UPTEC F 16043

Examensarbete 30 hp
Juli 2016

UPPSALA
UNIVERSITET

A technical overview of distributed
ledger technologies in the Nordic
capital market.

Ludvig Backlund

UPPSALA
UNIVERSITET

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besoksadress:
Angstrémlaboratoriet
Lagerhyddsvagen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 — 471 3003

Telefax:
018 — 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

A technical overview of distributed ledger
technologies in the Nordic capital market.

Ludvig Backlund

This thesis examines how Distributed Ledger Technologies (DLTs) could
be utilized in capital markets in general and in the Nordic capital
market in particular. DLTs were introduced with the so called
cryptocurrency Bitcoin in 2009 and has in the last few

years been of interest to various financial institutions as a means

to streamline financial processes. By combining computer scientific
concepts such as public-key cryptography and consensus algorithms
DLTs makes it possible to keep shared databases with limited trust
among the participators and without the use of a trusted third party.
In this thesis various actors on the Nordic capital market were
interviewed and their stance on DLTs were summarized. In addition to
this a Proof of Concept of a permissioned DLT application for
ownership registration of securities was constructed. It was found

that all the interviewees were generally optimistic about DLTs
potential to increase the efficiency of capital markets. The

technology needs to be adopted to handle the capital markets demand
for privacy and large transaction volumes, but there is a general
agreement among the interviewees that these issues will be solved.
The biggest challenge for an adoption of DLTs seem to lie in that of
finding a common industry-wide standard.

Handledare: Gustav Ekeblad
Amnesgranskare: Tjark Weber
Examinator: Thomas Nyberg
ISSN: 1401-5757, UPTEC F 16043

1 Popular scientific summary in Swedish

Blockkedjeteknologin &r i grunden en databasteknik som med hjilp av kryp-
tografi och konsensustekniker mojliggor for sédkra distribuerade databaser utan
inblandning av en tredje part. Teknologin introducerades 2009 som den under-
liggande tekniken bakom kryptovalutan Bitcoin. Sedan dess har applikation-
somradena vidgats och under de senaste aren har diverse finansiella institutioner
intresserat sig for vad teknologin kan gora for att effektivisera den finansiella
infrastrukturen.

Pa dagens kapitalmarknader samverkar en mangd olika aktorer sasom banker,
borser och vardepapperscentraler. En vardetransaktion involverar flera separata
processer hos de olika aktérerna och kan inom EU ta upp till tva arbetsdagar
att genomfora till fullo. Blockkedjeteknologin majliggor en hogre grad av inte-
gration av de olika aktorernas dataregister, nagot som i langden kan leda till en
mer effektiv kapitalmarknad déar bland annat motpartsrisker och transaktion-
skostnader kan minskas.

I det har examensarbetet har en undersckning genomforts for att besvara
fragan om vilka tekniska méjligheter och svarigheter som finns med en eventuell
implementering av blockkedjeteknologin pa den nordiska kapitalmarknaden. Un-
dersokningen har genmforts dels via litteraturestudier och dels via intervjuer av
aktorer pa den nordiska kapitalmarknaden med insyn i den nuvarande utveck-
lingen av blockkedjdeteknologin. Utover detta har &ven en applikation for att
registrera och overfora vardepapper med hjéalp av blockkedjdeteknologi kon-
struerats.

Den 6vergripande synen pa blockkedjeteknologins potential att effektivisera
den nordiska kapitalmarknaden &r positiv. Teknologin maste dock anpassas
for att kunna hantera de stora transaktionsvolymer samt de krav pa sekretess
som finns inom dagens kapitalmarknader. En 6vergang fran de publika block-
kedjorna som idag adr dominerande till privata blockkedjor samt mer effektiva
konsensustekniker har dock stor potential att 16sa dessa tekniska problem. Den
stora utmaningen for att till fullo kunna utnyttja teknologins potential ligger
sannolikt i att finna en gemensam industristandard.

Contents

1 Popular scientific summary in Swedish 1
2 Introduction 4
2.1 Limitationso 5

3 Background 6
4 Theory 7
4.1 High level technical description 7
4.2 Cryptographic hash functions 8
4.3 Public-key cryptography and digital signatures 9
4.4 Merkletrees 10
4.5 Transaction and account based architectures. 11
4.6 Permissioned and public ledgers L. 13
4.7 COonSensUS . . « . v v v e e e e 14
4.71 Proofof Work o 15

4.7.2 Proofof Stake 16

4.7.3 Practical Byzantine Fault Tolerance 17

4.7.4 Other protocols, 18

4.8 The securities marketplaceo 18
4.8.1 Participators L oo 18

4.8.2 Internal structure of an STO 20

4.8.3 The tradelifecycle 20

4.8.4 Central counterparties 22

5 Method 23
6 Result 24
6.1 Actors on the Nordic capital markets view on DLTs 24
6.1.1 Avanza 24

6.1.2 Nasdag OMX 25

6.1.3 Cryex e 26

6.1.4 SEB 27

6.1.5 Euroclear oo 28

6.1.6 Summary 29

6.2 Proof of Concept 29
6.2.1 Requirements 29

6.2.2 Specificationso oo 30

6.23 Design L 31

7 Conclusions 37
8 Discussion 37

References

Interview references

A Source code

Al

A2

A3

Package: Core L
A11 AccountState
A1.2 AssetType.
A.1.3 Block
A.14 Blockchain
A1.5 Transaction
A.1.6 OrdinaryTransaction
A.1.7 EmittingTransaction
A.1.8 EmptyTransaction
A19 Genesis
A 110 Merkle oL
A 111 Miner
A.1.12 StaticRepository o
A.1.13 TransactionValidator
A.1.14 Userlnterface,
Al15 Wallet
Package: networko oo
A.2.1 MultipleSocketServer
A22 Client
A.2.3 Synchronize L
Package: start oL oL
A31 Start
A32 User e

2 Introduction

The capital markets consist of a wide variety of actors that have an intrinsic
need to interact and share data among one another. The technical infrastruc-
ture for doing this is to a large extent unintegrated, and non-shared propri-
etary databases are generally used to keep record of asset ownership. In the
report Distributed ledger technologies in securities post-trading released by the
European Central Bank in 2016 it is commented on these isolated systems as
contributing to an increased operational risk as well as limiting the potential for
risk-sharing among European investors due to higher costs of international secu-
rities transactions [1]. Distributed Ledger Technologies (DLTs) offer a method
to streamline the actions of processing and sharing data between financial ac-
tors and have the last few years been the target of intensive attention, both
from private companies and governmental agencies [2][3][4]. In figure 1 it is
illustrated how DLTs could be used by a consortium of banks to settle trades
directly with each other without the involvement of an intermediary. Instead of
querying a central depository each bank keeps their own local copy of the asset
data, synchronization of the data is guaranteed using DLTs. This way trades
and data sharing can be done bilaterally, i.e. directly between two parties.

p
p
b
p

P
D
e
]
—
ey

—
W | -a—
—
<

__/

Clearing
House

ll/\

b
p—E

e
=
p—
o
—
L

b
p
4l
4

II
||

m
B |

Figure 1: To the left: The current system where a central authority (the clearing
house) keeps custody of the asset data. To the right: Each bank have their own
copy of the asset data and keeps synchronized using DLTs. source: wsj.com

The concept of DLTs was first introduced in 2009 by (the pseudonym)
Nakamoto together with the distributed digital currency Bitcoin [5]. Nakamoto

proposed a novel solution to the so called double-spend problem! which had
formed the main obstacle for the realisation of fully distributed digital curren-
cies. Since the introduction of Bitcoin new areas of application for DLTs have
been found ranging from distributed voting-systems to ledgers that keep track
of the ownership of real-life assets such as diamonds and art. In this thesis the
focus is on the possibilities DLTs pose on the financial structure of the Nordic
capital market, with the specific goals of:

1. From a technical point of view, examine the feasibility of DLT's becoming a
future integrated part of the financial infrastructure of the Nordic capital
market.

2. Construct a Proof of Concept (PoC) of a DLT application for registering
of securities.

There is not yet any established terminology for DLTs and sometimes the tech-
nology instead is referred to as Blockchain technologies or Distributed Consensus
technologies. In this thesis the term DLTSs is used as a general denomination
for the collection of techniques required to keep a common distributed database
with a blockchain architecture, the term blockchain is used to describe the actual
structure of the database.

The rest of this thesis is structured in the following way; section 3 gives a
background on DLTs as well as mentioning some of the most prominent current
DLT applications. Section 4.1 to 4.7 give a technical description of DLTs and
the concepts involved. Section 4.8 gives a description of a general capital market
and its various actors. In section 5 the method used for obtaining the results
is accounted for. Section 6.1 presents a summary of the viewpoints on DLTs of
a set of actors on the Nordic capital market and section 6.2 describes the PoC
application that was constructed. In section 7 conclusions are presented and in
section 8 the thesis is discussed.

2.1 Limitations

For the scope of this thesis it is assumed that the data stored in a distributed
ledger is meant to keep track of the ownership of assets. The means of doing this
is discussed but is mostly assumed to be achieved either by storing transactions
and/or storing a ledger connecting accounts and balances.

DLTs are in this thesis examined from a technical perspective. Regulatory,
legal and ethical perspectives are very much relevant to examine should DLTs
come to be an integrated part of the financial infrastructure but are not com-
mented on in this thesis.

n short the double-spend problem comes of the immaterial properties of a fully digitalized
currency which makes it possible for users to spend the same coins twice. The problem can
be solved by employing a trusted third-party such as a bank to handle the ledger, but the
introduction of DLTs for the first time made it possible for a trust-less network of peers to
process transactions and update a common ledger.

3 Background

The last decade’s dramatic increase in e-commerce have brought on an increasing
need for digital payment systems across country borders. Since the 1980s such
payments have been handled by international wire transfer systems such as
SWIFT? and various credit card companies. The introduction of internet offered
new possibilities giving rise to so called Payment-as-a-Service solutions (PaaS)3
that works as an overlay on the existing payment systems. The PaaS solutions
replaces the bank at the front-end but still relies on the traditional payment and
monetary systems to handle processes such as clearing and settlement. In the
Nordic region inter-bank co-operations have led to increasingly efficient payment
services such as the Swedish payment service Swish and its danish counter part
Swipp. The introduction of distributed digital currencies, or cryptocurrencies,
made it possible to also replace the back-end functionalities using DLT's. Since
safe transactions are possible without the involvement of a trusted third party
payments can be done bilaterally and independently of geographic location [6].

Cryptocurrencies are the original and at the time of writing the most widespread
area of applications employing DLTs. While in a traditional system the payment
system and the monetary system are separate, cryptocurrencies combine the as-
pects of a currency and a digital payment system. As opposed to a traditional
currency no trusted central part is needed but instead transactions are executed
over a peer-to-peer network where any willing node can validate transactions
and keep track of the ledger.

To this day the most popular cryptocurrency has been Bitcoin, introduced
in 2009 by Satoshi Nakamoto it was the first ever decentralized digital currency.
Since the introduction of Bitcoin hundreds of cryptocurrencies based on the
Bitcoin protocol have been created. A common factor for most cryptocurrencies
is the use of public blockchains visible and usable by anyone, the main differing
factor being the consensus process and the means to distribute new coins, all of
which will be discussed in upcoming sections.

A currency is the most obvious application using DLTSs, since it only in-
volves transferring one asset type from one account to another. In the past years
though more elaborate DLT applications have been created, and especially the
notion of so called smart-contracts has cached the eye of many financial institu-
tions. A smart-contract is a more complex form of transaction that allows the
user to code in arbitrary constraints and triggers into a transaction. For exam-
ple a blockchain storing bonds could create a smart-contract that automatically
pays out periodical interest to the accounts currently owning the bond. Bit-
coin partly has support for these types of transactions but only offers a simple
scripting language that is not Turing-complete, i.e. there is a limitation to how
complex such contracts can be. An example of a DLT-application that supports
fully Turing-complete smart-contracts is the decentralized smart-contract plat-

2SWIFT is a standardized message service used by more than 11,000 financial institutions
in more than 200 countries.
3Popular examples of such solutions are Paypal and Mooneybookers

form Ethereum?, which aims to work as an underlying infrastructure for users
to create their own DLT-applications on [7].

Both Ethereum and Bitcoin are using so called public ledgers where anyone
can join and contribute to the network. The opposite of this, permissioned
ledgers, only allow nodes that have permission to join the network. These types
of ledgers are of particular interest for organisations that need to efficiently keep
shared databases but for various reasons do not want to keep their ledger fully
visible to the public. Many financial organisations such as banks and exchanges
are currently researching these types of ledgers®, an up- and running example
is the permissioned DLT-application Linqg released by Nasdaq in late 2015 that
is used for private companies to keep formal records of their share holders [8].

4 Theory

4.1 High level technical description

In its essence a distributed ledger is a distributed database where the users
by some consensus protocol together come to an agreement on each update.
To achieve this concepts from several different areas of computer science and
cryptography are utilized.

A general distributed ledger protocol dictates how a set of data structures,
usually referred to as blocks, are linked together and distributed between users in
a given system to form a distributed database, or blockchain, that is practically
unrevisable. Each block represents the state of the database at the time the
block was created, meaning that all past states of the database are preserved.
Updating the data is conducted by attaching a new block to the end of the
chain.

Each user holds a local copy of the blockchain, this necessitates the existence
of a consensus protocol for all users to agree upon which transactions to include
in the next block. The consensus protocol can be designed differently depending
on the goal of the application utilizing the distributed ledger and is examined
more thoroughly in section 4.7.

Each block in the blockchain has a unique identifier in the form of a hash of
the block data (see section 4.2). To link the blocks together each block references
its parent block using the parent blocks unique hash identifier. The links forms
a chain that goes back to the first block in the blockchain, commonly referred
to as the genesis block. Since the hash of the parent block is included in the
block data, the hash of a block will depend on the hash of its parent block. Any
change made to the data stored in a block will change the hash of that block and
thus all descending blocks, meaning that in order to alter the data in a block
stored within the blockchain, all descending blocks will need to be recalculated

4See www.ethereum.org

5See for example the global bank-initiative R3 (www.r3cev.com [accessed 2016-06-23]) and
the Linux foundation open source project Hyperledger (www.hyperledger.org [accessed 2016-
06-23])

for the blockchain to be considered valid. Depending on the procedure chosen
for a user to calculate and broadcast a new block to the system this property
can make it practically impossible to alter the data in the blockchain once it
has enough descending blocks [9].

The data of a block can be structured in different ways depending on the
purpose of the application utilizing the blockchain, but in general a list of trans-
actions that were validated during the time-period between the creation of a
block and the creation of the parent block is kept together with the hash of that
transaction list. The hash of the transaction list is most commonly attained by
hashing the transaction data using a merkle tree algorithm (see section 4.4).

To ensure that the owner of an account is the only one that can transfer assets
from that account public-key cryptography is used. Each account is associated
with a public key, to make an asset transfer a digital signature created with the
corresponding private key must be included in the transaction. Thus, assuming
only the owner of the account has access to the private key, the assets in the
account are protected from theft. Public-key cryptography is described in more
detail in section 4.3.

4.2 Cryptographic hash functions

Cryptographic hash functions are used in a wide variety of security applications
such as message authentication and digital signatures. A general cryptographic
hash function takes an input of variable length, often referred to as a message,
and returns an output of fixed length, often referred to as a digest or hash. For
a cryptographic hash function to be considered “good” it needs to satisfy the
following requirements [10]:

1. Given a digest d it should be difficult to find a message m such that
d = hash(m).

2. Given a message my it should be difficult to find a different message mo
a such that hash(ml) = hash(m2).

3. Any change in the message should result in a large change in the digest.

4. Computing the digest from the message should not be computationally
heavy.

One of the most used cryptographic hash functions is the Secure Hash Algorithm
(SHA), developed by National Institute of Standards and Technology (NIST)
and published in 1993. Since then different versions of the SHA-algorithm have
been developed, such as the SHA-256, the SHA-384 and the SHA-512, where
the number indicates the size in bytes of the digest. In the Bitcoin protocol the
SHA-256 algorithm is used while for example Ethereum uses the newer SHA-
3 algorithm. The mathematical details of these hash algorithms will not be
discussed for the scope of this thesis but for further details the reader is referred
to [11].

4.3 Public-key cryptography and digital signatures

In this section the cryptographic system utilized in DLTs to provide message
authentication is described. When nothing else is mentioned the section is based
upon the book Cryptography and Network Security: Principles and Practice
authored by Stalling [11].

The idea of public-key cryptography was first publicly proposed by Hellman
and Diffie in 1976 [12] and later refined and implemented to use with electronic
mails by Rivest, Shamir and Adleman in 1978 [13]. In a public-key cryptosys-
tem each user is assigned two different but related keys, PR and PU, where
PR is kept private and PU is made public. To encrypt a message M a user
uses its private key together with a publicly known encryption algorithm, i.e.
M’ = E(M, PR). The encrypted message M’ can only be decrypted using the
corresponding public key, i.e. M = D(M’, PU). The basic steps for sending
a confidential message M between a user A and a user B using public key
cryptography are then:

1. Each user A and B generates a public and a private key. The private key
is kept private while the public key is kept in some public register

2. The user A uses B’s public key together with a publicly known encryption
algorithm to encipher M. The enciphered message is then sent to the
receiving user B.

3. The receiving user B decrypts the message using the same encryption
algorithm but now together with B’s private key to retrieve the original
message M. The message M is kept confidential since only B’s private
key can decrypt the message and B is the only one with access to it.

Depending on the encryption algorithm used PR and PU can be used inter-
changeably for encryption and decryption. In these cases the possibility to
cryptographically ensure which user has sent a message is possible, also referred
to as digital signatures. The procedure for a user A to digitally sign a message
M sent to a user B is much like the one for sending confidential messages with
the difference that:

1. The user A uses its private key together with the encryption algorithm to
encrypt M and sends the message to B

2. The user B uses A’s public key to decrypt the message and retrieve M,
since only A has access to A’s private key B can be sure that it was A
that sent the message.

When using digital signatures in practice it is common for storage purposes not
to encrypt the entire message but rather a small bit of data that is a function
of the message. In Bitcoin for example only the hash of the transaction data is
encrypted to be used as the signature, not the transaction data itself. Note that
in this procedure the message is not confidential since anyone having access to
the encrypted message can use A’s public key to decrypt it.

For a public-key cryptosystem to work Hellman and Diffie put forward the
following requirements on the encryption algorithm (as formulated by Stallings
in [14]):

1. Tt is computationally easy for a party B to generate a pair (public key
PUy, private key PRy).

2. It is computationally easy for a sender A, knowing the public key and the
message to be encrypted, M, to generate the corresponding ciphertext:

C = E(PU,, M)

3. It is computationally easy for the receiver B to decrypt the resulting ci-
phertext using the private key to recover the original message:

M = D(PRy,C) = D[PR,, E(PU,, M)

4. Tt is computationally infeasible for an adversary, knowing the public key,
PUy, to determine the private key, PRy.

5. It is computationally infeasible for an adversary, knowing the public key,
PUy, and a ciphertext, C, to recover the original message, M.

For a cryptosystem to provide both confidentiality and digital signatures a sixth
requirement is added:

6. The two keys can be applied in either order:

M = D[PU,, E(PR,, M)] = D[PR,, E(PU,, M)]

The known algorithms that have been generally accepted to fulfill these re-
quirements are few. The previous mentioned Rivest, Shamir and Adleman was
among the first to propose a viable algorithm called RSA, which is still today
one of the most widely used public-key encryption algorithms. The algorithm
used by Bitcoin (and most of the applications based on its protocol) is referred
to as elliptic curve cryptography and was proposed independently by Koblitz
and Miller in the 1980s [15][16]. For the scope of this thesis it will suffice to
note that these algorithms satisfy the requirements proposed by Hellman and
Daffie. For a more detailed description the reader is referred either to the cited
original papers or Stalling’s book on the subject [11].

4.4 Merkle trees

A merkle tree is a binary tree data structure where every non-leaf node, where
a leaf node is a node without children nodes, is the hash of its children nodes.
This structure results in the root node, or the top hash, being a function of
all nodes in the tree. Using only the top hash the entire data structure can be
efficiently verified. Figure 2 depicts a merkle tree with four leaf nodes. The leaf

10

Top Hash

Hash 0
)

hash(* .5

Hash
1

Hash
0

Hash 0-0
Hash 0-1

Hash 1-0

hash(hash(.0)

Hash Hash Hash Hash
0-0 0-1 1-0 1-1
hash(L1) hash(L2) hash(L3) hash(L4)
Data
L1 L2 L3 L4 Blocks

Figure 2: Four blocks of data hashed into a top hash using a merkle tree. Each
non-leaf node is the hash of its two concatenated children nodes.

nodes are concatenated pair-wise and hashed using some cryptographic hash
function. This is done continually until only one node is left, this is the top
hash. Since the top hash is a function of all leaf nodes it can be used to quickly
determine if two data sets are equal [17].

The reason for using a tree structure, and not for example just directly
concatenating all the leaf nodes and hashing them, is that the tree structure
provides an efficient way of determining if a specific leaf node is part of the
tree. By starting at the top hash and traversing down the tree log(n) number of
operations are required to determine if the leaf exists in the tree, where n is the
number of nodes. This can be compared to a normal hash list which requires n
number of operations.

In DLTs merkle trees are used for efficient verification of blocks and transac-
tions. In the Bitcoin protocol each block stores the top hash of all transactions
stored in the block, to determine if a transaction is a part of a block the tree
can be traversed as earlier described. Keeping the top hash of the transactions
also allows for setting up so called light-weight nodes where a user can choose
to store only meta-data of the blockchain, such as the transaction top hash, and
still be able to make payments over the network.

4.5 Transaction and account based architectures

To tie the ownership of an asset to an account in a blockchain there are two pop-
ular options, UTXO and account states. UTXO is an abbreviation for unspent
transaction outputs and is the model used by Bitcoin and many of its deriva-
tives. In an UTXO model a transaction has an input and an output. Each input

11

in a transaction is linked to the output of a preceding transaction. This forms
a chain of transactions that must always go back to a special initial transaction
created as a reward for a node that generated a new block. A transaction can
have several outputs and several inputs, each linked to a specific quantity of Bit-
coins. Figure 3 depicts how transactions propagates in a UTXO-based model.
An initial transaction of 100 000 satoshis® is used as input to transaction zero.
The outputs of transaction zero are used to create two new transactions, trans-
action one and two. These are in the same way used to create transaction three,
four and five. Transaction three and six contains UTXOs that are now available
to the receiving user and can be used to create new transactions.

Each unspent transaction output in the blockchain is associated with the
address (public key) of the receiver of the transaction. Only the person having
control of the private key linked to the address can spend the the UTXO. This
means that the balance of an address is the sum of the value of the UTXO
linked to the address, i.e. in a UTXO-based model no traditional accounts
and balances exits, only UTXO tied to different addresses. In the UTXO-model
transactions are atomic, meaning that it is not possible to only spend 40 Bitcoins
of a transaction output worth 100 Bitcoins. In this case two transaction would
need to be created, one spending the 40 Bitcoins and another sending the change
of 60 Bitcoins back to oneself [18].

In an account based model the state of the blockchain is made up of account-
addresses tied to balances, i.e. a ledger. This model is used by, for example,
Ethereum. In the current version of Ethereum both an account-state and trans-
actions are stored in the blocks, with the difference that the transactions does
not contain inputs and outputs.

Whether an UTXO or account based model should be used depends on the
aim of the application. In [19] Ethereum’s co-founder Vitalik Buterin puts
forward the arguments for an UTXO-based model as having benefits both with
respect to scalability and privacy, especially if a new key-pair is generated for
each transaction. An account based model on the other hand Buterin argues
saves disk-space since each transaction only needs to have one signature and
one receiver (output). An account based model also offers a more efficient way
to determine the the balance of an account as well as being overall simpler and
easier to understand.

A problem with account-based models are that they do not offer a built-in
way to counter replay attacks, i.e. attacks where an already processed trans-
action is re-sent over the network in an attempt to steal funds. In an UTXO
based model this is not possible since the re-sent transaction would now point
towards a spent transaction output and not the required UTXO. To counter this
for example Ethereum has chosen to associate what they refer to as a “nonce”
with each transaction and account. The nonce is simply an integer that works
as a counter. When an account sends a transaction the accounts current value
of the nonce is put in the transaction data. Each time a transaction is sent from
the account the nonce in the account is incremented, meaning that if someone

60ne Satoshi is the smallest nominee of value in Bitcoin.

12

Transaction O ™1
100,000 (TX 0)
(100k) input0
..Salt.Qsh.I.S.m» input0 50k ™3
output0 20k input0
output0 50k Unspent TX
X 2 output0 |p----QUIPUL(UTXO)
50k
outputl = input0
TX 4
output0 20k input0
TX 6
outputl output0 1| 20k
30k [T input0
TX5
. inputl
input0 30k ly
/ 50k
UTXxo
output0 OUEPULO == >

Figure 3: A schematic view of how transactions are linked to each other in the
UTXO model as used by Bitcoin. source: bitcoin.org/en/developer-guide

were to try to resend the transaction now the nonce in the transaction and the
account would not agree, rendering the transaction invalid.

4.6 Permissioned and public ledgers

A public ledger puts no constraint on who is allowed to read and who is allowed
to write to the ledger. Anyone is allowed to participate in the consensus process
where it is agreed upon how to define the next block that is to be attached to the
end of the blockchain. Such a blockchain is considered to be fully decentralized
and examples of such applications are Bitcoin and Ethereum. The consensus
protocol in an public ledger cannot assume any trust among nodes and thus need
to be based on a crypto-economic process such as proof-of-work or proof-of-stake
since no trust can be assumed among the users.

Buterin writes in [20] that permissioned ledgers can be distinguished into two
categories, fully permissioned ledgers and consortium ledgers. In both cases the
user base is permissioned to a predetermined set of users where, to varying de-
grees, some trust is assumed among the users. In a consortium ledger the system
can be said to be partially centralized meaning that there is not a single node
that on its own controls the consensus-process, but rather a set of permitted

13

nodes that together validates the next block to be attached to the blockchain.
The read- and write-privileges can be set either to be fully public or to some
combination where for example anyone can read from the blockchain but only
a certain set of nodes can write to it. In a fully private ledger write-permissions
and block-creation privileges are restricted to one single node, where as read-
permissions can be set to be either fully public or permissioned.

Depending on the circumstances public and permissioned ledgers have their
advantages and disadvantages. A public ledger is not controlled by any single
entity and requires no trust among the users, thus reducing the risk for miss-use
by the controlling part. The users are also in some way protected from the
developers since it is up to the system as a whole to accept and start to use new
software. The openness of the public blockchain also makes way for a system
of many independent users, which in itself increases the safety of the system
since the risk of both data loss and hostile takeovers decreases as the number of
users increase. Since no one single-handedly controls a public ledger there is no
efficient way to revert transactions, alter balances or quickly change the rules
of the system, this aspect can be seen as an advantage in for example the use
case of cryptocurrencies, but for example for a consortium of banks who want to
share ledgers among each other, giving up this control is usually not acceptable.
In these cases a permissioned ledger solution is arguably more viable.

4.7 Consensus

A consensus protocol is the procedure used to ensure that all nodes in a net-
work apply the same set of transactions to the ledger at each update. It is a
fundamental mechanism that can be designed in different ways depending on
the desired properties of the application. What type of consensus protocol is
used highly affects the scalability and efficiency of the application. A main
discriminating factor among different protocols is that of a protocol being prob-
abilistic or deterministic. In a probabilistic protocol all nodes in the network
are trying to generate the next block (commonly referred to as mining).” What
determines each node’s individual probability to succeed with generating the
next block, and thus its influence over the blockchain, is usually the differing
factor among different probabilistic protocols. In a non-probabilistic consensus
protocol instead a deterministic process is used to determine what transactions
to include in the next block, meaning that it is possible to predict which node
that will generate the next block.

When using a probabilistic protocol two nodes could potentially generate a
block at roughly the same time. This leads to a so called fork in the blockchain
where different parts of the network accept different blocks. In probabilistic
consensus protocols the forking problem is usually solved by having a rule that
says that a node should always and only work on the fork that has the greatest
work in it. This means that as soon as one fork generates a new block all

"This is not entirely true. In many distributed ledger networks there exists so called light
weight nodes that do not participate in the mining process but still are able to create and
receive transactions.

14

nodes in the network will switch to that fork and the blockchain will be joined
again. The blocks in the abandoned fork will be discarded, meaning that the
transactions that only existed in the discarded blocks will be reversed.

In a probabilistic protocol a user cannot be entirely certain that a transac-
tion conducted is not going to be discarded due to forking. The risk of this
happening reduces as more blocks are created and the transaction is deeper into
the blockchain, and it is therefore in for example the Bitcoin network recom-
mended to wait at least six blocks to be sure that a transaction is final. This
property is usually referred to as block finalization. Deterministic protocols nor-
mally have instant block finalization while probabilistic protocols can only talk
about block finalization in terms of probabilities.

4.7.1 Proof of Work

Perhaps the most intuitive consensus-process is for each user to be delegated
one vote and let all users vote on what transactions to be included in the next
block. The set of transactions with the most number of votes are then included.
The problem with this type of system is that it is vulnerable to a so called
Sybil-attack, where a user can create many accounts and thereby gain a dispro-
portionate amount of influence over the ledger. The Bitcoin creator Nakamoto
solved this problem by instead basing a user’s amount of influence on a physical
quantity, namely the amount of energy in the form of CPU-power a user has ac-
cess to. This type of consensus-process is generally referred to as Proof-of-Work
(PoW).

The general idea of PoW was not introduced with Bitcoin but was first pro-
posed by Dwork and Naor in [21] as a means to combat junk-mail by attaching a
cost in the form of CPU-power to the action of sending messages over a network.
This way sending a single message would not affect a normal user while sending
large quantities of messages would be costly. The notion "Proof-of-Work’ was
later formalized by Jakobsson in [22].

PoW as a consensus-process is to a large extent based on Back’s idea of
hashcash [23]. In a peer-to-peer network making use of a blockchain to share
data the work is attached to the action of broadcasting a new block to the
network. The work is done by computing what is usually referred to as a token,
or nonce, by the use of a cost-function. Hashcash introduced a PoW-system
using a cost function that is:

e Non-interactive, meaning that each node can start to compute the nonce
without additional information from peers.

e Trap-door free, meaning that no node has any advantage over another in
terms of computing the nonce.

o Publicly auditable, meaning that without the use of any trapdoor or secret
information it can be efficiently verified by any third party that the work
has been performed.

15

e Unbounded with respect to the probabilistic cost of computing the nonce,
i.e. in theory there is no upper bound to how long time it can take to
compute the nonce, even though the probability of not finding the correct
nonce rapidly goes towards zero as the average time is passed.

The Bitcoin-network (and many other) makes use of the hashcash protocol by
using SHA-256 as the cost function. To control the difficulty of the cost function
it is required that the digest is below a certain threshold. This makes it possible
to control with which average frequency a new block is created by adjusting the
difficulty according to the total computing power of the network. In practice
each node tries to find a hash that is below the threshold by altering data from
the latest block and using it as the digest to the cost-function. The most efficient
known way to compute this is by brute force, which makes it possible for any
node to instantly verify that a claimed work has been performed. As mentioned
earlier this practice is commonly referred to as mining since computing a valid
digest comes with a cash reward.

In a public network where no trust and no synchrony can be assumed the
PoW consensus process has been empirically proven to be both safe and ro-
bust during the years it has been employed in the Bitcoin-network. As the
total computing power of the network increases the safety of the blockchain
increases since it becomes increasingly harder for a single entity to gain control
over the network.® A common critique of PoW is the significant cost-overhead
brought on by the large amounts of electricity consumed by nodes competing
with each other over mining rewards. It has for example been estimated that
the Bitcoin-network consumes around 215 MW of energy, resulting in an energy
consumption per transaction equal to that of 1.57 American households daily
consumption [24].

4.7.2 Proof of Stake

In an attempt to further increase the protection against attackers and to reduce
the large amount of power consumption required by a PoW-based consensus
processes, the idea of Proof of Stake (PoS) evolved in the Bitcoin developer
community. Instead of, like in a PoW-system, having a node’s computational
power govern its influence on the ledger, a nodes total holdings recorded in the
ledger decides its proportion of influence. The idea builds on the assumption
that a node holding a large stake in the blockchain is more willing to maintain
the trust in the blockchain and thus more likely to operate as a friendly node.
Bitcoin also shows that a PoS-system would reduce the risk of an entity gaining
monopoly over the blockchain, since acquiring a majority of Bitcoins would be
far more expensive than to invest in enough hardware to gain more than 50
percent of the total computational power of the network. [25]

To prevent users of transferring holdings between nodes with the purpose
of manipulating the consensus process the concept of coin age is used in many

8This notion has been somewhat disturbed by the introduction of mining-pools currently
controlling large portions of the total computing power in the Bitcoin-network. For more
information see https://bitcoinchain.com/pools [accessed 2016-06-23]

16

PoS-systems. In a system employing the coin age concept, a coins influence-
contribution is dependent on the time it has been consequently held by a node.’

Another issue necessary to address in PoS-systems is the low cost of forking
the blockchain. Since almost no computational work is attached to the process
of creating a block the incentive for villainous nodes to fork the blockchain in
for example double-spend attacks, or simply for greedy nodes to work on all
forks to not miss out on block rewards, increases. To combat this many PoS-
applications have introduced the concept of check-point blocks. Blocks created
before a check-point block can no longer be revised and therefore all transactions
in those blocks are safe from double-spend attacks [26][27].

4.7.3 Practical Byzantine Fault Tolerance

The notion of Byzantine failure was first introduced by Lamport, Shostak and
Pease to describe the problem of arbitrary behaviour of nodes in networks [28].
The problem is illustrated by a group of Byzantine generals that need to reach
a majority agreement if and when to attack a surrounded enemy city. The
generals can only communicate with the use of messengers and an unknown
set of generals are potentially traitors that will try to spread disinformation.
Lamport et al. proved that the honest generals can only succeed if at least
3f + 1 number of generals are honest, where f is the number of traitorous
generals. The protocol presented for achieving this was not practically feasible
though since it assumed a synchronous network.

In [29] Castro and Liskov introduced the Practical Byzantine Fault Tolerance
(PBFT) protocol. With the use of effective message authentication codes it was
shown that the PBFT protocol realises the 3f + 1 lower bound in asynchronous
networks. Since then improvements have been made and many variants of PBFT
protocols have been developed, although the general principle is the same. For
the sake of this thesis only a simplified overview of a general PBFT protocol
will be made, for a more extensive description the reader is referred to [29].

In a PBFT-protocol one node is automatically assigned a special status
known as the primary node. For all requests, for example a transaction, to
be processed in the same order the primary node assigns each request a number
indicating its turn of execution. The primary node then broadcasts the request
to all other nodes which in their turn re-broadcast the request to all other nodes.
Only if a node has received a sufficient number of identical requests from the rest
of the network it will broadcast a so called commit-message, indicating that it
accepts the request. This way the network makes sure that the primary node has
not broadcast two conflicting requests. If not enough identical requests can be
collected it means that the primary node in some way has stopped functioning
correctly. In this case a new primary node is selected according to a set of
pre-determined rules.

9See for example Peercoin (https://www.peercoin.net/ [accessed 2016-06-23]) that bases
an account’s likelihood to create a new block on the product of the number of coins held and
the number of days each coins has been held, and Nzt (https://nxt.org/ [accessed 2016-06-
23]) that only allows coins held longer than 1440 blocks to contribute to a node’s influence.

17

As opposed to the PoW- and PoS-protocol a PBFT-protocol requires each
node to have knowledge about all nodes currently participating in the network.
It is therefore arguably not suitable for a public ledger application where it
cannot be assumed that all nodes know of all nodes. In a permissioned ledger
application though a PBFT-protocol could offer several advantages over both
PoW and PoS. A PBFT-protocol does not need to handle the issue of forking
since block-finalization is instant. This makes it possible to greatly increase the
possible transaction-volume compared to that of the probability-based proto-
cols. The major concern regarding PBFT-protocols is the scalability with re-
spect to the number of nodes. Applications currently utilizing PBFT-protocols
are file-sharing systems usually consisting of no more than 10-20 nodes. To be
used in networks consisting of several thousands of nodes such as the Bitcoin
network more research needs to be done.

4.7.4 Other protocols

Apart from the previously mentioned protocols there are currently a large va-
riety of other consensus protocols being experimented with. Some applications
use combinations of PoW and PoS and others, such as the transaction network
Ripple, uses a kind of deterministic voting system for the network to agree on
what transactions to include in the next block [30].

4.8 The securities marketplace

This sections defines actors and processes on the general capital market and is
to a large extend based on [31].

A capital market is a financial market where equity and debt are traded in
order to transfer wealth from savers to people or companies that can put it into
productive use. Equity represents ownership in a company and is also often
referred to as stocks or shares, while debt reflects the borrowing of investors to
the debt-issuer often conceived by the issuing of bonds.

4.8.1 Participators

The participators of a general capital market are numerous and can be cate-
gorized in several ways but for the purpose of this thesis we will define them
as:

Investors - individuals or institutions that buy equity or bonds, where an
individual investor is a private person and institutional investors are for example
pension funds, insurance companies or mutual funds.

Security trading organisations (STOs) - STOs are organisations that in some
way trade with securities. The trade can be conducted both for their own sake
in an attempt to buy low and sell high, but can also be done at the assignment
of an investor, in this case the investor is often of the institutional kind. An
STO can own securities on their own and either make direct trades with agents,

18

investors, other STOs or trade over an exchange. Usually the STO is a sub-
organisation of a larger financial company such as a bank.

Agents - the usual means for an individual investor to act on the capital
market is to go through an agent which will, in exchange for a fee, act as an
intermediary between the investor and an STO or exchange. Examples of agents
can for example be stock brokers, Internet brokers and financial advisers.

Regulators - in order to make sure that business is conducted according to
laws and regulations regulators monitor the markets. Usually all transactions
undertaken by an STO need to be reported to a regulator.

Custodians - Custodians keeps “custody” of securities, i.e. they are the
organisations that keeps register of ownership of securities.

Figure 4 demonstrates the role of the different actors as a transaction is
executed between two individual investors. The figure depicts an investor A
and an investor B who want to sell and buy a particular stock respectively.
In this case the two investors are clients to two different agents, for example
two different Internet brokers, which they contact to put in the sell and buy
orders. As the agents receive the orders they forward it to the exchange where,
assuming the buy and sell price match, the buyer and seller will be paired
and the agents will be informed that a match has been made together with
the relevant information about the respective counterpart. In order to actually
execute the exchange of the stocks and the money each agent needs to instruct
one or several custodians to settle the trade. This process of settlement will be
discussed in more detail in the upcoming chapters since it is likely to be highly
affected in a blockchain based model. As the trade is settled information about
the transaction needs to be forwarded to regulators and a receipt is sent to both
investors. At this point the trade is considered settled.

19

&
Q
Q¢

- @
Buy stock

Regulator
P
%O?
Investor B|——| AgentB
Sell stock

Figure 4: A scheme of two individual investors making an trade through two
different agents.

4.8.2 Internal structure of an STO

The most common way to structure an STO is to structure the different working
areas into the front-, middle- and back-office. The front-office can be seen as the
window against the market, here trades are conducted and contact is held with
clients and costumers. The middle-office supports the front-office in a logistical
manner, performing tasks such as data input into trade-systems, agreeing upon
trade details with counter parties as well as conducting risk analysis and trade
surveillance. The back-office settles trades and maintains the STO’s formal
books and registers.

4.8.3 The trade life cycle

The trade life cycle refers to the entire process from where an order is created
to where the trade is settled. The trade life cycle involves a number of steps
taken in order to minimize errors and financial risk. Historically most of the
steps in the cycle have been carried out manually, leading to the re-entering of
the trade-data into several different registers thus increasing the risk of manual
errors. Today the securities industry largely aims to achieve so called straight

20

Front-office .
Trade execution

Trade capture

v
Trade enrichment

Back-office

Trade validation

Trade agreement

Transaction reporting

Settlement

Figure 5: The life cycle of a trade as seen from a general STOs point of view.

through processing (STP), which basically means that all the steps in the cycle
should be handled in an automated fashion.

Figure 5 depicts the main steps in a trade life cycle from a general STOs
perspective. The trade life cycle begins as a trade is executed in the front office,
this means that a seller and a buyer have been matched and agreed to trade. As
the match and agreement have been made details regarding the trade have to
be formally recorded, or captured, within the organisation and conveyed to the
back-office where first a so called trade enrichment takes place, attaching further
data such as custodian details and method of transmission, to the trade. After
this a validation usually is conducted where the trade data is checked against
certain constraints in order to minimize errors before the trade is displayed to
the outside world. Having successfully validated the trade a check is made with
the counterpart ensuring that both parties agree on the trade data.

Having attached and validated all the relevant data to the trade, it is usually
reported to regulators and the settlement process begins. As earlier mentioned
the process of settling a trade is defined as the actual exchange of cash and
securities, often done at the custodian. The date for settlement is agreed upon
by the trading parties and is usually referred to as the value-date. At this date
both parties needs to deliver the agreed upon cash and securities in order for the
trade to settle. The time between the execution of a trade and the value-date
varies between countries and product groups, in western Europe the standard
time for stocks is decided upon to be two days. Part of the reason for having

21

this time-gap between trade-execution and settlement is that a considerable part
of the trades conducted today are between parties that have their location in
widely different parts of the world with the consequence of the involvement of
a large number of intermediaries and several custodians in order for the trade
to take place.

In order for the trade to settle the custodian will need confirmation from
both parties of the trade and to minimize financial risk settlements are usually
aimed to be done on a so called delivery vs. payment basis (DvP), where the
change of cash and securities are made simultaneously. The opposite of DvP
is so called free of payment (FoP) where one of the parties deliver before the
other. Which payment method to use is agreed upon by the trading parties
and forwarded to the custodian. Settling trades in today’s global market is
an intricate business and further treatment of the process, such as settlement
failure and the inner workings of custodians, won’t be treated for the sake of
this thesis. The important thing to keep in mind is that processing settlements
in the high volumes of today’s markets require updates and syncing of many
registers and usually takes several work-days to complete.

4.8.4 Central counterparties

A CCP is an organisation that acts as a an intermediary between the buyer
and the seller of a trade. By taking the part of both the buyer and the seller
the CCP guarantees to deliver the agreed upon cash and securities at value-
date, thus decreasing the so called counter-party risk where both parties risk
the default of the other. Another reason for using a CCP is the reduction of the
number of settlements needed. In a process referred to as clearing the CCP can
net the trades executed during some period of time and only settle the netted
amount for each member. Figure 6 depicts an example where several trades in
the same security is done with the help of a CCP, instead of settling each trade
individually, the CCP can clear the trades and only settle the netted amount at
the custodian.

22

T1

—
-«

U T

—>
-

CC P Settle T2

T3

—>
-

Settle T1+T2+T3 SettleT3
Figure 6: To the left: Three transactions made using a CCP. All transactions
are netted against each other and settled only once. To the right: The same
transactions done without the use of a CCP, all transactions are settled indi-
vidually.

5 Method

The methods for reaching goal one of the thesis consist of literature studies and
the interviewing of various actors on the Nordic capital market. The interviews
conducted were so called qualitative semi structured interviews. This means
that, as opposed to a structured interview, there were no hard set of questions
asked to all interviewees in a set order [32]. Ahead of each interview a set
of questions were prepared and general information about the institution that
were to be interviewed was researched. The prepared questions were used as
guidelines for the interview, as the interviews progressed some were removed
and some were added. All interviews took place in person at the respective
interviewee.

The reasons for choosing a qualitative approach rather than a structured
quantitative approach for the interviews are:

1. All interviewees are coming from different institutions and thereby have
varying knowledge and perspective on the technology. Flexibility with
respect to the questions being asked is therefore desirable.

2. The number of interviewed persons are few, but their knowledge and in-
sight of their respective area is great. Therefore it is more reasonable to
base conclusions on their individual opinions rather than the patterns of
a small data-set.

The DLT application for registering and transferring ownership of securities
was coded in Java. The application was built from the ground up with the

23

exception of the cryptography, which is from the Java implementation of the
open-source project Ethereum.

6 Result

6.1 Actors on the Nordic capital markets view on DLT's

In this section the view on DLTSs of various actors on the Nordic capital market
are presented. The views have mainly been collected by the means of interview-
ing relevant people employed by the respective companies. The interviews were
conducted in person and recorded. The views are mostly presented by para-
phrasing the interviewees, when exact quotes are made these are in quotation
marks. Note that most of the interviewed actors have not currently expressed
any official views on DLT's, the opinions expressed represent those of the inter-
viewee and not their employer. Some actors that were interviewed (The Swedish
Securities Dealers Association and the Financial Inspection) had a regulatory
perspective but did not express any particular opinions about the technology
from a technical perspective, and are thus not included in this report'®. In some
cases actors have released official reports presenting their view, when views from
a report are presented the report is clearly cited.

6.1.1 Avanza

Avanza Bank is a Swedish Internet broker and digital savings platform that
provide financial services to both private persons and companies. They have
an outspoken focus in providing their costumers the best user-experience on
the market and have the last decade come to be the leading Swedish bank in
terms of securities trading for private persons. Peter Stromberg works as Chief
Information Officer (CIO) at Avanza Bank and has an extensive background in
finance as well as in IT.

When asked about his general view on DLTs Stromberg says that the tech-
nology could likely be applied in any area where ownership needs to be registered
in a safe and efficient way. In the financial industry the most obvious applica-
tion area is that of streamlining the capital market post-trade. The initiative
to examine how these areas of the market can be made more efficient is a wel-
comed one from Stromberg’s perspective. The last decades trade-execution and
trade-matching have been made dramatically more efficient and costs have been
decimated while the post-trade area has been largely at a stand-still.

Stromberg says that the post-trade system needs to be efficient in terms of
of trust, speed and cost and that DLTs are likely to have many advantages in
these areas compared to the current system. The possibility of atomic transac-
tions'! where no CCP is needed could dramatically decrease the time and cost

10For more details on DLTs in the Nordic capital market from a regulatory perspective see
[33].

11 e., transactions where money and securities are swapped in one single step.

24

of transactions. For Avanza Bank this could in its turn cut costs and allow
them to offer cheaper securities trading to their costumers.

Stromberg believes that one of the greatest obstacles for DLTs to become a
reality is for banks and other actors on the financial market to find a common
standard. Stromberg says that there is good ground to believe that this will
succeed though. A good example is the common payment service Swish and
bankID that many of the largest Swedish banks successfully developed together.

Stromberg sees that there is a high probability of many DLT-applications
emerging in the coming years. As for now Avanza Bank are not looking into
starting any major DLT-projects on their own. They are though following the
development of the technology closely and are open for co-operations if the
opportunity should present itself.

6.1.2 Nasdaq OMX

Nasdaq owns and operates stock exchanges in the United States and in eight
European countries including Denmark, Sweden and Finland where also post
trade operations are performed. They are also a provider of financial technol-
ogy and services to other market operators around the globe, altogether serving
more than 100 marketplaces with their in-house developed technology. Johan
Toll works as product manager and business developer at Nasdaq focusing on
new technologies such as blockchain and machine learning, based in Stockholm.
When asked about his general opinion on DLTs potential in the financial indus-
try he says that DLTs could have a large impact on the industry the coming
years. He sees obvious applications for DLTs in primarily the post-trade area
where custody, clearing and settlement could be made more effective with the
use of shared ledger technologies. A scenario like this would potentially allow
exchanges to directly handle tasks in the post-trade value chain that is now
handled by actors such as the CSD. Smart-contracts is another promising area
heavily linked to the DLT technology. Creating automatically executed con-
tracts could automate many processes that are today handled manually and
has potential to cut costs in many areas.

Toll also sees potential in more independent applications. For example Nas-
daq has already released a DLT-based application called Linq which is used to
register ownership of shares in private companies. Ling currently uses a per-
missioned ledger deployment where Nasdaq controls which users are allowed to
connect to the network. When asked what advantages Ling has over for exam-
ple a central database Toll mentions the immutability of a distributed ledger,
built-in settlement capabilities as well as the shared accessibility of the ledger
and it’s transaction history. It is also a cost-efficient way to keep the database
synced and updated.

In order to replace the current post-trade systems with DLTs Toll says that
the focus has shifted from a technological focus into looking how the full ecosys-
tem with market participants, existing processes and regulatory framework will
be affected by this new approach. Through the move into permissioned ledgers,
performance, data entitlements and control of user access can be much easier

25

adapted for the financial market needs. Introducing permissioned ledgers opens
up for more efficient consensus-processes as well as allowing the users to retain
control over the transparency of the ledger. This is therefore a likely way for
the industry to go in the coming years.

Toll is generally optimistic of DLT’s future use in the financial industry. He
believe that they have the potential to affect the industry in many areas as well
as acting as a catalyst for general research intended to streamline the post-trade
area. Nasdaq have already released DLT-based applications and are currently
actively researching and developing the technology and its business implications
further. According to Toll it is likely that permissioned ledgers will play a major
role since they increase the speed of settlement while also reducing the capital
risk, combined with the ability to scale the technology in terms of transaction
volume as well as allowing the users to control the transparency of the ledger.

6.1.3 Cryex

Cryex is a centrally cleared currency exchange resided in Stockholm. In the near
future they are planning to provide an FX trading-platform with the possibility
to trade in both fiat- and cryptocurrencies. Anders Stenkrona is the head of
board of Cryex and has an extensive background in risk calculation.

When asked what potential DLTs have to create a more efficient capital
market Stenkrona says that there is indeed a potential for DLTs to do this,
especially in the post-trade area. Still there is some doubt that banks will
currently commit to these investments. Recent regulations have already forced
banks to make large investments in their IT-systems and at the moment their
focus is likely to lie on increasing their revenue rather than decreasing their costs.
Stenkrona believes that these types of investments are probable to happen in
the future though.

According to Stenkrona it is necessary for the industry to find a common
standard if the technology is to reach its full potential. One of the main technical
difficulties for DLTs to become an integrated part of the financial infrastructure
is likely to lie in the standardization process. A way to efficiently handle large
transaction volumes will need to be developed as well. Today’s cryptocurrency-
networks have proven to be robust but to work as an integrated part of the
financial infrastructure much larger transactions volumes will need to be handled
than is currently possible in these networks. A permissioned ledger opens up
for more efficient ways of handling consensus and is therefore a possible solution
according to Stenkrona. A permissioned ledger allows for better control of who is
allowed to access the ledger as well. This makes it more likely to be accepted by
regulators than if a public ledger were to be used. The R3-project where banks
are examining how to share data using a permissioned ledger together with an
efficient consensus process is a good example of a plausible future solution.

Stenkrona thinks that there will be a demand for fully public ledgers in the
future as well. As we are moving towards a cash-less society open cryptocurren-
cies could offer functionalities such as anonymous payments. The need might
be reduced though as institutions adopt DLTs and can offer the same seamless

26

transactions as the Bitcoin-network can today.

Stenkrona says that Cryex is currently applying to get permission from the
Swedish FSA to conduct its business. As for today the interest in cryptocur-
rencies from institutional investors is limited. Reasons for this is for example
that the market cap of Bitcoins and other cryptocurrencies is to low for global
institutional investors to be able to make investments of meaningful size. Some
institutions are also sceptical about the safety and legality of cryptocurrencies.
This is nothing new when introducing new technologies though and Stenkrona
believes that the scepticism will fade with time as the technology is adopted
and better understood by the institutions.

6.1.4 SEB

Skandinaviska Enskilda Banken (SEB) is a Swedish bank that operates globally,
with emphasis in the Nordic region. As one of the largest banks in Sweden
they have an intrinsic need for robust and efficient computer systems. Anders
Nyqvist works as chief strategiest at SEBs CIO office with responsibilities such
as scouting current trends in financial technology and evolving strategies for
SEBs future technology use.

SEB are currently in an experimental phase regarding DLTs. They are in-
volved in the international DLT-cooperation DLG as well as developing their
own Proof of Concepts. When Nyqvist is asked about his general view of DLTs
he says that there are many different areas of applications in the financial in-
dustry. An example is improved data-sharing between banks, where for ex-
ample Know your Costumer-processes could be made a lot more efficient if
banks shared more registers. There is also a potential to improve most steps
in the capital market value-chain. If ownership of securities were registered on
a blockchain, sellers and buyers could easily find each other and the process of
clearing and settling could be made in on single step without the involvement
of any third part. A DLT-based system could also make it easier to report to
regulators by just giving them access to the blockchain where transactions etc.
are stored.

Nyqvist says that Smart-contracts is another area where DLT's could poten-
tially increase efficiency and straight through processing in the banks internal
systems. An example is the case where large companies sets up an account at
SEB. These accounts usually has the need to handle complex payments and sev-
eral types of currencies. In a DLT-based system much of this work could be han-
dled automatically with the use of code stored and executed in the blockchain,
i.e. a smart-contract.

For DLTs to be functional with a bank the size of SEB they will need to be
improved to handle larger transactions volumes than is currently possible. For
this to happen Nyqvist sees a need for a more efficient consensus-process than
the PoW-scheme currently employed by many of the largest DLT-applications.
The PoW-scheme as it is used today is not sustainable in the long term due
to its vast energy-consumption and bad scaling. Nyqvist says that one way of
creating more efficient consensus-processes could be to use permissioned ledgers

27

where the value of the currency is coming from the guarantee of the participating
banks rather than the work put in by the nodes, as in a PoW-schedule.

From a bank such as SEBs perspective Nyqvist sees a potential for the
technology to improve the process with which banks share information with each
other. Smart-contracts are highly interesting since they have the potential to
automate many processes in the back-office that are today conducted manually.
If an implementation of DLTs is to happen in the banks internal systems Nyqvist
thinks that it is not likely to happen in the next few years though. The systems
used by large banks today are integrated and dependent on each other and
can sometimes be several decades old. Making extensive changes to these are
therefore not done easily.

6.1.5 FEuroclear

Euroclear operates CSDs in several European countries there among Sweden
and Finland. They provide financial services such as transaction settlement
and record-keeping of different asset-types such as bonds, equities and funds.
In spring 2016 Euroclear released [3] where their view on DLTs potential use
in capital markets are presented. The report states that DLTs could provide
“major operational benefits for users”. Data could be transferred and updated
among the market-participants in near real-time, removing the need for data
enrichment!2. DLTSs could also increase trust among participants since it would
be trivial to prove your ownership of an asset by just having your counterpart
control its version of the ledger. Increased trust would reduce the credit-risk
among participants and allow capital to be utilized in a more effective way.
Euroclear also sees a potential to streamline the settlement-process by an instant
exchange of cash and securities, thereby removing many steps such as central
clearing and post-trade affirmation.

The report mentions that there is indeed ways of reaching these benefits
with already existing technology. Instead of each participant having their own
local version of the ledger, a central database could be provided by an extended
version of a CSD. The participants could then query the database to retrieve
and update data. With DLTs though there would be no single point of failure
and the participants could bilaterally choose to reveal information to each other
without queering a central authority. DLTs also opens up for complex forms of
smart-contracts that is not possible with a traditional central database. Having
the database distributed and cryptographically secured also decreases the risk
of malicious data manipulation.

Euroclear sees that a scenario where DLT's are fully integrated in the capital
market infrastructure, i.e. all assets as well as cash are kept on blockchains,
would affect many of the actors on the capital market. In cash-asset transactions
the need for CCPs would diminish since settlement would occur almost instantly
and the trading parties would be able to assert that the opposing party currently
owns the cash or asset. Private traders would likely be affected as well since

12 A transaction often affects several databases, aligning these is referred to as data enrich-
ment.

28

the frequency with which trading could be conducted would be limited.Traders
would have to wait until a new block has been created and their ownership of
the asset is registered in the blockchain before they can sell the asset again. This
could potentially limit the possibilities to conduct the algorithmic high frequency
trading that has been increasingly more popular in the capital markets the last
few years. The role of the CSD would likely shift to be more service oriented
rather than that of a custodian. According to Euroclear there would still be
a need for a coordinated oversight of asset issuance and the development and
drift of the blockchain.

For DLTs to be able to replace core-parts of the financial infrastructure
Euroclear sees that the questions over the scalability of the technology need
to be answered. Even though major improvements have been made since the
original Bitcoin-protocol it is still unclear whether DLTs could support the large
data volumes seen in the capital markets. The industry will also have to agree
on how to design the protocols, such as if a permissioned or public ledger should
be used, how to make the ledgers interoperable with other distributed ledgers
as well as older systems and how the consensus process should be designed.
They also see a risk in the managing of anonymity, the security of public-key
cryptography is dependent on keeping the private key safe. If a private key were
to be compromised sensitive information could end up in the wrong hands.

6.1.6 Summary

Table 1 displays a summary of the views of the interviewed persons.

Avanza Nasdaq OMX SEB Cryex
General attitude . . - e
towards DLTSs Positive Positive Positive Positive
. Yes Yes .
Own devel nt N , . N
W developmen © (released products) (PoC’s, co-operations) ©
. . Post trade, Inter bank data-sharing, .
Most interesting cryptocurrencies
. Post trade smart contracts, smart contracts,)
application area . L post trade
independent applications post trade

Standardization, Performance, Standardization,

Biggest obstacle | Standardization
performance integration performance

Table 1: A summary of the views on DLTs of the interviewed persons.

6.2 Proof of Concept

A permissioned distributed ledger PoC was built to examine the technical dif-
ficulty of developing DLT-applications as well as examining how registration of
securities could be handled in a private distributed ledger. The PoC was coded
in Java using the Eclipse IDE.

6.2.1 Requirements

The PoC need to fulfill the following requirements:

29

R1.
R2.
R3.
R4.
R5.
R6.
R7.

A node shall be able to store accounts.

An account shall be able to have a balance of assets.

Only permitted nodes should be able to connect to the network.

Nodes shall be able to transfer assets to other nodes.

Public-key cryptography shall be used for user- and message-authentication.
Nodes shall be able to create assets.

Altering an asset shall be limited to the creating node.

Where a node is an instance running the PoC.

6.2.2 Specifications

To fulfill the respective requirement the following list of specifications needs to
be implemented (S1.1 and S1.2 belongs to R1 etc.):

S1.1.
S1.2.
S2.1
S2.2

S3.1.
S3.2.

S4.

S5.1.
S5.2.

S6.1.
S6.2.
S7.1.

S7.2.

A node should store account files.
Account files should contain an accounts private and public key.

A node should store block files.

A block file should contain a map linking an accounts public key to that
accounts current holdings.

A block file should contain the IP-addresses of all permitted nodes.

To accept an incoming connection each node should first confirm that the
senders [P-address exists in the latest block.

There should exist a transaction data structure for transacting assets be-
tween accounts.

A transaction should contain the digital signature of the sender.

Each node receiving a transaction should verify that the transactions dig-
ital signature is valid.

There should exist an asset-type data structure.
There should exist a transaction type that creates new assets types.

Each asset type should store the public key of the account that created
the asset.

To alter an asset type a digital signature matching the public key stored
in the asset type must be provided.

30

6.2.3 Design

This section describes the design of the PoC. The section is meant to give the
reader a general overview of the design hence not all details are included in the
description. For a fully detailed description the reader is referred to the source-
code in appendix REF. The section starts with describing the data structures
of the PoC and the goes on to give a description of the most important methods
and processes. All methods and classes are written in typewriter-style to
facilitate easier reading.

Structure and classes

The PoC is structured into five packages:

e Core - Contains the main data structures such as Block and Transaction.

Crypto - Contains cryptographic classes needed for hashing and public-
key cryptography.

Network - Contains the client- and server-side code as well as code for
blockchain synchronization between peers.

Util - Contains various utility classes used by the other packages.

Start - Contains the code used to set up users and start the program.

Core Figure 7 depicts a UML class-diagram of the core package. Following is

a description of the core classes:'3

Blockchain The interface towards the blocks that are stored on the local
machine. The Blockchain class does not itself have any members of the type
Block. The diagram shows three fields in Blockchain: height, directory and
synchronized. The directory field is the relative path to the folder where the
blockchain is stored, the height field is the current height of the blockchain
and the synchronized field is a flag indicating which peers the blockchain is
synchronized against.

Block The basic data structure making up the blockchain. Each block has
a list of transactions, a map of public keys to account states, a list of valid
IP-addresses, a time-stamp and a hash of the data of the preceding block.

AssetType The data structure representing the different types of assets that
can be owned by a user. Each asset type has a name, a unique identifier and
a classification (such as stock, bond etc.). The account that creates an asset
type owns that asset type. This is maintained by storing the public key of the
creating account in each asset type.

13Note that the diagram is meant to give the reader an overview of the structure of the
program, classes and methods not deemed necessary for this are not included in the diagram
but can be seen in the source-code.

31

Blockchain

+height : int
+ directory : String
+ synchronized : boolean

+ load()

+ addBlock(Block)

+ getBlock(int) : Block

+ getBlockByPrevHash(String)

I
1
|
n

Block

- transactionList : ArrayList<Transaction>

- stateMap: HashMap<String, AccountState>
- assetTypes : ArrayList<AssetType>

- validPeers : ArrayList<String>

- height : int

- prevBlockHash : String

- timeStamp : long

+ validateBlock() : boolean
+ getHash() : byte[]
+ broadcast()

StaticRepository

- pendingTransactions : ArrayList<Transaction>
- validateTransactions : ArrayList<Transaction>
- stateMap : HashMap<String, AccountState>

- assetTypes : ArrayList<AssetTypes>

+ executePendingTransactions()
+ broadcastTransactions()
+ dumpRepository()

Wallet

- key : ECKey
- walletName : String

+load()
+ store()

I
n
n n n
|] |
Transaction AccountState AssetType
- senderAddress : String - balance : HashMap<String, Integer> - Name : String
- senderPubKey : byte[] - nonce : int - assetID : String

- receiverAddress : String

- assetType : AssetType
-amount : int

- signature : ECDSASignature
- nonce : int

+ increaseBalance (String, int)

+ decreaseBalance (String, int)

+ getBalance(String) : int

+ equals(AccountState) : boolean

+ isSigned() : boolean
+ signTransaction()

+ getHash() : byte[]

+ broadcast()

+ increaseNonce()

1. 1.*

- type : String
- emitterPubKey : byte[]

+ toString : String

|
OrdinaryTransaction EmittingTransaction EmptyTransaction

Figure 7: The UML class-diagram of some of the classes in the core package.

32

AccountState Represents the state of an account. Each account state has
a map of asset types and balances as well as a 'nonce’ used to ensure that a
transaction can only be processed once.

Transaction The data structure used to conduct various types of transactions
between accounts. Each transaction has a sender and a receiver address as well
as the asset type and the amount to transfer. For validation purposes each
transaction also contains the digital signature of the sender. To ensure that each
transaction is only processed once each transaction has a nonce corresponding to
the nonce of the senders account state at the time the transaction was created.
The Transaction class is defined as an abstract class on which three subclasses
extends.

OrdinaryTransaction Extends Transaction. Transacts an asset from one
account to another.

EmittingTransaction FExtends Transaction. Either creates a new asset type
or issues more shares of an existing asset type.

EmptyTransaction Extends Transaction. Notifies the network that a new
account has been created.

StaticRepository A container where transactions are validated and applied
to the state. It has a list of pending transactions, i.e transactions that have
been received but not yet processed, a list of validated transactions and a map
of the current account states. When a node creates a new block the state and
the validated transactions in the StaticRepository are put in the block.

Start The start package contains two classes, Start and User. The program
is started by running the class Start, the user needs to provide an IP-address
and a directory to store the local files in. The User class handles the different
processes such as the server and miner, these processes are explained in more
detail later in this section.

Crypto The crypto package contains classes used for cryptographic tasks such
as generating private and public keys and hashing and signing messages. The
code is originally from the java version of the open-source project Ethereum.
Two important classes in the package are HashUtil and ECKey. HashUtil has
methods for cryptographically hashing messages using the SHA-3 hash function
and is utilized in the program for tasks such as hashing transactions and creating
merkle hashes. ECKey is the class that represents the elliptic curve public and
private key. The class provides various methods for generating new key pairs
and for signing and verifying messages. Each user holds an ECKey object that
contains the users private key and is used to digitally sign messages.

33

Load Blockchain

Set up Repository

Synchronize
Blockchain

Start Transaction Start Command Line

Start Miner VielieEter Interface

Figure 8: The UML activity diagram of the start-up process.

34

Network The network package contains three classes: MultipleSocketServer,
Client and Synchronize. MultipleSocketServer is the server class and is
used for receiving and handling incoming messages. The Client class is used to
send messages, either to a specific node or to the entire network. Synchronize
is run at the start-up to synchronize the local version of the blockchain with the
network.

Methods and processes

Starting the program Figure 8 depicts a UML activity diagram of the pro-
cess that is run each time the program is started. First the Blockchain is loaded
using the load method in the Blockchain class. In this step the local copy of
the blockchain is validated and the height is retrieved. In the next step the
StaticRepository is set up using the state in the latest block of the blockchain.
As this is done the server is started and the node starts to synchronize its local
version of the Blockchain with the network. As the synchronization is completed
the mining process, the transaction validation process and the command line
interface are started in parallel.

Mining process The mining process is used to generate new blocks and is of
a simple round robin type. Each node has a certain probability to create the
next block. When a block is created it is broadcast to the network. Each node
validates an incoming block in a number of ways, most notably by checking that
the transactions in the block are valid and that the blocks previous block hash
agrees with the nodes local version of the blockchain.

Transaction validation process The transaction validation process exe-
cutes the pending transactions in the repository. The frequency with which
the pending transactions are executed can be altered depending on the trans-
action volume to be handled, the default setting is one execution per second.

Command line interface The command line interface provides users a way
to conduct operations such as creating new accounts and create and transact
assets by typing in commands in the console. For a full description of the
available commands the reader is referred the source code in appendix A.1.14.

Creating and broadcasting a transaction Figure 9 depicts the process
of a node creating a new transaction. When creating a transaction the user
needs to provide information about the receiver, the asset-type to transfer and
the quantity to transfer. Before broadcasting the transaction to the network
a validation process is run. In this process it is ensured that the sender has
enough funds, that the signature is correct and that the transaction has not
already been processed. Each transaction holds a list of the nodes that has seen
the transaction. A node only re-broadcast a transaction to nodes that has not
yet seen the transaction.

35

end
end
Q)

w/f ‘T‘
S o =
B3 %E
T > ©
2% 32
g 2 £¢
|—T £
5 T:
g'ﬁ @2
g8 25
25 3 2
s “g

Broadcast
transaction
Broadcast

transaction

—>
—

Validate and
apply
transaction
Validate and
apply
transaction

—>
—>

Receive
" transaction
Receive
transaction

Broadcast
transaction
\

—

Validate and
apply
transaction

—

Create
transaction
Listen to
network
Listen to
network

Node 1
o

Node 2
o

Node 3
o—

Figure 9: The process of creating and broadcasting a transaction in a network
of three nodes.

Creating a new asset type To create a new asset-type the user needs to
provide the necessary asset type information as well as the number of shares
to issue. The shares are issued to the account of the creating node by an
EmittingTransaction. This special type of transaction only differs from an Or-

36

dinaryTransaction in the way that the creator of the transaction does not need
to have the transacted assets on its account to be considered valid.

7 Conclusions

From the interviews conducted with the actors on the Nordic capital market
the following conclusions are drawn:

e In the Nordic region several actors are actively working with the develop-
ment of DLTs.

e DLTs are likely to have an impact in several areas of the Nordic capital
market. Most notably is the post trade area of clearing and settlement,
but also free standing applications as well as internal processes are likely
to be affected.

e Smart contracts are of particular interest for increasing straight through
processing in many financial processes.

e For DLTs to be able to replace current post-trade systems the scaling in
terms of transaction volume needs to be improved compared to current
public ledgers.

e Permissioned ledgers are likely to be used if and when DLTs are imple-
mented in the financial infrastructure.

e The process of standardization is likely to pose the greatest challenge for
DLT's to be used within the Nordic capital market.

From the PoC the following conclusions are drawn:

e From a technical point of view creating an independent permissioned dis-
tributed ledger application does not require large resources. Assuming
code for the public-key cryptography is given it is possible for one full-
time resource to deliver a working application in three months.™

8 Discussion

Undoubtedly there is a large interest for DLTs within the financial industry in
the Nordic region. Actors such as exchanges and banks have been committing
increasingly amounts of resources to examine and develop DLT-based applica-
tions and PoCs the last few years. There are still technical challenges to be
solved if DLTs are to be fully utilized with clearing and settlement in the cap-
ital market though. The technology would need to be able to handle vastly
greater transaction volumes than is currently possible with, for example, the

14The application was created during the course of six months at roughly half-time pace.

37

Bitcoin-network and the transparency would need to be controlled to hinder
leakage of sensitive information.

A plausible solution to the scaling problem is that of using a permissioned
ledger together with a PBFT-based consensus process. PBFT-protocols have
been the target of decades of research and have already proven their robustness
and efficiency as a part of many file-sharing systems and are therefore reason-
able to direct the most attention to when developing an efficient permissioned
ledger consensus protocol. A permissioned ledger would also allow the users to
control which nodes that have access to the blockchain, thereby solving at least
one part of the transparency problem. The other part is that of the trusted
nodes still having access to all transactions conducted over the network. This
might arguably be the most troubling aspect for DLT’s potential use in the
capital market, since it would require banks and other institutions to give up
information to each other that is today kept confidential. Finding solutions to
this, either by adjusting the attitude for what information should be confidential
and not or by developing technical solutions is a necessity should DLTs become
the way to conduct clearing and settlement in the capital market.

It seems though that the technical difficulties of the technology are likely
to be solved in the not too distant future. At the time of writing several large
projects are ongoing where different ways of increasing the possible transaction
volume and handling transparency are examined.'® The main difficulty is likely
to be in that of finding a common standard that is accepted by all involved
actors, an achievement that would require co-operation among several inde-
pendent institutions. Here Swedish banks have already proven their ability in
form of the inter-bank instant payment service Swish. Seeing as Sweden and the
Nordics in general also is an early adopter when it comes to digitalising financial
services, it is not unlikely that DLTs would be rather quickly adopted.'®

Beyond that of clearing and settlement there are still use-cases for DLTs
on the capital market where for example the transparency problem would be
less of an issue. For example, if banks were to employ internal distributed
ledgers to handle their accounting smart-contracts could be used to increase
straight trough processing in many processes. Another example is that of more
independent financial applications such as the distributed ledger Ling created
by Nasdaq. For these kind of use-cases existing technology is already sufficient
and many new applications are likely to go public in the upcoming years.

As with many disruptive technologies it is hard to speculate in which areas
DLTs will have the greatest impact. Twenty years ago few would have foreseen
that the internet would play such a critical role in our society as it does today,
and even fewer would have foreseen the endless use-cases that it provides. DLT's
are currently in a phase of rapid development and much have happened only in
the time that this thesis have been written. Regardless if DLTs as they look

15For example the Hyperledger project is developing permissioned blockchains using PBET
consensus with the specific aim of improving scaling. At the same time Ethereum is working
on improving their public-ledger solution by using a variant of the PoS consensus protocol.

16See for example http: //www.reuters.com/article/nordic-cashless-idUSLENOUM1TY20150109
[accessed 2016-06-23]

38

today would prove to be non-compliant with the capital market, the entrance
of DLTs have triggered a major increase in effort put into improving post-trade
systems. This effort might not lead to a direct implementation of DLTs into
the capital market infrastructure, but in some form it is highly likely to lead to
improvements of the systems as they look today.

39

References

1]

Wiebe Ruttenberg. Distributed ledger technologies in securities
post-trading. European Central Bank Occasional Paper Series, p. 6.

Accenture Capital Markets. Blockchain in the Investment Bank. 2015.
Oliver Wyman Euroclear. Blockchain in Capital Markets. 2016.

UK Government Chief Scientific Adviser. Distributed Ledger Technology:
beyond block chain. 2016.

Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.
20009.

Paolo Tasca. Digital Currencies: Principles, Trends, Opportunities, and
Risks. 2015.

Gavin Wood. Etereum: A Secure Decentralized General Transaction
Ledger. 2014.

Nasdaq. Nasdaq Ling enables first-ever private security issuance
documented with blockchain technology.
http://ir.nasdaq.com/releasedetail.cfm?releaseid=948326.
[Online; Accessed 2016-06-22].

Andreas M. Antonopoulos. Mastering Bitcoin. 1st. O'Reilly Media, Inc,
2014.

William Stallings. Cryptography and network security : principles and
practice. Boston: Prentice Hall, 2011. Chap. 11.3 - Requirements and
security, pp. 327-356.

William Stallings. Cryptography and network security : principles and
practice. Boston: Prentice Hall, 2011.

Whitfield Diffie and Martin E. Hellman. New Directions in
Cryptography. 1976.

Leonard Adleman Ron Rivest Adi Shamir. A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems. 1978.

William Stallings. Cryptography and network security : principles and
practice. 5th. Boston: Prentice Hall, 2011. Chap. 9.1 - Principles of
public-key cryptosystems, pp. 275-276.

Neal Koblitz. “Elliptic curve cryptosystems”. In: Mathematics of
Computation. Vol. 48. 1987, pp. 203-209.

Victor S. Miller. “Use of elliptic curves in cryptography”. In: Advances
in Cryptology — CRYPTO ’85 Proceedings. 1985, pp. 417-426.

Ralph C. Merkle. Advances in Cryptology — CRYPTO ’87: Proceedings.
Ed. by Carl Pomerance. Springer Berlin Heidelberg, 1988. Chap. A
Digital Signature Based on a Conventional Encryption Function,

pp. 369-378.

40

Andreas M. Antonopoulos. Mastering Bitcoin. 1st. 2014, pp. 111-134.

Vitalik Buterin. Ethereum Whitepaper.
https://github.com/ethereum/wiki/wiki/White-Paper. [Online;
accessed 2016-06-22].

Vitalik Buterin. On Public and Private Blockchains. [Online; accessed
2016-06-22].

Moni Naor Cynthia Dwork. Pricing via Processing or Combatting Junk
Mail. 1993.

Ari Jules Markus Jakobsson. Proofs of Work and Bread Pudding
Protocols. 1999.

Adam Back. Hashcash - A Denial of Service Counter-Measure. 2002.

Christopher Malmo. Bitcoin is Unsustainable.
http://motherboard.vice.com/read/bitcoin-is-unsustainable.
[Online; accessed 2016-06-22].

Bitcoinwiki. Proof-of-Stake.
https://en.bitcoin.it/wiki/Proof_of_Stake. [Online; accessed
2016-06-22].

Nxt. Nxt Whitepaper.
http://wiki.nxtcrypto.org/wiki/Whitepaper:Nxt. [Online; accessed
2016-06-22].

Scott Nadal Sunny King. Peercoin Whitepaper.
https://www.peercoin.net/whitepaper. [Online; accessed 2016-06-22].

Marshall Pease Leslie Lamport Robert Shostak. The Byzantine Generals
Problem. Vol. 4. 1982, pp. 382-401.

Barbara Liskov Miguel Castro. “Practical Byzantine Fault Tolerance”.
In: Proceedings of the Third Symposium on Operating Systems Design
and Implementation. 1999.

Arthur Britto David Schwartz Noah Youngs. The Ripple Protocol
Consensus Algorithm. 2014.

Michael Simmons. Securities Operations - A guide to Trade and Position
Management. John Wiley Sons, 2002.

Rosalind Edwards. What is qualitative interviewing. Bloomsbury, 2013.

Victoria Carlsson Lundstrom. “Impact from the blockchain technology
on the Nordic capital market”. MA thesis. Sweden: Uppsala universitet,
2016.

41

Interview references

[1] Johan Toll , Nasdag, 2016-03-07, Stockholm, Personal interview.
[2] Anders Nyqvist, SEB, 2016-04-20, Stockholm, Personal interview.
[3] Anders Stenkrona, Cryer, 2016-04-05, Stockholm, Personal interview.

[4] Peter Stromberg , Avanza, 2016-02-26, Stockholm, Personal interview.

42

A Source code

A.1 Package: Core

A.1.1 AccountState

AW oN

© 0 N o «

10

12
13
14
15
16
17
18

19
20
21

22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44
45

46

package core;

import java.io.Serializable;
import java.util.HashMap;

/**
* Represents the state of an account. Holds a HashMap
* containing asset-types and balances, and a ’nonce’
* (a counter) used to hinder transactions from being
* processed more than once.
* Q@Qauthor Ludvig Backlund
*/
public class AccountState implements Serializable {
VAT
* Auto generated seriallVersionUID for serialization
*/
private static final long serialVersionUID =
-7946595253393611186L;
J k%
% HashMap containing the asset-type (different stocks
ezample)
* and the balance of each type.
*/

HashMap<String, Integer> balance;

J k%
* Counter to ensure that a transaction only can be
processed once.
*%/

int nonce;

public AccountState (){

balance = new HashMap<>();
nonce = 0;
}
/**
* Increase the balance of an asset-type.
* @param assetID - The asset-type to increase.
* @param amount - The amount to increase with.
*/

for

public void increaseBalance(String assetID, int amount){

if (balance.containsKey (assetID)){

balance.put (assetID, amount + balance.get(assetID))

} else
balance.put (assetID, amount);

43

47
48
49
50
51
52
53
54

55

57
58
59
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

83
84
85
86
87
88
89

90
91
92
93
94
95
96
97
98

/**
* Decrease the balance of an account
* @param assetID - The asset-type to decrease.
* @param amount - The amount to decrease with.
*/

public void decreaseBalance(String assetID, int amount){
if (balance.containsKey (assetID) && balance.get(assetID)
>= amount){

balance.put (assetID, balance.get(assetID) - amount)
H
if (balance.get (assetID) == 0)
balance.remove (assetID);
}
else

System.err.println("Amount to transfer exceeds
balance.");

}

J**
* To string method.
* @return A string representation of the account.
*/
public String toString(){
return this.balance.toString();

}
/** Return the balance associated with an asset type
* @param assetID - Asset type you want the balance for.
* @return - The balance of the asset type.
*/
public int getBalance(String assetID){
if (balance.get (assetID) == null)
return O;
else

return balance.get(assetID);

}

/** Check if thts AccountState is equal to another
AccountState,
¥ (i.e. contains the same asset-types and balances.)

* @param accountState - the accountState to check against.
* Q@return true if equal, else false.
*/

public boolean equals(AccountState accountState){
for(String key: balance.keySet ()){
if (!balance.get (key) .equals (accountState.getBalance
(key)))
return false;
}
return true;

}

/**
* Increase the nonce (This is done for every
* transaction sent from this AccountState).

*/

44

10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

public void increaseNonce (){
nonce++;
}
/**
* Get the nonce of this AccountState
* @return nonce - the current nonce of this AccountState.
*/
public Integer getNonce (){
return nonce;
}
}
1.2 AssetType

package core;
import java.io.Serializable;

import org.apache.commons.codec.binary.Hex;

J**
* Class representing an asset type. Only the creator of the
asset type
* can issue more shares. This 1is achieved by having the public
key of

* the creator stored in the AssetType. To issue more shares a
Transaction

* signed with the corresponding private key must be created.

* Qauthor Ludvig Backlund

*/

public class AssetType implements Serializable {

private static final long serialVersionUID =

-4678916248790217977L;
/% %
* Name of the asset type.
*/
String name;
VAL
* Unique identifier (ISIN-code etc.)
*/
String ID;
/**
* Type of asset (i.e. stock, bond...)
*/
String type;
VAE]
* Name of the emittent of this AssetType.
*/

String emitterName;

J**

45

39 * The public key of the emittent of this AssetType

40 */

41 byte [l emitterPubKey;

42

43 /%

44 * Construct an AssetType deciding all fields.

45 * @param name

46 * @param ID

a7 * @param type

48 * @param emitterName

19 * @param emitterPubKey

50 */

51 public AssetType(String name, String ID, String type, String
emitterName, byte[] emitterPubKey){

52 this.name = name;

53 this.ID = ID;

54 this.type = type;

55 this.emitterName = emitterName;

56 this.emitterPubKey = emitterPubKey;

57 }

58

59 /* %

60 * Construct an empty AssetType.

61 */

62 public AssetType (){

63 name = "";

64 ID = uu;

65 type = "";

66 emitterPubKey = new byte[0];

67 }

68

69 /*x

70 * toString method

71 * @return A String representation of this AssetType.

72 */

73 public String toString(){

74 return "name: " + name + "\r" + "ID: " + ID + "\r" + "

type: " + type + "\r" + "emitterPubKey: "

75 + Hex.encodeHexString(emitterPubKey) + "\r" + "emitter name:
" + emitterName;

76 }

77

78 /**

79 * Get the ID.

80 * @return The ID

81 */

82 public String getID(){

83 return ID;

84 }

85

86 /%

87 * Get the name of the AssetType.

88 * @return

89 */

90 public String getName (){

91 return name;

92 }

46

25
26
27
28
29
30
31
32
33
34

36
37
38
39
40
41
42
43
44

/% *

* Get the public key of the emittent of this asset

* Q@return
*/
public byte[] getPubKey (){
return emitterPubKey;

}

}
1.3 Block

package core;
import java.util.List;

import org.apache.commons.codec.DecoderException;
import org.apache.commons.codec.binary.Hex;

import crypto.HashUtil;
import exceptions.TransactionNotValidException;
import network.Client;

import java.io.Serializable;
import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.HashMap;

/ ok *
* Class representing a block.
* Qauthor Ludvig Backlund
*/

public class Block implements Serializable{

private static final long serialVersionUID = 1L;
VAE]
* List of tranmsactions.
*/
protected List<Transaction> transactionlList;
/**
* HashMap of public keys and AccountStates
*/
protected HashMap<String, AccountState> stateMap;
VAE]
* List of all existing assetTypes
*/
private ArrayList<AssetType> assetTypes;
/¥ *
* List of the IP-addresses of the wvaltd peers.
*/

47

type.

45
46
47
48

49
50

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

private List<String> validPeers = new ArrayList<>();

J**
* This Blocks number in the blockchain, genesis number 1is
0.
*/

private int height;

/**
* The SHA-3 hash of the preceeding block in the blockchain.
*/

private String prevBlockHash;

J k%
* The wunixz epoch time for the creation of this block.
*/

protected long timeStamp;

/**
* Construct a block containing an empty transactionlist,
statemap and assetList.
*/
public Block (){
this.transactionlist = new ArrayList<>();
this.stateMap = new HashMap<>();
this.assetTypes = new ArrayList<>();

}
/**
* Construct a block containing inserting all fields but
timeStamp .
*/

public Block(List<Transaction> transactionList, HashMap<
String, AccountState> stateMap,
ArraylList <AssetType> assetTypes, String
prevBlockHash, List<String> validPeers, int

height){
this.transactionlList = transactionList;
this.stateMap = stateMap;

this.assetTypes = assetTypes;
this.prevBlockHash = prevBlockHash;
this.validPeers = validPeers;
this.height = height;
this.setTimeStamp () ;

}

VAZ
*¥ Add a transaction to transaction list.
* @param transaction to be added.
*/
public void addTransaction(Transaction transaction){
this.transactionList.add(transaction);

}
/% *

* Add an AccountState to the stateMap.
* The address is converted to a String as byte[] does not

48

111
112
113
114
115
116

118
119
120
121

123
124
125

127
128

129
130

132
133
134
135
136
137

139
140
141
142

work well with HashMap.

* @param bytedddress - The address of the account.
* @param accountState - The state related to the address.
*/

public void addAccount (byte[]l byteAddress, AccountState

accountState){

String stringAddress = Hex.encodeHexString(byteAddress);

if (stateMap.containsKey(stringAddress)){
System.out.println("Account already exists.");
return;

}

stateMap.put (stringAddress, accountState);

* Validate that 75 ©s waltd to add this block to the end
of the blockchain.
* Validation <s done with respect to the transactions, the
timeStamp, the block-height,
* and the block-hash.
* @return true if block s wvalid else false.
*/
public boolean validateBlock(){
if (validateTransactions (Blockchain.getLatestBlock ())){
try {
Thread.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace () ;

}
if (this.getTimeStamp() < System.currentTimeMillis()
){
if (Blockchain.getHeight () == this.getHeight () -1)
{
// Check hash only %f not at genmesis block.
if (Blockchain.getHeight () > -1){
if (Blockchain.getBlock (this.getHeight ()
-1) .getHash () . equals (this.
getPrevHash()))
return true;
elsef{
System.err.println("Previous block
hash not valid");
return false;
}
}
return true;
}
} else {
System.err.println("Time-stamp unvalid");
}
} else {
System.err.println("Transactions in block not valid"
)

}

return false;

49

143
144
145

147

165

171
172

173
174
175
176
177
178

180
181
182
183

184

186
187
188
189

J ok
* Validate the transactions in a proposed block.
* The transactions in the block are applied on the state of
the latest block.
* If the resulting state <s equal to the state of the
proposed block the
transactions in the proposed block are considered wvalzd.
* @return true if wvalid else false.
*/

public boolean validateTransactions(Block latestBlock){

if (this.getTransactionList () .isEmpty ())
return true;

Repository validationRepository = new Repository(
latestBlock) ;
List<Transaction> claimedTransactions = this.

transactionList;

for(Transaction transaction: claimedTransactions){
validationRepository.addPendingTransaction (
transaction);

}

try {
validationRepository.executePendingTransactions () ;

} catch (TransactionNotValidException e) {
System.out.println(e.getMessage());

}

// Check that states are equal:
if (stateMap.keySet () .equals(validationRepository.
getStateMap () . keySet ())){
for(String key : stateMap.keySet ()){
if (! stateMap.get (key) .equals(
validationRepository.getStateMap () .get (key))
){

return false;

}
}
return true;
}
return false;
}
/% %

* Get the hash of thts Block (currently the hash is made up
* of the transactions, the timeStamp and the previous block
hash) .
* @return blockHash - the SHA-3 hash of this block.
*/
public String getHash(){

// Get byte arrays:

List<Transaction> transactionlList = this.
getTransactionList ();

50

190
191
192

193
194

195

196

198
199
200
201
202

204

205

206

byte[] transactionHash = new byte[0];
if (!transactionList.isEmpty ()){
transactionHash = new Merkle(transactionList).
getHash () ;
}

byte[] timestampBytes = ByteBuffer.allocate(Long.SIZE).

putLong(this.getTimeStamp ()) .array();
byte[] prevHashBytes = new byte[0];
try {
prevHashBytes = Hex.decodeHex(prevBlockHash.
toCharArray ());
} catch (DecoderException e) {
e.printStackTrace ();

}

// Concatenate the byte arrays:

byte[]l blockBytes = new byte[transactionHash.length +

timestampBytes.length + prevHashBytes.lengthl];
System.arraycopy (transactionHash, 0, blockBytes, O,

transactionHash.length);
System.arraycopy (timestampBytes, 0, blockBytes,

transactionHash.length, timestampBytes.length);

System.arraycopy (prevHashBytes, 0, blockBytes,

transactionHash.length + timestampBytes.length,

prevHashBytes.length);

// Hash and convert to hex string:

byte[]l blockHashBytes = HashUtil.sha3(blockBytes);

String blockHash = Hex.encodeHexString(blockHashBytes) ;

return blockHash;

}

VAT
* Check if an address exzists in the stateMap.
* @param address - the address to check.

* @return true <f address exists, else false.
*/
public boolean existAccount (String address){
return stateMap.containsKey(address);

}

VAT
* Broadcast this Block to all peers.
*/
public void broadcast (){
List<String> receivers = new ArrayList<>();
receivers.add("broadcast");
Object [] objectsToSend = {receivers, this};
Client .main(objectsToSend);

}

//TODO: Checks and some mechanism to add peers to list.

/%% Add a valid peer to the list of wvalid peers */
public void addValidPeer (String peer){
validPeers.add (peer) ;

}

o1

265

290
291
292
293

/¥ %
* Print the stateMap.
*/
public void printState(){
for (String key : stateMap.keySet())
System.out.println("Address: " + key + " Balance:
+ stateMap.get (key).toString());

}

VAT
* Get the stateMap.
* @return A HashMap<> of the accounts and their states.
*/
public HashMap<String, AccountState> getState(){
return stateMap;

}

/ ok
* Get the transactionList.
* @return the list of transactions.
*/
public List<Transaction> getTransactionList (){
return transactionlList;

}

/**
* Get the hash of the previous block.
* @return prevBlockHash

*/

public String getPrevHash(){
return prevBlockHash;

}

VAE]
* Get the height.
* @return height
*/
public int getHeight (){
return height;
}

VAT
* Get time stamp.
* Q@return
*/
public long getTimeStamp (){
return timeStamp;

}

J k%
* Set the time stamp of the block in uniz epoch (
Milliseconds since 1 January 1970)
*/
public void setTimeStamp () {
this.timeStamp = System.currentTimeMillis();

}

92

296

311

325

327

/% *

* Get the list of walid peers.
* @return wvalidPeers

*/

public List<String> getValidPeers (){
return validPeers;

}

J* ¥

* Set previous block hash.
* @param hash

*/

public void setPrevBlockHash(String hash){
this.prevBlockHash = hash;

}

/% *

* Set the Block height.
* @param height

*/

public void setHeight (int height){
this.height = height;

}

J**

* Get the assetTypes.

* Q@return

*/

public ArrayList<AssetType> getAssetTypes (){

}

}

return assetTypes;

A.1.4 Blockchain

© 0 N o O oA W N e

[I S S S S U S S
S © ® N o A W N R O

package core;

import
import
import
import
import
import
import
import

import
import

J**

java.
java.
java.
java.
java.
java.
java.
java.

java.
java.

io

.FileInputStream;
io.
io.
io.
io.

FileOutputStream;
I0Exception;
ObjectInputStream;
ObjectOutputStream;

nio.file.InvalidPathException;
nio.file.Paths;
util.HashMap;

io.
io.

EOFException;
File;

* The interface against the local copy of the
* Qauthor Ludvig Backlund

*/

public class Blockchain {

93

blockchain.

21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

60
61
62
63
64
65
66
67
68
69
70
71
72

VAT
* Number of blocks currently in this blockchain
*/

private static int height;

/**
* The path to the directory where the blocks are stored.
*/

private static String directory;

J ok
* Map keeping track of which peers this node 1s
synchronized against.
*/

private static HashMap<String,Boolean> isSynchronized;

/** Construct a Blockchain with a set height.
* @param The number of blocks currently in the blockchain.
Genests height = 0.
*/
public Blockchain(int height){
Blockchain.height = height;

}
/**

* Construct an empty Blockchain

*/
public Blockchain(){

isSynchronized = new HashMap<String,Boolean>();

}
VAE]

* Add a block to the end of the Blockchain.
* @param block - the Block to add.
*x/
public static void addBlock(Block block){
try
{
File file = new File(directory + block.getHeight ());
FileOutputStream fileOut = new FileOutputStream(file
)5
ObjectOutputStream out = new ObjectOutputStream(
fileOut);
out.writeObject (block);
out.close();
fileOut.close();
height = block.getHeight ();
} catch(IOException i)
{
i.printStackTrace();
}
}

VAL
* Get the latest block from the blockchain.
* @return the latest block, if mo block ts found null s
returned.

o4

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

92
93
94
95
96

97
98
99
100
101

103
104
105
106
107

109
110
111
112
113
114
115
116

117

118
119

121

122
123

*/
public static Block getLatestBlock(){
tryq{
File file = new File(directory + height);
FileInputStream fileIn = new FileInputStream(file);
ObjectInputStream in = new ObjectInputStream(fileln);
tryq{
Block currentBlock = (Block) in.readObject();
in.close () ;
fileIn.close();
return currentBlock;
}catch (EOFException e){
in.close();
fileIn.close();

}
}catch(Exception i)
{
}
return null;
}
VAZ

* Get a Block by the Blocks order in the blockchain
* @return the Block of height blockHeight, <f no block s
found null is returned.
*/
public static Block getBlock(int blockHeight){
tryq{
File file = new File(directory + blockHeight);
FileInputStream fileIn = new FileInputStream(file);
ObjectInputStream in = new ObjectInputStream(fileln)
Block currentBlock = (Block) in.readObject ();
in.close () ;
fileIn.close();
return currentBlock;

}catch (Exception i)

{
i.printStackTrace();
}
return null;
}
/**

* Load the blockchain. Done at startup to ensure the local
copy of the blockchain
* 45 walid and to retrieve the current blockchain height.

* First checks tf the Genesis block ezists (should be
named "0"),
* 4f so the Genmesis block is wvalidated. If <t is walid the
current blockchain-height
* 45 set to O and the rest of the blockchain is wvalidated.
If no Genesis block exists
©t 4s created.

99

152

157

172

174
175
176
177
178

*/
public static void load (){

height = - 1;
File block = new File(directory + 0);
if (block.exists ()){
// First wvalidate the Genesis block:
Block genesis = getBlock(0);

if (! ((Genesis) genesis).validateGenesis ()){
System.err.println("Gensis block invalid.");
return;

}

height = 0;

block = new File(directory + (height + 1));

// Then walidate the rest of the blockchain:

while (block.exists ()){
Block currentBlock = getBlock(height + 1);
if (! currentBlock.validateBlock ()){

System.err.println("Block " + (height + 1) +
" invalid. Blockchain not valid.");

return;
}
height++;
block = new File(directory + (height + 1));
}
} elsed{
new Genesis();
load () ;
}
}
VAT
* Check that the directory provided by the user is wvalid.
* @param directory - the directory path

* @return true if directory path is walid else false
*/
private static boolean checkDirectory(String directory){
tryq{
Paths.get (directory);
} catch(InvalidPathException | NullPointerException e){
return false;
}
return true;

}

VAE]

* Get the current height (i.e. number of blocks=-1) of the

blockchain.

* @return the current height of the blockchain.

*/
public static int getHeight (){

return height;

}

/*% Set the directory where to store the blockchain

96

203
204
205
206

208
209
210
211
212
213

215

* Checks that the file path is walid. If so checks
* 4f directory exists, else it ¢s created.
* @param directory - the absolute or relative path of the
directory.
*x/
public static void setDirectory(String directory){

if (checkDirectory (directory)){
File file = new File(directory);
if (1file.exists ())
file.mkdirs () ;
Blockchain.directory = directory;

}

}
J k%
* Get the directory path.
* @return The path of the directory.
*/
public static String getDirectory (){
return directory;

}

VAT
* Check whether this Blockchain ts synchronized with a
specific peer.

* @param address - IP-address of the peer to check against.
* @return true if synchronized else false.
*/

public static boolean getIsSynchronized(String address){
if (isSynchronized.containsKey (address))
return isSynchronized.get (address);
else
return false;

* Get a block by its previous block hash.
* @param hash - the prevBlockHash of the Block.
* @return The block that has hash as tts prevBlockHash. If
not found null is returned.
*%/
public static Block getBlockByPrevHash(String hash){
Block block;
for(int i = 0; i < height+1; i++){
block = Blockchain.getBlock(i);
if (block.getPrevHash () .equals (hash)){
return block;

}

return null;

}

VAL
* Set if a peer is synchronized or not.
* @param address - the IP-address of the peer.
* @param wvalue - true if synchronized else false.

o7

}

*/
public static void setSynchronized(String address,
value) {
isSynchronized.put (address, value);

}

VAL
* Set the height of the Blockchain.
* @param height
*/
public static void setHeight (int height){
Blockchain.height = height;
}

A.1.5 Transaction

AW oo e

© 0 N o «

10

12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

package core;

import crypto.x*;

import crypto.ECKey.ECDSASignature;
import network.Client;

import mnetwork.MultipleSocketServer;

import org.apache.commons.codec.binary.Hex;
import java.io.Serializable;

import java.nio.x*;

import java.util.ArrayList;

import java.util.List;

/ ok *
* Abstract class for all Transactions.
*
* @author Ludvig Backlund
*/

public class Transaction implements Serializable {

private static final long serialVersionUID =
-758359160527238834L;

VAL
* Senders address (public key) as Hex String.
*/

protected String senderAddress;

/**
* Senders address (public key) as byte[].
*/

protected byte[] senderPubKey;

J k%
* Receivers address (public key) as Hexz String.
*/

protected String receiverAddress;

J**

98

boolean

40
41

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

92
93

* Asset-type to transfer.
*/
protected AssetType type;

/**
* The amount to transfer
*/
protected Integer amount;
/¥ *
* Time-stamp (Linuz epoch time)
*/
protected int timeStamp;
/**
* The hash of the transaction data.
*/
protected byte[] messageHash;
VAL
* The senders ECDSASignature.
*/

protected ECDSASignature signature;

/**
* JP-address of the nodes that sent the transaction.
*x/

protected List<String> senderIP = new ArrayList<>();

J k%
* Flag telling if the transaction %is signed or not.
*/

protected boolean isSigned = false;

VAE]
* Counter to ensure that a transaction can only be
processed once
*xx/

protected int nonce;

/**
* The ID of an asset wused with ordinary transactions
*/

protected String assetID;

/%% Constructs an unsigned transaction
*
* @param sender - Address of the sender.

* @param receiver - Address of the receiver.

* @param type - Asset type to transact.

* @param amount - Amount to transact.

*/

public Transaction(byte[] senderAddress, bytel[]
receiverAddress, AssetType type, int amount){
this.senderAddress = Hex.encodeHexString(senderAddress);
this.receiverAddress = Hex.encodeHexString(
receiverAddress) ;;

99

94
95
96
97

110
111

112

113

115
116
117
118
119

134
135

136
137

139
140
141
142

this.amount = amount;

this.type = type;

this.assetID = type.getID();

this.nonce = StaticRepository.getStateMap().get(this.
senderAddress) .getNonce () ;

setTimeStamp () ;

/%% Constructs a signed transaction (Only used locally in
stgnTransaction method)

*
* @param sender - Address of the sender.

* @param receiver - Address of the receiver.

* @param type - Asset type to tramsact.

* @param amount - Amount to transact.

* @param signature - The senders signature.

* @param messagehash - SHA-3 hash of the transaction. Used

in verification.
*/
protected Transaction(String senderAddress, bytel[]
senderPubKey, String receiverAddress, AssetType type,
Integer amount, ECDSASignature signature, int
timeStamp, byte[] messageHash, int nonce){
this.senderAddress = senderAddress;
this.senderPubKey = senderPubKey;
this.receiverAddress = receiverAddress;
this.amount = amount;
this.type = type;
this.assetID = type.getID();
this.signature = signature;
this.messageHash = messageHash;
this.timeStamp = timeStamp;
this.isSigned = true;
this.nonce = nonce;

}

/%% Constructs an unsigned transaction

*
@param sender - Address of the sender.
@param receiver - Address of the receiver.
@param type - Asset type to transact.
@param amount - Amount to transact.

* % % %

*/
public Transaction(byte[] senderAddress, bytel[]
receiverAddress, String assetID, int amount){

this.senderAddress = Hex.encodeHexString(senderAddress) ;

this.receiverAddress = Hex.encodeHexString(
receiverAddress);;

this.amount = amount;

this.assetID = assetID;
this.nonce = StaticRepository.getStateMap().get(this.
senderAddress) .getNonce () ;
setTimeStamp () ;
}

/%% Constructs a signed transaction (Only used locally in

60

152

172
173
174

175
176

177

178

179

180

182

183

signTransaction method)

@param sender - Address of the sender.

@param receiver - Address of the recetver.

@param type - Asset type to transact.

@param amount - Amount to transact.

@param signature - The senders signature.

@param messagehash - SHA-3 hash of the transaction. Used
in verification.

* %X X X X X %

*/
protected Transaction(String senderAddress, bytel[]

senderPubKey, String receiverAddress, String assetID,

Integer amount, ECDSASignature signature, int
timeStamp, byte[] messageHash, int nonce){

this.senderAddress = senderAddress;

this.senderPubKey = senderPubKey;

this.receiverAddress = receiverAddress;

this.amount = amount;

this.assetID = assetlID;

this.signature = signature;

this.messageHash = messageHash;

this.timeStamp = timeStamp;

this.isSigned = true;

this.nonce = nonce;

}

VAE]
* Get the SHA-3 hash of this transaction.
* @return the hash.

*/

public byte[] getHash(){
// Get a byte array to do the hashing on from the
transaction data:
byte[] senderBytes = senderAddress.getBytes();
byte[] receiverBytes = receiverAddress.getBytes();
byte[] amountBytes = ByteBuffer.allocate(Integer.SIZE).
putInt (amount).array();
byte[] typeBytes = assetID.getBytes();
byte[] timeStampBytes = ByteBuffer.allocate(Integer.SIZE
) .putInt (timeStamp) .array();
byte[] nonceBytes = ByteBuffer.allocate(Integer.SIZE).
putInt (nonce) .array();
byte[] messageBytes = new byte[senderBytes.length +
receiverBytes.length + amountBytes.length +
typeBytes.length +
timeStampBytes.length
+ nonceBytes.length
1
System.arraycopy (senderBytes, O, messageBytes, O,
senderBytes.length);
System.arraycopy(receiverBytes, 0, messageBytes,
senderBytes.length, receiverBytes.length);
System.arraycopy (amountBytes, 0O, messageBytes,
senderBytes.length + receiverBytes.length,
amountBytes.length);
System.arraycopy (typeBytes, 0O, messageBytes, senderBytes

61

.length + receiverBytes.length + amountBytes.length,
typeBytes.length);

184 System.arraycopy (timeStampBytes, O, messageBytes,
senderBytes.length + receiverBytes.length +
amountBytes.length + typeBytes.length,
timeStampBytes.length);

185 System.arraycopy (nonceBytes, 0, messageBytes,
senderBytes.length + receiverBytes.length +
amountBytes.length + typeBytes.length +
timeStampBytes.length, nonceBytes.length);

187 // Hash the messageBytes:

188 byte[] messageHash = HashUtil.sha3(messageBytes);

189 return messageHash;

190 }

191

192 /**

193 * Broadcast this transaction to all peers.

194 */

195 public void broadcast (){

196 List<String> receivers = new ArrayList<>();

197 receivers.add("broadcast");

198 this.senderIP.add(MultipleSocketServer.getIP());

199 Object [] objectsToSend = {receivers, this};

200 Client.main(objectsToSend);

201 }

202

203 /*x

204 * Set the time stamp of the transaction in uniz epoch (
Seconds since 1 January 1970).

205 */

206 public void setTimeStamp (){

207 this.timeStamp = (int) (System.currentTimeMillis() /

1000L) ;

208 }

209

210 VAL

211 * Add an IP-address to senderIP.

212 * @param senderIP

213 */

214 public void setSenderIP(String senderIP){

215 this.senderIP.add(senderIP);

216 }

217

218 /**

219 * Get the senderIP list.

220 * Q@return

221 */

222 public List<String> getSenderIP (){

223 return this.senderIP;

224 }

225

226 VAL

227 * Get the mnonce.

228 * Q@return

229 */

230 public int getNonce (){

62

231 return this.nonce;

232 }

233

234 /¥

235 * Get the senders address

236 * @return the Hex String representation of the senders
address

237 */

238 public String getSenderAddress (){

239 return senderAddress;

240 }

241

242 /**

243 * Get the senders public key

244 * @return the byte[] representation of the senders address.

245 */

246 public bytel[] getSenderPubKey (){

247 return senderPubKey;

248 }

249

250 /*x

251 * Get the receivers address.

252 * @return The Hex String representation of the receivers
address.

253 */

254 public String getReceiverAddress (){

255 return receiverAddress;

256 }

257

258 /*x

259 * Get the amount.

260 * @return

261 */

262 public int getAmount (){

263 return amount;

264 }

265

266 /**

267 * Get the asset type.

268 * Q@return

269 */

270 public AssetType getType (){

271 return type;

272 }

273

274 /¥

275 * Get the hash of the transaction data.

276 * Q@return

277 */

278 public byte[] getMessageHash(){

279 return messageHash;

280 }

281

282 /* %

283 * Get the ECDSASignature.

284 * Q@return

285 */

63

N o oA W N e

0

10
11
12
13
14

15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

public ECDSASignature getSignature (){
return signature;

}

J**

* Check <f the transaction <s signed or not.

* @return true if signed else false.

*/

public boolean isSigned(){

}

/**

return isSigned;

* Get assetID
* Q@return assetID

*/

public String getAssetID(){
return assetID;

}
}

1.6 OrdinaryTransaction

package

core;

import crypto.ECKey;

import crypto.ECKey.ECDSASignature;

J**

* Class representing an

"ordinary"

transaction,

transaction that transfers an asset
* from one account to another.
* Qauthor Ludvig Backlund

*/

public class OrdinaryTransaction extends Transaction {

private static final long serialVersionUID =
966032047732505698L;

*
*
*
*
*
*

*/

public OrdinaryTransaction(byte[]
receiverAddress,

Create
@param
@param
@param
@param

an unsigned OrdinaryTransaction.

senderAdddress
receiverdddress
assetID

amount

super (senderAddress ,

Create a signed OrdinaryTransaction.

@param
@param
@param

senderAddress
pubKey
recetverAdddress

64

T.

e.

senderAddress,
String assetID,
receiverAddress,

a

byte []
int amount) {
assetlID,

32
33
34
35
36
37
38
39

40

41

42
43
44
45

46
47
48
49
50
51
52

54

@param assetID
@param amount
@param signature
@param timeStamp
@param messageHash
@param nonce

LR U N

*/
public OrdinaryTransaction(String senderAddress, bytel[]
pubKey, String receiverAddress, String assetID,
Integer amount, ECDSASignature signature, int
timeStamp, byte[] messageHash, int nonce) {
super (senderAddress, pubKey, receiverAddress, assetID,
amount , signature, timeStamp, messageHash, nonce);

}

J k%
* Sign this transaction. An ECKey 1is used to sign a byte
array derived from the input transactions fields.
* @param key - The ECKey signing the transaction.
* @return A signed transaction
*/
public OrdinaryTransaction signTransaction(ECKey key){
byte[] messageHash = this.getHash();
signature = key.doSign(messageHash);
return new OrdinaryTransaction(senderAddress, key.
getPubKey (), receiverAddress, assetID, amount,
signature, timeStamp, messageHash, nonce);

}

A.1.7 EmittingTransaction

N o oA W N e

©

10
11
12
13
14

15
16
17
18
19
20
21
22

package core;

import crypto.ECKey;
import crypto.ECKey.ECDSASignature;

/ ok *
* Transaction for either creating a new AssetType or for
155uing
* more shares of an existing AssetType.
* Qauthor Ludvig Backlund
*/

public class EmittingTransaction extends Transaction {

private static final long serialVersionUID =
-3304799141746904602L;

J k%
* Construct a mew wunsigned EmittingTransaction.
* @param senderAddress
* @param type
* @param amount
*/
public EmittingTransaction(byte[] senderAddress, AssetType
type, int amount) {

65

23
24

26
27
28
29
30
31
32
33
34
35
36
37
38

39

40

41
42
43
44

45
46
47
48
49
50
51

52
53

super (senderAddress, senderAddress, type, amount);

W

*

Construct a nmew signed EmittingTransaction.
@param senderAddress

@param pubKey

@param receiverAddress

@param type

@param amount

@param signature

@param timeStamp

@param messageHash

@param nonce

* %X %X X X %X ¥ X X % %

*/
public EmittingTransaction(String senderAddress, bytel[]
pubKey, String receiverAddress, AssetType type,
Integer amount, ECDSASignature signature, int
timeStamp, byte[] messageHash, int nonce) {
super (senderAddress , pubKey, receiverAddress, type,
amount , signature, timeStamp, messageHash, nonce);

}

VAT
* Sign this transaction. An ECKey is used to sign a byte
array derived from the input transactions fields.
* @param key - The ECKey signing the transaction.
* @return A signed transaction
*/
public EmittingTransaction signTransaction (ECKey key){
byte[] messageHash = this.getHash();
signature = key.doSign(messageHash);
return new EmittingTransaction(senderAddress, key.
getPubKey (), receiverAddress, type, amount,
signature, timeStamp, messageHash, nonce);

}

A.1.8 EmptyTransaction

IS S S

0

10
11
12
13
14
15

package core;

import crypto.ECKey;
import crypto.ECKey.ECDSASignature;

/% *
* Transaction used for telling the network that we created a
new
* account.
* Q@author Ludvig Backlund
*

*/
public class EmptyTransaction extends Transaction{

private static final long serialVersionUID =
1254158150455163558L;

66

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38

39

40

41

42
43

N o oA W N e

©

J ok
* Construct a nmew unsigned EmptyTransaction.
* @param senderAddress

*/
public EmptyTransaction(byte[] senderAddress) {
super (senderAddress, senderAddress, "", 0);
}
VAT

* Construct a new Signed EmptyTransaction.
* @param senderAddress

@param pubKey

@param receiverAddress

@param assetID

@param amount

@param signature

@param timeStamp

@param messageHash

@param nonce

* %X %X X X * *x %

*/
public EmptyTransaction(String senderAddress, byte[] pubKey,
String receiverAddress, String assetID,
Integer amount, ECDSASignature signature, int
timeStamp, byte[] messageHash, int nonce) {
super (senderAddress, pubKey, receiverAddress, assetID,
amount , signature, timeStamp, messageHash, nonce);

}

J k%
* Sign this transaction. An ECKey 1is wused to sign a byte
array derived from the input transactions fields.
* @param key - The ECKey signing the transaction.
* @return A signed transaction
*/
public EmptyTransaction signTransaction (ECKey key){
byte[] messageHash = this.getHash();
signature = key.doSign(messageHash);
return new EmptyTransaction(senderAddress, key.getPubKey
(), receiverAddress, assetID, amount, signature,
timeStamp, messageHash, nonce);

}

1.9 Genesis

package core;

import java.util.ArrayList;
import java.util.HashMap;

/ ok *
* Represents the Genesis block. When a node ts starting an
tnstance
* of the program with no local version of the blockchain stored
* the Genesis block is created. All nodes participating on the
same

67

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45

46
47
48
49
50

A.

© 0 N e U A W N e

10

* blockchain must have the same version of the Genestis block.
*
* @author Ludvig Backlund
*
*/
public class Genesis extends Block {
private static final long serialVersionUID = 1L;
VAT
* Construct a nmew Genesis block.
*/

public Genesis (){
this.timeStamp = O0;
this.setPrevBlockHash("");
this.transactionlist = new ArrayList<>();
this.stateMap = new HashMap<>();
this.setHeight (0) ;

this.addValidPeer ("127.0.0.1");
this.addValidPeer ("127.0.0.2");
this.addValidPeer ("127.0.0.3");
this.addValidPeer ("127.0.0.4");
Blockchain.addBlock (this);

System.out.println("Genesis block created.");

}
/**
* Validate the gemesis block by checking that total height
* of blockchain == -1, hash of previous block equals "",
* that no transactions are contained and timestamp == 0.
* @return true if wvalid else false.
*/
public boolean validateGenesis (){
if (this.getHeight () == 0 && this.getPrevHash().equals(""
)
&& this.getTransactionList().isEmpty () && this.
getTimeStamp () == 0){
return true;
3
return false;
}

}
1.10 Merkle

package core;

import java.util.ArrayList;
import java.util.List;

import crypto.HashUtil;

/ ok *
* Class used to get the Merkle root hash from a list of
Transactions.

* @author Ludvig Backlund

68

11
12
13
14
15
16
17
18
19
20
21

22

23
24
25

26
27
28
29
30
31

32
33
34
35
36
37
38

39
40

41
42

43

44

46

47

48

49

50

51

53

54

*/
public class Merkle {

J**
* The Merkle root hash.
*/

private byte[] rootHash;

VAT
* Construct a Merkle-object containing the root hash of a
set of transactions.
* @param transactionlList - The transactions to create the
root has from.

*/
public Merkle(List<Transaction> transactionList){
List<byte[]> transactionHashes = toBytes(transactionList
)
this.rootHash = merkleHash(transactionHashes);
}
/**
* Get a roothash from a list of transaction hashes.
* @param transactionHashList - The list of transaction
hashes.
* @return the root hash of the transactionHashList.
*/

private byte[] merkleHash(List<byte[]> transactionHashList){
byte[] transi;
byte[] trans2;
byte[] transConcatenated;
List<byte[]> tempTransactionHashList = new ArrayList<>()

// If even number of transactions
if (transactionHashList.size() > 1 && transactionHashList

.size() % 2 == 0){

// Concatenate every two hashes

for(int i = 0; i < transactionHashList.size(); i=i
+2){
transl = transactionHashList.get(i);
trans2 = transactionHashList.get(i+1);
transConcatenated = new byte[transi.length +

trans2.length];
System.arraycopy(transi, 0O, transConcatenated,
0, transl.length);
System.arraycopy(trans2, O, transConcatenated,
transl.length, trans2.length);
tempTransactionHashList.add (HashUtil.sha3(
transConcatenated)) ;
}
return merkleHash(tempTransactionHashList);
}
else if (transactionHashList.size() > 1 &&
transactionHashList.size() % 2 != 0) {
// Copy last hash and add tt to the end of the list
to get it even:
transactionHashList.add(transactionHashList.get(

69

55
56
57
58
59
60
61

62

63
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

A.

© 0w N o

10

12
13
14
15
16
17
18
19
20

transactionHashList.size()-1));
return merkleHash(transactionHashList);
}
return transactionHashList.get (0);

}

VAL
* Convert a list of transaction to a list of the
corresponding SHA-3 hashes.

* @param transactionList - A list of the transactions to
convert.

* @return A list of the corresponding SHA-3 hashes.

*/

private List<byte[]> toBytes(List<Transaction>
transactionList){
List<byte[]> transactionsHashList = new ArrayList<>();
for (Transaction transaction: transactionList){
transactionsHashList.add(transaction.getHash());
}
return transactionsHashList;

}

/% *
* Get the rootHash.
* Q@return
*/
public byte[] getHash(){
return rootHash;

}
}
1.11 Miner

package core;
/ ok *
* The process creating a new Block. For now a ’round robin’
type s wused
* where each node has a certain likelihood to create a new

block.
*
* Qauthor Ludvig Backlund
*/

import java.util.Random;
public class Miner {
/** Set the time interval here (in seconds)*/
private static int minimumTime = 100;
private static int maximumTime = 100;
public static void main(){

Random randomGenerator = new Random() ;

while (true){

21

try {

70

22

23
24
25
26
27
28
29
30
31
32
33
34
35
36

A.

© 0 N o U A W N e

[T i ~ T o S R
S © X N O’ A W N = O

21

22

23
24
25
26
27
28
29
30
31
32
33
34

Thread.sleep(randomGenerator .nextInt (maximumTime
*1000) +minimumTime *1000) ;
} catch (InterruptedException e) {
e.printStackTrace ();

}

System.out.println("Mined new block!");
StaticRepository.dumpRepository () ;

new StaticRepository();
Blockchain.getLatestBlock () .broadcast () ;

}
1.12 StaticRepository

package core;
import java.util.List;

import org.apache.commons.codec.DecoderException;
import org.apache.commons.codec.binary.Hex;

import java.rmi.AlreadyBoundException;

import java.util.ArrayList;

import java.util.ConcurrentModificationException;
import java.util.HashMap;

import crypto.ECKey;
import exceptions.TransactionNotValidException;
import network.Client;

/ ok *
* Repository to keep the current state. Contains methods to
* execute and validate transactions. As a new block
* 45 created the current state of the StaticRepository is saved
into a new
* block. If a new Block s received the state of that block 1is
loaded
* into the StaticRepostitory. Validated Transactions that are
not in the received
block are kept.

Qauthor Ludvig Backlund

* % % %

public final class StaticRepository {

/% %
* Map of public keys (addresses) and AccountStates.
*/
private static HashMap<String, AccountState> stateMap = new

HashMap<>();

71

35
36
37
38
39

40
41
42
43
44

45
46
47
48
49

51
52
53
54
55
56
57
58
59
60
61
62
63

64

65
66
67
68
69
70
71
72

73
74

75

76

77

78

79

80

81

VAE]
* List of pending transactions
*/
private static ArraylList<Transaction> pendingTransactions =
new ArrayList<>();

/% %
* List of walidated transactions
*/
private static ArraylList<Transaction> validatedTransactions
= new ArrayList<>();

J k%
* List of all existing AssetTypes
*/
private static ArraylList<AssetType> assetTypes = new

ArrayList<>(Q);

/**
* Latest Block currently <n blockchain.
*/

private static Block latestBlock;

J ok
* Construct a repository from a Block.
* @param latestBlock
*/
public StaticRepository(Block block){
StaticRepository.latestBlock = block;
StaticRepository.setStateMap(block.getState());

StaticRepository.pendingTransactions = new ArrayList<>()
StaticRepository.validatedTransactions = new ArraylList
<>
}
/**

* Construct a repository from the latest Block.
* @param latestBlock
*/
public StaticRepository (){
StaticRepository.latestBlock = Blockchain.getLatestBlock
(O
StaticRepository.stateMap = latestBlock.getState();
StaticRepository.assetTypes = latestBlock.getAssetTypes
(O
StaticRepository.pendingTransactions = new ArrayList<>()
StaticRepository.validatedTransactions= new ArraylList
<>0;

/% %
* Construct a repository where some pending transactions
are
* kept from the previous repository.

72

82
83
84

86

87
88
89

90
91
92
93

94
95

96

97
98
99

101
102
103
104

106
107

108
109
110
111
112

113
114

116

122
123
124

* @param pendinglransactions
*/
public StaticRepository(ArraylList<Transaction>
pendingTransactions) {
tryq{
StaticRepository.latestBlock = Blockchain.
getLatestBlock ();

/* Keep transactions from last Repository */

HashMap<String, AccountState> mergedMap = new
HashMap<>();

mergedMap.putAll (latestBlock.getState());

mergedMap.putAll (StaticRepository.getStateMap());

StaticRepository.stateMap = mergedMap;

StaticRepository.assetTypes = latestBlock.
getAssetTypes () ;

StaticRepository.pendingTransactions =
pendingTransactions;
StaticRepository.validatedTransactions = new
ArrayList<>();
} catch(Exception e){

}
}

//TOD0: Dependent transactions.
J k%
* Egecute all transactions currently in pending
transactions list.
* If recetver address does not exist in state it 1is
created, if
sender address does not exist wn state we return.
Adds successful transaction to the wvalidated
transactions list
* Non successful transactions are discarded.
* @throws DecoderEzception
*
*/
public static void executePendingTransactions() throws
TransactionNotValidException {
tryq{
for(Transaction pendingTransaction: pendingTransactions)
{
String sender = pendingTransaction.getSenderAddress
O3
String receiver = pendingTransaction.
getReceiverAddress () ;

/%% Check that transaction is stigned **/

try

{

if (1ECKey.verify(pendingTransaction.getHash(),
pendingTransaction.getSignature (),
pendingTransaction.getSenderPubKey ())){

pendingTransactions = new ArrayList<>();
throw new TransactionNotValidException ("

73

143

145

146

147
148
149

150

158

160

161
162

}

Signature of sender not valid: " +
sender) ;

}

catch (Exception e)

{
}

/% %

e.printStackTrace () ;

If EmptyTransaction we are done. */

if (pendingTransaction instanceof EmptyTransaction){

}

J**

//System.out.println ("INSIDE EMPTY TRANSACTION")

stateMap.put (sender, new AccountState());
getStateMap () .get (sender) .increaseNonce () ;
validatedTransactions.add(pendingTransaction) ;
pendingTransaction.broadcast () ;

continue;

Check that transaction has not already been
processed */

if (! (stateMap.get(pendingTransaction.

}

J**

getSenderAddress ()).getNonce () ==
pendingTransaction.getNonce ())){
pendingTransactions = new ArrayList<>();
throw new TransactionNotValidException("
Transaction nonce is not equal to Account
nonce" +
stateMap.get (pendingTransaction.
getSenderAddress ()) .getNonce () +
pendingTransaction.getNonce ());

Check that both sender and receiver exist in
state */

if (! (getStateMap () .containsKey (pendingTransaction.

VEX

getSenderAddress ())
&& getStateMap () .containsKey (
pendingTransaction.getReceiverAddress ())
IDRE
pendingTransactions = new ArrayList<>();
throw new TransactionNotValidException("Sender
or Receiver does not exist in state");

If EmittingTransaction mo more wvalidation ts
needed */

if (pendingTransaction instanceof EmittingTransaction

){
AssetType assetType = pendingTransaction.getType
(0N
/%% Only the owner of the assetType can alter 4t
*/

for (AssetType assetTypeTemp: assetTypes){
if (assetTypeTemp.getID() .equals (assetType.

74

163

164
165

166

180

181

182
183
184

186

187

189
190
191
192
193
194

196
197
198
199
200

getID())){
if (!ECKey.verify(pendingTransaction.
getMessageHash (), pendingTransaction
.getSignature (),
assetTypeTemp.getPubKey ())){
pendingTransactions = new ArrayList
<>0;
throw new
TransactionNotValidException ("
Signature does not match owner
of AssetType: + assetType.
getName ()) ;

}

break;

}
}
assetTypes.add(assetType);
stateMap.get (receiver).increaseBalance(

pendingTransaction.getAssetID(),

pendingTransaction.getAmount ());
stateMap.get (sender) .increaseNonce () ;
validatedTransactions.add(pendingTransaction);
pendingTransaction.broadcast () ;
continue;

}

/%% Check that sender has enough balance on account
*/
if (stateMap.get (sender) .getBalance(
pendingTransaction.getAssetID()) <
pendingTransaction. getAmount ()){
throw new TransactionNotValidException("Not
enough balance on sender account: " + sender
)5
}

/** Transaction is ordinary transaction */
stateMap.get (receiver).increaseBalance(
pendingTransaction.getAssetID(),
pendingTransaction.getAmount ());
stateMap.get (sender) .decreaseBalance(
pendingTransaction.getAssetID(),
pendingTransaction.getAmount ());
stateMap.get (sender) .increaseNonce ();
validatedTransactions.add(pendingTransaction);
pendingTransaction.broadcast () ;

}
pendingTransactions = new ArrayList<>();
}
catch(ConcurrentModificationException e){
}
}
VAT

* Get Transactions that are uncommon in StaticRepository

()

206

208

216

235

236
237
238
239

240

241

242
243

and a Block.
* (used to keep transactions when receiving a new Block)
* @param block - the block to compare against.
* @return A list of the wuncommon transactions.
*/
public static ArraylList<Transaction> getUncommonTransactions
(Block block){
/*% Get transactions from block and inttialize a new
transaction list */

List<Transaction> blockTransactions = block.
getTransactionList ();
ArraylList<Transaction> uncommonTransactions = new

ArrayList<>();

/*% Add transactions that does not exist in the blocks
* transactions to mnew transaction-1list.
*/
boolean isCommon = false;
for(Transaction myTransaction: validatedTransactions){
for(Transaction blockTransaction: blockTransactions)
{
if (Hex.encodeHexString (myTransaction.
getMessageHash ()) .equals (Hex.encodeHexString
(blockTransaction.getMessageHash ()))){
isCommon = true;
break;
}
}
if (!isCommon) {
uncommonTransactions.add(myTransaction);

}

return uncommonTransactions;

/**
* Dump the current repository into a new Block.
*/
public static void dumpRepository (){
Block block = new Block(validatedTransactions, stateMap,
assetTypes,
latestBlock.getHash(), latestBlock.getValidPeers
(), latestBlock.getHeight () +1);

if (block.validateBlock ()){
Blockchain.addBlock(block) ;
System.out.println("Block saved as: Block " + block.

getHeight () + ", hash: " + block.getHash() +
", time-stamp: " + block.getTimeStamp() + ",
nr of transactions: " + block.
getTransactionList () .size ());
}
else

System.err.println("Could not add block to
blockchain, block not valid.");

76

244 }

245

246 VAL

247 * Broadcast wvalidated transactions to all peers.

248 */

249 public static void broadcastTransactions (){

250 for(Transaction transaction: validatedTransactions){

251 /** Broadcast to everyone */

252 List<String> receivers = new ArraylList<>();

253 receivers.add("broadcast");

254 Object [] objectsToSend = {receivers, transaction};

255 Client.main(objectsToSend);

256 }

257

258 }

259

260 /**

261 * Print the current account state.

262 */

263 public static void printAccountState (){

264 for (String key: getStateMap () .keySet ()){

265 System.out.println("Adress: " + key + ", " + "Value:

" + stateMap.get(key).toString());

266 }

267

268 }

269

270 /*x

271 * Add an AssetType.

272 * @param assetType - The assetType to add.

273 */

274 public static void addAssetType(AssetType assetType) throws
AlreadyBoundException {

275 for (AssetType existingType : assetTypes){

276 if (existingType.getID() .equals(assetType.getID())){

277 return;

278 }

279 }

280 assetTypes.add(assetType) ;

281 }

282

283

284 /¥

285 * Add transaction to pending transactions

286 * @param transaction

287 */

288 public static void addPendingTransaction(Transaction
transaction){

289 pendingTransactions.add (transaction) ;

290 }

291

292 /**

293 * Get the AssetType list

204 */

295 public static ArrayList<AssetType> getAssetTypes (){

296 return assetTypes;

297 }

(s

311

J ok
* Get the stateMap
* Q@return stateMap
*/
public static HashMap<String, AccountState> getStateMap() {
return stateMap;

}

/¥ *
* Set the stateMap
* @param stateMap
*/
public static void setStateMap (HashMap<String, AccountState>
stateMap) {

StaticRepository.stateMap = stateMap;
}
/**
* Add an account with an empty accountState to state
* @param address - the address of the account to add.
*x/

public static void addAccount (String address){
if (!stateMap.containsKey (address))
stateMap.put (address, new AccountState());

}

A.1.13 TransactionValidator

© 0w N e U A W N e

[I N R R i = T e e
AW N = O © B N O oA W N = O

V)
o

package core;
import exceptions.TransactionNotValidException;

J**
* This class run in a separate thread to periodically ezecute
* and broadcast transactions.
* Qauthor Ludvig Backlund
*

*/
public class TransactionValidator {
public static void main(){
System.out.println("TransactionValidator initialized");

while (true)q{
try
{
StaticRepository.executePendingTransactions () ;
}
catch(TransactionNotValidException e){
System.err.println("\r" + e.getMessage());

}

8

26

27 try {

28 Thread.sleep (3000); // Set here how often to

ezecute pending transactions.

29 } catch (InterruptedException e) {

30 e.printStackTrace () ;

31 }

32 }

33

34 }

35

36 |}

A.1.14 Userlnterface

1 | package core;

2

3 | import java.io.x*;

4 |import java.rmi.AlreadyBoundException;

5

6 | import org.apache.commons.codec.DecoderException;

7 | import org.apache.commons.codec.binary.Hex;

8

9 | /**

10 * Command line interface for a user to interact with the
blockchain.

11 *

12 * Commands :

13 * create wallet - creates a new wallet file containing your
public and private key.

14 * create security - create a new security. Shares are assigned
to the active wallet.

15 * create transaction - create and broadcast a new transaction.

16 * print state - prints the current state of the blockchain

17 * set wallet - In case several wallet files exists this
commando allows for dectiding which to be active.

18 * my address - prints the address of the active wallet.

19 * my balance - prints the balance of the active wallet

20 *

21 * Qauthor Ludvig Backlund

22 */

23

24

25 | /A *

26 * Construct a new UserInterface.

27 *

28 */

20 | public class UserInterface {

30

31 /* *

32 * The wallet to use when creating Transactions.

33 */

34 private static Wallet myWallet = null;

35

36 /*x

37 * Initialize the Command Line Interface.

38 */

79

39 public static void initialize (){

40 String input = "";

41 System.out.println("Enter command:");

42 BufferedReader bufferedReader = new BufferedReader (new
InputStreamReader (System.in));

43 try {

44 input = bufferedReader.readLine();

45 } catch (IOException e) {

46 System.err.println("Something went wrong");

a7 initialize ();

48 }

49

50 input = input.toLowerCase();

51

52 /*% Create wallet */

53 if (input.equals("create wallet")){

54 createWallet (bufferedReader) ;

55 }

56

57 /*% Create transaction */

58 if (input.equals("create transaction")){

59 createTransaction(bufferedReader) ;

60 }

61

62 /** Emit a security */

63 if (input.equals("create security")){

64 emitSecurity (bufferedReader) ;

65 }

66

67 /** Set active wallet */

68 if (input.equals("set wallet")){

69 setWallet (bufferedReader) ;

70 }

71

72 /** Print the current state of all known accounts */

73 if (input.equals ("print state")){

74 StaticRepository.printAccountState ();

75 }

76

77 /*% Print the address of the wallet currently active */

78 if (input.equals ("my address")){

79 if (myWallet != null)

80 System.out.println(myWallet.getStringAddress());

81 else

82 System.err.println("No active wallet set");

83 }

84

85 /** Print the balance of the current wallet */

86 if (input.equals ("my balance")){

87 if (myWallet != null)

88 System.out.println(StaticRepository.getStateMap

() .get (myWallet.getStringAddress ()));

89 else

90 System.err.println("No active wallet set");

91 }

92

93 /**

80

94 * Print detatils about an AssetType

95 */

96 if (input.equals ("print assettype")){

97 printAssetType (bufferedReader) ;

08 }

99

100 if (input.equals("get nonce")){

101 System.out.println(StaticRepository.getStateMap ().

get (myWallet.getStringAddress()).getNonce());

102 }

103

104 UserInterface.initialize ();

105 }

106

107 /**

108 * Create a new wallet.

109 * @param bufferedReader

110 */

111 private static void createWallet (BufferedReader
bufferedReader){

112

113 System.out.println("Enter wallet name");

114 String walletName = "";

115 tryq{

116 walletName = bufferedReader.readLine();

117 } catch(IOException e){

118 System.err.println("Something went wrong");

119 initialize ();

120 }

121 Wallet wallet = new Wallet(walletName);

122 StaticRepository.addAccount (wallet.getStringAddress ());

123 myWallet = wallet;

124 EmptyTransaction transaction = new EmptyTransaction(

myWallet.getAddress ());
125 transaction = transaction.signTransaction(myWallet.
getKey ()

126 /*% Add transaction to repository */

127 StaticRepository.addPendingTransaction(transaction);

128 }

129

130 /¥

131 * Create a new security

132 * @param bufferedReader

133 */

134 private static void emitSecurity(BufferedReader
bufferedReader){

135

136 String sender = "'";

137 String type = "";

138 String name = "";

139 String ID = "";

140 int quantity = 0;

141 Wallet senderWallet = myWallet;

142

143 if (myWallet == null){

144 System.out.println("Type in name of wallet to stand

as emitter.");

81

176
177
178
179

181
182
183
184
185

187
188
189
190
191

192
193
194
195
196

try {
sender = bufferedReader.readLine();

} catch (IOException e) {
System.err.println("Something went wrong");
initialize () ;

}

File walletFile = new File("sender");

if ('walletFile.exists ()){
System.err.println("Wallet does not exist.");
initialize () ;

}

myWallet = Wallet.load(sender);

}

System.out.println("Type in name of security to create")

try {
name = bufferedReader.readLine();

}catch (IOException e) {
System.err.println("Something went wrong");
initialize ();

}

System.out.println("Type in ID of security to create");
try {
ID = bufferedReader.readLine () ;
}catch (IOException e) {
System.err.println("Something went wrong");
initialize ();

System.out.println("Type in type of security to create (
i.e. ’bond’, ’stock’, etc.)");

try {
type = bufferedReader.readlLine();

}catch (IOException e) {
System.err.println("Something went wrong");
initialize ();

}
System.out.println("Type in number of shares to emit");
try {

quantity = Integer.parselnt(bufferedReader.readLine

(O
} catch (IOException e) {
System.err.println("Something went wrong");
initialize ();

AssetType assetType = new AssetType(name, ID, type,
senderWallet.getName (), senderWallet.getKey().
getPubKey ());

try {
StaticRepository.addAssetType (assetType);
} catch(AlreadyBoundException e){
System.err.println(e.getMessage ());

82

197
198
199

201

205
206
207

209
210
211
212

initialize ();

}

EmittingTransaction transaction = new
EmittingTransaction(senderWallet.getAddress (),
assetType, quantity);

transaction = transaction.signTransaction(senderWallet.
getKey) ;

/** Add transaction to repository */

StaticRepository.addPendingTransaction(transaction);

System.out.println("Emitting " + quantity + " " + name +

" to address: " + Hex.encodeHexString(senderWallet.
getAddress ()));

/%% Lets the user create a transaction by entering the
receiver
* the type and amount. Sender i¢s the active wallet.
*
* @param bufferedReader
*/
private static void createTransaction(BufferedReader
bufferedReader){
String receiver = "";
String sender = "";
String assetID = "";
int quantity = 0;
Wallet senderWallet = myWallet;

/*% Print all the known addresses to make it eastier to
send */

System.out.println("Known addresses: ");

StaticRepository.printAccountState();

/** Get info about the transaction from user */
System.out.println("Type in receiveraddress:");
try {
receiver = bufferedReader.readLine();
} catch (IOException e) {
System.err.println("Something went wrong");
initialize();

}
if (myWallet == null){
System.out.println("Type in name of wallet to send
from:");
try {
sender = bufferedReader.readLine();

} catch (IOException e) {
System.err.println("Something went wrong");
initialize () ;

}

File walletFile = new File("sender");

if (twalletFile.exists ()){
System.err.println("Wallet does not exist.");
initialize () ;

83

264

274
275
276

277

278

279

281

282
283

284

286
287
288
289
290

}

myWallet = Wallet.load(sender);

}
System.out.println("Enter assetID");
try
{
assetID = bufferedReader.readLine();
}
catch (IOException e)
{
System.err.println("Something went wrong");
initialize ();
}
System.out.println("Type in quantity to transact:");
try {
quantity = Integer.parselnt(bufferedReader.readLine

(ODN
if (StaticRepository.getStateMap () .get(myWallet.
getStringAddress()) .getBalance(assetID) <
quantity){
System.err.println("Not enough balance on
account");
initialize ();
}
} catch (Exception e) {
System.err.println("Something went wrong");
initialize ();

}

/*% Create the transaction (Addresses should be as byte
[7) */

byte[]l receiverByte;

try {
receiverByte = Hex.decodeHex(receiver.toCharArray())
OrdinaryTransaction transaction = new

OrdinaryTransaction(senderWallet.getAddress (),
receiverByte, assetID, quantity);

transaction = transaction.signTransaction(
senderWallet.getKey ());

/** Add transaction to repository */

StaticRepository.addPendingTransaction(transaction);

System.out.println("Transacting " + quantity + " " +
assetID + " to address: " + receiver + ".");

} catch (DecoderException e) {

System.err.println("Something went wrong, can’t
decode receiver address.");

initialize();

}
/% *

* Set the active wallet
* @param bufferedReader

84

291 */

292 private static void setWallet (BufferedReader bufferedReader)
{
293 String walletName = "";
294 System.out.println("Type in name of your wallet");
295 try {
296 /*% Read wallet mname from user */
297 walletName = bufferedReader.readLine();
298
299 /*% Check that wallet exists */
300 File walletFile = new File(Blockchain.getDirectory ()
+ walletName) ;
301 if (walletFile.exists ()){
302 myWallet = Wallet.load(walletName);
303 StaticRepository.addAccount (myWallet.
getStringAddress ());
304 System.out.println("Active wallet set to: " +
walletName) ;
305 } else {
306 System.err.println("Could not find wallet: " +
walletName) ;
307 }
308 } catch (IOException e) {
309 System.err.println("Something went wrong");
310 initialize ();
311 }
312 }
313
314 /**
315 * Print information about an AssetType.
316 * @param bufferedReader
317 */
318 private static void printAssetType(BufferedReader
bufferedReader) {
319
320 String assetName = "";
321 System.out.println("Type in name of AssetType:");
322 tryq{
323 assetName = bufferedReader.readLine();
324 for (AssetType assetType: StaticRepository.
getAssetTypes ()){
325 if (assetType.getName () .equals (assetName)){
326 System.out.println(assetType.toString());
327 return;
328 }
329 }
330 System.err.println("Could not find asset: " +
assetName);
331 } catch(IOException e){
332 System.err.println("Something went wrong");
333 initialize ();
334 }
335
336 }
337 | }

A.1.15 Wallet

85

package core;

1
2

3 import java.io.File;

4 |import java.io.FileInputStream;

5 | import java.io.FileOutputStream;

6 | import java.io.IOException;

7 | import java.io.ObjectInputStream;

8 | import java.io.ObjectOutputStream;

9 | import java.io.Serializable;

10 | import java.io.UnsupportedEncodingException;
11 | import java.math.Biglnteger;

13 | import org.apache.commons.codec.binary.Hex;

15 | import crypto.ECKey;

16
17 | /Hx

18 * Class representing a wallet. Contains
19 * a users private and public key.

20 * Qauthor Ludvig Backlund

21 *

22 */

23

24 |public class Wallet implements Serializable {

26 private static final long serialVersionUID = 1L;

27

28 private Biglnteger priv;

29 private transient ECKey key;

30 private String walletName;

31 private byte[] address;

32

33 public Wallet(String walletName){

34 this.walletName = walletName;

35 this.key = new ECKey();

36 this.priv = key.getPrivKey();

37 this.address = key.getAddress();

38 Wallet.store(this);

39 }

40

41 public Wallet(String walletName, ECKey key) throws
UnsupportedEncodingException{

42 this.walletName = walletName;

43 this.priv = key.getPrivKey();

44 this.key = key;

45 this.address = key.getAddress();

46 }

47

48

49 /%% Store a wallet on disk.

50 *

51 */

52 public static void store(Wallet wallet){

53 try {

54 File file = new File(Blockchain.getDirectory () +

wallet.getName ());
55 FileOutputStream fileOut = new FileOutputStream(file

86

56

57
58
59
60

61
62
63
64
65
66
67

68
69
70
71
72
73

74

76
77

78

79

80
81
82

83
84
85
86
87
88
89
90
91
92
93
94
95

96
97
98
99
100
101

)5
ObjectOutputStream out = new ObjectOutputStream(
fileOut) ;
out.writeObject (wallet.getPriv());
out.close();
fileOut.close();
System.out.println("Wallet saved as: " + wallet.
getName ());
} catch(IOException i)
{
i.printStackTrace();
}
}

/** Load wallet from disk, if wallet can’t be found a new
wallet is created.

*
* @param walletName - name of wallet to load.
* @return loadWallet if found else null.

*/

public static Wallet load(String walletName){
File walletFile = new File(Blockchain.getDirectory() +
walletName) ;
System.out.println("Searching for wallet " + walletFile.
getAbsolutePath ());
if (walletFile.exists ()){

try{
FileInputStream fileIn = new FileInputStream(
walletFile);
ObjectInputStream in = new ObjectInputStream(
fileln);
BigInteger loadPriv = (Biglnteger) in.readObject
O3

in.close();

fileIn.close();

// (Some compression stuff to make addresses
correct)

ECKey key = ECKey.fromPrivate(loadPriv);

Wallet loadWallet = new Wallet(walletName, key);

return loadWallet;

}catch(Exception i)

{
UserInterface.initialize();
//%.printStackTrace () ;
}
return null;
}
elseq
System.out.println("Couldn’t find wallet, new wallet
created as: " + walletName);
return new Wallet(walletName);
}

}

public String getName (){
return walletName;

87

110
111
112
113
114
115
116
117
118
119
120

}

public BigInteger getPriv(){
return priv;

}

public ECKey getKey (){
return key;

}

public byte[] getAddress(){
return address;

}
public String getStringAddress (){
return Hex.encodeHexString(address);

}
}

A.2 Package: network
A.2.1 MultipleSocketServer

© 0 N o U A W N e

WO NN RN NN NN R R R e R R e s e
S © W N O AR W N RO O XN AR W N R O

31

package network;

import java.net.x*;

import java.util.ArraylList;
import java.util.List;
import java.io.x*;

import core.*;

/**
* Server class that can handle multiple sockets.

* Used for receiving data from the network.
*

* Qauthor Ludvtg Backlund
*/

public class MultipleSocketServer implements Runnable {
private Socket connection;
private int id;
static String ip;

public static void main(){

int port = 19999;

int count = 0;
try
{
InetAddress addr = InetAddress.getByName (ip);
ServerSocket socketl = new ServerSocket (port,
addr) ;

88

50,

32

33
34
35

36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74

75
76
77

78
79
80

81
82

System.out.println("MultipleSocketServer Initialized

- lp [T lp);
while (true){
Socket connection = socketl.accept();
Runnable runnable = new MultipleSocketServer (
connection, ++count);
Thread thread = new Thread(runnable);
thread.start ();
}
}
catch(Exception e)
{
System.err.println("Couldn’t start server.");
}

}

MultipleSocketServer (Socket socket, int id){
this.connection = socket;
this.id = id;

}

public static void setIP(String ip){
MultipleSocketServer.ip = ip;
}

public static String getIP(){
return ip;

}
public void run(){

List<String> receiverAddress = new ArrayList<>();

Object [] objectsToSend = new Object[2];

try

{
BufferedInputStream is = new BufferedInputStream(

connection.getInputStream()) ;

ObjectInputStream ois = new ObjectInputStream(is);
Object object = ois.readObject();

/%% Handle receiving a Transaction */

if (object instanceof Transaction){
Transaction receivedTransaction;
if (object instanceof EmptyTransaction){

receivedTransaction = (EmptyTransaction) object
H
}
else if (object instanceof EmittingTransaction){
receivedTransaction = (EmittingTransaction)
object;
}
elseq{
receivedTransaction = (OrdinaryTransaction)
object;
}
System.out.println("Transaction of " +

89

receivedTransaction.getAmount () + " " +
83 receivedTransaction.getAssetID() + " from:
" + receivedTransaction.
getSenderAddress () +
84 " to " + receivedTransaction.getReceiverAddress ()
+ " received.");

85 StaticRepository.addPendingTransaction(

receivedTransaction) ;

86 }

87

88 /*% Handle recetving a Block */

89 if (object instanceof Block){

90

91 Block receivedBlock = (Block) object;

92

93 if (receivedBlock.validateBlock ()){

94 ArraylList<Transaction> transactions =
StaticRepository.getUncommonTransactions(
receivedBlock);

95 Blockchain.addBlock(receivedBlock);

96 new StaticRepository(transactions);

97 }

08 }

99

100 /** Code for blockchatin synchronization*/

101 if (object instanceof Stringl]){

102 String[] id = (Stringl[]) object;

103

104 /** Peer 4is telling us blockchain is synced (

returnCode [0] = 1) */

105 if (id [0] . equals ("1")){

106 Blockchain.setSynchronized (id[1], true);

107 System.out.println("Synced with " + id[1] + " "

+ Blockchain.getIsSynchronized (id[1]));

108 }

109

110 /*% Peer 1is requesting a block */

111 if (id [0].equals("0")){

112 Block block = Blockchain.getBlockByPrevHash(id

[11);

113 receiverAddress.add (id[2]);

114 objectsToSend [0] = receiverAddress;

115 /*% Check if block was found */

116 if (block != null){

117 objectsToSend [1] = block;

118 }

119 /*%% If no block was found tell peer using a

return code (returnCode[0] = 1)*/

120 elseq

121 String[] returnCode = new Stringl[2];

122 returnCode [0] = "1";

123 returnCode [1] = ip;

124 objectsToSend [1] = returnCode;

125 }

126 /%% Send answer to peer. */

127 Client .main(objectsToSend) ;

128 }

90

© 0 N e A W N e

MO NN NN R E R R e R R e e e
N0 A W N R OO XN R ® N RO

28
29
30
31
32
33
34

}

}

e.printStackTrace () ;

connection.close () ;

catch (IOException e)

e.printStackTrace () ;

}
catch (Exception e)
{
}
finally {
try
{
}
{
}
}

2.2 Client

package network;

import
import
import
import
import

/

*

L O

java.
java.
java.
core.
.InfoFile;

util

net . *x;
util.List;
io.x*;
%

can be transmitted;
String array is only used for blockchain
Q@author Ludvig Backlund

public class Client {

Client class called on when transmitting

objects over the network. Three types of objectcs
Transactions, Blocks and String arrays.
sync between peers.

public static void main(Object[] args) {

/*% Define
int port =

a port */
19999;

/** Get the addresses to transmit to */
List<String> addresses = (List<String>) args[0];
if (addresses.contains ("broadcast"))
addresses = Blockchain.getLatestBlock ().
getValidPeers () ;

/*% Get the object to transmit */

Object obj

/** Check

= args[1];

what kind of object we are transmitting */

if (obj instanceof Block){

obj =
¥

(Block) obj;

91

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51

74
75
76
77
78

79
80
81
82
83

if (obj instanceof Transaction){
/** Don’t re-send to mnodes.*/
Transaction trans = (Transaction) obj;
addresses.removeAll (trans.getSenderIP());

}

/** Broadcast to peers */
for (String peer: addresses){

/*¥* Don’t send to self */
if (peer.equals(MultipleSocketServer.getIP()))
continue;

try
{
/** Obtain an address object of the server
*/
InetAddress address = InetAddress.getByName (
peer) ;

/** Establish a socket comnection */
Socket connection = new Socket(address, port

)

/%% Instantiate OutputStream objects */

BufferedOutputStream bos = new
BufferedOutputStream(connection.
getOutputStream());

ObjectOutputStream oos = new
ObjectOutputStream(bos) ;

/*% Send object */
oos.writeObject (obj);
oos.flush();

/*% Close the socket conmmnection. */
connection.close();

} catch(NullPointerException e)

{
e.printStackTrace () ;
}
catch (I0OException e)
{
/** Set peer as synchronized since we can’t
connect to it */
Blockchain.setSynchronized (peer, true);
}
catch(Exception e)
{
System.out.println("Exception: " + e.
toString ());
e.printStackTrace () ;
}

92

A.2.3 Synchronize

© 0w N e A W N e

o
(=]

11

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

package network;

import java.util.ArrayList;
import java.util.List;

import core.x*;
import util.InfoFile;

J**

*

*

*
*
*
*/

pub

Class called on start-up for synchrontizing our blockchain
with peers.

Synchronization is dome by requesting a block that has our
latest

block as 1its previous block hash. If peer can’t find such a
block <t

the peer is set as synchronized.

Qauthor Ludvig Backlund

lic class Synchronize {

/%% Height of peers blockchain */
static int peerHeight;

public static void main(){

/** Set all addresses to unsynced */

for (String address : Blockchain.getLatestBlock().
getValidPeers ())
Blockchain.setSynchronized (address, false);

/*% Synchronize blockchain */
synchronize () ;

System.out.println("Blockchain synchronized: Our height
= " + Blockchain.getHeight ());

/**% 1d[0] = 0, Request nezt block.
*¥ 4d[1] = block-hash, Hash of our latest block.
* 4d[2] Our server-ip,
*x/
public static void synchronize (){
boolean synched = false;
while (!synched){
/** Create a String[] with necessary info */
Block block = Blockchain.getLatestBlock();
String[] id = new Stringl3];
1d[0] = "0”;
id[1] = block.getHash();
id[2] = MultipleSocketServer.getIP();

/%% Broadcast to metwork */

93

57

66

67
68
69
70
71
72

List<String> receivers = new ArrayList<>();
receivers.add("broadcast");

Object [] objectsToSend = {receivers, id};
Client .main(objectsToSend) ;

/*% Wait litte bit...*/

try {
Thread.sleep (500) ;

} catch (InterruptedException e) {
e.printStackTrace () ;

}

/*% Check i1f synchronized */
synched = true;
for(String peer : Blockchain.getLatestBlock().
getValidPeers ()){
if (!Blockchain.getIsSynchronized (peer) && !peer.
equals (MultipleSocketServer.getIP())){
synched = false;

}

A.3 Package: start
A.3.1 Start

N o oA W N e

10
11

12
13
14
15
16
17

18
19
20
21
22
23
24

package start;

/ ok *

* @author Ludvig Backlund

*

* Commands :

* create wallet - creates a new wallet file contatining your
public and private key.

* create security - create a new security. Shares are assigned
to the active wallet.

* create transaction - create and broadcast a new transaction.

* print state - prints the current state of the blockchain

* set wallet - In case several wallet files exists this
commando allows for deciding which to be active.

* my address - prints the address of the active wallet.

* my balance - prints the balance of the active wallet

*/

public class Start {
/*% ONLY CHANGE USER WHEN STARTING, CURRENTLY USER 0-3 IS
ACCEPTED +/
private static int user = 1;

private static String directory;
private static String ip;

public static void main(Stringl[] args){

94

25
26

27
28

29
30
31
32

33
34

36
37
38

39
40
41
42

43
44
45
46
47
48
49
50

59
60
61

62
63
64
65
66
67
68

/***

*/

/**% If absolute path is wanted */
String directoryAbs = "";

//directories = new String[nrUsers];
//ip = new String[nrUsers];
//isGenesis = new String[nrUsers];

/** Set the directory for each user as directory/useroO,
directory/userl and so on... */
directory = directoryAbs + "user" + user + "/";

/** Set the ip of each wuser as 127.0.0.1, 127.0.0.2 and
so on... */
ip = "127.0.0." + (user+1);

/*% Start a user in a separate thread using the start
arguments */
new Thread(new Start().new UserHandler ()).start();
try {
Thread.sleep (15000) ;
} catch (InterruptedException e) {

e.printStackTrace () ;

}
private class UserHandler implements Runnable{

public UserHandler (){

//System.out.printin("From constructor: " + Thread.
currentThread ().getName () + " " + directories/[
userNr] + " " + 4p[userNr]);

}

public void run(){

System.out.println("User " + user + " joining.")
String[] input = {directory, ip};
User .main (input) ;
}
}
}
3.2 User

package start;
import core.x*;

import network.x*;

95

© 0 N O T A

10

12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48
49
50

51
52
53
54
55
56

public class User{
public static void main(Stringl[] args){

new Blockchain();
MultipleSocketServer.setIP (args[1]);
Blockchain.setDirectory (args [0]);

ThreadGroup threadGroup = new ThreadGroup(args[1]);

/** Load the blockchain */
Blockchain.load ();

/** Create repository */
new StaticRepository(Blockchain.getLatestBlock());

/** Start the server 4n a separate thread */

Thread server = new Thread(threadGroup, new
ServerHandler ());

server.start () ;

/** Synchronize the blockchain (not genesis creator) */

Thread sync = new Thread(threadGroup, new
SyncHandler ());

sync.start () ;

System.out.println("Synchronizing blockchain...");

try {
sync.join();

} catch (InterruptedException e) {
e.printStackTrace () ;

}

/** Load the blockchain */
Blockchain.load () ;

/*% Create repository */
new StaticRepository(Blockchain.getLatestBlock());

/** Start the miner in another tread */
Thread miner = new Thread(threadGroup, new MinerHandler
0);

miner.start () ;

/%% Start transaction wvalidator */

Thread transactionValidator = new Thread(threadGroup,
new TransValHandler ());

transactionValidator.start ();

/*% Fire up the CLI */

Thread CLI = new Thread(threadGroup, new CLIHandler());
CLI.start();

96

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

76
77
78
79
80
81

83
84
85
86
87
88
89
90
91
92
93

private static class ServerHandler implements Runnable{

public void run(){
MultipleSocketServer.main();

}
}
private static class MinerHandler implements Runnable{

public void run(){
Miner .main () ;
}
}

private static class CLIHandler implements Runnable{

public void run(){
UserInterface.initialize () ;

}

private static class TransValHandler implements Runnablef{

public void run(){
TransactionValidator .main () ;
}
}

private static class SyncHandler implements Runnable{
public void run(){

Synchronize.main () ;

}

97

