Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Enhancing Fairness in Facial Recognition: Balancing Datasets and Leveraging AI-Generated Imagery for Bias Mitigation: A Study on Mitigating Ethnic and Gender Bias in Public Surveillance Systems
Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för datavetenskap och medieteknik (DM).
Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för datavetenskap och medieteknik (DM).
2024 (engelsk)Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgave
Abstract [en]

Facial recognition technology has become a ubiquitous tool in security and personal identification. However, the rise of this technology has been accompanied by concerns over inherent biases, particularly regarding ethnic and gender. This thesis examines the extent of these biases by focusing on the influence of dataset imbalances in facial recognition algorithms. We employ a structured methodological approach that integrates AI-generated images to enhance dataset diversity, with the intent to balance representation across ethnics and genders. Using the ResNet and Vgg model, we conducted a series of controlled experiments that compare the performance impacts of balanced versus imbalanced datasets. Our analysis includes the use of confusion matrices and accuracy, precision, recall and F1-score metrics to critically assess the model’s performance. The results demonstrate how tailored augmentation of training datasets can mitigate bias, leading to more equitable outcomes in facial recognition technology. We present our findings with the aim of contributing to the ongoing dialogue regarding AI fairness and propose a framework for future research in the field.

sted, utgiver, år, opplag, sider
2024. , s. 71
Emneord [en]
Facial Recognition Technology, Algorithmic Bias, Dataset Imbalance, ethnic and Gender Representation, AI-Generated Images, ResNet Model, Vgg model, Model Performance Evaluation, Confusion Matrices, AI Fairness and Data Augmentation
HSV kategori
Identifikatorer
URN: urn:nbn:se:lnu:diva-130420OAI: oai:DiVA.org:lnu-130420DiVA, id: diva2:1870691
Fag / kurs
Computer Science
Utdanningsprogram
Network Security Programme, 180 credits
Veileder
Examiner
Tilgjengelig fra: 2024-06-25 Laget: 2024-06-14 Sist oppdatert: 2024-08-29bibliografisk kontrollert

Open Access i DiVA

fulltext(2184 kB)84 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2184 kBChecksum SHA-512
16be9bb4a8a11724c7d34cdcd4a8caa4831445e4195e0676cbc8c3053bd159c67e8dc80ea9bb4ad6ea3fb4c21cdcfa1ff0a2714046fe79c46fc44af27376529c
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Abbas, RashadTesfagiorgish, William Issac
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 84 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 407 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf