Biologics are an important part of modern healthcare and are mostly administered parenterally due to the fact that it is the route of administration that avoids degradation of biologics and ensures their systemic exposure. However, there is a need to develop oral drug delivery formulations for local treatment of diseases in the gastrointestinal tract (GI). Colloidal capsules is a formulation that can potentially facilitate oral administration of biologics. There have been studies on colloidal capsules and the various ways of manufacturing them, one of which is “Emulsion-based method”. The aim of this study was to produce colloidal capsules made of silica nanoparticles through emulsion-based method, coat them to study their pH-responsive release and characterize them. Encapsulation of a model protein in the silica colloidal capsules was also attempted. pH-responsive release was not studied due to limited access to the laboratory and, a literature study of articles about colloidal capsules was conducted instead, regarding different aspects of colloidal capsule synthesis and encapsulation of various compunds. Web of science was the database used to find scientific studies that specifically produced colloidal capsules. Colloidal capsules were synthesized using a Pickering-emulsion method. Commercially available SiO2 nanoparticles were used to form the capsules by ultrasonication. The hydrodynamic size and capsule morphology were analyzed using dynamic light scattering (DLS) and scanning electron microscopy (SEM), respectively. Zeta potential was measured through electrophoretic light scattering (ELS). Articles for the literature study were found using the “web of science” database. Colloidal capsules were successfully produced, coated and characterized. Additionally, the literature study shows that there diverse colloidal capsule synthesis conditions, model proteins and applications for colloidal capsules.