Digitala Vetenskapliga Arkivet

Change search
Refine search result
1234567 1 - 50 of 2712
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Abbott, Benjamin W.
    et al.
    Jones, Jeremy B.
    Schuur, Edward A. G.
    Chapin, F. Stuart, III
    Bowden, William B.
    Bret-Harte, M. Syndonia
    Epstein, Howard E.
    Flannigan, Michael D.
    Harms, Tamara K.
    Hollingsworth, Teresa N.
    Mack, Michelle C.
    McGuire, A. David
    Natali, Susan M.
    Rocha, Adrian V.
    Tank, Suzanne E.
    Turetsky, Merritt R.
    Vonk, Jorien E.
    Wickland, Kimberly P.
    Aiken, George R.
    Alexander, Heather D.
    Amon, Rainer M. W.
    Benscoter, Brian W.
    Bergeron, Yves
    Bishop, Kevin
    Blarquez, Olivier
    Bond-Lamberty, Ben
    Breen, Amy L.
    Buffam, Ishi
    Cai, Yihua
    Carcaillet, Christopher
    Carey, Sean K.
    Chen, Jing M.
    Chen, Han Y. H.
    Christensen, Torben R.
    Cooper, Lee W.
    Cornelissen, J. Hans C.
    de Groot, William J.
    DeLuca, Thomas H.
    Dorrepaal, Ellen
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Fetcher, Ned
    Finlay, Jacques C.
    Forbes, Bruce C.
    French, Nancy H. F.
    Gauthier, Sylvie
    Girardin, Martin P.
    Goetz, Scott J.
    Goldammer, Johann G.
    Gough, Laura
    Grogan, Paul
    Guo, Laodong
    Higuera, Philip E.
    Hinzman, Larry
    Hu, Feng Sheng
    Hugelius, Gustaf
    Jafarov, Elchin E.
    Jandt, Randi
    Johnstone, Jill F.
    Karlsson, Jan
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Kasischke, Eric S.
    Kattner, Gerhard
    Kelly, Ryan
    Keuper, Frida
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Kling, George W.
    Kortelainen, Pirkko
    Kouki, Jari
    Kuhry, Peter
    Laudon, Hjalmar
    Laurion, Isabelle
    Macdonald, Robie W.
    Mann, Paul J.
    Martikainen, Pertti J.
    McClelland, James W.
    Molau, Ulf
    Oberbauer, Steven F.
    Olefeldt, David
    Pare, David
    Parisien, Marc-Andre
    Payette, Serge
    Peng, Changhui
    Pokrovsky, Oleg S.
    Rastetter, Edward B.
    Raymond, Peter A.
    Raynolds, Martha K.
    Rein, Guillermo
    Reynolds, James F.
    Robards, Martin
    Rogers, Brendan M.
    Schaedel, Christina
    Schaefer, Kevin
    Schmidt, Inger K.
    Shvidenko, Anatoly
    Sky, Jasper
    Spencer, Robert G. M.
    Starr, Gregory
    Striegl, Robert G.
    Teisserenc, Roman
    Tranvik, Lars J.
    Virtanen, Tarmo
    Welker, Jeffrey M.
    Zimov, Sergei
    Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment2016In: Environmental Research Letters, E-ISSN 1748-9326, Vol. 11, no 3, article id 034014Article in journal (Refereed)
    Abstract [en]

    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.

    Download full text (pdf)
    fulltext
  • 2. Abbott, Peter M.
    et al.
    Davies, Siwan M.
    Steffensen, Jorgen Peder
    Pearce, Nicholas J. G.
    Bigler, Matthias
    Johnsen, Sigfus J.
    Seierstad, Inger K.
    Svensson, Anders
    Wastegård, Stefan
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    A detailed framework of Marine Isotope Stages 4 and 5 volcanic events recorded in two Greenland ice-cores2012In: Quaternary Science Reviews, ISSN 0277-3791, E-ISSN 1873-457X, Vol. 36, p. 59-77Article in journal (Refereed)
    Abstract [en]

    Sulphate records from Greenland ice-cores indicate that Marine Isotope Stages 4 and 5 were charactensed by a higher incidence of large volcanic eruptions than other periods during the last glacial period, however, few investigations have focused on tephra deposits associated with these volcanic eruptions and the nature and origin of the events. Here we present a detailed tephrochronological framework of the products of 15 volcanic events spanning this interval: the majority of which have been preserved as cryptotephra horizons within the Greenland records. The major element compositions of individual glass shards within these horizons indicate that 13 of the eruptions originated from Iceland and 6 of these events can be correlated to the specific volcanic systems of Katla, Grimsvotn, Grimsvotn-Kverkfjoll and either Reykjanes or Veidivotn-Bardarbunga. For the remaining Icelandic horizons a source from either the rift zone or a flank zone can be suggested based on rock suite affinities. Two horizons have been correlated to a source from the Jan Mayen volcanic system which represents the first discovery of material from this system within any Greenland ice-cores. The robust geochemical characterisations, independent ages for these horizons (derived from the GICCO5 ice-core chronology) and stratigraphic positions relative to the Dansgaard-Oeschger climate events recorded in the Greenland ice-cores represent a critical framework that provides new information on the frequency and nature of volcanic events occurring in the North Atlantic region during MIS 4 and 5. This framework can now be utilised in the assessment of the differential timing and rate of response to the millennial-scale climatic events that characterised this period, through the use of the tephra horizons as time-synchronous tie-lines to other palaeoclimatic sequences.

  • 3.
    Abdelgadir, Mohanad
    et al.
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science. Södertörn University, Centre for Baltic and East European Studies (CBEES), Baltic & East European Graduate School (BEEGS).
    Broman, Elias
    Stockholm University, Sweden.
    Dinnétz, Patrik
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Sjöling, Sara
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science.
    Multiple realm models of marine, terrestrial, and future climate change scenarios predict increased filamentous cyanobacteria occurrences in coastal Baltic SeaManuscript (preprint) (Other academic)
  • 4. Abegg, Bruno
    et al.
    Morin, Samuel
    Demiroglu, O. Cenk
    Umeå University, Arctic Research Centre at Umeå University. Umeå University, Faculty of Social Sciences, Department of Geography.
    François, H.
    Rothleitner, M.
    Strasser, U.
    Overloaded!: Critical revision and a new conceptual approach for snow indicators in ski tourism2021In: International journal of biometeorology, ISSN 0020-7128, E-ISSN 1432-1254, Vol. 65, no 5, p. 691-701Article in journal (Refereed)
    Abstract [en]

    Indicators are widely used in climate variability and climate change assessments to simplify the tracking of complex processes and phenomena in the state of the environment. Apart from the climatic criteria, the snow indicators in ski tourism have been increasingly extended with elements that relate to the technical, operational, and commercial aspects of ski tourism. These non-natural influencing factors have gained in importance in comparison with the natural environmental conditions but are more difficult to comprehend in time and space, resulting in limited explanatory power of the related indicators when applied for larger/longer scale assessments. We review the existing indicator approaches to derive quantitative measures for the snow conditions in ski areas, to formulate the criteria that the indicators should fulfill, and to provide a list of indicators with their technical specifications which can be used in snow condition assessments for ski tourism. For the use of these indicators, a three-step procedure consisting of definition, application, and interpretation is suggested. We also provide recommendations for the design of indicator-based assessments of climate change effects on ski tourism. Thereby, we highlight the importance of extensive stakeholder involvement to allow for real-world relevance of the achieved results.

    Download full text (pdf)
    fulltext
  • 5. Abernethy, R.
    et al.
    Weyhenmeyer, Gesa A.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Ziese, Markus G.
    State of the Climate in 20172018In: Bulletin of The American Meteorological Society - (BAMS), ISSN 0003-0007, E-ISSN 1520-0477, Vol. 99, no 8, p. Si-S310Article in journal (Refereed)
  • 6.
    Abreu, Clare I.
    et al.
    Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biology, Stanford University, Stanford, CA, USA.
    Bello, Martina Dal
    Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
    Bunse, Carina
    Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden.
    Pinhassi, Jarone
    Centre for Ecology and Evolution of Microbial Model Systems, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
    Gore, Jeff
    Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
    Warmer temperatures favor slower-growing bacteria in natural marine communities2023In: Science Advances, E-ISSN 2375-2548, Vol. 9, no 19, article id eade8352Article in journal (Refereed)
    Abstract [en]

    Earth’s life-sustaining oceans harbor diverse bacterial communities that display varying composition across time and space. While particular patterns of variation have been linked to a range of factors, unifying rules are lacking, preventing the prediction of future changes. Here, analyzing the distribution of fast- and slow-growing bacteria in ocean datasets spanning seasons, latitude, and depth, we show that higher seawater temperatures universally favor slower-growing taxa, in agreement with theoretical predictions of how temperature-dependent growth rates differentially modulate the impact of mortality on species abundances. Changes in bacterial community structure promoted by temperature are independent of variations in nutrients along spatial and temporal gradients. Our results help explain why slow growers dominate at the ocean surface, during summer, and near the tropics and provide a framework to understand how bacterial communities will change in a warmer world.

    Download full text (pdf)
    fulltext
  • 7.
    Abu Hatab, Assem
    The Nordic Africa Institute, Research Unit.
    Climate Change and Migration in North Africa: Projections, Impacts, and Implications for Adaptation2022Report (Other (popular science, discussion, etc.))
    Abstract [en]

    This policy brief takes a regional perspective based on a rapid review of the extant literature to cascading climate risks and their links with migration in North Africa. Understanding the climate-migration nexus in the context of North Africa is a cornerstone for taking informed decisions and developing strategies to mitigate the adverse impact of climate change, including potential human mobility.

  • 8.
    Acaralp, Damla
    Södertörn University, Teacher Education.
    Hållbar utveckling i undervisningen: En kvalitativ studie om lärare och lärarstudenters syn på hållbar utveckling i undervisningen2015Independent thesis Basic level (university diploma), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    The issue for this study is how teachers and teacher students understand the concept of sustainable development and work and want to work with sustainable development in their education. The aim is to provide knowledge that can lead to a better implementation of sustainable development in education. The study has a phenomenological perspective and is based on the concept of sustainable development and theories of education for sustainable development. The study consists of interviews with four teachers who act as primary teachers and four teacher students who study on the last semester of their education. The study shows that all respondents think that sustainable development is a concept that is difficult to interpret and that they have a distorted interpretation of the concept. All are focusing on environmental protection and overlook economic and social development. That is particularly apparent in their examples of how sustainable development should be implemented in teaching. The study also shows that the teacher students have a more complete picture of the concept of sustainable development and, unlike the teachers, explicitly states that sustainable development should permeate the entire teaching.

    Download full text (pdf)
    fulltext
  • 9. Acosta, Mario C.
    et al.
    Palomas, Sergi
    Ticco, Stella V. Paronuzzi
    Utrera, Gladys
    Biercamp, Joachim
    Bretonniere, Pierre-Antoine
    Budich, Reinhard
    Castrillo, Miguel
    Caubel, Arnaud
    Doblas-Reyes, Francisco
    Epicoco, Italo
    Fladrich, Uwe
    SMHI, Research Department, Climate research - Rossby Centre.
    Joussaume, Sylvie
    Gupta, Alok Kumar
    Lawrence, Bryan
    Le Sager, Philippe
    Lister, Grenville
    Moine, Marie-Pierre
    Rioual, Jean-Christophe
    Valcke, Sophie
    Zadeh, Niki
    Balaji, Venkatramani
    The computational and energy cost of simulation and storage for climate science: lessons from CMIP62024In: Geoscientific Model Development, ISSN 1991-959X, E-ISSN 1991-9603, Vol. 17, no 8, p. 3081-3098Article in journal (Refereed)
    Download full text (pdf)
    The computational and energy cost of simulation and storage for climate science: lessons from CMIP6
  • 10.
    Acosta Navarro, Juan Camilo
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Anthropogenic influence on climate through changes in aerosol emissions from air pollution and land use change2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Particulate matter suspended in air (i.e. aerosol particles) exerts a substantial influence on the climate of our planet and is responsible for causing severe public health problems in many regions across the globe. Human activities have altered the natural and anthropogenic emissions of aerosol particles through direct emissions or indirectly by modifying natural sources. The climate effects of the latter have been largely overlooked. Humans have dramatically altered the land surface of the planet causing changes in natural aerosol emissions from vegetated areas. Regulation on anthropogenic and natural aerosol emissions have the potential to affect the climate on regional to global scales. Furthermore, the regional climate effects of aerosol particles could potentially be very different than the ones caused by other climate forcers (e.g. well mixed greenhouse gases). The main objective of this work was to investigate the climatic effects of land use and air pollution via aerosol changes.

    Using numerical model simulations it was found that land use changes in the past millennium have likely caused a positive radiative forcing via aerosol climate interactions. The forcing is an order of magnitude smaller and has an opposite sign than the radiative forcing caused by direct aerosol emissions changes from other human activities. The results also indicate that future reductions of fossil fuel aerosols via air quality regulations may lead to an additional warming of the planet by mid-21st century and could also cause an important Arctic amplification of the warming. In addition, the mean position of the intertropical convergence zone and the Asian monsoon appear to be sensitive to aerosol emission reductions from air quality regulations. For these reasons, climate mitigation policies should take into consideration aerosol air pollution, which has not received sufficient attention in the past.

    Download full text (pdf)
    Anthropogenic influence on climate through changes in aerosol emissions from air pollution and land use change
    Download (jpg)
    Omslagsframsida
  • 11.
    Acosta Navarro, Juan Camilo
    Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
    Historical anthropogenic radiative forcing of changes in biogenic secondary organic aerosol2015Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Human activities have lead to changes in the energy balance of the Earth and the global climate. Changes in atmospheric aerosols are the second largest contributor to climate change after greenhouse gases since 1750 A.D. Land-use practices and other environmental drivers have caused changes in the emission of biogenic volatile organic compounds (BVOCs) and secondary organic aerosol (SOA) well before 1750 A.D, possibly causing climate effects through aerosol-radiation and aerosol-cloud interactions. Two numerical emission models LPJ-GUESS and MEGAN were used to quantify the changes in aerosol forming BVOC emissions in the past millennium. A chemical transport model of the atmosphere (GEOS-Chem-TOMAS) was driven with those BVOC emissions to quantify the effects on radiation caused by millennial changes in SOA.

    The specific objectives of this licentiate thesis are: 1) to understand what drove the changes in aerosol-forming BVOC emissions (i.e. isoprene, monoterpenes and sesquiterpenes) and to quantify these changes; 2) to calculate for the first time the combined historical aerosol direct and aerosol-cloud albedo effects on radiation from changing BVOC emissions through SOA formation; 3) to investigate how important the biological climate feedback associated to BVOC emissions and SOA formation is from a global climate perspective.

    We find that global isoprene emissions decreased after 1800 A.D. by about 12% - 15%. This decrease was dominated by losses of natural vegetation, whereas monoterpene and sesquiterpene emissions increased by about 2% - 10%, driven mostly by rising surface air temperatures. From 1000 A.D. to 1800 A.D, isoprene, monoterpene and sesquiterpene emissions decline by 3% - 8% driven by both, natural vegetation losses, and the moderate global cooling between the medieval climate anomaly and the little ice age. The millennial reduction in BVOC emissions lead to a 0.5% to 2% reduction in climatically relevant aerosol particles (> 80 nm) and cause a direct radiative forcing between +0.02 W/m² and +0.07 W/m², and an indirect radiative forcing between -0.02 W/m² and +0.02 W/m². The suggested biological climate feedback seems to be too small to have observable consequences on the global climate in the recent past.

    Download full text (pdf)
    fulltext
  • 12. Adachi, Kouji
    et al.
    Tobo, Yutaka
    Oshima, Naga
    Yoshida, Atsushi
    Ohata, Sho
    Krejci, Radovan
    Stockholm University, Faculty of Science, Department of Environmental Science. Stockholm University, Faculty of Science, Department of Meteorology . Stockholm University, Faculty of Science, The Bolin Centre for Climate Research (together with KTH & SMHI).
    Massling, Andreas
    Skov, Henrik
    Koike, Makoto
    Composition and mixing state of individual aerosol particles from northeast Greenland and Svalbard in the Arctic during spring 20182023In: Atmospheric Environment, ISSN 1352-2310, E-ISSN 1873-2844, Vol. 314, article id 120083Article in journal (Refereed)
    Abstract [en]

    The Arctic region is warming about four times faster than the rest of the globe, and thus it is important to understand the processes driving climate change in this region. Aerosols are a significant component of the Arctic climate system as they form ice crystals and liquid droplets that control the dynamics of clouds and also directly interact with solar radiation, depending on the compositions and mixing states of individual particles. Here, we report on the characteristics of submicron-sized aerosol particles using transmission electron microscopy obtained at two high Arctic sites, northeast Greenland (Villum Research Station) and Svalbard (Zeppelin Observatory), during spring 2018. The results showed that a dominant compound in the submicron-sized spring aerosols was sulfate, followed by sea salt particles. Both model simulations and observations at the Zeppelin Observatory showed that sea salt particles became more prevalent when low-pressure systems passed by the station. Model simulations indicate that both sampling sites were affected by diffused and diluted long-range transport of anthropogenic aerosols from lower latitudes with negligible influences of biomass burning emissions during the observation period. Overall, the composition of measured aerosol particles from the two Arctic sites was generally similar and showed no apparent variation except for the sea salt fractions. This study shows a general picture of high Arctic aerosol particles influenced by marine sources and diffused long-range transport of anthropogenic sources during the Arctic spring period. These results will contribute to a better knowledge of the aerosol composition and mixing state during the Arctic spring, which helps to understand the contributions of aerosols to the Arctic climate.

  • 13.
    Adamo, Nasrat
    et al.
    Consultant Engineer, Norrköping, Sweden.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Sissakian, Varoujan
    Chief Researcehr, Department of Petroleum Engineering, Komar University of Science and Technology, Sulaimaniyah, KRG, Iraq.
    Climate Change and the Need for Future Research2022In: Water Resources in Iraq: Perspectives and Prognosis (ICWRPP 2022), Institute of Physics (IOP), 2022, article id 012029Conference paper (Refereed)
    Abstract [en]

    Climate Changes have impacted our planet since the beginning of time. These were manifested by cyclic Ice Ages and Warm Periods ever since. The changes were caused by natural forcing such as, continental drift, plate tectonics, major volcanic eruptions, and internal dynamics of earth and oceans interactions with the atmosphere. The present warm period, the “Holocene Epoch”, is not different from other such periods except for the sharp global warming which began at the onset of the industrial revolution. This was proven by scientific research to be due to anthropogenic drives, i.e., increased fossil fuel burning and increased Co2 and other Green House Gases (GHG) emissions into the atmosphere. These gases trap the sun radiation reflected from earth surface and result in higher earth temperature. The steep rate of rise in temperature trend since 1960s is directly linked to the use of much more fossil fuels in power production and transportation. This has led to more research to quantify the changes and their impacts on the environment and humans. This paper gives a brief history of the scientific research carried out hitherto and policy suggestions made so far to combat the negative impacts of the increasing global warming of the world. Needed future scientific research in this field is outlined, while at the same time suggesting the needs of Iraq of such research. This includes among other things, forming a regional scientific panel for the Middle East countries (ME. IPCC) for carrying out research on regional level, fostering research on national level, encouraging academics for climate change-oriented research and providing the necessary funds and facilities for such research.

    Download full text (pdf)
    fulltext
  • 14.
    Adamo, Nasrat
    et al.
    Stockholm, Sweden.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Sissakian, Varoujan
    Management Department, University of Kurdistan Hewler, Erbil, Iraq.
    Jehad Fahmi, Khalid
    Consulting Engineering Seismologist, SeisEng International, Toronto, Canada.
    Ali Abed, Salwan
    College of Science, University of Al-Qadisiyah, Diwaniyah, Iraq.
    Climate Change: Droughts and Increasing Desertification in the Middle East, with Special Reference to Iraq2022In: Engineering, ISSN 1947-3931, E-ISSN 1947-394X, Vol. 14, no 7, p. 235-273Article in journal (Refereed)
    Abstract [en]

    Climate change impacts on Earth’s atmosphere have caused drastic changes in the environment of most regions of the world. The Middle East region ranks among the worst affected of these regions. This has taken forms of increasing atmospheric temperatures, intensive heat waves, decreased and erratic precipitation and general decline in water resources; all leading to frequent and longer droughts, desertification and giving rise to intensive and recurrent (SDS). The present conditions have led to increasing emissions of (GHG) in the earth atmosphere. All future projections especially those using (IPCC) models and emission scenarios indicate that the Middle East will undergo appreciable decrease in winter precipitation with increasing temperature until the end of this century both of which are inductive to increased dryness and desertification. Iraq as one of the countries of this region and due to its geographical location, its dependence mostly on surface water resources originating from neighboring countries, long years of neglect and bad land management put it in the most precarious and unstable position among the other countries of the region. Modelling studies have shown that Iraq is suffering now from excessive dryness and droughts, increasing loss of vegetation cover areas, increasing encroachment of sand dunes on agricultural lands, in addition to severe and frequent (SDS). These negative repercussions and their mitigations require solutions not on the local level alone but collective cooperation and work from all the countries of the region.

    Download full text (pdf)
    fulltext
  • 15.
    Adan, Abdifatah
    et al.
    Linnaeus University, School of Business and Economics, Department of Economics and Statistics.
    Ibrahim Abdi, Mustafe
    Linnaeus University, School of Business and Economics, Department of Management Accounting and Logistics.
    Bonus-Malus system impact on the demand for eco-friendly vehicles2022Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    Global warming issues are a widespread problem around the world and the emissions of greenhouse gases is one of the main contributors. The transport sector emits a significant amount of greenhouse gas emissions; thus, this contributes to global warming. To tackle this challenge the Swedish state introduced in July 2018 a system called bonus-malus system which aims to increase the proportion of eco-friendly cars and in the long run reducing greenhouse gases emissions from the transport sector. This paper examines the tax system within the Bonus-Malus system. Primarily investigating if Malus, tax system, impacted the demand for electric vehicles since it introduced. The study conducted based on a short panel data from Sweden´s 21 counties for the period 2016-2020 and the analysis method applied is a regression analysis. The results of this thesis confirm a strong positive relationship between the share of newly registered battery electric vehicles (BEV) and the Malus, but much weaker influence of the other studied variables. Suggesting that tax system induce on emission seem to be efficient at boost the demand for BEV 

    Download full text (pdf)
    fulltext
  • 16.
    Ades, M.
    et al.
    European Ctr Medium Range Weather Forecasts, Reading, Berks, England..
    Adler, R.
    Univ Maryland, College Pk, MD 20742 USA..
    Allan, Rob
    Met Off Hadley Ctr, Exeter, Devon, England..
    Allan, R. P.
    Univ Reading, Reading, Berks, England..
    Anderson, J.
    Hampton Univ, Dept Atmospher & Planetary Sci, Hampton, VA 23668 USA..
    Arguez, Anthony
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC USA..
    Arosio, C.
    Univ Bremen, Bremen, Germany..
    Augustine, J. A.
    NOAA OAR Earth Syst Res Labs, Boulder, CO USA..
    Azorin-Molina, C.
    Ctr Invest Desertificac Spanish Natl Res Council, Moncada, Valencia, Spain.;Univ Gothenburg, Dept Earth Sci, Reg Climate Grp, Gothenburg, Sweden..
    Barichivich, J.
    Pontificia Univ Catolica Valparaiso, Inst Geog, Valparaiso, Chile..
    Barnes, J.
    NOAA OAR ESRL Global Monitoring Lab, Boulder, CO USA..
    Beck, H. E.
    Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA..
    Becker, Andreas
    Deutsch Wetterdienst, Global Precipitat Climatol Ctr, Offenbach, Germany..
    Bellouin, Nicolas
    Univ Reading, Reading, Berks, England..
    Benedetti, Angela
    European Ctr Medium Range Weather Forecasts, Reading, Berks, England..
    Berry, David I.
    Natl Oceanog Ctr, Southampton, Hants, England..
    Blenkinsop, Stephen
    Newcastle Univ, Sch Engn, Newcastle Upon Tyne, Tyne & Wear, England..
    Bock, Olivier
    Univ Paris, CNRS, Inst Phys Globe Paris, IGN, Paris, France.;IGN, ENSG Geomat, Marne La Vallee, France..
    Bosilovich, Michael G.
    NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD USA..
    Boucher, Olivier
    Sorbonne Univ, Paris, France..
    Buehler, S. A.
    Univ Hamburg, Hamburg, Germany..
    Carrea, Laura
    Univ Reading, Dept Meteorol, Reading, Berks, England..
    Christiansen, Hanne H.
    Univ Ctr Svalbard, Dept Geol, Longyearbyen, Norway..
    Chouza, F.
    CALTECH, Jet Prop Lab, Wrightwood, CA USA..
    Christy, John R.
    Univ Alabama Huntsville, Huntsville, AL USA..
    Chung, E. -S
    Coldewey-Egbers, Melanie
    German Aerosp Ctr DLR Oberpfaffenhofen, Wessling, Germany..
    Compo, Gil P.
    Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.;NOAA Earth Syst Res Lab, Div Phys Sci, Boulder, CO USA..
    Cooper, Owen R.
    NOAA OAR Earth Syst Res Labs, Boulder, CO USA.;Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA..
    Covey, Curt
    Lawrence Livermore Natl Lab, Livermore, CA 94550 USA..
    Crotwell, A.
    Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA..
    Davis, Sean M.
    Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.;NOAA OAR Earth Syst Res Lab, Boulder, CO USA..
    de Eyto, Elvira
    Inst Marine, Furnace, Newport, Ireland..
    de Jeu, Richard A. M.
    VanderSat, B. V.
    DeGasperi, Curtis L.
    King Cty Water & Land Resources Div, Seattle, WA USA..
    Degenstein, Doug
    Univ Saskatchewan, Saskatoon, SK, Canada..
    Di Girolamo, Larry
    Univ Illinois, Champaign, IL USA..
    Dokulil, Martin T.
    Univ Innsbruck, Res Dept Limnol, Innsbruck, Austria..
    Donat, Markus G.
    Barcelona Supercomp Ctr, Barcelona, Spain..
    Dorigo, Wouter A.
    TU Wien Vienna Univ Technol, Dept Geodesy & Geoinformat, Vienna, Austria..
    Dunn, R. J. H.
    Met Off Hadley Ctr, Exeter, Devon, England..
    Durre, Imke
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC USA..
    Dutton, Geoff S.
    NOAA OAR Earth Syst Res Labs, Boulder, CO USA.;Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA..
    Duveiller, G.
    European Commiss, Joint Res Ctr, Ispra, Italy..
    Elkins, James W.
    NOAA OAR Earth Syst Res Labs, Boulder, CO USA..
    Fioletov, Vitali E.
    Environm & Climate Change Canada, Toronto, ON, Canada..
    Flemming, Johannes
    European Ctr Medum Range Weather Forecasts, Reading, Berks, England..
    Foster, Michael J.
    Univ Wisconsin Madison, Cooperat Inst Meteorol Satellite Studies, Space Sci & Engn Ctr, Madison, WI USA..
    Frey, Richard A.
    Univ Wisconsin Madison, Cooperat Inst Meteorol Satellite Studies, Space Sci & Engn Ctr, Madison, WI USA..
    Frith, Stacey M.
    Sci Syst & Applicat Inc, Lanham, MD USA.;NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Froidevaux, Lucien
    CALTECH, Jet Prop Lab, Pasadena, CA USA..
    Garforth, J.
    Woodland Trust, Grantham, England..
    Gobron, N.
    European Commiss, Joint Res Ctr, Ispra, Italy..
    Gupta, S. K.
    Sci Syst & Applicat Inc, Hampton, VA USA..
    Haimberger, Leopold
    Univ Vienna, Dept Meteorol & Geophys, Vienna, Austria..
    Hall, Brad D.
    NOAA OAR Earth Syst Res Labs, Boulder, CO USA..
    Harris, Ian
    Univ East Anglia, Natl Ctr Atmospher Sci, Norwich, Norfolk, England.;Univ East Anglia, Sch Environm Sci, Climat Res Unit, Norwich, Norfolk, England..
    Heidinger, Andrew K.
    Univ Wisconsin Madison, NOAA NESDIS STAR, Madison, WI USA..
    Hemming, D. L.
    Met Off Hadley Ctr, Exeter, Devon, England.;Univ Birmingham, Birmingham Inst Forest Res, Birmingham, W Midlands, England..
    Ho, Shu-peng (Ben)
    NOAA NESDIS Ctr Satellite Applicat & Res, College Pk, MD USA..
    Hubert, Daan
    Royal Belgian Inst Space Aeron BIRA, Brussels, Belgium..
    Hurst, Dale F.
    NOAA OAR Earth Syst Res Labs, Boulder, CO USA.;Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA..
    Huser, I.
    Deutsch Wetterdienst, Offenbach, Germany..
    Inness, Antje
    European Ctr Medium Range Weather Forecasts, Reading, Berks, England..
    Isaksen, K.
    Norwegian Meteorol Inst, Oslo, Norway..
    John, Viju
    EUMETSAT, Darmstadt, Germany..
    Jones, Philip D.
    Univ East Anglia, Sch Environm Sci, Climat Res Unit, Norwich, Norfolk, England..
    Kaiser, J. W.
    Deutsch Wetterdienst, Offenbach, Germany..
    Kelly, S.
    Dundalk Inst Technol, Dundalk, Ireland..
    Khaykin, S.
    Sorbonne Univ, CNRS, LATMOS IPSL, UVSQ, Guyancourt, France..
    Kidd, R.
    Earth Observat Data Ctr GmbH, Vienna, Austria..
    Kim, Hyungiun
    Univ Tokyo, Inst Ind Sci, Tokyo, Japan..
    Kipling, Z.
    European Ctr Medium Range Weather Forecasts, Reading, Berks, England..
    Kraemer, B. M.
    IGB Leibniz Inst Freshwater Ecol & Inland Fisheri, Berlin, Germany..
    Kratz, D. P.
    NASA, Langley Res Ctr, Hampton, VA 23665 USA..
    La Fuente, R. S.
    Dundalk Inst Technol, Dundalk, Ireland..
    Lan, Xin
    NOAA OAR Earth Syst Res Labs, Boulder, CO USA.;Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA..
    Lantz, Kathleen O.
    NOAA OAR Earth Syst Res Lab, Boulder, CO USA..
    Leblanc, T.
    CALTECH, Jet Prop Lab, Wrightwood, CA USA..
    Li, Bailing
    NASA Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD USA.;Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA..
    Loeb, Norman G.
    NASA, Langley Res Ctr, Hampton, VA 23665 USA..
    Long, Craig S.
    NOAA NWS Natl Ctr Environm Predict, College Pk, MD USA..
    Loyola, Diego
    German Aerosp Ctr DLR Oberpfaffenhofen, Wessling, Germany..
    Marszelewski, Wlodzimierz
    Nicolaus Copernicus Univ, Dept Hydrol & Water Management, Torun, Poland..
    Martens, B.
    Univ Ghent, Hydro Climate Extremes Lab, Ghent, Belgium..
    May, Linda
    Ctr Ecol & Hydrol, Edinburgh, Midlothian, Scotland..
    Mayer, Michael
    European Ctr Medium Range Weather Forecasts, Reading, Berks, England.;Univ Vienna, Dept Meteorol & Geophys, Vienna, Austria..
    McCabe, M. F.
    King Abdullah Univ Sci & Technol, Div Biol & Environm Sci & Engn, Thuwal, Saudi Arabia..
    McVicar, Tim R.
    CSIRO Land & Water, Canberra, ACT, Australia.;Australian Res Council Ctr Excellence Climate Ext, Sydney, NSW, Australia..
    Mears, Carl A.
    Remote Sensing Syst, Santa Rosa, CA USA..
    Menzel, W. Paul
    Univ Wisconsin Madison, Space Sci & Engn Ctr, Madison, WI USA..
    Merchant, Christopher J.
    Univ Reading, Dept Meteorol, Reading, Berks, England.;Univ Reading, Natl Ctr Earth Observat, Reading, Berks, England..
    Miller, Ben R.
    NOAA OAR Earth Syst Res Labs, Boulder, CO USA.;Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA..
    Miralles, Diego G.
    Montzka, Stephen A.
    NOAA OAR Earth Syst Res Labs, Boulder, CO USA..
    Morice, Colin
    Met Off Hadley Ctr, Exeter, Devon, England..
    Muhle, Jens
    Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA..
    Myneni, R.
    Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA..
    Nicolas, Julien P.
    European Ctr Medium Range Weather Forecasts, Reading, Berks, England..
    Noetzli, Jeannette
    WSL Inst Snow & Avalanche Res SLF, Davos, Switzerland..
    Osborn, Tim J.
    Univ East Anglia, Sch Environm Sci, Climat Res Unit, Norwich, Norfolk, England..
    Park, T.
    NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.;Bay Area Environm Res Inst, Moffett Field, CA USA..
    Pasik, A.
    TU Wien Vienna Univ Technol, Dept Geodesy & Geoinformat, Vienna, Austria..
    Paterson, Andrew M.
    Ontario Minist Environm & Climate Change, Dorset Environm Sci Ctr, Dorset, ON, Canada..
    Pelto, Mauri S.
    Nichols Coll, Dudley, MA USA..
    Perkins-Kirkpatrick, S.
    Univ New South Wales, Sydney, NSW, Australia..
    Petron, G.
    Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA..
    Phillips, C.
    Univ Wisconsin Madison, Dept Atmospher & Ocean Sci, Madison, WI USA..
    Pinty, Bernard
    European Commiss, Joint Res Ctr, Ispra, Italy..
    Po-Chedley, S.
    Lawrence Livermore Natl Lab, Livermore, CA 94550 USA..
    Polvani, L.
    Columbia Univ, New York, NY USA..
    Preimesberger, W.
    TU Wien Vienna Univ Technol, Dept Geodesy & Geoinformat, Vienna, Austria..
    Pulkkanen, M.
    Finnish Environm Inst SYKE, Freshwater Ctr, Helsinki, Finland..
    Randel, W. J.
    Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA..
    Remy, Samuel
    UPMC, Inst Pierre Simon Laplace, CNRS, Paris, France..
    Ricciardulli, L.
    Richardson, A. D.
    No Arizona Univ, Sch Informat Comp & Cyber Syst, Flagstaff, AZ 86011 USA.;No Arizona Univ, Ctr Ecosyst Sci & Soc, Flagstaff, AZ 86011 USA..
    Rieger, L.
    Univ Saskatchewan, Saskatoon, SK, Canada..
    Robinson, David A.
    Rutgers State Univ, Dept Geog, Piscataway, NJ USA..
    Rodell, Matthew
    NASA Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD USA..
    Rosenlof, Karen H.
    NOAA OAR Earth Syst Res Labs, Boulder, CO USA..
    Roth, Chris
    Univ Saskatchewan, Saskatoon, SK, Canada..
    Rozanov, A.
    Univ Bremen, Bremen, Germany..
    Rusak, James A.
    Ontario Minist Environm & Climate Change, Dorset Environm Sci Ctr, Dorset, ON, Canada..
    Rusanovskaya, O.
    Irkutsk State Univ, Inst Biol, Irkutsk, Russia..
    Rutishauser, T.
    Univ Bern, Inst Geog, Bern, Switzerland.;Univ Bern, Oeschger Ctr, Bern, Switzerland..
    Sanchez-Lugo, Ahira
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC USA..
    Sawaengphokhai, P.
    Sci Syst & Applicat Inc, Hampton, VA USA..
    Scanlon, T.
    TU Wien Vienna Univ Technol, Dept Geodesy & Geoinformat, Vienna, Austria..
    Schenzinger, Verena
    Univ Vienna, Dept Meteorol & Geophys, Vienna, Austria..
    Schladow, S. Geoffey
    Univ Calif Davis, Tahoe Environm Res Ctr, Davis, CA 95616 USA..
    Schlegel, R. W.
    Woods Hole Oceanog Inst, Dept Phys Oceanog, Woods Hole, MA 02543 USA..
    Schmid, Martin Eawag
    Swiss Fed Inst Aquat Sci & Technol, Kastanienbaum, Switzerland..
    Selkirk, H. B.
    Univ Space Res Assoc, NASA Goddard Space Flight Ctr, Greenbelt, MD USA..
    Sharma, S.
    York Univ, Toronto, ON, Canada..
    Shi, Lei
    NOAA NESDIS, Natl Ctr Environm Informat, Asheville, NC USA..
    Shimaraeva, S. V.
    Irkutsk State Univ, Inst Biol, Irkutsk, Russia..
    Silow, E. A.
    Irkutsk State Univ, Inst Biol, Irkutsk, Russia..
    Simmons, Adrian J.
    European Ctr Medium Range Weather Forecasts, Reading, Berks, England..
    Smith, C. A.
    Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA..
    Smith, Sharon L.
    Nat Resources Canada, Geol Survey Canada, Ottawa, ON, Canada..
    Soden, B. J.
    Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Key Biscayne, FL USA..
    Sofieva, Viktoria
    Finnish Meteorol Inst, Helsinki, Finland..
    Sparks, T. H.
    Poznan Univ Life Sci, Poznan, Poland..
    Stackhouse, Paul W., Jr.
    NASA, Langley Res Ctr, Hampton, VA 23665 USA..
    Stanitski, D. M.
    NOAA OAR Earth Syst Res Labs, Boulder, CO USA..
    Steinbrecht, Wolfgang
    German Weather Serv DWD, Hohenpeissenberg, Germany..
    Streletskiy, Dimitri A.
    George Washington Univ, Dept Geog, Washington, DC USA..
    Taha, G.
    GESTAR, Columbia, MD USA..
    Telg, Hagen
    Thackeray, S. J.
    Ctr Ecol & Hydrol, Lancaster, England..
    Timofeyev, M. A.
    Irkutsk State Univ, Inst Biol, Irkutsk, Russia..
    Tourpali, Kleareti
    Aristotle Univ Thessaloniki, Thessaloniki, Greece..
    Tye, Mari R.
    Natl Ctr Atmospher Res, Capac Ctr Climate & Weather Extremes, POB 3000, Boulder, CO 80307 USA..
    van der A, Ronald J.
    Royal Netherlands Meteorol Inst, De Bilt, Netherlands..
    van der Schalie, Robin
    van der Schrier, Gerard
    Royal Netherlands Meteorol Inst, De Bilt, Netherlands..
    van der Werf, Guido R.
    Vrije Univ Amsterdam, Amsterdam, Netherlands..
    Verburg, Piet
    Natl Inst Water & Atmospher Res, Hamilton, New Zealand..
    Vernier, Jean-Paul
    NASA, Langley Res Ctr, Hampton, VA 23665 USA..
    Vomel, Holger
    Natl Ctr Atmospher Res, Earth Observing Lab, POB 3000, Boulder, CO 80307 USA..
    Vose, Russell S.
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC USA..
    Wang, Ray
    Georgia Inst Technol, Atlanta, GA 30332 USA..
    Watanabe, Shohei G.
    Univ Calif Davis, Tahoe Environm Res Ctr, Davis, CA 95616 USA..
    Weber, Mark
    Univ Bremen, Bremen, Germany..
    Weyhenmeyer, Gesa A.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology. Uppsala Univ, Dept Ecol & Genet Limnol, Uppsala, Sweden..
    Wiese, David
    CALTECH, Jet Prop Lab, Pasadena, CA USA..
    Wilber, Anne C.
    Sci Syst & Applicat Inc, Hampton, VA USA..
    Wild, Jeanette D.
    NOAA Climate Predict Ctr, College Pk, MD USA.;Univ Maryland, ESSIC, College Pk, MD 20742 USA..
    Willett, K. M.
    Met Off Hadley Ctr, Exeter, Devon, England..
    Wong, Takmeng
    NASA, Langley Res Ctr, Hampton, VA 23665 USA..
    Woolway, R. Iestyn
    Dundalk Inst Technol, Dundalk, Ireland..
    Yin, Xungang
    NOAA NESDIS Natl Ctr Environm Informat, ERT Inc, Asheville, NC USA..
    Zhao, Lin
    Nanjing Univ Informat Sci & Technol, Sch Geog Sci, Nanjing, Peoples R China..
    Zhao, Guanguo
    Univ Illinois, Champaign, IL USA..
    Zhou, Xinjia
    Ziemke, Jerry R.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.;Morgan State Univ, Goddard Earth Sci Technol & Res, Baltimore, MD 21239 USA..
    Ziese, Markus
    Deutsch Wetterdienst, Global Precipitat Climatol Ctr, Offenbach, Germany..
    Global Climate: in State of the climate in 20192020In: Bulletin of The American Meteorological Society - (BAMS), ISSN 0003-0007, E-ISSN 1520-0477, Vol. 101, no 8, p. S17-S127Article in journal (Refereed)
  • 17. Ades, M.
    et al.
    Weyhenmeyer, Gesa A.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Ziese, Markus
    State of the Climate in 20182019In: Bulletin of The American Meteorological Society - (BAMS), ISSN 0003-0007, E-ISSN 1520-0477, Vol. 100, no 9, p. Si-S306Article in journal (Other academic)
  • 18.
    Adodoadji-Dogbe, Catherine Doe
    et al.
    SOAS, University of London, UK.
    Urban, Frauke
    KTH, School of Industrial Engineering and Management (ITM), Industrial Economics and Management (Dept.), Sustainability, Industrial Dynamics & Entrepreneurship.
    Climate change, policy processes and local vulnerability2023In: Handbook on Climate Change and Technology, Edward Elgar Publishing Ltd. , 2023, p. 338-353Chapter in book (Other academic)
  • 19.
    Adodoadji-Dogbe, Catherine Doe
    et al.
    SOAS, University of London, UK.
    Urban, Frauke
    KTH, School of Industrial Engineering and Management (ITM), Industrial Economics and Management (Dept.), Sustainability, Industrial Dynamics & Entrepreneurship.
    Vulnerability and adaptation to climate change in coastal fishing communities2023In: Handbook on Climate Change and Technology, Edward Elgar Publishing Ltd. , 2023, p. 373-388Chapter in book (Other academic)
  • 20. Adrian, Rita
    et al.
    O`Reilly, Catherine M.
    Zagarese, Horacio
    Baines, Stephen B.
    Hessen, Dag O.
    Keller, Wendel
    Livingstone, David M.
    Sommaruga, Ruben
    Straile, Dietmar
    Van Donk, Ellen
    Weyhenmeyer, Gesa A.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Evolution, Limnology.
    Winder, Monika
    Lakes as sentinels of climate change2009In: Limnology and Oceanography, ISSN 0024-3590, E-ISSN 1939-5590, Vol. 54, no 6(2), p. 2283-2297Article in journal (Refereed)
    Abstract [en]

    While there is a general sense that lakes can act as sentinels of climate change, their efficacy has not been thoroughly analyzed. We identified the key response variables within a lake that act as indicators of the effects of climate change on both the lake and the catchment. These variables reflect a wide range of physical, chemical, and biological responses to climate. However, the efficacy of the different indicators is affected by regional response to climate change, characteristics of the catchment, and lake mixing regimes. Thus, particular indicators or combinations of indicators are more effective for different lake types and geographic regions. The extraction of climate signals can be further complicated by the influence of other environmental changes, such as eutrophication or acidification, and the equivalent reverse phenomena, in addition to other land-use influences. In many cases, however, confounding factors can be addressed through analytical tools such as detrending or filtering. Lakes are effective sentinels for climate change because they are sensitive to climate, respond rapidly to change, and integrate information about changes in the catchment.

  • 21.
    Agha Karimi, Armin
    et al.
    KTH.
    Bagherbandi, Mohammad
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences. KTH.
    Huremuz, Milan
    KTH.
    Multidecadal sea level variability in the Baltic sea and its impact on acceleration estimations2021In: Frontiers in Marine Science, E-ISSN 2296-7745, Vol. 8, article id 702512Article in journal (Refereed)
    Abstract [en]

    Multidecadal sea level variation in the Baltic Sea is investigated from 1900 to 2020 deploying satellite and in situ datasets. As a part of this investigation, nearly 30 years of satellite altimetry data are used to compare with tide gauge data in terms of linear trend. This, in turn, leads to validation of the regional uplift model developed for the Fennoscandia. The role of North Atlantic Oscillation (NAO) in multidecadal variations of the Baltic Sea is also analyzed. Although NAO impacts the Baltic Sea level on seasonal to decadal time scales according to previous studies, it is not a pronounced factor in the multidecadal variations. The acceleration in the sea level rise of the basin is reported as statistically insignificant in recent studies or even decelerating in an investigation of the early 1990s. It is shown that the reason for these results relates to the global warming hiatus in the 1950s−1970s, which can be seen in all eight tide gauges used for this study. To account for the slowdown period, the acceleration in the basin is investigated by fitting linear trends to time spans of six to seven decades, which include the hiatus. These results imply that the sea level rise is accelerated in the Baltic Sea during the period 1900–2020.

    Download full text (pdf)
    fulltext
  • 22.
    Aguirre Salcedo, Citlali
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Jansson, Roland
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    To move or not to move: assessing the viability of translocating Mimosa luisana for climate adaptation in the Tehuacán-Cuicatlán Valley, MexicoManuscript (preprint) (Other academic)
    Abstract [en]

    Climate change is threatening range-restricted species world-wide, but assessments of vulnerability is lacking in many areas, especially in tropical mountain regions. We assessed the vulnerability of the tropical dry forest species Mimosa luisana, an important nurse plant facilitating the establishment of other species, and provider of ecosystem services to local communities. We projected changes in the geographic distribution and extent of the climatic envelope of M. luisana for the periods 2021-2040, 2041-2060, 2061-2080, using the Maximun Entropy species distribution model (MaxEnt). We also tested the response of local provenances of M. luisana to different climate change scenarios by transplanting them to new elevations. 

    We found that new areas at higher elevation will become climatically suitable for M. luisana in the future, without losing its current geographic range, so that its geographic range may expand by between 50% and 313%. Transplantation showed that M. luisana can grow and survive in a wide range of conditions. Moreover, M. luisana was able to survive when translocated 700 m upwards, to areas above its current elevational limit. 

    We conclude that M. luisana is not in need of assisted migration to escape climate-related extinction, but translocation to areas that become climatically suitable may be beneficial to its conservation. The species may be used in ecological restoration projects in a wide range of conditions, including beyond its present range, increasing the likelihood of success in present and future ecological restoration actions. However, we acknowledge the need for assessing the climate-change effects on reproduction and the dispersal capacity of the species. 

  • 23.
    Aguirre-Gutierrez, Jesus
    et al.
    Univ Oxford, Environm Change Inst, Sch Geog & Environm, Oxford, England.;Naturalis Biodivers Ctr, Biodivers Dynam, Leiden, Netherlands..
    Malhi, Yadvinder
    Univ Oxford, Environm Change Inst, Sch Geog & Environm, Oxford, England..
    Lewis, Simon L.
    Univ Leeds, Sch Geog, Ecol & Global Change, Leeds, W Yorkshire, England.;UCL, Dept Geog, London, England..
    Fauset, Sophie
    Univ Plymouth, Sch Geog Earth & Environm Sci, Plymouth, Devon, England..
    Adu-Bredu, Stephen
    KNUST, CSIR Forestry Res Inst Ghana, Univ Post Off, Kumasi, Ghana..
    Affum-Baffoe, Kofi
    Forestry Commiss Ghana, Mensurat Unit, Kumasi, Ghana..
    Baker, Timothy R.
    Univ Leeds, Sch Geog, Ecol & Global Change, Leeds, W Yorkshire, England..
    Gvozdevaite, Agne
    Univ Oxford, Environm Change Inst, Sch Geog & Environm, Oxford, England..
    Hubau, Wannes
    Univ Leeds, Sch Geog, Ecol & Global Change, Leeds, W Yorkshire, England.;Royal Museum Cent Africa, Serv Wood Biol, Tervuren, Belgium..
    Moore, Sam
    Univ Oxford, Environm Change Inst, Sch Geog & Environm, Oxford, England..
    Peprah, Theresa
    KNUST, CSIR Forestry Res Inst Ghana, Univ Post Off, Kumasi, Ghana..
    Zieminska, Kasia
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Arnold Arboretum Harvard Univ, Boston, MA 02115 USA..
    Phillips, Oliver L.
    Univ Leeds, Sch Geog, Ecol & Global Change, Leeds, W Yorkshire, England..
    Oliveras, Imma
    Univ Oxford, Environm Change Inst, Sch Geog & Environm, Oxford, England..
    Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity2020In: Nature Communications, E-ISSN 2041-1723, Vol. 11, no 1Article in journal (Refereed)
    Abstract [en]

    Tropical ecosystems adapted to high water availability may be highly impacted by climatic changes that increase soil and atmospheric moisture deficits. Many tropical regions are experiencing significant changes in climatic conditions, which may induce strong shifts in taxonomic, functional and phylogenetic diversity of forest communities. However, it remains unclear if and to what extent tropical forests are shifting in these facets of diversity along climatic gradients in response to climate change. Here, we show that changes in climate affected all three facets of diversity in West Africa in recent decades. Taxonomic and functional diversity increased in wetter forests but tended to decrease in forests with drier climate. Phylogenetic diversity showed a large decrease along a wet-dry climatic gradient. Notably, we find that all three facets of diversity tended to be higher in wetter forests. Drier forests showed functional, taxonomic and phylogenetic homogenization. Understanding how different facets of diversity respond to a changing environment across climatic gradients is essential for effective long-term conservation of tropical forest ecosystems. Different aspects of biodiversity may not necessarily converge in their response to climate change. Here, the authors investigate 25-year shifts in taxonomic, functional and phylogenetic diversity of tropical forests along a spatial climate gradient in West Africa, showing that drier forests are less stable than wetter forests.

    Download full text (pdf)
    FULLTEXT01
  • 24.
    Ahlberg, Per Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Physiology and Developmental Biology, Evolutionary Organism Biology.
    Sky konspiratörernas dimma - I: Uppsala Nya Tidning (UNT), 27 dec2008Other (Other (popular science, discussion, etc.))
  • 25.
    Ahlvin, Martin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences.
    Alexandersson Ros, Sofia
    Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences.
    Markytesänkning, växthusgasavgång och utlakning från dikad torvjord2020Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Greenhouse gas emissions and land subsidence on four cultivated peat soils (Martebo, Örke, Kälkestad, Lidhult) have been investigated by measuring emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in field and lab. Greenhouse emitted gas (mg/h) from undisturbed soil cores was measured in lab. Measurements were performed at four different drainage depths. Soil cores were also kept incubated at constant drainage depth and emitted gas was measured with two-week intervals at three measurement occasions. Field measurements of CO2 emissions (mg/h/m2) were also performed. In addition to gas emissions, irrigation of soil cores has been carried out to investigate the risk of leaching of copper (Cu), phosphorus (P), nitrogen (N) and dissolved organic matter (DOC) during rewetting, and whether turbidity can be used as a measurement of DOC.

    Land surveying with GPS was done on three of the peat soils. This was to investigate how land subsidence can be related to CO2 emissions. On one of the sites different land surveying methods were used to assess their suitability for tracking land subsidence in peat soils. 30 year land surveying data from the sites have also been compiled and analyzed.

    The peat soils are part of a long-term experiment that was laid out in 1986. On each site one field was fertilized with copper and one was kept untreated as comparision. The purpose of the copper fertilizer was to reduce the activity of microorganisms. By doing so the degradation of soil organic matter could be reduced, thereby reducing the land subsidence.

    The results show that the ground surface at all four sites has subsided, but no difference is observed for copper-fertilized fields compared to untreated. Neither could an effect on CO2 emissions from copper fertilization be noted. The greatest land subsidence was observed for Martebo and the least for Kälkestad. By using data from the most recent time period the greatest subsidence was instead observed for Örke. This is consistent with Örke having the greatest CO2 emissions. CO2 emissions alone could not explain land subsidence.

    The results also show that emitted N2O was higher for nutrient-rich soils with the peak directly after saturation. CH4 was at its lowest initially, but then increased and emitted CH4 was greatest for the soils where easily biodegradable organic matter was available. Turbidity alone could not explain the DOC content in leachate from the irrigated soil cores.

    Conclusions drawn were that copper fertilization had no effect on land subsidence and CO2 emissions in this case. Copper did however still leach from the soils 30 years after addition. Emissions of CO2, N2O and CH4 varies greatly between the different soils. To be able to obtain reliable levels of greenhouse gas emissions from peat soils in climate models, more research is needed on how different peat soils react to water and nutrient content.

    It is important to have long time series when measuring land subsidence. Using the same measurement equipment will give better results. GPS for land surveying of peatland can be recommended if the results can be related to a fix point.

    Download full text (pdf)
    fulltext
  • 26.
    Ahmad, Muhammad Bilal
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Theology, Department of Theology.
    Climate Change-Induced Riverine Floods: A Case Study of the Lower Indus River, Sindh, Pakistan.2024Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The Earth's climate has been consistently warming since the mid-eighteenth century, largely due to human activities, particularly the industrial revolution. This has led to a significant increase in greenhouse gas (GHG) emissions, a major driver of climate change. While the impacts of climate change are global, they are not evenly distributed, and developing countries, including Pakistan, bear a disproportionate burden. Despite contributing only 0.7% of global GHG emissions, Pakistan ranks as the sixth most vulnerable country to the impacts of climate change.

    This thesis focuses on analyzing the effects of climate change on riverine floods in the lower Indus River, Sindh, Pakistan, during the period from 2010 to 2013. The study delves into the consequences of floods on various aspects of communities, including agriculture, health, displacement, social structures, and livelihoods. Additionally, it explores adaptive measures required by humanitarian organizations and governments to mitigate these risks.

    In the theoretical framework, the vulnerability theory is employed to enhance our understanding of vulnerabilities and impacts associated with climate change-induced floods. The Sendai Framework for Disaster Risk Reduction is utilized to better comprehend disasters, build resilience, and facilitate adaptation strategies.

    Recognizing that the window for mitigating the effects of climate change has closed, the thesis emphasizes the urgency of adaptation. It contends that vulnerabilities associated with climate change-induced floods can be significantly reduced, and certain effects can be harnessed for beneficial purposes through proper adaptation strategies. For instance, the flooding of the lower Indus River delta during the summer months (July to September) creates an opportunity to store water for use during the remaining nine months, thus mitigating droughts and water scarcity.

  • 27. Ahmadalipour, Ali
    et al.
    Moradkhani, Hamid
    Rana, Arun
    SMHI.
    Accounting for downscaling and model uncertainty in fine-resolution seasonal climate projections over the Columbia River Basin2018In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 50, no 1-2, p. 717-733Article in journal (Refereed)
  • 28.
    Ahmed, Engy
    et al.
    Stockholm Univ, Dept Geol Sci, SE-10691 Stockholm, Sweden.;Stockholm Univ, Bolin Ctr Climate Res, SE-10691 Stockholm, Sweden.;Sci Life Lab, Tomtebodavagen 23A, SE-17165 Solna, Sweden..
    Parducci, Laura
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Unneberg, Per
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Evolution.
    Ågren, Rasmus
    Chalmers Univ Technol, Dept Chem & Biol Engn, Sci Life Lab, SE-41296 Gothenburg, Sweden..
    Schenk, Frederik
    Stockholm Univ, Dept Geol Sci, SE-10691 Stockholm, Sweden.;Stockholm Univ, Bolin Ctr Climate Res, SE-10691 Stockholm, Sweden..
    Rattray, Jayne E.
    Stockholm Univ, Dept Geol Sci, SE-10691 Stockholm, Sweden.;Stockholm Univ, Bolin Ctr Climate Res, SE-10691 Stockholm, Sweden.;Univ Calgary, Biol Sci, 2500 Univ Dr NW, Calgary, AB, Canada..
    Han, Lu
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics. Jilin Univ, Coll Life Sci, Ancient DNA Lab, Changchun, Jilin, Peoples R China..
    Muschitiello, Francesco
    Stockholm Univ, Dept Geol Sci, SE-10691 Stockholm, Sweden.;Stockholm Univ, Bolin Ctr Climate Res, SE-10691 Stockholm, Sweden.;Columbia Univ, Lamont Doherty Earth Observ, 61 Route 9NW, Palisades, NY USA..
    Pedersen, Mikkel W.
    Univ Cambridge, Dept Zool, Downing St, Cambridge CB2 3EJ, England..
    Smittenberg, Rienk H.
    Stockholm Univ, Dept Geol Sci, SE-10691 Stockholm, Sweden.;Stockholm Univ, Bolin Ctr Climate Res, SE-10691 Stockholm, Sweden..
    Yamoah, Kweku Afrifa
    Stockholm Univ, Dept Geol Sci, SE-10691 Stockholm, Sweden.;Stockholm Univ, Bolin Ctr Climate Res, SE-10691 Stockholm, Sweden..
    Slotte, Tanja
    Stockholm Univ, Dept Ecol Environm & Plant Sci, SE-10691 Stockholm, Sweden.;Sci Life Lab, Tomtebodavagen 23A, SE-17165 Solna, Sweden..
    Wohlfarth, Barbara
    Stockholm Univ, Dept Geol Sci, SE-10691 Stockholm, Sweden.;Stockholm Univ, Bolin Ctr Climate Res, SE-10691 Stockholm, Sweden..
    Archaeal community changes in Lateglacial lake sediments: Evidence from ancient DNA2018In: Quaternary Science Reviews, ISSN 0277-3791, E-ISSN 1873-457X, Vol. 181, p. 19-29Article in journal (Refereed)
    Abstract [en]

    The Lateglacial/early Holocene sediments from the ancient lake at Hasseldala Port, southern Sweden provide an important archive for the environmental and climatic shifts at the end of the last ice age and the transition into the present Interglacial. The existing multi-proxy data set highlights the complex interplay of physical and ecological changes in response to climatic shifts and lake status changes. Yet, it remains unclear how microorganisms, such as Archaea, which do not leave microscopic features in the sedimentary record, were affected by these climatic shifts. Here we present the metagenomic data set of Hasseldala Port with a special focus on the abundance and biodiversity of Archaea. This allows reconstructing for the first time the temporal succession of major Archaea groups between 13.9 and 10.8 ka BP by using ancient environmental DNA metagenomics and fossil archaeal cell membrane lipids. We then evaluate to which extent these findings reflect physical changes of the lake system, due to changes in lake-water summer temperature and seasonal lake-ice cover. We show that variations in archaeal composition and diversity were related to a variety of factors (e.g., changes in lake water temperature, duration of lake ice cover, rapid sediment infilling), which influenced bottom water conditions and the sediment-water interface. Methanogenic Archaea dominated during the Allerod and Younger Dryas pollen zones, when the ancient lake was likely stratified and anoxic for large parts of the year. The increase in archaeal diversity at the Younger Dryas/Holocene transition is explained by sediment infilling and formation of a mire/peatbog. (C) 2017 Elsevier Ltd. All rights reserved.

  • 29.
    Ahmed, Moinuddin
    et al.
    Fed Urdu Univ Arts Sci & Technol, Dept Bot, Karachi 75300, Pakistan.
    Krusic, Paul J.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Charpentier Ljungqvist, Fredrik
    Stockholm University, Faculty of Humanities, Department of History.
    Zorita, Eduardo
    PAGES 2k Consortium,
    Continental-scale temperature variability during the past two millennia2013In: Nature Geoscience, ISSN 1752-0894, E-ISSN 1752-0908, Vol. 6, no 5, p. 339-346Article in journal (Refereed)
    Abstract [en]

    Past global climate changes had strong regional expression. To elucidate their spatio-temporal pattern, we reconstructed past temperatures for seven continental-scale regions during the past one to two millennia. The most coherent feature in nearly all of the regional temperature reconstructions is a long-term cooling trend, which ended late in the nineteenth century. At multi-decadal to centennial scales, temperature variability shows distinctly different regional patterns, with more similarity within each hemisphere than between them. There were no globally synchronous multi-decadal warm or cold intervals that define a worldwide Medieval Warm Period or Little Ice Age, but all reconstructions show generally cold conditions between ad 1580 and 1880, punctuated in some regions by warm decades during the eighteenth century. The transition to these colder conditions occurred earlier in the Arctic, Europe and Asia than in North America or the Southern Hemisphere regions. Recent warming reversed the long-term cooling; during the period ad 1971–2000, the area-weighted average reconstructed temperature was higher than any other time in nearly 1,400 years.

  • 30.
    Ahola, Markus
    Swedish Museum of Natural History, Department of Environmental research and monitoring.
    Climate Change in the Baltic Sea2021 Fact Sheet: Baltic Sea Environment Proceedings n°180. HELCOM/Baltic Earth 20212021Report (Other academic)
  • 31. Akinsanola, A. A.
    et al.
    Ajayi, V. O.
    Adejare, A. T.
    Adeyeri, O. E.
    Gbode, I. E.
    Ogunjobi, K. O.
    Nikulin, Grigory
    SMHI, Research Department, Climate research - Rossby Centre.
    Abolude, A. T.
    Evaluation of rainfall simulations over West Africa in dynamically downscaled CMIP5 global circulation models2018In: Journal of Theoretical and Applied Climatology, ISSN 0177-798X, E-ISSN 1434-4483, Vol. 132, no 1-2, p. 437-450Article in journal (Refereed)
  • 32. Akperov, M. G.
    et al.
    Eliseev, A. , V
    Mokhov, I. I.
    Semenov, V. A.
    Parfenova, M. R.
    Koenigk, Torben
    SMHI, Research Department, Climate research - Rossby Centre.
    Wind Energy Potential in the Arctic and Subarctic Regions and Its Projected Change in the 21st Century Based on Regional Climate Model Simulations2022In: Russian Meteorology and Hydrology, ISSN 1068-3739, E-ISSN 1934-8096, Vol. 47, no 6, p. 428-436Article in journal (Refereed)
  • 33. Akperov, Mirseid
    et al.
    Eliseev, Alexey V.
    Rinke, Annette
    Mokhov, Igor I.
    Semenov, Vladimir A.
    Dembitskaya, Mariya
    Matthes, Heidrun
    Adakudlu, Muralidhar
    Boberg, Fredrik
    Christensen, Jens H.
    Dethloff, Klaus
    Fettweis, Xavier
    Gutjahr, Oliver
    Heinemann, Guenther
    Koenigk, Torben
    SMHI, Research Department, Climate research - Rossby Centre.
    Sein, Dmitry
    Laprise, Rene
    Mottram, Ruth
    Nikiema, Oumarou
    Sobolowski, Stefan
    Winger, Katja
    Zhang, Wenxin
    Future projections of wind energy potentials in the arctic for the 21st century under the RCP8.5 scenario from regional climate models (Arctic-CORDEX)2023In: Anthropocene, E-ISSN 2213-3054, Vol. 44, article id 100402Article in journal (Refereed)
  • 34. Akperov, Mirseid
    et al.
    Eliseev, Alexey V.
    Rinke, Annette
    Mokhov, Igor I.
    Semenov, Vladimir A.
    Dembitskaya, Mariya
    Matthes, Heidrun
    Adakudlu, Muralidhar
    Boberg, Fredrik
    Christensen, Jens H.
    Dethloff, Klaus
    Fettweis, Xavier
    Gutjahr, Oliver
    Heinemann, Günther
    Koenigk, Torben
    Stockholm University, Faculty of Science, Department of Meteorology . Stockholm University, Faculty of Science, The Bolin Centre for Climate Research (together with KTH & SMHI).
    Sein, Dmitry
    Laprise, René
    Mottram, Ruth
    Nikiéma, Oumarou
    Sobolowski, Stefan
    Winger, Katja
    Zhang, Wenxin
    Future projections of wind energy potentials in the arctic for the 21st century under the RCP8.5 scenario from regional climate models (Arctic-CORDEX)2023In: Anthropocene, E-ISSN 2213-3054, Vol. 44, article id 100402Article in journal (Refereed)
    Abstract [en]

    The Arctic has warmed more than twice the rate of the entire globe. To quantify possible climate change effects, we calculate wind energy potentials from a multi-model ensemble of Arctic-CORDEX. For this, we analyze future changes of wind power density (WPD) using an eleven-member multi-model ensemble. Impacts are estimated for two periods (2020-2049 and 2070-2099) of the 21st century under a high emission scenario (RCP8.5). The multi-model mean reveals an increase of seasonal WPD over the Arctic in the future decades. WPD variability across a range of temporal scales is projected to increase over the Arctic. The signal amplifies by the end of 21st century. Future changes in the frequency of wind speeds at 100 m not useable for wind energy production (wind speeds below 4 m/s or above 25 m/s) has been analyzed. The RCM ensemble simulates a more frequent occurrence of 100 m non-usable wind speeds for the wind-turbines over Scandinavia and selected land areas in Alaska, northern Russia and Canada. In contrast, non-usable wind speeds decrease over large parts of Eastern Siberia and in northern Alaska. Thus, our results indicate increased potential of the Arctic for the development and production of wind energy. Bias corrected and not corrected near-surface wind speed and WPD changes have been compared with each other. It has been found that both show the same sign of future change, but differ in magnitude of these changes. The role of sea-ice retreat and vegetation expansion in the Arctic in future on near-surface wind speed variability has been also assessed. Surface roughness through sea-ice and vegetation changes may significantly impact on WPD variability in the Arctic.

  • 35. Akperov, Mirseid
    et al.
    Rinke, Annette
    Mokhov, Igor I.
    Matthes, Heidrun
    Semenov, Vladimir A.
    Adakudlu, Muralidhar
    Cassano, John
    Christensen, Jens H.
    Dembitskaya, Mariya A.
    Dethloff, Klaus
    Fettweis, Xavier
    Glisan, Justin
    Gutjahr, Oliver
    Heinemann, Guenther
    Koenigk, Torben
    SMHI, Research Department, Climate research - Rossby Centre.
    Koldunov, Nikolay V.
    Laprise, Rene
    Mottram, Ruth
    Nikiema, Oumarou
    Scinocca, John F.
    Sein, Dmitry
    Sobolowski, Stefan
    Winger, Katja
    Zhang, Wenxin
    Cyclone Activity in the Arctic From an Ensemble of Regional Climate Models (Arctic CORDEX)2018In: Journal of Geophysical Research - Atmospheres, ISSN 2169-897X, E-ISSN 2169-8996, Vol. 123, no 5, p. 2537-2554Article in journal (Refereed)
  • 36. Akperov, Mirseid
    et al.
    Rinke, Annette
    Mokhov, Igor I.
    Semenov, Vladimir A.
    Parfenova, Mariya R.
    Matthes, Heidrun
    Adakudlu, Muralidhar
    Boberg, Fredrik
    Christensen, Jens H.
    Dembitskaya, Mariya A.
    Dethloff, Klaus
    Fettweis, Xavier
    Gutjahr, Oliver
    Heinemann, Gunther
    Koenigk, Torben
    SMHI, Research Department, Climate research - Rossby Centre.
    Koldunov, Nikolay, V
    Laprise, Rene
    Mottram, Ruth
    Nikiema, Oumarou
    Sein, Dmitry
    Sobolowski, Stefan
    Winger, Katja
    Zhang, Wenxin
    Future projections of cyclone activity in the Arctic for the 21st century from regional climate models (Arctic-CORDEX)2019In: Global and Planetary Change, ISSN 0921-8181, E-ISSN 1872-6364, Vol. 182, article id UNSP 103005Article in journal (Refereed)
  • 37. Alatalo, Juha M.
    et al.
    Jägerbrand, Annika K.
    Dai, Junhu
    Mollazehi, Mohammad D.
    Abdel-Salam, Abdel-Salam G.
    Pandey, Rajiv
    Molau, Ulf
    Effects of ambient climate and three warming treatments on fruit production in an alpine, subarctic meadow community2021In: American Journal of Botany, ISSN 0002-9122, E-ISSN 1537-2197, Vol. 108, no 3, p. 411-422Article in journal (Refereed)
    Abstract [en]

    Premise Climate change is having major impacts on alpine and arctic regions, and inter-annual variations in temperature are likely to increase. How increased climate variability will impact plant reproduction is unclear. Methods In a 4-year study on fruit production by an alpine plant community in northern Sweden, we applied three warming regimes: (1) a static level of warming with open-top chambers (OTC), (2) press warming, a yearly stepwise increase in warming, and (3) pulse warming, a single-year pulse event of higher warming. We analyzed the relationship between fruit production and monthly temperatures during the budding period, fruiting period, and whole fruit production period and the effect of winter and summer precipitation on fruit production. Results Year and treatment had a significant effect on total fruit production by evergreen shrubs, Cassiope tetragona, and Dryas octopetala, with large variations between treatments and years. Year, but not treatment, had a significant effect on deciduous shrubs and graminoids, both of which increased fruit production over the 4 years, while forbs were negatively affected by the press warming, but not by year. Fruit production was influenced by ambient temperature during the previous-year budding period, current-year fruiting period, and whole fruit production period. Minimum and average temperatures were more important than maximum temperature. In general, fruit production was negatively correlated with increased precipitation. Conclusions These results indicate that predicted increased climate variability and increased precipitation due to climate change may affect plant reproductive output and long-term community dynamics in alpine meadow communities.

  • 38.
    Alatalo, Juha M
    et al.
    Qatar University.
    Jägerbrand, Annika K
    Swedish National Road and Transport Research Institute, Society, environment and transport, Environment.
    Molau, Ulf
    Göteborgs Universitet.
    Impacts of different climate change regimes and extreme climatic events on an alpine meadow community2016In: Scientific Reports, E-ISSN 2045-2322, Vol. 6, article id 21720Article in journal (Refereed)
    Abstract [en]

    Climate variability is expected to increase in future but there exist very few experimental studies that apply different warming regimes on plant communities over several years. We studied an alpine meadow community under three warming regimes over three years. Treatments consisted of (a) a constant level of warming with open-top chambers (ca. 1.9 °C above ambient), (b) yearly stepwise increases in warming (increases of ca. 1.0, 1.9 and 3.5 °C), and (c) pulse warming, a single first-year pulse event of warming (increase of ca. 3.5 °C). Pulse warming and stepwise warming was hypothesised to cause distinct first-year and third-year effects, respectively. We found support for both hypotheses; however, the responses varied among measurement levels (whole community, canopy, bottom layer, and plant functional groups), treatments, and time. Our study revealed complex responses of the alpine plant community to the different experimentally imposed climate warming regimes. Plant cover, height and biomass frequently responded distinctly to the constant level of warming, the stepwise increase in warming and the extreme pulse-warming event. Notably, we found that stepwise warming had an accumulating effect on biomass, the responses to the different warming regimes varied among functional groups, and the short-term perturbations had negative effect on species richness and diversity.

  • 39.
    Alatalo, Juha M.
    et al.
    Qatar University.
    Jägerbrand, Annika K.
    Statens väg- och transportforskningsinstitut, Miljö, MILJÖ.
    Molau, Ulf
    Göteborgs Universitet.
    Impacts of different climate change regimes and extreme climatic events on an alpine meadow community2016In: Scientific Reports, E-ISSN 2045-2322, Vol. 6, article id 21720Article in journal (Refereed)
    Abstract [en]

    Climate variability is expected to increase in future but there exist very few experimental studies that apply different warming regimes on plant communities over several years. We studied an alpine meadow community under three warming regimes over three years. Treatments consisted of (a) a constant level of warming with open-top chambers (ca. 1.9 °C above ambient), (b) yearly stepwise increases in warming (increases of ca. 1.0, 1.9 and 3.5 °C), and (c) pulse warming, a single first-year pulse event of warming (increase of ca. 3.5 °C). Pulse warming and stepwise warming was hypothesised to cause distinct first-year and third-year effects, respectively. We found support for both hypotheses; however, the responses varied among measurement levels (whole community, canopy, bottom layer, and plant functional groups), treatments, and time. Our study revealed complex responses of the alpine plant community to the different experimentally imposed climate warming regimes. Plant cover, height and biomass frequently responded distinctly to the constant level of warming, the stepwise increase in warming and the extreme pulse-warming event. Notably, we found that stepwise warming had an accumulating effect on biomass, the responses to the different warming regimes varied among functional groups, and the short-term perturbations had negative effect on species richness and diversity.

  • 40.
    Alatalo, Juha M.
    et al.
    Qatar University.
    Jägerbrand, Annika
    Statens väg- och transportforskningsinstitut.
    Molau, Ulf
    Göteborgs Universitet.
    Impacts of different climate change regimes and extreme climatic events on an alpine meadow community2016In: Scientific Reports, E-ISSN 2045-2322, Vol. 6, article id 21720Article in journal (Refereed)
    Abstract [en]

    Climate variability is expected to increase in future but there exist very few experimental studies that apply different warming regimes on plant communities over several years. We studied an alpine meadow community under three warming regimes over three years. Treatments consisted of (a) a constant level of warming with open-top chambers (ca. 1.9 °C above ambient), (b) yearly stepwise increases in warming (increases of ca. 1.0, 1.9 and 3.5 °C), and (c) pulse warming, a single first-year pulse event of warming (increase of ca. 3.5 °C). Pulse warming and stepwise warming was hypothesised to cause distinct first-year and third-year effects, respectively. We found support for both hypotheses; however, the responses varied among measurement levels (whole community, canopy, bottom layer, and plant functional groups), treatments, and time. Our study revealed complex responses of the alpine plant community to the different experimentally imposed climate warming regimes. Plant cover, height and biomass frequently responded distinctly to the constant level of warming, the stepwise increase in warming and the extreme pulse-warming event. Notably, we found that stepwise warming had an accumulating effect on biomass, the responses to the different warming regimes varied among functional groups, and the short-term perturbations had negative effect on species richness and diversity.

  • 41.
    Albihn, Ann
    et al.
    National Veterinary Institute, Uppsala, Sweden.
    Gustafsson, Hans
    Swedish University of Agricultural Sciences.
    O’Hara Ruiz, Marilyn
    University of Illinois at Urbana-Champaign.
    38. Preparing for Climate Change2012In: Ecology and Animal Health / [ed] Leif Norrgren and Jeffrey Levengood, Uppsala: Baltic University Press , 2012, 1, p. 311-328Chapter in book (Other (popular science, discussion, etc.))
    Download full text (pdf)
    ehsa 2-38
  • 42.
    Aldama Campino, Aitor
    Stockholm University, Faculty of Science, Department of Meteorology .
    Atmospheric and oceanic circulation from a thermodynamic perspective2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The climate system is continuously transporting and exchanging heat, freshwater, carbon and other tracers in different spatio-temporal scales. Therefore, analysing the system from a thermodynamic or biogeochemical framework is highly convenient. In this thesis the interaction between the ocean and the atmospheric circulation is analysed using thermodynamical and biogeochemical coordinates. Due to the dimensionality of the climate system stream functions are used to reduce this complexity and facilitate the understanding of the different processes that take place. The first half of this thesis, focuses on the interaction between the atmospheric and the ocean circulation from a thermodynamic perspective. We introduce the hydrothermohaline stream function which combines the atmospheric circulation in humidity-potential temperature (hydrothermal) space and the ocean circulation in salinity-temperature coordinates (thermohaline). A scale factor of 7.1 is proposed to link humidity and salinity coordinates. Future scenarios are showing an increase of humidity in the atmosphere due to the increase of temperatures which results in a widening of the hydrothermal stream function along the humidity coordinate. In a similar way, the ocean circulation in the thermohaline space expands along the salinity coordinate. The link between salinity and humidity changes is strongest at net evaporation regions where the gain of water vapour in the atmosphere results in a salinification in the ocean. In addition, the ocean circulation in latitude-carbon space is investigated. By doing so, we are able to distinguish the roles of different water masses and circulation pathways for ocean carbon. We find that the surface waters in the subtropical gyres are the main drivers of the meridional carbon transport in the ocean. By separating the carbon in its different constituents we show that the carbon transported by the majority of the water masses is a result of the solubility pump. The contribution of the biological pump is predominant in the deep Pacific Ocean. The effects of the Mediterranean Overflow Waters on the North Atlantic are discussed in the final part of the thesis.

    Download full text (pdf)
    Atmospheric and oceanic circulation from a thermodynamic perspective
    Download (jpg)
    Omslagsframsida
  • 43.
    Aldea, Jorge
    et al.
    Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Lomma, Sweden.
    Ruiz-Peinado, Ricardo
    Forest Research Center, INIA, CSIC, Madrid, Spain; iuFOR, Sustainable Forest Management Research Institute, University of Valladolid & INIA, Valladolid, Spain.
    del Río, Miren
    Forest Research Center, INIA, CSIC, Madrid, Spain; iuFOR, Sustainable Forest Management Research Institute, University of Valladolid & INIA, Valladolid, Spain.
    Pretzsch, Hans
    Chair of Forest Growth and Yield Science, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
    Heym, Michael
    Chair of Forest Growth and Yield Science, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
    Brazaitis, Gediminas
    Department of Forest Science, Vytautas Magnus University, Kaunas, Lithuania.
    Jansons, Aris
    Latvian State Forest Research Institute Silava, Salaspils, Latvia.
    Metslaid, Marek
    Chair of Silviculture and Forest Ecology, Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia.
    Barbeito, Ignacio
    Department of Forest Resources Management, Faculty of Forestry, The University of British Columbia, BC, Vancouver, Canada.
    Bielak, Kamil
    Department of Silviculture, Institute of Forest Sciences, Warsaw University of Life Sciences, Warsaw, Poland.
    Hylen, Gro
    NIBIO, Norwegian Institute of Bioeconomy Research, Ås, Norway.
    Holm, Stig-Olof
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Nothdurft, Arne
    Department of Forest- and Soil Sciences, Institute of Forest Growth, BOKU, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.
    Sitko, Roman
    Technical University in Zvolen, Faculty of Forestry, Department of Forest Resource Planning and Informatics, Zvolen, Slovakia.
    Löf, Magnus
    Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Lomma, Sweden.
    Timing and duration of drought modulate tree growth response in pure and mixed stands of Scots pine and Norway spruce2022In: Journal of Ecology, ISSN 0022-0477, E-ISSN 1365-2745, Vol. 110, no 11, p. 2673-2683Article in journal (Refereed)
    Abstract [en]
    1. Climate change is increasing the severity and frequency of droughts around the globe, leading to tree mortality that reduces production and provision of other ecosystem services. Recent studies show that growth of mixed stands may be more resilient to drought than pure stands. The two most economically important and widely distributed tree species in Europe are Norway spruce (Picea abies (L.) Karst) and Scots pine (Pinus sylvestris L.), but little is known about their susceptibility to drought when coexist.
    2. This paper analyses the resilience (resistance, recovery rate and recovery time) at individual-tree level using a network of tree-ring collections from 22 sites along a climatic gradient from central Europe to Scandinavia. We aimed to identify differences in growth following drought between the two species and between mixed and pure stands, and how environmental variables (climate, topography and site location) and tree characteristics influence them.
    3. We found that both the timing and duration of drought drive the different responses between species and compositions. Norway spruce showed higher vulnerability to summer drought, with both lower resistance and a longer recovery time than Scots pine. Mixtures provided higher drought resistance for both species compared to pure stands, but the benefit decreases with the duration of the drought. Especially climate sensitive and old trees in climatically marginal sites were more affected by drought stress.
    4. Synthesis. Promoting Scots pine and mixed forests is a promising strategy for adapting European forests to climate change. However, if future droughts become longer, the advantage of mixed stands could disappear which would be especially negative for Norway spruce.
    Download full text (pdf)
    fulltext
  • 44.
    Alexandersson, Hans
    et al.
    SMHI.
    Moberg, A
    Homogenization of Swedish temperature data .1. Homogeneity test for linear trends1997In: International Journal of Climatology, ISSN 0899-8418, E-ISSN 1097-0088, Vol. 17, no 1, p. 25-34Article in journal (Refereed)
    Abstract [en]

    A new test for the detection of linear trends of arbitrary length in normally distributed time series is developed. With this test it is possible to detect and estimate gradual changes of the mean value in a candidate series compared with a homogeneous reference series. The test is intended for studies of artificial relative trends in climatological time series, e.g. an increasing urban heat island effect. The basic structure of the new test is similar to that of a widely used test for abrupt changes, the standard normal homogeneity test. The test for abrupt changes is found to remain unaltered after an important generalization.

  • 45.
    Alexandersson, Hans
    et al.
    SMHI.
    Tuomenvirta, H
    Schmith, T
    Iden, K
    Trends of storms in NW Europe derived from an updated pressure data set2000In: Climate Research (CR), ISSN 0936-577X, E-ISSN 1616-1572, Vol. 14, no 1, p. 71-73Article in journal (Refereed)
    Abstract [en]

    Within the WASA project (von Storch et al. 1998; Bull Am Meterol Soc 79(5):741-760) an extensive data set containing station pressure values was used to calculate geostrophic winds (Alexandersson et al. 1998; Global Atmos Ocean Syst 6:97-120). Geostrophic winds were analysed in terms of percentiles to give a measure of long-term variations in synoptic-scale storminess. In this paper an update to 1998 is presented. In the Scandinavia, Finland and Baltic Sea area the most recent years, especially the cold and calm year 1996, seem to have brought an end to the stormy period centred on 1990. In the more westerly British Isles, North Sea and Norwegian Sea area, storminess is still at high levels compared with the less intense period between 1930 and 1980. The long-term increasing trend in NW Europe storminess that started in the 1960s seems to have been broken.

  • 46. Alexandridis, Nikolaos
    et al.
    Feit, Benjamin
    Kihara, Job
    Luttermoser, Tim
    May, Wilhelm
    Midega, Charles
    Öborn, Ingrid
    Poveda, Katja
    Sileshi, Gudeta W.
    Zewdie, Beyene
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Clough, Yann
    Jonsson, Mattias
    Climate change and ecological intensification of agriculture in sub-Saharan Africa – A systems approach to predict maize yield under push-pull technology2023In: Agriculture, Ecosystems & Environment, ISSN 0167-8809, E-ISSN 1873-2305, Vol. 352, article id 108511Article in journal (Refereed)
    Abstract [en]

    Assessing effects of climate change on agricultural systems and the potential for ecological intensification to increase food security in developing countries is essential to guide management, policy-making and future research. ‘Push-pull’ technology (PPT) is a poly-cropping design developed in eastern Africa that utilizes plant chemicals to mediate plant–insect interactions. PPT application yields significant increases in crop productivity, by reducing pest load and damage caused by arthropods and parasitic weeds, while also bolstering soil fertility. As climate change effects may be species- and/or context-specific, there is need to elucidate how, in interaction with biotic factors, projected climate conditions are likely to influence future functioning of PPT. Here, we first reviewed how changes in temperature, precipitation and atmospheric CO2 concentration can influence PPT components (i.e., land use, soils, crops, weeds, diseases, pests and their natural enemies) across sub-Saharan Africa (SSA). We then imposed these anticipated responses on a landscape-scale qualitative mathematical model of maize production under PPT in eastern Africa, to predict cumulative, structure-mediated impacts of climate change on maize yield. Our review suggests variable impacts of climate change on PPT components in SSA by the end of the 21st century, including reduced soil fertility, increased weed and arthropod pest pressure and increased prevalence of crop diseases, but also increased biological control by pests’ natural enemies. Extrapolating empirical evidence of climate effects to predict responses to projected climate conditions is mainly limited by a lack of mechanistic understanding regarding single and interactive effects of climate variables on PPT components. Model predictions of maize yield responses to anticipated impacts of climate change in eastern Africa suggest predominantly negative future trends. Nevertheless, maize yields can be sustained or increased by favourable changes in system components with less certain future behaviour, including higher PPT adoption, preservation of field edge density and agricultural diversification beyond cereal crops.

  • 47. Alfieri, Lorenzo
    et al.
    Bisselink, Berny
    Dottori, Francesco
    Naumann, Gustavo
    de Roo, Ad
    Salamon, Peter
    Wyser, Klaus
    SMHI, Research Department, Climate research - Rossby Centre.
    Feyen, Luc
    Global projections of river flood risk in a warmer world2017In: Earth's Future, E-ISSN 2328-4277, Vol. 5, no 2, p. 171-182Article in journal (Refereed)
    Download full text (pdf)
    fulltext
  • 48.
    Almssad, Asaad
    et al.
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Chemical Sciences.
    Almusaed, Amjad
    Albasrah University, Albasrah, Iraq.
    Environmental reply to vernacular habitat conformation from a vast areas of Scandinavia2015In: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 48, p. 825-834Article in journal (Refereed)
    Abstract [en]

    There are many original ideas and useful system inputs embedded in the building of human settlements in Scandinavian regions, where the landscape and habitat are strongly interconnected. A cold climate and strong winds are the most prominent risks that affect habitats. The Longhouse is the foremost traditional habitat in the Scandinavian region, dating back to the Iron Age, 2000 BC. This study examines the influence of climate on the conformation of habitats. Climate had a solid impact on the conceptions of habitat form and internal space. Wind and extreme temperatures had firming consequences on the housing arrangements, layouts, orientations, and building materials used in the construction process. Habitats from this region were located in an optimal arrangement, and the south orientation was used effectively. This investigation will provide an evaluative interpretation and analysis of the real facts of vernacular habitats in the context of energy efficiency and ecological concepts, considering human settlement patterns, architectural creation and building material uses. (C) 2015 Elsevier Ltd. All rights reserved.

  • 49.
    Almulla, Youssef
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy Systems.
    Energy-Water and Agriculture Nexus to Support the Sustainable Management of Shared Water Resources2023Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Throughout history, major rivers and shared water bodies have allowed civilizations to flourish, and the effective management of shared water bodies has always been a priority for societies and nations. Today, about 40% of the world’s population lives in proximity to the 286 transboundary river and lake basins that supply 60% of the world’s freshwater flows and make up about half of the Earth’s land area. Moreover, around 2 billion people in the world depend on groundwater sources, which include over 460 transboundary aquifer systems.

    The mismanagement of water resources can result in catastrophic disasters that are often exacerbated by a domino effect so that the impacts of poor water management often extend beyond the water system. The interdependency of the water system with other systems such as energy and food, or with land-use, highlights the importance of ”systems thinking and planning” in resource management. Such a concept is not easily encapsulated into policy-making processes in many parts of the world because consideration of the resource systems in isolation as individual entities and ‘silo” thinking still dominate. Climate change adds another layer of complexity and exacerbates the issue of water management. Another important factor is geographical location because precipitation varies among and within continents. This results in some regions suffering from water shortages and some regions facing the risks of water redundancy and floods. 

    The concept of the Water-Energy-Food (WEF) nexus was introduced in 2011 as a response to help address some of the issues mentioned above. Over the last decade, research on the WEF nexus has gained momentum in both the policy and academic areas and several methods have been introduced to operationalize the nexus in different contexts. One of the flagship methodologies is the Transboundary Basins Nexus Approach (TBNA) introduced by the United Nations Economic Commission of Europe (UNECE) in 2015 and designed to assess the nexus in shared (transboundary) water basins.

    The aim of this thesis is to support shared water management by using the WEF-nexus approach to quantify the benefits of coordinated management, motivate cooperation, and identify trade-offs in the optimal use of resources. To achieve this aim, four research questions are explored over the course of four academic publications.  

    The first question explores the role of the energy sector in motivating shared water cooperation. The second question studies the risks and opportunities emerging from the interplay between climate and renewable energy in shared basins. The third question focuses on groundwater management and explores what benefits the consideration of the energy-water-agriculture nexus could bring to shared groundwater management in water-scarce areas. The fourth question examines how consideration of the energy-water-agriculture nexus could accelerate the low-carbon transition in the agricultural sector. 

    These research questions are examined in two different, yet complementing, geographic locations. One is the Balkans in Southeastern Europe, which faces water redundancy and flood issues and the other is the Middle East and North Africa (MENA) region which suffers from water scarcity. In the first region, the Drina and the Drin River Basins represent the characteristics of Southeastern Europe while the North Western Sahara Aquifer System (NWSAS) and the Souss-Massa basin represent the characteristics of the MENA region. Three of the case applications are transboundary (Drina, Drin and NWSAS) while the last application (Souss-Massa Basin) is a subnational basin.  

    Download full text (pdf)
    fulltext
  • 50.
    Alomar, Mohamed Khalid
    et al.
    Department of Civil Engineering, Al-Maarif University College, Ramadi, Iraq.
    Khaleel, Faidhalrahman
    Department of Civil Engineering, Al-Maarif University College, Ramadi, Iraq.
    Aljumaily, Mustafa M.
    Department of Civil Engineering, Al-Maarif University College, Ramadi, Iraq.
    Masood, Adil
    Department of Civil Engineering, Jamia Millia Islamia, New Delhi, India.
    Razali, Siti Fatin Mohd
    Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Selangor, Malaysia.
    AlSaadi, Mohammed Abdulhakim
    Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Hameed, Mohammed Majeed
    Department of Civil Engineering, Al-Maarif University College, Ramadi, Iraq; Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Selangor, Malaysia.
    Data-driven models for atmospheric air temperature forecasting at a continental climate region2022In: PLOS ONE, E-ISSN 1932-6203, Vol. 17, no 11, article id e0277079Article in journal (Refereed)
    Abstract [en]

    Atmospheric air temperature is the most crucial metrological parameter. Despite its influence on multiple fields such as hydrology, the environment, irrigation, and agriculture, this parameter describes climate change and global warming quite well. Thus, accurate and timely air temperature forecasting is essential because it provides more important information that can be relied on for future planning. In this study, four Data-Driven Approaches, Support Vector Regression (SVR), Regression Tree (RT), Quantile Regression Tree (QRT), ARIMA, Random Forest (RF), and Gradient Boosting Regression (GBR), have been applied to forecast short-, and mid-term air temperature (daily, and weekly) over North America under continental climatic conditions. The time-series data is relatively long (2000 to 2021), 70% of the data are used for model calibration (2000 to 2015), and the rest are used for validation. The autocorrelation and partial autocorrelation functions have been used to select the best input combination for the forecasting models. The quality of predicting models is evaluated using several statistical measures and graphical comparisons. For daily scale, the SVR has generated more accurate estimates than other models, Root Mean Square Error (RMSE = 3.592°C), Correlation Coefficient (R = 0.964), Mean Absolute Error (MAE = 2.745°C), and Thiels’ U-statistics (U = 0.127). Besides, the study found that both RT and SVR performed very well in predicting weekly temperature. This study discovered that the duration of the employed data and its dispersion and volatility from month to month substantially influence the predictive models’ efficacy. Furthermore, the second scenario is conducted using the randomization method to divide the data into training and testing phases. The study found the performance of the models in the second scenario to be much better than the first one, indicating that climate change affects the temperature pattern of the studied station. The findings offered technical support for generating high-resolution daily and weekly temperature forecasts using Data-Driven Methodologies.

    Download full text (pdf)
    fulltext
1234567 1 - 50 of 2712
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf