Digitala Vetenskapliga Arkivet

Change search
Refine search result
1 - 15 of 15
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Andreou, Dimitrios
    et al.
    Saetre, Peter
    Werge, Thomas
    Andreassen, Ole A.
    Agartz, Ingrid
    Sedvall, Göran C.
    Hall, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Terenius, Lars
    Jonsson, Erik G.
    d-amino acid oxidase activator gene (DAOA) variation affects cerebrospinal fluid homovanillic acid concentrations in healthy Caucasians2012In: European Archives of Psychiatry and Clinical Neuroscience, ISSN 0940-1334, E-ISSN 1433-8491, Vol. 262, no 7, p. 549-556Article in journal (Refereed)
    Abstract [en]

    The d-amino acid oxidase activator (DAOA) protein regulates the function of d-amino oxidase (DAO), an enzyme that catalyzes the oxidative deamination of d-3,4-dihydroxyphenylalanine (D-DOPA) and d-serine. D-DOPA is converted to l-3,4-DOPA, a precursor of dopamine, whereas d-serine participates in glutamatergic transmission. We hypothesized that DAOA polymorphisms are associated with dopamine, serotonin and noradrenaline turnover in the human brain. Four single-nucleotide polymorphisms, previously reported to be associated with schizophrenia, were genotyped. Cerebrospinal fluid (CSF) samples were drawn by lumbar puncture, and the concentrations of the major dopamine metabolite homovanillic acid (HVA), the major serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) and the major noradrenaline metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG) were measured. Two of the investigated polymorphisms, rs3918342 and rs1421292, were significantly associated with CSF HVA concentrations. Rs3918342 was found to be nominally associated with CSF 5-HIAA concentrations. None of the polymorphisms were significantly associated with MHPG concentrations. Our results indicate that DAOA gene variation affects dopamine turnover in healthy individuals, suggesting that disturbed dopamine turnover is a possible mechanism behind the observed associations between genetic variation in DAOA and behavioral phenotypes in humans.

  • 2. Andreou, Dimitrios
    et al.
    Saetre, Peter
    Werge, Thomas
    Andreassen, Ole A.
    Agartz, Ingrid
    Sedvall, Göran C.
    Hall, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Terenius, Lars
    Jönsson, Erik G.
    Tryptophan hydroxylase gene 1 (TPH1) variants associated with cerebrospinal fluid 5-hydroxyindole acetic acid and homovanillic acid concentrations in healthy volunteers2010In: Psychiatry Research, ISSN 0165-1781, E-ISSN 1872-7123, Vol. 180, no 2-3, p. 63-67Article in journal (Refereed)
    Abstract [en]

    Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in serotonin synthesis. We investigated possible relationships between five TPH1 gene polymorphisms and cerebrospinal fluid (CSF) concentrations of the major serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA), the major dopamine metabolite homovanillic acid (HVA), and the major norepinephrine metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG) in healthy volunteers (n = 132). The G-allele of the TPH1 rs4537731 (A-6526G) polymorphism was associated with 5-HIM and HVA, but not MHPG concentrations. None of the other four TPH1 polymorphisms (rs211105, rs1800532, rs1799913 and rs7933505) were significantly associated with any of the monoamine metabolite concentrations. Two (rs4537731G/rs211105T/rs1800532C/rs1799913C/rs7933505G and rs4537731A/rs211105T/rs1800532C/rs1799913C/rs7933505G) of five common TPH1 five-allele haplotypes were associated with 5-HIAA and HVA concentrations in opposite directions. None of the common haplotypes was associated with MHPG concentrations in the CSF. The results suggest that TPH1 gene variation participates in the regulation of serotonin and dopamine turnover rates in the central nervous system of healthy human subjects.

  • 3.
    Bergman, Sara
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Blomgren, Andreas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Hall, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Svedberg, Marie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Thibblin, Alf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Wangsell, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Synthesis and biological evaluation of a piperazine-based library of C-11-Labeled PET tracers for imaging of the vesicular acetylcholine transporter2013In: Journal of labelled compounds & radiopharmaceuticals, ISSN 0362-4803, E-ISSN 1099-1344, Vol. 56, no S1, p. S105-S105Article in journal (Other academic)
  • 4.
    Bergman, Sara
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Estrada, Sergio
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Hall, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Rahman, Rashidur
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Blomgren, Andreas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Svedberg, Marie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform. Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
    Thibblin, Alf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Wångsell, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Synthesis and Labelling of a Piperazine-Based Library of 11C-Labeled Ligands for Imaging of the Vesicular Acetylcholine Transporter2014In: Journal of labelled compounds & radiopharmaceuticals, ISSN 0362-4803, E-ISSN 1099-1344, Vol. 57, no 8, p. 525-532Article in journal (Refereed)
    Abstract [en]

    The cholinergic system is involved in neurodegenerative diseases, and visualization of cholinergic innervations with positron emission tomography (PET) would be a useful tool in understanding these diseases. A ligand for the vesicular acetylcholine transporter (VAChT), acknowledged as a marker for cholinergic neurons, could serve as such a PET tracer. The aim was to find a VAChT PET tracer using a library concept to create a small but diverse library of labeled compounds. From the same precursor and commercially available aryl iodides 6a-f, six potential VAChT PET tracers, [C-11]-(+/-)5a-f, were C-11-labeled by a palladium (0)-mediated aminocarbonylation, utilizing a standard protocol. The labeled compounds [C-11]-(+/-)5a-f were obtained in radiochemical purities >95% with decay-corrected radiochemical yields and specific radioactivities between 4-25% and 124-597 GBq/mu mol, respectively. Autoradiography studies were then conducted to assess the compounds binding selectivity for VAChT. Labeled compounds [C-11]-(+/-)5d and [C-11]-(+/-)5e showed specific binding but not enough to permit further preclinical studies. To conclude, a general method for a facile synthesis and labeling of a small piperazine-based library of potential PET tracers for imaging of VAChT was shown, and in upcoming work, another scaffold will be explored using this approach.

  • 5.
    Blom, Elisabeth
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Karimi, Farhad
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Eriksson, Olof
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Hall, Håkan
    Långström, Bengt
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Synthesis and in vitro evaluation of 18F-β-carboline alkaloids as PET ligands2008In: Journal of labelled compounds & radiopharmaceuticals, ISSN 0362-4803, E-ISSN 1099-1344, Vol. 51, no 6, p. 277-282Article in journal (Refereed)
    Abstract [en]

    A one-step 18F-labelling strategy was used to prepare four 18F-labelled analogues of 7-methoxy-1-methyl-9H-β-carboline (harmine): 7-(2-[18F]fluoroethoxy)-1-methyl-9H-β-carboline (5), 7-(3-[18F]fluoro-propoxy)-1-methyl-9H-β-carboline (6), 7-[2-(2-[18F]fluoroethoxy)ethoxy]-1-methyl-9H-β-carboline (7), and 7-{2-[2-(2-[18F]fluoroethoxy)ethoxy]-ethoxy}-1-methyl-9H-β-carboline (8). These were synthesized as potential PET ligands for monoamine oxidase A. A solution of pure labelled compound in buffer was obtained in < 70 min from end of radionuclide production, with a decay-corrected yield of up to 23%. The average specific binding to MAO-A in rat brain, determined by autoradiography experiments, was highest for compounds 7 and 8 (89 ± 2 and 96 ± 1% respectively), which was obtained at < 1 nM radioligand concentration.

  • 6.
    Blom, Elisabeth
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Estrada, Sergio
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Hall, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Muhammad, Taj
    Ding, Chenmin
    Nair, Manoj
    Långström, Bengt
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    68Ga-Labeling of RGD peptides and biodistribution2012In: International Journal of Clinical and Experimental Medicine, E-ISSN 1940-5901, Vol. 5, no 2, p. 165-172Article in journal (Refereed)
    Abstract [en]

    Several peptides comprising Arg-Gly-Asp (RGD) domain and macrocyclic chelator were labeled with 68Ga for the imaging of angiogenesis. The analogues varied in peptide constitution, linker and chelator type. The labeling efficiency did not vary with the peptide constitution and linker type, but depended on the chelator type. Four of the compounds containing 2,2',2'',2'''-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (DOTA) chelator were labeled at 90 ± 5°C using conventional or microwave heating reaching 90% of 68Ga incorporation after 5 and 2 min respectively, when the concentration of the precursor was 2.5 μM. The compound having 2,2',2''-(1,4,7-triazonane-1,4,7-triyl)triacetic acid (NOTA) as the chelator could be labeled at room temperature within 5 min using 2.5 μM peptide precursor. Two of the compounds contained a poly (ethylene glycol) (PEG) linker to the chelator. The biodistribution of the analogues was studied in male rats.

  • 7.
    Blom, Elisabeth
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Estrada, Sergio
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Hall, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Muhammad, Taj
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Ding, Chenmin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Nair, Manoj
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Långström, Bengt
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
    Ga-68-Labeling of RGD peptides and biodistribution2012In: International Journal of Clinical and Experimental Medicine, E-ISSN 1940-5901, Vol. 5, no 2, p. 165-172Article in journal (Refereed)
    Abstract [en]

    Several peptides comprising Arg-Gly-Asp (RGD) domain and macrocyclic chelator were labeled with Ga-68 for the imaging of angiogenesis. The analogues varied in peptide constitution, linker and chelator type. The labeling efficiency did not vary with the peptide constitution and linker type, but depended on the chelator type. Four of the compounds containing 2,2', 2 '', 2'''-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl) tetraacetic acid (DOTA) chelator were labeled at 90 +/- 5 degrees C using conventional or microwave heating reaching 90% of Ga-68 incorporation after 5 and 2 min respectively, when the concentration of the precursor was 2.5 mu M. The compound having 2,2', 2 ''-(1,4,7-triazonane1,4,7-triyl)triacetic acid (NOTA) as the chelator could be labeled at room temperature within 5 min using 2.5 mu M peptide precursor. Two of the compounds contained a poly (ethylene glycol) (PEG) linker to the chelator. The biodistribution of the analogues was studied in male rats.

  • 8.
    Hall, Håkan
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Takahashi, Kayo
    Center for Molecular Imaging Science, Kobe, Japan.
    Erlandsson, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Estrada, Sergio
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Razifar, Pasha
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Bergström, Elisabeth
    Uppsala Imanet, Uppsala, Sweden.
    Långström, Bengt
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
    Pharmacological characterization of 18F-labeled vorozole analogs2012In: Journal of labelled compounds & radiopharmaceuticals, ISSN 0362-4803, E-ISSN 1099-1344, Vol. 55, no 14, p. 484-490Article in journal (Refereed)
    Abstract [en]

    Two F-18-labeled analogs of vorozole ([F-18]FVOZ and [F-18]FVOO) have been developed as potential tools for the in vivo characterization of aromatase. The pharmacologicalproperties of these radioligands were evaluated using in vitro binding and in vivo distribution studies in the rat and primate. Saturation binding studies using rat ovary gave K-D and B-max values of 0.21 +/- 0.1 nM and 210 +/- 20 fmol/mg, respectively, for [F-18]FVOZ, and 7.6 +/- 1nMand 293 +/- 12fmol/mg, respectively, for [F-18]FVOO. Organ distribution studies in rats showed the highest accumulation in the adrenal glands, with standardized uptake values (SUVs) of 15 to 20, followed by ovaries and liver with SUVs of approximately 5. Ex vivo and in vitro autoradiography of the rat brain showed specific binding of both [F-18]FVOZ and [F-18]FVOO mainly in the amygdala. Positron emission tomography (PET) studies were performed in the Rhesus monkey, and these showed displaceable binding in the amygdala and the hypothalamus preoptic area. The PET images were also analyzed using masked volume-wise principal component analysis. These studies suggest that [F-18]FVOZ might be a suitable tracer for the study of aromatase in vitro and in vivo, and could be an alternative to [C-11]vorozole in human PET studies.

  • 9.
    Hall, Håkan
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Blom, Elisabeth
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Ulin, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Monazzam, Azita
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Påhlman, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Colorectal Surgery.
    Micke, Patrick
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Wanders, Alkwin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    McBride, William
    Goldenberg, David M
    Långström, Bengt
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    In vitro autoradiography of carcinoembryonic antigen in tissue from patients with colorectal cancer using multifunctional antibody TF2 and 67/68Ga-labeled haptens by pretargeting2012In: American journal of nuclear medicine and molecular imaging, ISSN 2160-8407, Vol. 2, no 2, p. 141-150Article in journal (Refereed)
    Abstract [en]

    The carcinoembryonic antigen (CEA) was visualized in vitro in tissue from patients with colorectal cancer with trivalent bispecific antibody TF2 and two hapten molecules, [67/68Ga]Ga-IMP461 and [67/68Ga]Ga-IMP485 by means of pretargeting. Colorectal cancer tissue samples obtained from surgery at Uppsala University Hospital, were frozen fresh and cryosectioned. The two hapten molecules comprising 1,4,7-triazacyclononanetriacetic acid chelate moiety (NOTA) were labeled with 67Ga or 68Ga. The autoradiography was conducted by incubating the tissue samples with the bispecific antibody TF2, followed by washing and incubation with one of the radiolabeled hapten molecules. After washing, drying and exposure to phosphor imager plates, the autoradiograms were analyzed and compared to standard histochemistry (hematoxylin-eosin). Pronounced binding was found in the tissue from colorectal cancer using the bispecific antibody TF2 and either of the haptens [67/68Ga]Ga-IMP461 and [67/68Ga]Ga-IMP485. Distinct binding was also detected in the epithelium of most samples of neighboring tissue, taken at a minimum of 10 cm from the site of the tumor. It is concluded that pretargeting CEA with the bispecific antibody TF2 followed by the addition of 67/68Ga-labeled hapten is extremely sensitive for visualizing this marker for colorectal cancer. This methodology is therefore a very specific complement to other histochemical techniques in the diagnosis of biopsies or in samples taken from surgery. Use of the pretargeting technique in vivo may also be an advance in diagnosing patients with colorectal cancer, either using 67Ga and SPECT or 68Ga and PET.

  • 10.
    Magnusson, Kristina
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Sehlin, Dag
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Syvänen, Stina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Svedberg, Marie M.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Philipson, Ola
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Soderberg, Linda
    Tegerstedt, Karin
    Holmquist, Mats
    Gellerfors, Pär
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Lannfelt, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Hall, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Nilsson, Lars N. G.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Specific Uptake of an Amyloid-beta Protofibril-Binding Antibody-Tracer in A beta PP Transgenic Mouse Brain2013In: Journal of Alzheimer's Disease, ISSN 1387-2877, E-ISSN 1875-8908, Vol. 37, no 1, p. 29-40Article in journal (Refereed)
    Abstract [en]

    Evidence suggests that amyloid-beta (A beta) protofibrils/oligomers are pathogenic agents in Alzheimer's disease (AD). Unfortunately, techniques enabling quantitative estimates of these species in patients or patient samples are still rather limited. Here we describe the in vitro and ex vivo characteristics of a new antibody-based radioactive ligand, [I-125]mAb158, which binds to A beta protofibrils with high affinity. [I-125]mAb158 was specifically taken up in brain of transgenic mice expressing amyloid-beta protein precursor (A beta PP) as shown ex vivo. This was in contrast to [I-125]mAb-Ly128 which does not bind to A beta. The uptake of intraperitoneally-administered [I-125]mAb158 into the brain was age- and time-dependent, and saturable in A beta PP transgenic mice with modest A beta deposition. Brain uptake was also found in young A beta PP transgenic mice that were devoid of A beta deposits, suggesting that [I-125]mAb158 targets soluble A beta protofibrils. The radioligand was diffusely located in the parenchyma, sometimes around senile plaques and only occasionally colocalized with cerebral amyloid angiopathy. A refined iodine-124-labeled version of mAb158 with much improved blood-brain barrier passage and a shorter plasma half-life might be useful for PET imaging of A beta protofibrils.

  • 11.
    Nordeman, Patrik
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Hall, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Hammarstrom, Per
    Nilsson, Peter R.
    Back, Marcus
    Johansson, Leif B. G.
    Westermark, Per
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Westermark, Gunilla T.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    C-11 and F-18 radiolabeling of tetra and pentatiophenes as PET-ligands for misfolded protein aggregates2013In: Journal of labelled compounds & radiopharmaceuticals, ISSN 0362-4803, E-ISSN 1099-1344, Vol. 56, no S1, p. S35-S35Article in journal (Other academic)
  • 12.
    Svedberg, Marie
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Hellström-Lindahl, Eva
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Rahman, Obaidur
    Hall, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Amyloid imaging PET ligands as biomarkers for Alzheimer’s disease: preclinical evaluation2012In: Positron Emission Tomography: Current Clinical and Research Aspects / [ed] Chia-Hung Hsieh, INTECH, 2012, p. 255-274Chapter in book (Refereed)
  • 13.
    Svedberg, Marie M.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Rahman, Obaidur
    Hall, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Preclinical studies of potential amyloid binding PET/SPECT ligands in Alzheimer's disease2012In: Nuclear Medicine and Biology, ISSN 0969-8051, E-ISSN 1872-9614, Vol. 39, no 4, p. 484-501Article in journal (Refereed)
    Abstract [en]

    Visualizing the neuropathological hallmarks amyloid plaques and neurofibrillary tangles of Alzheimer's disease in vivo using positron emission tomography (PET) or single photon emission computed tomography will be of great value in diagnosing the individual patient and will also help in our understanding of the disease. The successful introduction of [C-11]PIB as a PET tracer for the amyloid plaques less than 10 years ago started an intensive research, and numerous new compounds for use in molecular imaging of the amyloid plaques have been developed. The candidates are based on dyes like thioflavin T, Congo red and chrysamine G, but also on other types such as benzoxazoles, curcumin and stilbenes. In the present review, we present methods of the radiochemistry and preclinical evaluation as well as the main properties of some of these compounds.

  • 14.
    Tegler, Gustaf
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Vascular Surgery.
    Estrada, Sergio
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Hall, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Wanhainen, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Vascular Surgery.
    Björck, Martin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Vascular Surgery.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Autoradiography screening of potential positron emission tomography tracers for asymptomatic abdominal aortic aneurysms2014In: Upsala Journal of Medical Sciences, ISSN 0300-9734, E-ISSN 2000-1967, Vol. 119, no 3, p. 229-235Article in journal (Refereed)
    Abstract [en]

    Objective. The aetiology and early pathophysiological mechanisms of aortic aneurysm formation are still unknown and challenging to study in vivo. Positron emission tomography (PET) is a potentially valuable instrument for non-invasive in vivo pathophysiological studies. No specific tracer to identify the pathophysiological process of aneurysmal dilatation is yet available, however. The aim of this study was to explore if different PET tracers could be useful to image aneurysmal disease. Methods and results. Human aneurysmal aortic tissue, collected during elective resection of abdominal aortic aneurysm (AAA) of asymptomatic patients, was investigated in vitro by means of autoradiography with [Ga-68]CRP-binder targeting C-reactive protein, [C-11]DAA1106 targeting translocator protein (18 kDa), [C-11]D-deprenyl with unknown target receptor, [C-11] deuterium-L-deprenyl targeting astrocytes, [F-18]fluciclatide targeting integrin alpha(V)beta(3), [Ga-68]IMP461 and bi-specific antibody TF2 052107 targeting carcinoembryonic antigen, [F-18]F-metomidate targeting mitochondrial cytochrome P-450 species in the adrenal cortex, and [F-18]vorozole targeting aromatase. Of the investigated tracers, only [F-18]fluciclatide exhibited specific binding, whereas the other PET tracers failed to show specific uptake in the investigated tissue and are probably not useful for the intended purpose. Conclusion. It seems likely that alpha(V)beta(3) integrin expression in AAA can be visualized with PET and that the alpha(V)beta(3) selective tracer, [F-18]fluciclatide, may be suitable for in vivo molecular imaging of asymptomatic AAA. Additional evaluation of [F-18]fluciclatide and alpha(V)beta(3) integrin expression in AAA will be performed in vitro as well as in vivo.

  • 15.
    Velikyan, Irina
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Xu, Hui
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Nair, Manoj
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Hall, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Robust labeling and comparative preclinical characterization of DOTA-TOC and DOTA-TATE2012In: Nuclear Medicine and Biology, ISSN 0969-8051, E-ISSN 1872-9614, Vol. 39, no 5, p. 628-639Article in journal (Refereed)
    Abstract [en]

    Objectives: Various radionuclide-labeled somatostatin analogues are used currently for diagnosis and therapy of neuroendocrine tumors. In particular, [Ga-68]Ga-DOTA-TOC is commonly used for diagnosis, while [Lu-177]Lu-DOTA-TATE is used for therapy. With the development of theranostics and personalized medicine where the imaging diagnosis is tailored to the subsequent radiotherapy, it is of paramount importance to investigate the relevance of the ligand exchange. The aim of this study was to compare binding capacity of [Ga-67/68]Ga-DOTA-TOC ([Ga-67/68]Ga-N-(4,7,10-(tris(carboxymethyl)-1,4,7,10-tetraazacyclododecan-1-yl)acetyl-D-Phe-c[Cys-D-Tyr-Trp-Lys-Thr-Cys]-Thr(ol)) and [Ga-67/68]Ga-DOTA-TATE ([Ga-67/68]Ga-N-(4,7, 10-(tris(carboxymethyl)-1,4,7,10-tetraazacyclododecan-1-yl)acetyl-D-Phe-c[Cys-D-Tyr-Trp-Lys-Thr-Cys]-Thr) in vitro in monkey brain cryosections and in vivo in the rat, where, in contrast to transfected cell lines, there is a heterogeneous distribution of somatostatin receptor (SSTR) subtypes. The influence of various production methods of [Ga-68]Ga-DOTA-TOC and [Ga-68]Ga-DOTA-TATE on the biological performance of the tracers was also studied. Material and Methods: [Ga-67]Ga-DOTA-TOC, [Ga-68]Ga-DOTA-TOC, [Ga-67]Ga-DOTA-TATE and [Ga-68]Ga-DOTA-TATE were synthesized including preconcentration and purification of the generator eluate. The binding of the radioligands was assessed in vitro using autoradiography on cryosections of Rhesus monkey brains and in vivo/ex vivo using organ distribution studies in rats. Results and Discussion: The tracer production method was improved in terms of higher robustness, simplification and good manufacturing practice (GMP) relevance. The synthesis variation did not influence the biological performance of the tracers. There was no statistically significant difference observed in the binding of [Ga-67/68]Ga-DOTA-TOC and [Ga-67/68]Ga-DOTA-TATE either in brain cortex in vitro or in rat biodistribution and uptake in SSTR-positive tissues such as pancreas, adrenals and pituitary. The uptake in these organs was precluded by the excess of octreotide (Sandostatin). The 10-fold higher affinity to SSTR2 of DOTA-TATE as compared to DOTA-TOC known from studies in transfected cells was reflected in a slightly more intense binding of [Ga-67/68]Ga-DOTA-TATE than of [Ga-67/68]Ga-DOTA-TOC in the monkey brain sections in vitro, but not in vivo in the rat. Conclusion: A robust Ga-68-labeling method was introduced. The difference in the uptake of [Ga-67/68]Ga-DOTA-TOC and [Ga-67/68]Ga-DOTA-TATE in SSTR2-positive organs was not statistically significant either in vitro in tissue studies or in vivo/ex vivo in rat experiments. The results indicate that the more complex environment in vitro and in vivo diminishes the difference observed in transfected cell line binding. 

1 - 15 of 15
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf