Background: Camelid antibody fragments are interesting for use as radioligands for Positron Emission Tomography (PET), in central nervous system imaging, due to their fast clearance from blood. This study evaluated single variable domain of heavy chain (VHH) antibodies derived from llama, targeting the mouse and human transferrin receptor (TfR) for mediating increased brain uptake. In experiments, VHHs were combined with either a human Fc or with the single chain fragment of the amyloid beta (Aβ) antibody 3D6 (scFv3D6) to investigate intrabrain targeting.
Methods: One novel and one previously disclosed species cross-reactive VHH towards murine TfR (mTfR) and human TfR (hTfR), as well as two VHHs with selective reactivity to mTfR and hTfR, respectively, were compared. The TfR binders were evaluated as recombinant fusion protein (FP) constructs fused with either a human Fc-fragment (FPFc) or with the Aβ-binding fragment scFv3D6 (FPscFv) at either C- or N-terminal positions of scFv3D6. The above FPs were radiolabeled with iodine-125 (125I) and biodistribution was studied ex vivo at 2 h, 6 h and 24 h after injection in wild-type (WT) mice and AD mouse model AppNL-G-F. Brain, blood, plasma and organ concentrations of the 125I-FPs were measured in a γ-counter. Autoradiography, nuclear track emulsion, and immunohistofluorescence imaging were used to study the brain distribution of the FPs.
Results: The constructs based on Fc fusions (FPFc) with binding affinity to mTfR displayed significantly higher brain uptake (around 1-3% ID/gbrain) in comparison with FPFc specific to only hTfR (control; 0.2% ID/gbrain). The VHHs reactive to mTfR fused to a scFv (FPscFv) showed an increased brain uptake 2 h after injection compared to control (FPscFv reactive to hTfR only). FPscFv with VHH linked to the N-terminus of scFv3D6 showed more efficient brain delivery than those fused with the C-terminal of scFv3D6. There was a 17-fold higher brain uptake in AppNL-G-F than WT mice for one of the cross-species reactive FPscFv (FPscFv1B) at 24 h post-injection, and 2.5-fold higher at 6 h, in ex vivo studies. FPscFv1B also showed consistently higher relative brain parenchymal localization compared to the other FPs, whether as Fc- or scFv fusion.
Conclusion: We showed that the novel cross-reactive VHHs tested herein displayed enhanced brain delivery in mice and that these could be successfully fused with an Aβ-binding scFv-fragment, maintaining high brain and preferential parenchymal delivery with increased retention to Aβ in brain. In summary, a FPscFv construct with affinity towards both Aβ and mTfR showed differentiated and favorable distribution in AD-mice compared to WT already after 6 h (measured ex vivo); a relevant time point for clinical brain PET.