin
    RISE, Innventia, PFI – Paper and Fiber Research Institute.
    Hobley, Timothy John
    Alfthen, Johan
    RISE, Innventia.
    Hreggvidsson, Gudmundir
    Uusitalo, Jaana
    von Schenck, Anna
    RISE, Innventia.
    Ochoa-Fernandez, Esther
    Einen, Jörn
    Sustainable biofuel: innovations in bioethanol production technologies (SusBioFuel)2012Conference paper (Refereed)
  • 48.
    Díaz-Ramírez, Maryori
    et al.
    Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Centre of Research for Energy Resources and Consumption, CIRCE Foundation, Zaragoza, Spain.
    Boman, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Sebastián, Fernando
    Centre of Research for Energy Resources and Consumption, CIRCE Foundation, Zaragoza, Spain.
    Royo, Javier
    Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain.
    Xiong, Shaojun
    Swedish University of Agricultural Sciences, Umeå, Sweden.
    Boström, Dan
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Environmental performance of three novel opportunity biofuels: poplar, brassica and cassava during fixed bed combustion2013In: Herbaceous plants: cultivation methods, grazing and environmental impacts / [ed] Florian Wallner, Nova Science Publishers, Inc., 2013, p. 133-147Chapter in book (Refereed)
    Abstract [en]

    In the last few decades several types of solid biofuels have been proposed as possible sources for heat generation because of growing concerns about environmental pollution, and future fossil fuel supply uncertainties. Among other biomass assortments, short rotation coppice and herbaceous species have been considered. An important aspect to be evaluated to enable a sustainable introduction of such novel fuels is related to their environmental performance during combustion. In this work, three fuel types; one herbaceous energy crop and one short rotation coppice (both cultivated and pelletized in Spain), together with one agricultural residue (cultivated in China) have been assessed in terms of their emission levels of gases (CO and NOX) and particulate matter. The experiments showed that combustion of the fuels was attained under an acceptable level of CO emissions. However, concentration of NOX was rather high, but perhaps more important, a considerably high formation of fine particle emissions was observed. Consequently, the incorporation of primary or secondary particle precipitating reduction measures might be needed. In addition, the high ash content in these fuels can severely deteriorate the combustion performance and reliability. Thus, specially designed burners/grate units are therefore needed if a utilization of these fuels in small and medium scale combustion systems seeks to be feasible. Although the applicability of introducing this kind of biofuels to the residential heating sector perhaps seems to be rather limited, it should not always be rejected. Nevertheless, technology improvements would have to be considered to manage the current limitations. 

  • 49.
    Egeskog, Andrea
    et al.
    Chalmers University, Energy and Environment.
    Barretto, Alberto
    Brazilian Bio-ethanol Science and Technology Laboratory(CTBE).
    Berndes, Göran
    Chalmers University, Energy and Environment.
    Freitas, Flavio L. M.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Holmén, Magnus
    echnology Management and Economics and connected to Center for Business Innovation.
    Sparovek, G.
    Torén, Johan
    SP Technical Research Institute of Sweden.
    Actions and opinions of Brazilian farmers who shift to sugarcane: an interview-based assessment with discussion of implications for land-use change2016In: Land use policy, ISSN 0264-8377, E-ISSN 1873-5754, Vol. 57, p. 594-604Article in journal (Refereed)
    Abstract [en]

    Sugarcane ethanol systems can deliver large greenhouse gas emissions savings if emissions associated with land-use change are kept low. This qualitative study documents and analyzes actions and opinions among Brazilian farmers who shift to sugarcane production. Semi-structured interviews were held with 28 actors associated with sugarcane production in three different regions: one traditional sugarcane region and two regions where sugarcane is currently expanding. Most farmers considered sugarcane a land diversification option with relatively low economic risk, although higher risk than their previous land use. Beef production was considered a low-risk option, but less profitable than sugarcane. In conjunction with converting part of their land to sugarcane, most farmers maintained and further intensified their previous agricultural activity, often beef production. Several farmers invested in expanded production in other regions with relatively low land prices. Very few farmers in the expansion regions shifted all their land from the former, less profitable, use to sugarcane. Very few farmers in this study had deforested any land in connection with changes made when shifting to sugarcane. The respondents understand "environmental friendliness" as compliance with the relevant legislation, especially the Brazilian Forest Act, which is also a requirement for delivering sugarcane to the mills. Indirect land-use change is not a concern for the interviewed farmers, and conversion of forests and other native vegetation into sugarcane plantations is uncontroversial if legal. We derive hypotheses regarding farmers' actions and opinions from our results. These hypotheses aim to contribute to better understanding of what takes place in conjunction with expansion of sugarcane and can, when tested further, be of use in developing, e.g., policies for iLUC-free biofuel production.

  • 50.
    Ek, Monica
    et al.
    KTH Royal Institute of Technology, Sweden.
    Chirat, Christine
    KTH Royal Institute of Technology, Sweden.
    Fogelström, Linda
    Grenoble INP-Pagora, France.
    Iversen, Tommy
    KTH Royal Institute of Technology, Sweden.
    Li, Dongfang
    RISE, Innventia.
    Malmström, Eva E.
    KTH Royal Institute of Technology, Sweden.
    Norström, Emelie
    KTH Royal Institute of Technology, Sweden.
    Sixta, Herbert
    Aalto University, Finland.
    Testova, Lidia
    KTH Royal Institute of Technology, Sweden.
    Wawro, Dariusz
    IBWCh Institute of Biopolymer and Chemical Fibres, Poland.
    Wobama - Wood based materials and fuels2014In: Cellulose Chemistry and Technology, ISSN 0576-9787, Vol. 48, no 9-10, p. 773-779Article in journal (Refereed)
    Abstract [en]

    WOBAMA - Wood Based Materials and Fuels is a biorefinery oriented scientific research project supported by Wood Wisdom-Net Research Programme and ERA-NET Bioenergy. In this project, the wood based raw materials were converted to a range of value added products through unconventional techniques. So far, many demonstrators have been prepared, such as the dissolving pulps with high cellulose content, the regenerated cellulose films with high tenacity, the hydrophobic materials based on cellulose and birch bark suberin, as well as the adhesives based on polysaccharides.

12345 1 - 50 of 227
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf