Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Conti, Davide
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Harahap, Fumi
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Silveira, Semida
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Santasalo-Aarnio, Annukka
    Aalto University, Helsinki, Finland.
    A techno-economic assessment for optimizing methanol production for maritime transport in Sweden2019In: Proceedings of ECOS 2019 - the 32ND International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems / [ed] Wojciech Stanek, Paweł Gładysz, Sebastian Werle, Wojciech Adamczyk, 2019Conference paper (Refereed)
    Abstract [en]

    The maritime transport sector is currently highly dependent on oil-based fuels. International regulations enforce tight limits regarding NOx emissions from the exhaust gases and maximum sulphur content in the fuel, enhancing the sector interest towards the development of cleaner alternative fuels. A transition to biomass-based liquid fuels is of interest as a common solution for reducing pollutant emissions and for CO2 emissions mitigation. In this paper, a case study on Sweden analyses the potential of methanol production, using gasification of woody residues from sawmills to cover domestic and international maritime energy demand. Methanol seems to be a promising alternative to heavy and light fossil oils as maritime fuel, and sawmills residues are an abundant resource in Sweden. The study considers the entire methanol production chain, starting by assessing the availability of sawmill by-products and ending with the energy demand of final users, identified as the Swedish ports. The analysis considers two scenarios until year 2035, assuming different share of energy demand covered by methanol. When considering the production and use of biofuels, the cost for transportation of the feedstock and the final product have a great impact on the final cost. An optimization model is used to locate the methanol production plants, so to minimize the cost of the production chain. Four possible plant sizes are considered, 100, 200, 300 and 400 MW of biomass fuel thermal input. The production plant is modelled to determine the material and energy streams involved in the process and to obtain the cost and efficiency of producing methanol at the synthesis plant. The results include the final methanol cost and an estimation of the CO2 emissions reduction potential from replacing oil fuels with methanol for the assumed scenarios.

  • 2.
    Harahap, Fumi
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    An evaluation of biodiesel policies: The case of palm oil agro-industry in Indonesia2018Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Oil palm has flourished as an economically vital crop in Indonesia given its use in both food and non-food products (including biodiesel) for domestic and export markets. However, the expansion of oil palm plantations in Indonesia is controversial. While the crop generates fiscal earnings for the country, and regular income streams for farmers and companies, oil palm plantation expansion is claimed to cause deforestation, environmental degradation and biodiversity losses. At the same time, there is a national target to reduce GHG emissions from land use change and the production of palm oil. Climate change mitigation goals also include ambitious targets to blend biodiesel with fossil diesel in various economic sectors.

    This thesis looks at the palm oil agro-industry, from oil palm plantation to crude palm oil (CPO) production, and CPO based biodiesel production. It proposes a policy evaluation to verify policy implications in relation to the issue of land use allocation, and the poor profitability in palm oil biodiesel production. The overarching objective is to evaluate the effectiveness of prevailing policies used to promote the palm oil agro-industry for biodiesel production in Indonesia.

    The thesis is framed by policy research and ex-post policy evaluation. The focus is on the process of policy formulation and implementation, rather than outcome evaluation. Two specific analytical frameworks are used to answer the research questions while addressing the criteria of effectiveness in policy evaluation: (i) policy coherence analysis and (ii) life cycle cost analysis. Qualitative indicators are used to measure the coherence of biofuel policy with other sectoral policies (agriculture, climate and forestry) in relation to land allocation. Quantitative economic indicators are used to compare the costs and benefits of conventional palm oil biodiesel production with a biorefinery conceptual plant.

    There are valuable lessons to be learnt from this policy evaluation. The results indicate areas in which policy effectiveness can be improved. For land allocation, adjustments and improvements in policy formulation and implementation are crucial. Uncertainties when it comes to the allocation of land to meet multi sectoral policy goals are to be addressed by clarifying land use definitions and categories, which should be backed up by consistent land use definitions in various policy documents. The dual land classification presently applied should move towards a single land classification, linking actual landscape coverage and the legal status of the land. Policy information and guidance across sectoral policies should be compiled in a single database. Such a publicly available database would help enhance the efficiency of land allocation for multiple policy purposes. More importantly, the formulation of biodiesel policy has to engage various sectoral policies that compete for the same resources.

    The biorefinery conceptual plant allows the reduction of government subsidies, while also providing a pathway to enhance the use of renewable energy and reduce GHG emissions. Policies have been designed to enhance plant profits through the improved utilisation of biomass residues in the palm oil mill for energy generation and composting. However, the low implementation rate of policies indicates the need to improve the effectiveness of policy implementation, and therefore the need for better monitoring processes, and possibly more stringent consequences for non-compliance.

  • 3.
    Harahap, Fumi
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Leduc, Sylvain
    International Institute for Applied Systems Analysis (IIASA).
    Mesfun, Sennai
    RISE Research Institutes of Sweden.
    Kraxner, Florian
    International Institute for Applied Systems Analysis (IIASA).
    Silveira, Semida
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    The role of oil palm biomass to meet liquid biofuels target in Indonesia2019In: Proceedings of the 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems / [ed] Wojciech Stanek, Paweł Gładysz, Sebastian Werle, Wojciech Adamczyk, Poland, 2019Conference paper (Refereed)
    Abstract [en]

    Indonesia aims at reducing the dependence on oil import by liquid biofuels consumption (i.e., biodiesel and bio-ethanol) in industry, transport and power sectors. The palm oil industry has played significant role in the development of biodiesel in the country producing crude palm oil (CPO) and palm fatty acid distillate (PFAD) based biodiesel. Opportunity exists for the industry to contribute to the development of bio-ethanol program by utilising the lignocellulosic biomass such as the empty fruit bunches (EFB). This study evaluates the potential of liquid biofuels production from oil palm biomass and the domestic demand for biofuels as per biofuel blending target set by the Indonesian government. The existing infrastructures as well as the investment opportunity of each type of biofuel are analyzed. While technology for biodiesel production is proven at large scale, the bio-ethanol production from EFB is not commercialized yet. The study shows that meeting the biodiesel blending target is at risk if Indonesia continues to solely reliance on the production of CPO and PFAD based biodiesel. Palm oil industry can produce nearly 7 billion litres biodiesel from CPO and PFAD in 2025 but the biodiesel domestic demand is 30% higher. The bio-ethanol program faces higher risk. EFB based ethanol through gasification and synthesis of alcohol can contribute to around 13% of the target in 2025, however the infrastructure is not ready yet. Feedstock diversification to produce liquid biofuels should be prioritized. We recommend a review of the current plan to a more achievable targets or prolong the timeline in order to secure domestic biofuels demand while continuing export. The study provides database for future modelling exercise on multi-period optimization study of palm biofuels supply chain in Indonesia in a geographically explicit way.

  • 4.
    Harahap, Fumi
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Leduc, Sylvain
    International Institute for Applied Systems Analysis (IIASA).
    Sennai, Mesfun
    International Institute for Applied Systems Analysis (IIASA).
    Khatiwada, Dilip
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Kraxner, Florian
    International Institute for Applied Systems Analysis (IIASA).
    Silveira, Semida
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Opportunities to Optimize the Palm Oil Supply Chain in Sumatra, Indonesia2019In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 12, no 3, article id 420Article in journal (Refereed)
    Abstract [en]

    Significant amounts of biomass residues were generated in Indonesia. While untreated, residues emit greenhouse gases during the decomposition process. On the other hand, if efficiently utilized, these residues could be used to produce value-added products. This study investigates opportunities for harnessing the full potential of palm oil residues (i.e., empty fruit bunches, kernel shells, fiber, and mill effluent). As far as we are aware, the study is the first attempt to model the palm oil supply chain in a geographically explicit way while considering regional infrastructures in Sumatra Island, Indonesia. The BeWhere model, a mixed integer linear programming model for energy system optimization, was used to assess the costs and benefits of optimizing the regional palm oil supply chain. Different scenarios were investigated, considering current policies and new practices leading to improved yields in small-scale plantations and power grid connectivity. The study shows that a more efficient palm oil supply chain can pave the way for the country to meet up to 50% of its national bioenergy targets by 2025, and emission reductions of up to 40 MtCO2eq/year. As much as 50% of the electricity demand in Sumatra could be met if residues are efficiently used and grid connections are available. We recommend that system improvements be done in stages. In the short to medium term, improving the smallholder plantation yield is the most optimal way to maximize regional economic gains from the palm oil industry. In the medium to long term, improving electricity grid connection to palm oil mills could bring higher economic value as excess electricity is commercialized.

  • 5.
    Harahap, Fumi
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Palmén, Carl
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Silveira, Semida
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Khatiwada, Dilip
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Conditions for a sustainable development of palm-oil-based biodiesel in Indonesia2016Conference paper (Other academic)
    Abstract [en]

    The government of Indonesia sees bioenergy as an attractive option to promote socio-economic development and improve energy security. Modernization of bioenergy can add value to existing resources and serve to meet increasing energy demand, as well as create jobs and reduce poverty. Policy efforts have given direction to this development, promoting biodiesel production and use. Indonesia is the largest palm oil producer and exporter in the world. At the same time, palm oil is the basis for both food and biodiesel production in the country. A 30% mandatory biodiesel blending target has been set for 2025. To meet the target, palm oil production needs to increase or palm oil diverted from other uses to produce biodiesel. In addition, the development of biodiesel will have to address environmental impacts, particularly land use change, and the dynamics of palm oil trade. Land allocation affects the development of the agro-industrial sector, and the capacity to deliver the mandatory targets. We investigate the land issue through a cross-sectoral analysis of four policy areas, i.e. renewable energy/biofuel, agriculture, climate and forestry. Our study examines the potential land available for biodiesel feedstock production and the potential yields that can be obtained. Preliminary results indicate that the blending target could be met from palm oil obtained from 5-7 Mha land after meeting palm oil domestic demand for food production and other industrial non-food uses. Degraded land could be used and thus no threat needs to be posed to food security, deforestation and climate change. However, to guarantee the sustainability of the development process, inconsistencies need to be addressed in the sectoral policies, areas suitable for plantation expansion need to be clearly mapped, conditions for exploration more strictly defined, and complementary policy instruments need to be put in place to promote schemes with enhanced yields and upgrading technologies over time. This research is part of the on-going program INSISTs (Indonesian Swedish Initiative for Sustainable Energy Solutions), a joint research and innovation platform established between Sweden and Indonesia. 

  • 6.
    Harahap, Fumi
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Silveira, Semida
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Khatiwada, Dilip
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Cost competitiveness of palm oil biodiesel production in Indonesia2019In: Energy Journal, ISSN 0195-6574, E-ISSN 1944-9089, Vol. 170, p. 62-72Article in journal (Refereed)
    Abstract [en]

    This study investigates opportunities to improve the cost competitiveness of the palm oil biodiesel industry in Indonesia. It compares costs and revenues of standalone conventional palm oil and biodiesel production with an integrated system that includes utilisation of biomass residues. Economic metrics, viz. net income, NPV, IRR, payback period and biodiesel breakeven price are evaluated. Sensitivity analyses are carried out to verify how parameter changes affect net income. The results show that the integrated concept with upgraded CPO and biodiesel processing plant (Biorefinery), which simultaneously produces biodiesel, electricity, heat and biofertiliser, can obtain an additional income of 14 USD/t-FFB compared to the Conventional System. The biorefinery system helps to reduce dependency on government subsidy for biodiesel production, and lowers the industry vulnerability to fluctuation of fossil diesel prices. The shift to modern facilities with value chain integration provides a pathway to enhance the share of renewable energy in Indonesia through increased biodiesel production and electricity generation from palm biomass residues. It may also promote resource efficiency and climate change mitigation through reduced emissions from untreated residues and fossil energy carriers. The analysis enhances understanding about potential gains and consequences of more stringent policy implementation in the country.

  • 7.
    Harahap, Fumi
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Silveira, Semida
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Khatiwada, Dilip
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Integrated biorefinery vs. stand alone biodieselproduction in Indonesia – an economic analysis2017In: European Biomass Conference and Exhibition Proceedings, 2017Conference paper (Other academic)
    Abstract [en]

    Biofuel policy instruments have largely steered the expansion of the biodiesel industry in Indonesia,promoting investments and creating fuel markets. Despite the growth, biodiesel use has not yet reached thedeployment targets set by the government. Low profitability and dysfunctional markets forces some plants to operatefar below the installed production capacity, which results in a deficit of biodiesel supply for domestic markets. At thesame time, biodiesel is being exported. The current production configuration of biodiesel in a standalone biodieselplant is perceived to be unprofitable without government subsidy. Therefore, we propose a comparative economicanalysis for biodiesel production in Indonesia using two configurations: the standalone production system typicallyused at present, and an integrated bio-refinery plant. The results show that the biodiesel production cost in thebiorefinery is 13% higher compared to the production cost in a standalone plant. However, due to higher revenuesgenerated in the biorefinery (16% higher than standalone system), biorefinery concept offers more profits to theindustry. Under current economic conditions, the integrated biorefinery concept brings advantages throughimprovement of efficiency in the biodiesel production system and higher production of other valuable products suchas electricity.

  • 8.
    Harahap, Fumi
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Silveira, Semida
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Khatiwada, Dilip
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Land allocation to meet sectoral goals in Indonesia – An analysis of policy coherence2017In: Land use policy, ISSN 0264-8377, E-ISSN 1873-5754, Vol. 61, p. 451-465Article in journal (Refereed)
    Abstract [en]

    Land is a scarce resource affecting the implementation of many sectoral policies. In Indonesia, the expansion of palm oil plantations has led to non-sustainable land use practices in past years, particularly deforestation. More recently, the government has set ambitious targets for the adoption of biodiesel which will require expansion of oil palm plantations, thus putting further pressure on land. Meanwhile, the need to guarantee food supply, forest conservation and climate change mitigation also imply challenges when it comes to land allocation and use. This paper examines the role that land plays in the implementation of sectoral policies in Indonesia, exploring the availability of land to satisfy the multiple goals defined in national policies. We explore land competition resulting from allocations made in official policy documents starting with biofuel policy. The analysis of policy goals and coherence when it comes to land allocation is made in relation to agriculture, climate and forestry policies. We conclude that adjustments need to be made in the policies to avoid overlappings and misinterpretations when it comes to land allocation. The area made available for meeting each sectoral policy goal when taking into account cross sectoral interactions is: 14.2 Mha for agriculture, 43 Mha for climate mitigation measures, 9.2 Mha for forestry, and 20.9 Mha for biofuels. A more uniform land classification and development of a common reference database will increase transparency on land allocation and use, and help to monitor land use change, ultimately supporting the achievement of multiple national goals.

  • 9.
    Khatiwada, Dilip
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Drabik, Dusan
    Agricultural Economics and Rural Policy Group, Wageningen University, the Netherlands.
    Silveira, Semida
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Harahap, Fumi
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Analyzing the economics of palm oil biodiesel production in Indonesia2016Conference paper (Other academic)
    Abstract [en]

    Indonesia is the largest palm oil producer and exporter in the world and the palm oil industry has contributed significantly to the national economy and socioeconomic development. Of the total palm oil production, 69% is exported (the third most important traded commodity in the country), 17% is used in the domestic food industry, and 11% is used in biodiesel production. Aiming at reducing fossil oil dependency, diversifying energy sources, and promoting socioeconomic development, the country has enacted several rules and regulations for biofuel production. The most important is the 30% biodiesel target for transportation by 2025. The government of Indonesia also provides subsidies to palm oil feedstock producers, processing industries, and consumers. Other regulations include a new funding mechanism for biofuel subsidies, a levy on palm oil exports, and the creation of a ‘plantation fund’. Despite increased amount of palm oil feedstock production, the stipulated biodiesel mandates have not been achieved due to a lack of competitiveness and ineffective policies. Volatile international prices of petroleum, international trade/exports of palm oil, and fossil fuel subsidies have hindered the development of a domestic market for biodiesel. This study examines the economics of palm oil biodiesel production and use in Indonesia in connection with government policies, production costs, fossil fuel substitution, and market prices of liquid fuels (i.e., biodiesel and diesel). We develop a novel biofuel economic model that captures the complexities of the palm oil-biodiesel sector in Indonesia.

  • 10.
    Sani, Lorenzo
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Harahap, Fumi
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Silveira, Semida
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Herawan, Tjahjono
    Indonesian Oil Palm Research Institute.
    Identifying opportunities to manage palm oil mill effluent (POME):the case of Indonesia2018Conference paper (Other academic)
    Abstract [en]

    The palm oil agroindustry produces the most consumed vegetable oil in the world but also a significant quantity of residual biomass waste (e.g. empty fruit bunch, shell, palm oil mill effluent). The importance of using some of these residues for energy production is widely understood. However, the palm oil mill effluent (POME), which is responsible for the highest share of GHG emissions in palm oil production, is still conventionally treated in an unsustainable way. This research aims at investigating alternatives to retrofit Indonesian palm oil mills into biorefineries that could efficiently use POME to produce value-added products (e.g. electricity, compost and pellet). We present a literature review of mature treatments for biomass residues highlighting the most promising ones. Subsequently, biorefinery concepts are proposed comprising conversion technologies and the use of POME with other palm residues aimed at maximizing revenues while reducing environmental impact. The results are then evaluated through a multi-criteria analysis accounting for techno-economic, environmental and social impacts. The study demonstrates that POME treatment can be done in a profitable way resulting in significant reduction of methane emissions. The most interesting option is to generate electricity from biogas and use it on site to produce high-value products such as pellets and crude palm kernel oil. Biorefinery concepts are an opportunity for mill owners to comply with strict environmental regulations while generating extra profits.

  • 11.
    Silveira, Semida
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Harahap, Fumi
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Khatiwada, Dilip
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
    Sustainable Bioenergy Development in Indonesia - Summary for Policy Makers2018Report (Other academic)
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf