Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Separating Grains from the Chaff: Using Data Filtering to Improve Multilingual Translation for Low-Resourced African Languages
Ahmadu Bello University, Zaria, Nigeria; HausaNLP.
University of the Witwatersrand, South Africa.
Saarland University, Germany.
TUM, Germany; Mila - Quebec AI Institute.
Vise andre og tillknytning
2022 (engelsk)Inngår i: Proceedings of the Seventh Conference on Machine Translation (WMT) / [ed] Philipp Koehn, Loïc Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Alexander Fraser, Markus Freitag, Yvette Graham, Roman Grundkiewicz, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Tom Kocmi, André Martins, Makoto Morishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, Matteo Negri, Aurélie Névéol, Mariana Neves, Martin Popel, Marco Turchi, Marcos Zampieri, Association for Computational Linguistics , 2022, s. 1001-1014Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

We participated in the WMT 2022 Large-Scale Machine Translation Evaluation for the African Languages Shared Task. This work de-scribes our approach, which is based on filtering the given noisy data using a sentence-pair classifier that was built by fine-tuning a pre-trained language model. To train the classifier, we obtain positive samples (i.e. high-quality parallel sentences) from a gold-standard curated dataset and extract negative samples (i.e.low-quality parallel sentences) from automatically aligned parallel data by choosing sentences with low alignment scores. Our final machine translation model was then trained on filtered data, instead of the entire noisy dataset. We empirically validate our approach by evaluating on two common datasets and show that data filtering generally improves overall translation quality, in some cases even significantly.

sted, utgiver, år, opplag, sider
Association for Computational Linguistics , 2022. s. 1001-1014
Serie
Workshop on Statistical Machine Translation, ISSN 2768-0983
HSV kategori
Forskningsprogram
Maskininlärning
Identifikatorer
URN: urn:nbn:se:ltu:diva-98272Scopus ID: 2-s2.0-85160510996ISBN: 978-1-959429-29-6 (tryckt)OAI: oai:DiVA.org:ltu-98272DiVA, id: diva2:1766629
Konferanse
Seventh Conference on Machine Translation, (WMT 2022), December 7-8, 2022, Abu Dhabi, United Arab Emirates
Tilgjengelig fra: 2023-06-13 Laget: 2023-06-13 Sist oppdatert: 2023-06-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Scopus

Søk i DiVA

Av forfatter/redaktør
Adewumi, Oluwatosin
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 94 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf