Digitala Vetenskapliga Arkivet

Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Separating Grains from the Chaff: Using Data Filtering to Improve Multilingual Translation for Low-Resourced African Languages
Ahmadu Bello University, Zaria, Nigeria; HausaNLP.
University of the Witwatersrand, South Africa.
Saarland University, Germany.
TUM, Germany; Mila - Quebec AI Institute.
Visa övriga samt affilieringar
2022 (Engelska)Ingår i: Proceedings of the Seventh Conference on Machine Translation (WMT) / [ed] Philipp Koehn, Loïc Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Alexander Fraser, Markus Freitag, Yvette Graham, Roman Grundkiewicz, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Tom Kocmi, André Martins, Makoto Morishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, Matteo Negri, Aurélie Névéol, Mariana Neves, Martin Popel, Marco Turchi, Marcos Zampieri, Association for Computational Linguistics , 2022, s. 1001-1014Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

We participated in the WMT 2022 Large-Scale Machine Translation Evaluation for the African Languages Shared Task. This work de-scribes our approach, which is based on filtering the given noisy data using a sentence-pair classifier that was built by fine-tuning a pre-trained language model. To train the classifier, we obtain positive samples (i.e. high-quality parallel sentences) from a gold-standard curated dataset and extract negative samples (i.e.low-quality parallel sentences) from automatically aligned parallel data by choosing sentences with low alignment scores. Our final machine translation model was then trained on filtered data, instead of the entire noisy dataset. We empirically validate our approach by evaluating on two common datasets and show that data filtering generally improves overall translation quality, in some cases even significantly.

Ort, förlag, år, upplaga, sidor
Association for Computational Linguistics , 2022. s. 1001-1014
Serie
Workshop on Statistical Machine Translation, ISSN 2768-0983
Nationell ämneskategori
Språkteknologi (språkvetenskaplig databehandling)
Forskningsämne
Maskininlärning
Identifikatorer
URN: urn:nbn:se:ltu:diva-98272Scopus ID: 2-s2.0-85160510996ISBN: 978-1-959429-29-6 (tryckt)OAI: oai:DiVA.org:ltu-98272DiVA, id: diva2:1766629
Konferens
Seventh Conference on Machine Translation, (WMT 2022), December 7-8, 2022, Abu Dhabi, United Arab Emirates
Tillgänglig från: 2023-06-13 Skapad: 2023-06-13 Senast uppdaterad: 2023-06-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Scopus

Sök vidare i DiVA

Av författaren/redaktören
Adewumi, Oluwatosin
Av organisationen
EISLAB
Språkteknologi (språkvetenskaplig databehandling)

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 91 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf