Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Probabilistic choice with an infinite set of options: An Approach Based on Random Sup Measures
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutet för internationell ekonomi.ORCID-id: 0000-0002-2378-4966
Stockholms universitet, Naturvetenskapliga fakulteten, Matematiska institutionen.
2014 (engelsk)Inngår i: Modern Problems in Insurance Mathematics / [ed] Dmitrii Silvestrov, Anders Martin-Löf, London: Springer, 2014, s. 291-312Kapittel i bok, del av antologi (Fagfellevurdert)
Abstract [en]

This chapter deals with probabilistic choice when the number of options is infinite. The choice space is a compact set S⊆R k   and we model choice over S  as a limit of choices over triangular sequences {x n1 ,…,x nn }⊆S  as n→∞  . We employ the theory of random sup measures and show that in the limit when n→∞  , people behave as though they are maximising over a random sup measure. Thus, our results complement Resnick and Roy’s [18] theory of probabilistic choice over infinite sets. They define choice as a maximisation over a stochastic process on S  with upper semi-continuous (usc) paths. This connects to our model as their random usc function can be defined as a sup-derivative of a random sup measure, and their maximisation problem can be transformed into a maximisation problem over this random sup measure. One difference remains though: with our model the limiting random sup measures are independently scattered, without usc paths. A benefit of our model is that we provide a way of connecting the stochastic process in their model with finite case distributional assumptions, which are easier to interpret. In particular, when choices are valued additively with one deterministic and one random part, we explore the importance of the tail behaviour of the random part, and show that the exponential distribution is an important boundary case between heavy-tailed and light-tailed distributions.

sted, utgiver, år, opplag, sider
London: Springer, 2014. s. 291-312
Serie
EAA Series, ISSN 1869-6929
HSV kategori
Forskningsprogram
matematisk statistik
Identifikatorer
URN: urn:nbn:se:su:diva-103445DOI: 10.1007/978-3-319-06653-0_18ISBN: 978-3-319-06652-3 (tryckt)ISBN: 978-3-319-06653-0 (tryckt)OAI: oai:DiVA.org:su-103445DiVA, id: diva2:717790
Tilgjengelig fra: 2014-05-16 Laget: 2014-05-16 Sist oppdatert: 2022-02-23bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Malmberg, HannesHössjer, Ola
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 98 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf