

Master’s Thesis
Electrical Engineering with Emphasis on Signal Processing
Thesis no:
June. 2016

 Robust Image Hash Spoofing

Azadeh Amir Asgari

Department of Applied Signal Processing
Blekinge Institute of Technology
SE – 37179, Karlskrona, Sweden

www.bth.se

Fraunhofer-Institut für Sichere

Informationstechnologie
Rheinstraße 75, 64295 Darmstadt, Germany

Phone: +49 6151 8690
www.sit.fraunhofer.de

This thesis is submitted to the Department of Applied Signal Processing at Blekinge Institute of
Technology of Sweden in partial fulfillment of the requirements for the degree of Master of Science in
Electrical Engineering with Emphasis on Signal Processing.

Contact Information:
Author:
Azadeh Amir Asgari
E-mail: aziamirasgari@gmail.com

Advisors:
Dr. .-Ing. Martin Steinebach
Fraunhofer-Institut für Sichere Informationstechnologie
Media Security and IT Forensics
Phone: +49-6151-869-349
E-mail: martin.steinebach @ sit.fraunhofer.de
Address: CASED building, Mornewegstrasse 32, 5th floor

Prof. Dr. Stefan Katzenbeisser
CASED
Security Engineering Group
Computer Science Department
Technische Universität Darmstadt
Phone: +49-6151-16-5016
E-mail: katzenbeisser@seceng.informatik.tu-darmstadt.de
Address: CASED building, Mornewegstrasse 32, 4th floor, room 4.3.25

Dr. Huajian Liu
Fraunhofer-Institut für Sichere Informationstechnologie
E-mail: huajian.liu@sit.fraunhofer.de
Address: CASED building, Mornewegstrasse 32, 5th floor

Supervisor:
Dr. Benny Lövström
Blekinge Institute of Technology
Senior Lecturer
Phone: +46-455-385704
E-mail: benny.lovstrom@bth.se
Address: Room J3612- Blekinge Tekniska Högskola, 371 79 Karlskrona

I

ABSTRACT

With the intensively increasing of digital media new challenges has been created for
authentication and protection of digital intellectual property. A hash function extracts certain
features of a multimedia object e.g. an image and maps it to a fixed string of bits. A perceptual
hash function unlike normal cryptographic hash is change tolerant for image processing
techniques. Perceptual hash function also referred to as robust hash, like any other algorithm is
prone to errors. These errors are false negative and false positive, of which false positive error is
neglected compared to false negative errors. False positive occurs when an unknown object is
identified as known. In this work a new method for raising false alarms in robust hash function is
devised for evaluation purposes i.e. this algorithm modifies hash key of a target image to
resemble a different image’s hash key without any significant loss of quality to the modified
image. This algorithm is implemented in MATLAB using block mean value based hash function
and successfully reduces hamming distance between target image and modified image with a
good result and without significant loss to attacked imaged quality.

Keywords: Robust hash function, Hamming distance, Block mean value, Spoofing attack.

II

ACKNOWLEDGMENT

I would like to express my sincere thanks to Dr.-Ing. Martin Steinebach who gave me the
opportunity to be involved his research team and provided all the necessary facilities and the
valuable guidance and encouragement. I sincerely wish to express my gratitude and appreciation
to Prof. Stefan Katzenbeisser who is guided me from the commencement to the successful
completion of my study. I also thank my supervisor Prof. Benny Lövström at Blekinge Institute
of Technology for his guidance and support through this thesis. I would like also to thank Dr.
Huajian for his comments and suggestions. Last but not least, I would like to state my sincere
thanks to my parents and my family especially Arash Hassanzadeh who without their
unconditional support, I would not have been able to reach this point.

III

Table of Contents
ABSTRACT... I

ACKNOWLEDGMENT...II

Table Of Contents ... III

List Of Figures .. IV

List Of Tables... V

1. Introduction.. 1

2. Background .. 2

2.1. INTRODUCTION .. 2
2.2. AUTHENTICATION .. 2
2.3. CRYPTOGRAPHIC HASH FUNCTION .. 3
2.4. HASH FUNCTIONS AND MULTIMEDIA.. 6
2.5. PERCEPTUAL HASH FUNCTIONS .. 7
2.6. COMPARISON PERCEPTUAL HASH FUNCTIONS...11
2.7. SURVEY OF RELATED WORKS ...12
2.8. METRICS ...15
2.9. FALSE NEGATIVE/FALSE POSITIVE ...17
2.10. IMAGE HASH SPOOFING ...17

3. Implementation .. 18

3.1. REQUIREMENTS ...18
3.2. PRELIMINARY WORK..19
3.3. DESIGN ...23

3.3.1 Stage1:..23
3.3.2 Stage2: ...27

3.4. MATLAB®
 CODE...28

4. Verification and Results .. 30

4.1. METHOD 1 ..30
4.2. METHOD 2 ..41

5. Conclusion and Future Work ... 50

5.1 CONCLUSION ...50
5.2 FUTURE WORK ..50

References:.. 51

Appendix A: Variance Thresholding .. 53

Appendix B: Tables of Hamming Distance Reduction by stage .. 55

Appendix C: MATLAB Codes ... 61

IV

List Of Figures
FIGURE 1: BOXPLOT ...19
FIGURE 2: HAMMING DISTANCE HIST OGRAM FOR SELECTION NO.14. YELLOW LINE IS THE THRESHOLD IMPOSED........21
FIGURE 3: HAMMING DISTANCE HIST OGRAM IN SELECTION NO.14 FOR VALUES BELOW THE THRESHOLD21
FIGURE 4: HAMMING DISTANCE BOXPLOT FOR ALL SELECTIONS ..22
FIGURE 5: HAMMING DISTANCE BOXPLOT FOR SELECTION NO.14..22
FIGURE 6: TARGET IMAGE FIGURE 7: SEGMENTED TARGET IMAGE ...23
FIGURE 8: TARGET IMAGE HASH ...24
FIGURE 9: ATTACKED IMAGE FIGURE 10: ATTACKED IMAGE HASH ..24
 FIGURE 11: MASKED ATTACKED IMAGE FIGURE 12: MASKED ATTACKED IMAGE HASH ...25
FIGURE 13: FILTERED ATTACKED IMAGE HASH FIGURE 14: FILTERED ATTACKED IMAGE ...25
FIGURE 15: SAMPLES OF PREDEFINED HASH MASKS..26
FIGURE 16: PSNR HISTOGRAM FOR 163 ATTACKED IMAGE...31
FIGURE 17: METHOD 1-IMAGE 1 ..32
FIGURE 18:METHOD 1- IMAGE 1 ..33
FIGURE 19: METHOD 1- IMAGE 2 ..34
FIGURE 20: METHOD 1 – IMAGE 2 ..35
FIGURE 21: METHOD 1 – IMAGE 3..36
FIGURE 22: METHOD 1 – IMAGE 3 ..37
FIGURE 23: METHOD 1 – IMAGE 4..38
FIGURE 24: METHOD 1 – IMAGE 4..39
FIGURE 25: HISTOGRAM OF HAMMING DISTANCE REDUCTION ...40
FIGURE 26: BOXPLOT OF HAMMING DISTANCE REDUCTION ...41
FIGURE 27: METHOD 2 – IMAGE 1..42
FIGURE 28: METHOD 2 – IMAGE 1 ..43
FIGURE 29: METHOD 2 – IMAGE 2..44
FIGURE 30: METHOD 2 – IMAGE 2 ..45
FIGURE 31: METHOD 2 – IMAGE 3..46
FIGURE 32: METHOD 2 – IMAGE 3..47
FIGURE 33: HISTOGRAM OF HAMMING DISTANCE REDUCTION ...48
FIGURE 34: BOXPLOT OF HAMMING DISTANCE REDUCTION ...49

V

List Of Tables

TABLE 1: HAMMING DISTANCE EXAMPLES ...16
TABLE 2: 30 SELECTED IMAGES HAMMING DISTANCE TO OTHER IMAGES..20
TABLE 3: VARIANCE CRITERION FOR QUALITY CONTROL ..27
TABLE 4: HAMMING DISTANCE REDUCTION FOR METHOD 1- IMAGE 1 ..33
TABLE 5: HAMMING DISTANCE REDUCTION FOR METHOD 1- IMAGE 2..35
TABLE 6: HAMMING DISTANCE REDUCTION FOR METHOD 1- IMAGE 3..37
TABLE 7: HAMMING DISTANCE REDUCTION FOR METHOD 1- IMAGE 4..39
TABLE 8: HAMMING DISTANCE REDUCTION FOR METHOD 2- IMAGE 1..43
TABLE 9: HAMMING DISTANCE REDUCTION FOR METHOD 2- IMAGE 2..45
TABLE 10: HAMMING DISTANCE REDUCTION FOR METHOD 2- IMAGE 3 ...47

1

1. Introduction
Throughout the last two decades, improving the technology of digital media imposes new

problems for managing large multimedia databases in terms of authentication and managing
intellectual properties as well as broadcast monitoring and network filtering. Robust Hashing is a
technology as a change tolerant alternative to cryptographic hashes since normal cryptographic
hashing methods are error prone to image processing techniques. As any other field of
technology, perceptual hash functions have two major drawbacks to be named “false negatives”
and “false positives”. False negatives occur if a known object is not recognized and false
positives occur if an unknown object is recognized as known content. False positive errors are
neglected compared to false negative errors in the field of cryptography.
This thesis work is intended to devise a new method in order to raise false positive alarms in
robust image hashing for evaluation purposes through global and local modification of another
image to have a hash similar to a target image. This method is implemented in MATLAB by
block mean value based Hashing algorithm.

In the chapter 2 basic concepts such as perceptual hash function, hamming distance, comparison
between several hashing methods have been discussed. Block mean value based hashing method
is completely described in the latter part of the chapter since it has been used through this work.
In chapter 3, implementation of the developed method is discussed in full depth and at chapter 4
the devised algorithm is verified and results have been discussed. In the last chapter we have a
conclusion on this job.

2

2. Background

2.1. Introduction
Due to rapid growth in digital media, content authentication of multimedia is a major concern

and is used extensively. It has been said that hiding the information or protecting the privacy has
a history as long as the writing itself. Mankind has been trying many ways to hide information
during its history which is called steganography, i.e., the art or practice of concealing a message,
image, or file within another message, image, or file by replacing fixed symbols, and cryptology
or cipher. By changing technology from handwritten words on paper sent by courier to the
communication of the information via both local and worldwide communication networks and
the saving and processing in the form of digital data on computers definitely has enhanced the
risk of exposing of information to eavesdropping. Cryptography was the only solution which has
been borrowed from the secret world of army commanders and politicians into the global
commercial applications. Beside the concealing or privacy protection, it should be noted that
both the contents and the originator of the information are not changed. Both of these conditions
are expressed in the term “authentication.” A hacker who attempts to change contents or origin
of information is called an active attacker. The increasing of relative importance of this threat
might be captured by the advent of malicious software programs. These digital threats are best
exemplified in the form of computer viruses. Others include worms, Trojan horses, and logical
bombs.

2.2. Authentication and related history
The origin of the authentication is from the Greek word αὐθεντικός which means real or

genuine and in network security discourse it means confirming the identity of multimedia object.
Authentication is an approach to protect communicating parties from a third party attack. But,
when communicating parties are distrustful to each other and try to refuse their authorities, it is
likely to emerge different threat. It means that sender or receiver try to change a message or deny
to have sent or received data.

The protection of authenticity could include two aspects:

 The protection of the originator of the information, or in ISO terminology data origin
authentication.

 The fact that the information has not been modified, or in ISO terminology the integrity
of the information. There are two basic methods for protecting the authenticity of
information.

3

2.3. Cryptographic Hash Function
As it is described below cryptographic hash functions are used to authentication process

extensively and first the definition of hash functions is provided. Cryptographic hash function
generates hash value from an arbitrary data array while keyed hash function uses a secret key as
well [1].

Def. 2-1: A hash function is [. . .] a function H which has, as a minimum, the following two
properties:

 Compression - H maps an input x of arbitrary finite bit length, to an output H(x)
of fixed bit length n.

 Ease of computation - given H and an input x, H(x) is easy to compute.

Hash functions are mostly used to accelerate table lookup or data comparison tasks such as
finding items in a database, detecting duplicated or similar records in a large file, finding similar
stretches in DNA sequences [7]. The term hash functions has its historic roots in computer
science where a hash function or a cryptographic hash function is denoted to any algorithm or
subroutine that maps large data sets of variable length, called keys, to smaller data sets of a fixed
length as uniformly as possible. The value which is returned by a hash function in cryptographic
literature is called hash total, hash result, hash sums, hash code, imprint, (cryptographic)
checksum, compression, compressed, encoding, seal, authenticator, authentication tag,
fingerprint, test key, condensation, Message Integrity Code (MIC), message digest or simply
hashes [15].

Cryptographic hash functions may be divided in two categories [1]:

1- Unkeyed Hash Functions
2- Keyed Hash Function

These two major approaches to protect authenticity of information are of a great importance

and it deserves to have a more detailed explanation. The first approach is similar to the approach
of a symmetric or asymmetric cipher in which the concealment of a large amount of data is
according to the concealment and authenticity of a short key. Here, the authentication of the
information would be based on the concealment and authenticity of a key. To do so, the
information is compressed to the amount in length which is called a “hash code”. Consequently,
the hash code is annexed to the information. The operation that accomplishes this process is
called a hash function. The main concept of the protection of the integrity is to add redundancy
to the information. The presence of this redundancy provides the receiver the ability to make the
distinction between authentic information and bogus information. In order to assure the origin of

4

the data, a secret key associated to the origin should intervene in the process. The secret key
could be included in the compression process or can be employed to protect the hash code and/or
the information. In the first case the hash code is called a Message Authentication Code or MAC,
while in the latter one it is called a Manipulation Detection Code or MDC.

The second approach includes making the authenticity (both integrity and origin
authentication) of the information based on the authenticity of a Manipulation Detection Code or
MDC. A well-known example of this method is a computer user calculating an MDC for all its
important files. An individual may perform storage process in two ways: whether storing this
collection of MDC’s on a hard disk, which is locked in his/her safe, or writing them down on a
piece of paper. If he/she is to transfer the files to a distant friend, they can be sent easily and
MDC’s can be communicated via telephone. Here, the authentication of the telephone channel is
performed by voice identification. The second application for cryptographically secure hash
functions is manifested through optimizing the digital signature schemes and the building up the
digital signature schemes which are not based on a trapdoor one-way permutation. The
optimization is performed via signing the MDC of a message rather than each bit or block. The
description of the hash function might be public and it does not depend on any secret parameter.
The advantages of this method are: the signature includes a fixed short length which minimizes
the computational operation. Sometimes, it is possible to increase the security level of the
signature scheme. In some cases, the hash function is even an embedded part of a scheme. In
general, digital signature schemes based on one-way functions practically are less potent, but can
be used as a substitution if one is not permitted or wants to employ a scheme according to a
trapdoor one-way permutation. In the following the hash function will be denoted with h, and its
argument, i.e. the information to be protected, with X. The image of X under the hash function h
will be denoted with h(X) and the secret key with K [15].

5

Hash function structure

One-way hash function (OWHF)

The first rough definition of an OWHF was evidently suggested by R. Merkle [10, 11] and M.
Rabin [12].
 A one-way hash function is a function h satisfying the following conditions:
1. The description of h must be publicly known and should not need any secret information for
its operation (extension of Kerckhoffs’s principle1).
2. The argument can be of arbitrary length and the result has a fixed length of bits.
3. Given and , the computation of must be “easy”.
4. The hash function must be one-way in the sense that given a in the image of , it is “hard” to
find a message such that and given and it is “hard” to find a message

 such that .

Collision resistant hash function (CRHF)

The first formal definition of a CRHF was evidently suggested by I. Damgård [13, 14]. A rough
definition was suggested by R. Merkle in [11].
A collision resistant hash function is a function h satisfying the following conditions:

Ha
sh

 fu
nc

tio
n

UNKEYED

KEYED

MDCs
OWHF

CRHF

MACs

Modification Detection

Message Authentication

6

1. The description of h must be publicly known and should not require any secret information for
its operation (extension of Kerckhoffs’ principle).
2. The argument can be of arbitrary length and the result has a fixed length of bits.
3. Given and , the computation of must be “easy”.
4. The hash function must be one-way in the sense that given a in the image of , it is “hard” to
find a message such that and given and it is “hard” to find a message

 such that .
5. The hash function must be collision resistant: this means that it is “hard” to find two distinct
messages that hash to the same result.

Message Authentication Code (MAC)

Message Authentication Codes have been used for a long time in the banking community and are
thus older than the open research in cryptology that started in the mid-seventies. However,
MAC’s with good cryptographic properties were only introduced after the start of open crypto
logic research.
A MAC is a function satisfying the following conditions:
1. The description of h must be publicly known and the only secret information lies in the key
(extension of Kerckhoffs’s principle).
2. The argument can be of arbitrary length and the result has a fixed length of n bits.
3. Given and , the computation of should be “easy”.
4. Given and , it is “hard” to determine with a probability of success “significantly
higher” than with the number of bits of hash code. Even when a large set of pairs

 is known, where the have been selected by the opponent, it is “hard” to
determine the key or to compute for any . This last attack is called an
adaptive chosen text attack.

2.4. Hash Functions and Multimedia
A multimedia object e.g. an image can have different digital forms which from a human

perception point of view, all are the same. These different forms are the consequence of wide
range of image processing techniques such as cropping, compression, flipping, compress ion and
equalization which each changes the binary form of the image. Due to this problem normal
cryptographic hash function does not work for multimedia applications. On the other hand
image identification methods, such as semantic models or face detection algorithms, although
show good performance in identifying illegal multimedia objects have big drawbacks such as
high computational complexity and high false alarm rates.
Therefore perceptual hash functions have been introduced in order to circumvent the problem of
distinguishing perceptual equality of multimedia content. Recently due to extensive demand in
the industry new perceptual hash functions have been introduced by scientific researchers. These

7

perceptual hash functions extract certain properties form the multimedia content and produce
hash values based on these features.
In order to have a measure for comparison between two perceptual hash values, there are defined
functions for their distance/similarity scoring such as hamming distance, Bit Error Rate (BER)
and Peak of Cross Correlation (PCC).
Perceptual hash functions are interdisciplinary field of research which includes cryptography,
digital watermarking and signal processing. These perceptual hash functions because a lack of
standard or uniform nomenclature may be addressed with different terms such as [2]:

- Fingerprint
- Passive fingerprint
- Perceptual checksum
- Robust hash
- Soft hash

In passive fingerprint the content of multimedia is unchanged but in active fingerprint the content
differs from the original.

2.5. Perceptual Hash Functions

 Discrete Cosine Transform (DCT) based Hash function

 Discrete cosine transform (DCT) based functions utilize Fourier analysis theory in order to
produce hash keys and like any other Fourier transform, it represents the finite sequence of data
points as the weighted composition of sinusoids (cosine function) with different frequencies.
DCT is similar to DFT operating on real data with even symmetry but on the other hand DCT in
contrast with DFT uses real values. There are eight types of DCT and most common is type-II
which simply is referred as DCT and type-III that is called inverse DCT.

Def. 2.2: let x[n], n=0,..,. N-1, denote an N point real sequence the DCT type-II is defined:

8

The scaling factor makes DCT matrix orthogonal but breaks the direct correspondence
with a real-even DFT of half-shifted input. DCT is separable operation and may be computed
along the axes separately.
In practice DCT of a time limited sequence may be computed by use of DCT matrix as below:

And is defined as:

For a square image I, The two dimensional is equal to one dimensional DCT while a single
dimensional followed by the one dimensional DCT and it may be computed by using of DCT
matrix D as below:

Various properties of the DCT can be utilized to create perceptual image hash functions. Low-
frequency DCT coe_cients of an image are mostly stable under image manipulations. [30]
That is because most of the signal information tends to be concentrated in a few low-frequency
components of the DCT. This property is also utilized by the JPEG image compression standard.
[31] There, the two-dimensional type-II DCTs of NxN pixel blocks are computed and the results
are quantized. [3] N is typically 8 and elements closer to the top left corner represents lower
frequencies in the horizontal and vertical direction in the image. DCT coefficients and their
corresponding frequencies may be used as hash value of the image. Interest in DCT is because of
its strong energy compaction property and this is important particularly in image processing
applications like lossy image compression (JPEG is the simplest example). This lies in the fact
that normally most of image energy is concentrated in lower frequency component of DCT.
Performance of this method is discussed later.

Mar-Hildreth operator based Hash functions

As mentioned before a perceptual hash function extracts certain feature of image and uses
them to produce fixed length string namely hash key. Mar-Hildreth operator algorithm core is
extracting edges of image and use them to produce the hash key. Edge definition is depending on
the context of application but it can be defined as contours or boundaries that separate different

9

regions of image and regions can be classified base on texture, color and luminance. Normally
luminance is used and the result of edge detection algorithm is named edge map.
Edge map contains information about image classification feature as well as amplitude and
orientation information and for luminance case, first and second derivatives with respect to
spatial location are used for edge detection. So first derivative (gradient based) approach is to
locate the positions that first derivative of luminance (gray scale level) are at local extremum and
second derivative approach (Laplacian based method) is to identify zero crossing points of
luminance function. Since these methods are used for two dimensional images so me point must
be considered. Discrete nature of digital image implies approximation of derivation. Image has
additional property of direction so directionally sensitive edge detector is used for some
applications.
Since edge detection is a high pass filter, image noise is a problem and wide range of algorithms
have been proposed to deal with this effect. Generally detector error increases with noise
There is a trade-off between correct detection of edges and their location. The reason lies in the
fact that good localization needs small spatial filter and conversely better noise suppression is
obtained by spatially large filter.
Considering these points one simple approach is the one invented by David Marr and Ellen C.
Hildreth which is convolving image with the Laplacian of the Gaussian function i.e. if we define
Laplacian filter as provided by definition 2.3 then estimate of given image’s Laplacian can be
computed by convolution of filter kernel by image. The Laplacian-of-Gaussian image operator is
sometimes also referred to as the Mexican hat wavelet due to its visual shape when turned
upside-down.

 Def. 2.3: The Laplacian of Gaussian (LoG) ,denoted as filter can be defined as

Where is Gaussian filter

Then the LoG estimate of an image is obtained by convolving the Log with image

The implementation of LoG filter in digital domain may be achieved by sampling of kernel in
spatial domain after choosing a value for σ. Computation cost can be reduced by utilizing the fact

10

that LoG filter is a separable filter and using 1-D convolution instead of 2-D counterpart. The
Marr–Hildreth operator, however, has its drawbacks. It produces estimates that do not
correspond to edges, so-called "false edges", and the localization error may be severe at curved
edges.

Radial Variance based Hash functions

The Radon transform is calculated by taking the integrals of a two-dimensional image
along a set of lines with different directions. The line integral along a particular direction with
angle is called a projection. The line integral of the function along the line L defined
by direction and the distance from the origin in the coordinates () is given by

To apply radon transform to discrete images the line integral along the can
be approximated by variance of pixels along the line projections. Luminance discontinuities
caused by the edges are orthogonal to the projection line so we can define “radial variance
vector, ” as follow.

Def. 2.4: Let denotes the set of pixels on the projection line corresponding angle θ
and let denote the luminance value of the pixel , the radial variance vector

where θ=0,1,..,179 is then defined by:

Since radon transform is symmetric it is sufficient to extract 180 points instead of 360 and by
application of DCT to radial variance vector result will be improved.

Block Mean Value Based Hash Function

11

In 2006, Yang and colleagues devised a block mean value based perceptual image hash function
in four variations with slight difference. The first method is described below as indicated by
Zauner [2] since this method is used in our work.

Method 1

Normalize the original image into a preset sizes;

Divide the size-normalized image I into non-overlapped blocks , , …, , in which N is the
block number equal to length of the final hash bit string;

 Encrypt the indices of the block sequence using a secret key K to obtain a block
sequence with a new scanning order { , , …, };

Calculate the mean value sequence { , , …, } from corresponding block sequence { ,

, …, } and obtain the median value of this sequence as
= () , i = 1, 2… N

Normalize the mean value sequence into a binary form and obtain the hash values h as:

Methods 2, 3, 4

In the second variation for increasing the robustness 50% overlapping is used between segments
and in the third variation for robustness against any flipping attack a rotation is added to the first
method. The fourth method is a combination of method two and three with 50% overlap between
blocks and rotation and it is of a great concern that rotation increases the complexity of algorithm
[2].

2.6. Comparison Perceptual Hash Functions
Since robust hashing is an approved method for analysis of image sets due to their low false

alarm rates and reasonable computational complexity their evaluation and validation is desired
for their integration in forensic analysis tools [4]. For this purpose Rihamark is used as a
benchmarking framework for perceptual image hash functions in terms of speed, inter score
distribution (discriminative capabilities) and intra score distribution (robustness) [3]. Several
hash functions performance is evaluated by this benchmarking tool namely:

12

 DCT (Discrete Cosine Transform)
 Marr-Hildreth operator
 Radial variance
 Block mean value based perceptual image hash function

In terms of speed, Block mean value method is fastest and DCT is the slowest by far. Although
Marr-Hildreth is the most discriminative method and DCT the second most, test values can be
improved by combining different functions.

From robustness point of view several image manipulation techniques are considered:

 Horizontal flipping
 Resizing
 Jpeg Compression
 Rotation

According to the results none of the methods may be considered robust in case of horizontal
flipping and against resizing radial variance based method shows poor performance. In case of
resizing all methods except Marr-Hildreth give satisfactory results and for rotation block mean
value based method is the best.

It is a matter of application that which method may be chosen since it depends on which
characteristic is desirable although block mean based perceptual hash function is the fastest and
it is either most robust or approximately equal with other functions [3].

Steinbach and colleagues [4] have evaluated an optimized block based hash function which is
optimized by segmentation of hash to four sub areas. The segments’ mean value is used for
decision and introducing automatic mirroring of the image during the hash calculation in such a
manner that darkest part of image is on upper left. This leads to resilience of algorithm to any
type of mirroring. Also they have used a weighted distance in addition to hamming distance in
order to thresholding and decision making. This method may be a suitable replaceme nt for
alternative cryptographic hashes [4].
In this thesis work, block mean value based hash function is used and it is proper to have a
detailed review of this function.

2.7. Survey of related works
 By reviewing several works which has used different approaches for perceptual hashing, it can
be summarized in four different categories:

13

 Statistic approach
 Relation based approach
 The coarse image represents
 Image feature extraction approach

Statistic approach

The calculation of the parameters such as mean, variance and the intensity of the images blocks
were obtained by using the statistic computation.
The results of such a statistic approach must have good properties by small perturbations of the
images. The main disadvantage of this method is easy to modify an image without the change of
the intensity of its histogram. It caused the weakness security problems of any scheme which
comply upon the intensity statistics. Venkatesan et al. [1] develop an image hash based on an
image statistics vector extracted from the various sub-bands in a wavelet decomposition of the
image. This paper is based on the observing the statistic such as averages and variance of the
sub-bands would be remain stable under a significant modification of the content preserving to
the image[16,17,18].

Relation based approach

Lin and Chang [19] proposed a typical relation-based method to image authenticate which is
relies on JPEG compression. The digital signature extracted by using the invariant relation
between each two discrete cosine transform (DCT) coefficients, which has the same position of
the two different 8x8 blocks. The result shows that the invariance properties would preserved
before and after JPEG compression during the perceptually lossless.
This method is also robust against of JPEG compression, and it would remain vulnerable to
various other trivial perceptually modifications. (It must be considered that the nature distortion
of statistical is different with the blur which caused by compression).
Lately, Lu and Liao [20] proposed a “structural digital signature” by observing the sub-band
wavelet decomposition which parent and the child node are uncorrelated but they are statistically
dependent.
The result of their observation shows that for the several content preserving manipulations the
difference of the magnitude of wavelet coefficients at their consecutive scales remain largely
preserved. (i.e., a parent node and their four child nodes)
It produced such a robust digital signature while the identifying the parent-child pairs and
subsequently encoding the pairs form.
The achievement of the method [20], however is very sensitive to global insignificant rotation
and furthermore local geometric attacks.

14

The coarse image represents

This method proposed a robust hash based on preserving selected (low frequency) discrete
cosine Transform (DCT) coefficients [21]. The method of Fridrich and Goljan based on the
observing the significant modification to the low-frequency DCT coefficients of the image made
change the appearance of the image dramatically.
Mihcak and Venkatesan [22] proposed another image hashing algorithm which used an iterative
approach to make binary the DC sub-band (lowest resolution wavelet coefficients) in a wavelete
decomposition of the image.
Swaminathan et al. propose an image hash [23] based on selecting rotation- invariant Fourier–
Mellin coefficients.
Although their approach was down well under large amounts of global rotation, meantime the
robustness of Fourier- Mellin coefficients must be desired under many other classical signal
processing distortions.

Image feature extraction approach

The hypothesis of this method is based on the use of vision based feature points for perceptual
image hashing [24]-[26]. The aim of the robustness of the schemes in [24] and [25] is far as
unsatisfactory for robustness of application. Although the corner-based image features in [26] is
robust comply under a large class of attacks, beside an expensive search is necessary to handle
the geometric manipulations.

The results obtained from the above methods shows that a common weakness of the methods
[16]-[26] is poor robustness against of the geometric attacks, particularly the most wasted ones is
as cropping.
Recently Kozat et al. [27] proposed using low-rank matrix approximations obtained via the well-
known singular value decomposition (SVD) for image hashing. Since the SVD-based hashing
scheme in [27] exhibits good geometric attack robustness, which this method described as such a
different images mapping to the same hash value.
Lately, Lee et al proposed non-negative matrix factorization (NMF) [28] and Vishal Monga and
M. Kıvanç Mıhçak[14] developed the robust image hashing algorithms based on recently
proposed dimensionality reduction technique by using the NMF which is distinguished from the
traditional matrix approximation method such as QR and SVD, while it used the non-negativity
constraints. They proposed [14] that the geometric distortions on images result in approximately
additive and independent, identically distributed noise on NMF vectors, Mean time they exploit

15

this mentioned purpose to obtain pseudorandom linear statistics of NMF vectors which is
significantly enhanced hash robustness since the hash allowed to use the small length.

2.8. Metrics
As mentioned earlier there should be measures for comparison of hash values. The most

common functions which are used for similarity/ distance scoring are hamming distance, BER
and PCC. In this sequel the measure may indicate similarity between two strings as it is the case
for PCC or may specify distance between them such as hamming distance.

Hamming Distance
Hamming distance may be defined as below:

Def. 2.2: Let A denote an alphabet of finite length. denotes an even length-
string, whereas . The same holds true for . Then the hamming distance
between x and y is defined as:

Normalized Hamming Distance
For comparison different hamming distances regardless of their correspondent string length

normalized hamming distance may be defined as below:

Def. 2.3: Hamming distance can be normalized by with respect to length n of string as:

Calculation of hamming distance for binary strings is possible with XOR operation. Two
examples for hamming distance is provided in table 1 for binary and Latin alphabet.

16

String 1 String 2 Hamming Distance
11011001 01010101 3

fake Take 1
Table 1: Hamming distance examples

Equality Percentage (EP)
Equality percentage may be computed as:

EP has a range between 0 and 100 percent. Higher value indicates more similarity and lower
value means more distinction between two perceptual hash values.

Bit Error Rate (BER)
Def. 2.4: is BER and defines as number of i bit errors of the perceptual hash normalized by
length of the perceptual hash value k.

 i is equal to hamming distance of perceptual hash values and obviously . Lower
yields perceptually similar images with a minimum of 0 which indicates similar hashes.

Peak of Cross Correlation (PCC)
Cross correlation is a measure of similarity between two sequences i.e. higher cross

correlation indicates more similarity between two discrete sequences. Definition of cross
correlation for two discrete signals is presented below:

Def. 2.5: For two discrete finite, with length of N, sequences x(n) and y(n) the cross correlation
is defined as:

17

x(n) and y(n) are deterministic real valued sequences and k is the time shift.

Cross correlation can be normalized with respect to mean values of x(n) and y(n) which are
denoted as and .

Def. 2.6: For two discrete finite, with length of N, sequences x(n) and y(n) the normalized cross
correlation is defined as:

PCC is the maximum value of cross correlation between these two sequences.

2.9. False Negative/False Positive
As briefly discussed in introduction this work’s intention is to raise false positive errors for

evaluation purposes. According to Sheskin [5]:
In statistics, a type I error (or error of the first kind) is the incorrect rejection of a true null
hypothesis. A type II error (or error of the second kind) is the failure to reject a false null
hypothesis. A type I error is a false positive and a type II error is a false negative. This means
false positive occurs when an unknown object is identified as known one and false negative
occurs when and a known object is identified as unknown.

2.10. Image hash Spoofing

As mentioned before perceptual hash algorithms offer certain degree of robustness by
extracting some perceptual features from multimedia object. They are different from generic
hashing algorithms in two important points. First they are sensitive only to significant content
modification and tolerant to medium level of content preserving image processing techniques.
Second difference lies in the fact that they usually utilize a secret key for hashing process in
order to increase resilience to malicious manipulations and the length of the secret key

18

determines the degree of protection without any compression. The latter case lies in the fact that
algorithms are publicly known and using them solely is not secure.

According to Li Weng and Perneel two types of attack is possible [9].

- Counterfeiting both hash and content
- Gradually introduction of changes until the content is severely distorted

As suggested by the authors incorporation of a secret key in order to generate hash key protects
perceptual hash algorithms against malicious manipulations. The main drawback is that it would
not be easy to establish information protection protocol easily. Another problem is that the
hashing process would not be efficient.

According to Wikipedia “in the context of network security, a spoofing attack is a situation in
which one person or program successfully masquerades as another by falsifying data and thereby
gaining an illegitimate advantage”. Since here our objective is to develop a method of producing
an image hash which closely resembles another image hash code, based on robust image hashing,
for evaluation false positive alarms, our developing algorithm is named image hash spoofing.
This algorithm must be robust in the sense of showing resilience to different image manipulation
techniques such as cropping, compression and scaling. Since our approach consists of
modifications to an image in order to imitate another image which causes negative false alarms
the terms spoofing and attacking is used interchangeably.

3. Implementation
3.1. Requirements

As previously mentioned our goal is to develop a mechanism that an image masquerades
another image and this process must be done automatic and robust in the sense of that it has no
limitation against any normal image processing techniques. In order to achieve this, MATLAB®
is used as a powerful interactive programming tool for implementation. All images are of
256×256 size in JPEG format and hash key length of 256 bits. As a measure of similarity
between hash keys, computed by block mean based algorithm, hamming distance is used.

19

3.2. Preliminary Work
As first step a database of approximately 150 000 hashed images is analyzed and the task was

choosing 30 random images and comparing each to the all other pictures. This has been done in
MATLAB by uniformly random selection of 30 images and calculation of hamming distance in
order to compare with the entire of database. Regarding the threshold of 16 is imposed on
hamming distances and the images with hamming distance below the threshold is considered
similar. The result is shown in table 2 and a total of 10 collisions have occurred according the
thresholding criterion.

 In order to have a better understanding, histogram of hamming distances for selection number
14 has been shown in figure 2 and a magnified version for distances under threshold in figure 3.
It must be noticed that corresponding normal distribution have been superimposed on the
histogram. In figure 4, boxplot of hamming distances for selected all images has been depicted.
In the statistical approach it is a graphical way to represent a set of data through quartiles as
shown in figure 1 provided by www.wellbeingatschool.org. In figure 5, boxplot of selected
image No.14 is shown.

Figure 1: Boxplot

Image No Report

 121323

 134885

 18910

 136014

 94167

 14526

Number of similar images for selection No 1 is: 1

Number of similar images for selection No 2 is: 1

Number of similar images for selection No 3 is: 0

Number of similar images for selection No 4 is: 3

Number of similar images for selection No 5 is: 0

Number of similar images for selection No 6 is: 0

20

 41473

 81438

 142586

 143685

 23471

 144534

 142535

 72279

 119173

 21129

 62806

 136365

 117970

 142881

 97649

 5318

 126447

 139084

 101073

 112838

 110663

 58408

 97610

 25492

Number of similar images for selection No 7 is: 1

Number of similar images for selection No 8 is: 0

Number of similar images for selection No 9 is: 0

Number of similar images for selection No 10 is: 0

Number of similar images for selection No 11 is: 0

Number of similar images for selection No 12 is: 0

Number of similar images for selection No 13 is: 1

Number of similar images for selection No 14 is: 2

Number of similar images for selection No 15 is: 0

Number of similar images for selection No 16 is: 0

Number of similar images for selection No 17 is: 0

Number of similar images for selection No 18 is: 0

Number of similar images for selection No 19 is: 0

Number of similar images for selection No 20 is: 0

Number of similar images for selection No 21 is: 0

Number of similar images for selection No 22 is: 0

Number of similar images for selection No 23 is: 0

Number of similar images for selection No 24 is: 1

Number of similar images for selection No 25 is: 0

Number of similar images for selection No 26 is: 0

Number of similar images for selection No 27 is: 0

Number of similar images for selection No 28 is: 0

Number of similar images for selection No 29 is: 0

Number of similar images for selection No 30 is: 0

Table 2: 30 selected images hamming distance to other images

21

Figure 2: Hamming distance histogram for selection No.14. Yellow line is the threshold imposed

Figure 3: Hamming distance histogram in selection No.14 for values below the threshold

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

3500

4000

0 2 4 6 8 10 12 14 16 18
-3

-2

-1

0

1

2

3

4

5

22

Figure 4: Hamming distance boxplot for all selections

Figure 5: Hamming distance boxplot for selection No.14

0

50

100

150

200

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

0

20

40

60

80

100

120

140

160

180

1

23

After extracting the original random images from the database and checking them visually it is
clear that only one true collision has been occurred which indicates a negative false alarm. The
other collisions were the same image with different sizes. Collided images have not been shown
because the pornographic nature of images.

3.3. Design
In this section we are going to describe how an image, let’s call it an attacked image,

masquerades another image that to be called favorite image. This spoofing attack must be done
in a way that loss of perceptual quality of attacked image would not be significant. In order to
achieve this, black mean based hash will be used to produce a similar hash bit to favorite image.
In general the whole process can be divided in two stages:

3.3.1. Stage1:

All image are 256×256 pixels and gray scale and if not they will be resized and converted to
256×256.Then hash key attacked image (figure 6) is calculated by block mean based method as
below:

- First Favorite image is segmented to 16×16 grid as figure 7.

 Figure 6: Target image Figure 7: Segmented target image

- Now mean value of each block is calculated.

- Median of s is calculated so, is median of s.
- Now using following criteria the hash key for the image is calculated as below:

24

- Now we convert this hash key to an image mask as shown in figure 8.

 Figure 8: Target image hash

- All the above steps will be done on attacked image too as shown in figures 9 and 10.

 Figure 9: Attacked image Figure 10: Attacked image hash

- As first modification on attacked image we use mask which is obtained from favorite
image to manipulate intensities of attacked image according to favorite mask. This is
done by multiplication of pixel intensities on attacked image to numbers higher than 1
where mask is white and lower than 1 in locations that mask is black. It has to be
mentioned that hash key is 16×16 so before this operation it must be resized to 256×256.
After this operation since intensities have changed then picture will appear unnatural as it
can be seen in figures 11 and 12 along its new hash key then some compensation is
needed.

25

 Figure 11: Masked attacked image Figure 12: Masked attacked image hash

- Now by use of Gaussian filter the FAVORITE image’s mask will be blurred to overcome
this problem but higher degree of blurring means more hamming distance at the end so
we have a tradeoff here. In our implementation degree of blurring will be controlled by
BD parameter. After blurring the attacked image mask and its corresponding masked
image is shown at figures 13 and 14.

Figure 13: Filtered attacked image hash Figure 14: Filtered attacked image

Now the first stage has finished an in this stage we will get lower hamming distance. Further
operation in order to obtain hamming distance will be done in the next stage. Here another option
is utilized which is instead of using extracted mask from target image, it is possible to use
predefined masks although the resulting hamming distance is not as good as the extracted mask
method. Some of these masks are depicted in figure 15. Software searches for nearest mask to
target image’s mask in terms of hamming distance and use it for manipulating attacked image.

-

26

Figure 15: Samples of predefined hash masks

- There is also an option that we can define the minimum hamming distance required to
enter the stage one i.e. if an image’s hash key has a hamming distance below this
threshold to target image software directly goes to stage two and no operation is done in
terms of intensity manipulation and filtering.

27

3.3.2. Stage2:

In this stage the produced attacked image from the previous stage is subjected to changing
intensities in those particular blocks that their mean value is different from mean value of target
(favorite) image. This process is done by adding 1, 2, … to intensities of those blocks that their
mean value will exceed the median if they are lower than median or fell below the median if they
are above the median. There are two limitations for these operations i.e.:

- Changing is done in a way that median remains unchanged. It means if a changing of
value for a particular block changes the median then another change is done in the
reverse direction in order to reach a target value in hamming distance.

- Variance of each block is used as a measure of quality which limits number of change for
each block change. This works as a feature in the software i.e. if keeping the quality of
the attacked image is important for us then regardless of what is the target hamming
distance is, a particular block is subjected to predefined number of intensity changes
according the value of the block variance as shown in table 4. These values have obtained
by testing on many images. The reason behind is higher the number of variance, changes
in the block mean value has lesser effect in human perception.

 Values in table 4 have been obtained by several runs of the program. For more information refer
to appendix A.

Block Variance Maximum allowed distance to change

0-100 2
100-1000 4

1000-20000 5
20000-30000 8

30000-2500000 15 (varies from 10 to 20)
2500000 24

Table 3: Variance criterion for quality control

28

3.4. MATLAB® Code
In this Master thesis entire program has been written in MATLAB®. About the code there are

some important notes that must be noticed. First is that in the code the burden of the job is on
two functions which constructs core of the software namely Stage1M.m and Stage2M.m. In
Stage1M.m software calculates the hash bits for original and target image and it uses some input
parameters such as HammingDistanceLimit1, BD, wh, bl and method. HammingDistanceLimit1
is threshold for attacked image i.e. if hamming distance of attacked image fell below this value
then stage 1 is discarded and attacked image after computation of hash bits directly will be send
to stage 2. BD is controlling parameter for blurring and higher blurring means higher final
hamming distance and a typical value for this parameter in between 20 and 30. wh and bl are the
intensity multiplication coefficients for light and dark areas of hash key respectively and value
equal to unity means image is remained unchanged and typically for wl value is above one and
for the bl is below one. method defines whether target image or predefined masks is used for
masking the image and value equal to 1 means that target image will be used for masking the
attacked image and method equal to 2 means software will use one of predefined masks with
lowest hamming distance to target image.
There are other functions that are used by mentioned main functions as below:

- HashDist.m:
Calculates hamming distance for two images’ hash codes.

- ChangeMean.m:
Changes the mean value of the desired block in positive or negative direction.

29

function
[I1,H2,Dist2,Dist1]=Stage1M(OriginalImageName,cond,BD,wh,bl,method,ShRe,SaRe)
%Input Arguments:
%OriginalImageName: Attacked Image name
%cond: Hamming distance limit1
%BD: Blurring Degree (Gaussian LPF)
%wh: White area multiplication coefficient
%bl: Black area multiplication coefficient
%method: 1 (Uses target image hash key)-2 (Uses predefined hash key)
%ShRe: Show result (1) Dont show (0)
%SaRe: Save Result (1) Dont Save (0)
%Output Arguments:
%I1: Modified attack image after stage1
%H2: Hash bit of target image
%Dist2: Hamming Distance after modifocation
%Dist1: Hamming Distance before modification

function [I,Dist1]=Stage2M(I,H0,limit,BEST,name,ShRe,SaRe)
%Input Arguments:
%I: Attacked Image name after stage1
%limit: Hamming distance limit2
%BEST: 'yes'quality is preserved regardless of hamming distance limit
% 'no' hamming distance is reduced till reaching hamming distance
% limit 2
%name: Target image name
%ShRe: Show result (1) Dont show (0)
%SaRe: Save Result (1) Dont Save (0)
%Output Arguments:
%I: Modified attack image after stage2
%Dist1: Hamming Distance after modification

30

4. Verification and Results

4.1. Method 1
In this section the implemented spoofing program is tested for a set of 163 images. Here the

favorite (target image) has been used in order to obtain the mask. In figures 17-24 and tables 4-7
step by step outcome can be observed for four cases. The target and attacking image is different
perceptually and from hash key point of view.

For the first case hash pattern of original image is significantly different from attacking image in
the top and bottom of image as it can be observed in figure 17 but the variance of intensities in
the attacked image is significantly high and this allows high number of block mean changes. In
order to mask attacking image by original image mask its hash mask is smoothed by a Gaussian
low pass filter and by using scaling factors for black and white regions the final mask is obtained
as titled in figure 17 as final mask of original image by offset. Applying this mask to target
image, we reach the end of stage one and by changing the mean value of the selected blocks
consequently the overall result can be in figure 18. The visual effect of process can be observed
as shadows on the image but there is no artifact and damage to image texture and blurring effect
of smoothing filter is not significant. At the same time hamming distance between original image
and attacking image is reduced significantly by 103 units at the expense of appearing shadows.

In second and third case again the hash keys of target image and attacking image are
significantly different and shadows appear on particular areas that original image has low
intensity. The hamming distance reduction is high with 96 and 93 points for second and third
example respectively. For the fourth case hash key of target and attacking image is more similar
compare to previous examples and original image hash has a dark pattern approximately in all
areas. As it is expected the final image appears a darker version of the image before attack with
hamming distance reduction of 77.

The dark regions on the final regions may be explained by high scaling factors for black and
white region which are respectively are chosen 2 and 0.5 which means in the attacking image is
intensities according to target image hash key are two times brighter in white regions and one
half in black regions. These values are chosen to achieve high hamming distance reduction with
a target of 16. For pictures with similar objects such as face the result would be better in terms of
intensity distortions.

 In order to have a better understanding in figures 25 and 26 histogram of hamming distance
reduction after first, second and first plus second stages as well as their boxplot is provided.
Histogram and boxplot graphs indicate that most of hamming distance reduction occurs at the
first stage with mean of 74.36 whereas in stage 2 is only about 7 degree reduction. Maximum
reduction of hamming distance in stage 1 is 106 while in stage 2 is equal to 33. Total hamming
distance reduction based on block mean value has a mean of 81.41, maximum value of 106 and

31

median equal to 85. This significant reduction in hamming distance can be described by
choosing the proper attack image set. Images with higher block variance, in other words with
many small objects, is a proper choice in order to be chosen as attacking image. As it can be
observed in provided figures, images perceptual quality in terms of texture has been preserved.
In order to have a measure of contaminated noise in the images peak signal to noise ratio (PSNR)
have been calculated and its respective histogram is shown in figure 16.

Figure 16: PSNR histogram for 163 attacked image

13.5 14 14.5 15 15.5 16 16.5 17 17.5 18 18.5
0

2

4

6

8

10

12

14

16

18

PSNR

32

Figure 17: Method 1-image 1

33

Figure 18:Method 1- Image 1

Hamming Distance
Before Attack

Hamming Distance After
First Stage

Hamming Distance After
Second Stage

113 10 10

Table 4: Hamming distance reduction for Method 1- Image 1

In the program following quantities have been used:
HammingDistanceLimit1 = 20 (Limit for stage 1 and below this value SW discards stage 1)
HammingDistanceLimit2 = 16 (Target Hamming Distance)
BD = 20 (Blurring Coefficient)
Wh =2 (Intensity Multiplication Coefficient in bright parts of the mask)
Bl =0.5 (Intensity Multiplication Coefficient in dark parts of the mask)
Quality = on

34

Figure 19: Method 1- Image 2

35

Figure 20: Method 1 – Image 2

Hamming Distance
Before Attack

Hamming Distance After
First Stage

Hamming Distance After
Second Stage

113 40 17

Table 5: Hamming distance reduction for Method 1- Image 2

In the program following quantities have been used:
HammingDistanceLimit1 = 20 (Limit for stage 1 and below this value SW discards stage 1)
HammingDistanceLimit2 = 16 (Target Hamming Distance)
BD = 20 (Blurring Coefficient)
Wh =2 (Intensity Multiplication Coefficient in bright parts of the mask)
Bl =0.5 (Intensity Multiplication Coefficient in dark parts of the mask)
Quality = on

36

Figure 21: Method 1 – Image 3

37

Figure 22: Method 1 – Image 3

Hamming Distance
Before Attack

Hamming Distance After
First Stage

Hamming Distance After
Second Stage

109 33 16

Table 6: Hamming distance reduction for Method 1- Image 3

In the program following quantities have been used:
HammingDistanceLimit1 = 20 (Limit for stage 1 and below this value SW discards stage 1)
HammingDistanceLimit2 = 16 (Target Hamming Distance)
BD = 20 (Blurring Coefficient)
Wh =2 (Intensity Multiplication Coefficient in bright parts of the mask)
Bl =0.5 (Intensity Multiplication Coefficient in dark parts of the mask)
Quality = on

38

Figure 23: Method 1 – Image 4

39

Figure 24: Method 1 – Image 4

Hamming Distance
Before Attack

Hamming Distance After
First Stage

Hamming Distance After
Second Stage

93 33 16

Table 7: Hamming distance reduction for Method 1- Image 4

In the program following quantities have been used:
HammingDistanceLimit1 = 20 (Limit for stage 1 and below this value SW discards stage 1)
HammingDistanceLimit2 = 16 (Target Hamming Distance)
BD = 20 (Blurring Coefficient)
Wh =2 (Intensity Multiplication Coefficient in bright parts of the mask)
Bl =0.5 (Intensity Multiplication Coefficient in dark parts of the mask)
Quality = on

40

Figure 25: Histogram of hamming distance reduction after stage1 (up), stage2 (middle) and stages1+2 (bottom)

0 20 40 60 80 100 120
0

5

10

15

20

����������������

�

�

0 5 10 15 20 25 �0 �5
0

20

40

60

80

100

����������������

�

�

0 20 40 60 80 100 120
0

10

20

�0

����������������

�

�

�����1

�����2

�����

41

Figure 26: boxplot of hamming distance reduction

4.2. Method 2
Here the program implemented based in predefined masks and is tested on a set of 50 images.

Its operation on three of the attacked images has been depicted on in pictures 27 to 31 and tables
8 to 10. In figures 32 and 33 histogram of hamming distance reduction for stage one, stage two,
stage one plus stage two as well as corresponding boxplot is depicted. Here hamming distance
reduction is declined drastically. For instance at stage one and stage two mean values of
hamming distance reduction are 30.14 and 23.24 respectively. Mean of total hamming distance
reduction declines from 81 to 53 compared to first method.

S�����1 S�����2 S������1�2

0

20

40

60

80

100

�
��

�
��

��
�

��
��

��
�

42

Figure 27: Method 2 – Image 1

43

Figure 28: Method 2 – Image 1

Hamming Distance
Before Attack

Hamming Distance After
First Stage

Hamming Distance After
Second Stage

113 63 41

Table 8: Hamming distance reduction for Method 2- Image 1

In the program following quantities have been used:
HammingDistanceLimit1 = 20 (Limit for stage 1 and below this value SW discards stage 1)
HammingDistanceLimit2 = 16 (Target Hamming Distance)
BD = 20 (Blurring Coefficient)
Wh =2 (Intensity Multiplication Coefficient in bright parts of the mask)
Bl =0.5 (Intensity Multiplication Coefficient in dark parts of the mask)
Quality = on

44

Figure 29: Method 2 – Image 2

45

Figure 30: Method 2 – Image 2

Hamming Distance
Before Attack

Hamming Distance After
First Stage

Hamming Distance After
Second Stage

113 96 60

Table 9: Hamming distance reduction for Method 2- Image 2

In the program following quantities have been used:
HammingDistanceLimit1 = 20 (Limit for stage 1 and below this value SW discards stage 1)
HammingDistanceLimit2 = 16 (Target Hamming Distance)
BD = 20 (Blurring Coefficient)
Wh =2 (Intensity Multiplication Coefficient in bright parts of the mask)
Bl =0.5 (Intensity Multiplication Coefficient in dark parts of the mask)
Quality = on

46

Figure 31: Method 2 – Image 3

47

Figure 32: Method 2 – Image 3

Hamming Distance
Before Attack

Hamming Distance After
First Stage

Hamming Distance After
Second Stage

109 92 52

Table 10: Hamming distance reduction for Method 2- Image 3

In the program following quantities have been used:
HammingDistanceLimit1 = 20 (Limit for stage 1 and below this value SW discards stage 1)
HammingDistanceLimit2 = 16 (Target Hamming Distance)
BD = 20 (Blurring Coefficient)
Wh =2 (Intensity Multiplication Coefficient in bright parts of the mask)
Bl =0.5 (Intensity Multiplication Coefficient in dark parts of the mask)
Quality = o

48

Figure 33: Histogram of hamming distance reduction after stage1 (up), stage2 (middle) and stages1+2 (bottom)

�10 0 10 20 �0 40 50 60 70 80
0

2

4

6

����������������

�

�

0 10 20 �0 40 50 60
0

1

2

�

4

5

����������������

�

�

0 10 20 �0 40 50 60 70 80 �0 100
0

2

4

6

8

����������������

�

�
�����

�����1

�����2

49

Figure 34: Boxplot of hamming distance reduction

S�����1 S�����2 S������1�2
�10

0

10

20

�0

40

50

60

70

80

�0

�
��

�
��

��
�

��
��

��
�

50

5. Conclusion and Future Work

5.1 Conclusion
This thesis work is undertaken to design and implement a novel method for imitating hash key

of a target image by another image. This hash spoofing method implemented based on block
mean value hash algorithm by MATLAB and verified. Prior to local modification of specific
blocks mean value in the image, a global modification of image is achieved by use of a picture
mask and weighting intensities of the image to reach a lower hamming distance. This increase in
the similarity of images’ hashes had to be done without any visual quality loss of image. For this
purpose a thresholding criterion for maximum modifiable distance to mean is obtained by any
runs on the program. This thresholding criterion is based on the variance of each block and
higher variance means more allowable block’s mean modification. Testing the software with a
set of images proved that this method of hash spoofing is more effective if target image’s hash
key is used as an intensity modification mask with a mean of hamming distance reduction equal
to 81 while with predefined mask method it is 51. In overall this methods shows acceptable
performance especially with the first approach. Since this algorithm uses simplest block mean
value based algorithms its cost and complexity is relatively low.

5.2 Future Work
As proposed by Yang, Gu and Niu instead of simple block mean value based algorithm other

variations with 50% overlap and rotation may be used. As discussed in [2], it is anticipated better
reduction in hamming distance at the expense of complexity and computational cost. For second
method better set of predefined masks may lead to improve in hamming distance reduction. Also
it is anticipated that in order to improve the algorithm in stage 2, more precise in variance
thresholding may lead to better performance of the algorithm.

51

References:

 [1] Menezes, A.J., Vanstone, S.A., and Oorschot, P.C.V. ” Handbook of Applied Cryptography”. CRC
Press, Inc., Boca Raton, FL, USA, 1996, ISBN 0849385237.

[2] Christoph Zauner, “Implementation and Benchmarking of Perceptual Image Hash Functions”, 2011

[3] C Zauner, M Steinebach, E Hermann, “Rihamark: perceptual image hash benchmarking” in Proc.
SPIE 7880, Media Watermarking, Security and Forensics III, 78800X, 2011

 [4] Martin Steinebach, Huajian Liu, York Yannikos “Efficient Robust Image Hashing” Proc. SPIE 8303,
Media Watermarking, Security, and Forensics, 2012

[5] Sheskin, David ,”Handbook of Parametric and Nonparametric Statistical Procedures”. CRC Press.
p. 59. ISBN 1584884401.

[6] Yang, B., Gu, F., and Niu, X., “Block mean value based image perceptual hashing.”In Proceedings of
the International Conference on Intelligent Information Hiding and Multimedia Multimedia Signal
Processing (IIH- MSP), pp. 167{172. IEEE, 2006, ISBN 0-7695-2745-0.

[7] Wikipedia contributors, “Hash function” Wikipedia, the free encyclopedia.
Wikimedia Foundation, Inc., 21-Jun-2012.

[8] Lefebvre, F., Macq, B., Legat, J.: Rash, “Radon soft hash algorithm”. In Proceedings of the European
Signal Processing Conference, Toulouse, France. (Sep. 2002)

[9] Li Weng, Preneel B,” Attacking Some Perceptual Image Hash Algorithms”, In Multimedia and Expo,
2007 IEEE International Conference, Beijing, 2007

[10] R. Merkle, “Secrecy, Authentication, and Public Key Systems” UMI Research Press, 1979.

[11] R. Merkle, “One way hash functions and DES” Advances in Cryptology, Proc. Crypto’89, LNCS
435, G. Brassard, Ed., Springer-Verlag, 1990, pp. 428–446.

[12] M.O. Rabin, “Digitalized signatures” in “Foundations of Secure Computation” R. Lipton and R.
DeMillo, Eds., Academic Press, New York, 1978, pp. 155-166.

[13] I.B. Damgard, “Collision free hash functions and public key signature schemes”, Advances in
Cryptology, Proc. Eurocrypt’87, LNCS 304, D. Chaum andW.L. Price, Eds., Springer-Verlag, 1988, pp.
203–216.

[14] I.B. Damgard, “The application of claw free functions in cryptography”, PhD Thesis, Aarhus
University, Mathematical Institute, 1988.
[15] B. Preneel, “Analysis and Design of Cryptographic Hash Functions”, Phd Thesis, Katholieke
Universiteit Leuven, 1993.

[16] M. Schneider and S. F. Chang, “Arobust content based digital signature for image authentication ,”
in Proc. IEEE Conf. Image Processing, Sep. 1996, vol. 3, pp. 227–230.

[17] C. Kailasanathan and R. S. Naini, “Image authentication surviving acceptable modifications using
statistical measures and k-mean segmentation,” presented at the Proc. IEEE-EURASIP Work. Nonlinear
Sig. Image, Jun. 2001.
[18] R. Venkatesan, S. M. Koon, M. H. Jakubowski, and P. Moulin, “Robust image hashing,” in Proc.
IEEE Conf. on Image Processing, Sep. 2000, pp. 664–666.

52

[19 C. Y. Lin and S. F. Chang, “A robust image authentication system distingushing JPEG compression
from malicious manipulation,” IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 2, pp. 153–168,
Feb. 2001.

[20] C.-S. Lu and H.-Y. M. Liao, “Structural digital signature for image authentication ,” IEEE Trans.
Multimedia, vol. 5, no. 2, pp. 161–173, Jun. 2003.

[21] J. Fridrich and M. Goljan, “Robust hash functions for digital watermarking,” in Proc. IEEE Int.
Conf. Information Technology: Coding and Computing, Mar. 2000, pp. 178–183.

[22] K. Mihcak and R. Venkatesan, “New iterative geometric techniques for robust image hashing,” in
Proc. ACM Workshop on Security and Privacy in Digital Rights Management Workshop, Nov. 2001, pp.
13–21.

[23] A. Swaminathan, Y. Mao, and M. Wu, “Robust and secure image hashing,” IEEE Trans. Inf.
Forensics Security, vol. 1, no. 2, pp. 215–230, Jun. 2006.
[24] S. Bhatacherjee and M. Kutter, “Compression tolerant image authentication,” in Proc. IEEE Int.
Conf. Image Processing, Chicago, IL, Oct. 1998, vol. 1, pp. 435–439.

[25] J. Dittman, A. Steinmetz, and R. Steinmetz, “Content based digital signature for motion picture
authentication and content-fragile watermarking,” in Proc. IEEE Int. Conf. Multimedia Computing and
Systems, 1999, pp. 209–213.

[26] V. Monga and B. L. Evans, “Robust perceptual image hashing using feature points,” in Proc. IEEE
Conf. Image Processing, Singapore, Oct. 004, vol. 1, pp. 677–680.
[27] S. S. Kozat, K. Mihcak, and R. Venkatesan, “Robust perceptual image hashing via matrix
invariances,” in Proc. IEEE Conf. Image Processing,Oct. 2004, pp. 3443–3446.

[28] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” Advances Neural
Information Process. Syst., vol. 13, pp. 556–562, 2000.

[29] Vishal Monga and M. Kıvanç Mıhçak. “Robust and Secure Image Hashing via Non-Negative Matrix
Factorizations”. IEEE Transactions on information forensics and security, Vol. 2, No. 3, Sep

[30] Fridrich, J.: Robust bit extraction from images. In Proceedings of the International Conference on
Multimedia Computing and Systems (ICMCS), vol. 2, pp. 536{540. IEEE, June 1999.
 [31] Bovik, A. (ed.): The Essential Guide to Image Processing. Academic Press, 2009.

53

Appendices:

Appendix A: Variance Thresholding

Name Mean Variance Block number Mean of Block Variance of Block
Max Pass

intensity for
+

Max Pass
intensity for -

B 120.69 4.9053e+005 26 122.0469 1.4942e+006 3 5
 97 196.8867 2.6184e+005 3 5
 256 140.2500 2.3523e+006 5 10
 170 202.1367 18.9699 3 3
 87 53.4453 1.8760e+006 6 8
 34 124.9883 6.9623e+005 10 18
 120 146.6328 1.2084e+006 15 18
 59 100.5195 1.0453e+006 30 40
 193 129.1523 1.4958e+006 7 10
 148 72.0508 4.2283e+005 8 10
 201 163.1406 2.0434e+006 5 8

 16 108.5977 2.1323e+006 15 20

Name Mean Variance Block number Mean of Block Variance of Block
Max Pass

intensity for
+

Max Pass
intensity for -

desert
(1) 129.8907 4.1868e+004 16 144.7070 7.5226 2 3

 45 99.6367 3.5061 2 2
 25 115.5977 0.4933 3 4
 38 115.3828 220.3143 3 4
 54 112.3008 1.4261e+003 3 5
 69 101.5586 0.3592 3 5
 78 139.2734 3.3485e+003 3 4
 135 130.7813 626.4725 4 6
 166 128.3008 9.6057e+003 5 6
 183 135.7695 7.9358e+003 7 5
 194 155.9453 6.1390e+003 7 5
 245 120.0547 2.5116e+004 8 9

 255 139.8750 0.1422 2 3

54

Variance thresholding (Continued)

Name Mean Variance Block
number

Mean of
Block

Variance of
Block

Max Pass
intensity for

+

Max Pass
intensity for

-

river (6)

120.0362

3.5216e+005 28 140.3086 3.7625e+006 26 23
 39 112.2695 6.4191e+005 24 15
 56 99.8203 2.1623e+006 25 20
 64 181.4609 1.5694e+005 20 24
 79 107.4805 1.0396e+007 27 24
 85 95.3438 6.4626e+006 18 20
 94 104.7344 2.6235e+005 22 29
 134 112.5938 1.0286e+006 20 25
 155 157.6250 4.5382e+006 24 21
 198 111.1172 4.1756e+006 24 21
 206 123.9453 3.2216e+006 28 25
 245 96.3789 3.1393e+006 28 26

Name Mean Variance Block
number

Mean of
Block

Variance of
Block

Max Pass
intensity for

+

Max Pass
intensity for

-

sea (2) 130.1862 2.6821e+005 28 90.1133 5.3403e+003 8 3
 35 143.2695 4.0912e+004 18 11
 48 91.4414 1.5365e+003 7 5
 53 135.6875 4.9744e+004 19 12
 66 159.8281 2.0161e+004 15 19
 76 122.4492 3.1277e+004 7 10
 89 102.9414 419.3829 5 4
 111 80.8633 564.4349 5 4
 134 151.2422 5.9005e+004 8 10
 155 140.1289 5.0154e+003 5 6
 198 142.4219 2.3915e+004 8 7
 236 86.1367 1.0651e+004 5 4
 255 75.3633 35.1890 3 2

55

Appendix B: Tables of Hamming Distance Reduction by stage

Table1: Results from method 1 using the modified mask from the original image.

Name of
Image

Original Hamming
Distance

1st Stage Hamming
Distance

2nd Stage (Final)
Hamming Distance

PSNR in
dB

1 113 40 17 15.6338
2 113 10 10 14.5839
3 109 37 16 15.6103
4 111 27 16 14.8646
5 92 37 16 17.3132
6 103 29 16 15.1918
7 92 11 11 13.944
8 99 15 15 14.0747
9 88 7 7 14.029

10 91 7 7 14.7925
11 95 10 10 13.9382
12 86 3 3 13.9965
13 96 24 16 14.7465
14 97 33 16 17.1763
15 93 33 16 17.8165
16 102 32 16 14.7695
17 87 6 6 13.816
18 112 9 9 13.6047
19 107 10 10 13.7455
20 105 13 13 13.951
21 108 25 16 15.1693
22 102 14 14 14.8231
23 113 10 10 14.7227
24 89 10 10 14.1853
25 109 12 12 13.6674
26 104 28 16 15.3215
27 110 4 4 14.4032
28 106 10 10 15.0094
29 111 19 16 14.938
30 96 7 7 14.8179
31 113 32 16 15.0189
32 0 0 0 Inf
33 110 26 16 17.5909
34 107 24 16 14.4356
35 1 1 1 Inf

56

36 106 11 11 15.2288
37 79 19 16 14.9858
38 97 10 10 13.8789
39 98 37 16 14.7288
40 97 13 13 14.419
41 118 38 15 14.4965
42 110 4 4 14.4032
43 91 14 4 14.2107
44 116 15 15 14.9863
45 87 12 12 14.1973
46 112 49 16 15.7424
47 99 8 8 14.5423
48 89 25 16 14.7929
49 94 9 9 13.8939
50 72 16 16 14.887
51 102 33 16 14.6393
52 98 7 7 13.7488
53 100 35 16 15.7411
54 100 5 5 13.8375
55 95 25 16 17.1012
56 111 14 14 14.3483
57 92 13 13 14.0084
58 102 41 17 16.4607
59 92 7 7 13.9503
60 105 33 16 14.6503
61 95 8 8 14.6173
62 94 11 11 14.1256
63 103 43 18 17.2599
64 63 14 14 18.2579
65 100 30 15 15.7774
66 105 22 16 14.2337
67 109 30 17 14.3314
68 97 9 9 13.8481
69 96 16 16 14.1644
70 98 16 16 15.0636
71 81 14 14 14.0775
72 104 16 16 15.0201
73 70 17 16 15.0369
74 90 22 16 14.354
75 75 15 15 14.8666
76 107 10 10 13.7906
77 92 24 16 14.8782
78 97 17 15 15.1509

57

79 111 17 16 15.7483
80 99 10 10 13.8598
81 94 33 17 17.5301
82 65 11 11 14.9404
83 103 5 5 15.4496
84 80 9 9 14.0569
85 83 13 13 14.3751
86 116 39 16 15.1156
87 85 12 12 14.227
88 81 26 16 17.8452
89 100 11 11 13.739
90 110 40 15 14.8077
91 101 15 15 15.5761
92 95 30 16 17.0793
93 99 36 16 17.1459
94 87 26 16 17.643
95 103 24 16 15.987
96 83 27 15 14.7262
97 95 32 16 17.7549
98 99 31 16 14.8433
99 112 48 16 15.9446
100 91 9 9 13.9388
101 78 24 15 14.992
102 106 5 5 14.5612
103 101 19 16 14.2475
104 89 27 16 17.6654
105 58 13 13 15.2376
106 102 15 15 15.6779
107 0 0 0 Inf
108 102 16 16 15.619
109 98 12 12 15.6092
110 100 26 16 14.3222
111 103 21 16 15.9963
112 106 33 17 15.2393
113 113 39 16 15.8501
114 87 18 15 16.7025
115 79 15 15 14.9198
116 104 29 16 14.6201
117 99 40 16 17.1178
118 99 28 14 14.7046
119 97 29 16 15.9227
120 87 12 12 16.5258
121 84 27 16 17.4953

58

122 83 11 11 16.5854
123 104 29 16 17.3527
124 86 21 16 15.285
125 97 26 16 14.601
126 110 38 16 15.8131
127 97 35 16 14.8189
128 78 24 16 14.8608
129 68 16 16 15.2846
130 85 33 16 17.5661
131 85 23 16 17.9415
132 109 12 12 13.7381
133 108 11 11 14.7103
134 107 36 15 13.8569
135 106 40 16 15.8845
136 62 14 14 14.9294
137 81 6 6 14.0135
138 96 36 16 17.3357
139 104 31 16 14.8357
140 70 16 16 15.0719
141 105 18 16 15.2511
142 113 35 16 13.6782
143 108 17 16 14.1683
144 100 7 7 13.8936
145 77 14 14 14.8329
146 107 8 8 13.6847
147 110 28 16 14.6913
148 55 15 15 15.1551
149 108 32 16 15.3651
150 73 25 16 14.9298
151 82 5 5 14.0697
152 108 30 16 15.4116
153 103 13 13 13.6848
154 95 16 16 14.2216
155 91 2 2 13.9672
156 75 18 16 15.0965
157 78 24 16 14.9534
158 101 24 16 15.5052
159 107 7 7 14.5022
160 108 31 16 14.5392
161 100 34 15 15.8422
162 85 8 8 14.3405
163 103 36 16 15.6947

59

Table 2: Results from method 2 using the predefined mask
Name of

Image
Original Hamming

Distance
1st Stage Hamming

Distance 2nd Stage (Final) Hamming Distance

1 113 63 41
2 113 96 60
3 109 92 52
4 111 64 55
5 92 77 61
6 103 92 61
7 92 74 39
8 115 82 68
9 99 67 35

10 109 57 48
11 88 68 39
12 91 77 37
13 95 34 30
14 86 49 47
15 96 99 47
16 97 34 27
17 93 76 60
18 102 60 46
19 87 55 26
20 112 35 20
21 107 73 45
22 105 75 43
23 108 29 25
24 102 89 56
25 107 91 74
26 113 75 51
27 89 48 44
28 109 83 55
29 104 81 55
30 110 57 29
31 106 72 42
32 111 83 54
33 96 78 35
34 113 67 44
35 0 0 0
36 94 66 43
37 110 101 63

60

38 107 113 89
39 112 80 60
40 0 0 0
41 106 94 61
42 79 52 32
43 101 97 60
44 98 87 53
45 97 67 48
46 107 29 20
47 118 76 60
48 110 57 29
49 91 77 43
50 116 74 48

61

Appendix C: MATLAB Codes

Manual Test to find the Threshold
%%%%%%%%%%Manual Test to find the threshold for quality saving%%%%%%%%%%%
%--
name='B';
k1=20;
v=20;
%--

clc
addr=sprintf('%s.jpg',name);
A=imread(addr);
I=rgb2gray(A);
x=1;
y=1;
x2=16;
y2=16;
ylim=((y2)-1).*(256./y2)+1;
hb=(x2.*y2);
imdim=256;
k=1;
while(x<=imdim)
for j=1:1:x2
 for i=1:1:y2
 F(i,j,k)=I(i+y-1,j+x-1);
 end
end
if(y<ylim)
 y=y+y2;
else
 y=1;
 x=x+x2;
end
k=k+1;
end

%--
I1=I;
I2=I;
%Main Block--
 if(rem(k1,16)==0)
 k2=k1-1;
 else
 k2=k1;
 end
 cor=(fix(k2./y2).*x2);
 x3=cor+1;
 y3=((k1-cor-1).*y2)+1;
 for o=x3:1:(x3+x2-1)
 for p=y3:1:(y3+x2-1);
 Q(p-y3+1,o-x3+1)=I(p,o);
 end
 end

62

Q=double(Q);
m1=mean(mean(Q));
v1=var(var(Q));
Q1=Q;
m2=m1;
while(abs(m2-m1)<v)
 for o=1:16
 for p=1:16
 Q1(p,o)=Q1(p,o)./1.001;
 end
 end
 m2=mean(mean(Q1));
end
 if(rem(k1,16)==0)
 k2=k1-1;
 else
 k2=k1;
 end
 cor=(fix(k2./y2).*x2);
 x3=cor+1;
 y3=((k1-cor-1).*y2)+1;
 for o=x3:1:(x3+x2-1)
 for p=y3:1:(y3+x2-1);
 I1(p,o)=Q1(p-y3+1,o-x3+1);
 end
 end

Q=double(Q);
Q2=Q;
m3=m1;
while(abs(m3-m1)<v)
 for o=1:16
 for p=1:16
 Q2(p,o)=Q2(p,o).*1.001;
 end
 end
 m3=mean(mean(Q2));
end

 if(rem(k1,16)==0)
 k2=k1-1;
 else
 k2=k1;
 end
 cor=(fix(k2./y2).*x2);
 x3=cor+1;
 y3=((k1-cor-1).*y2)+1;
 for o=x3:1:(x3+x2-1)
 for p=y3:1:(y3+x2-1);
 I2(p,o)=Q2(p-y3+1,o-x3+1);
 end
 end

I=double(I);

63

MI=mean(mean(I));
VI=var(var(I));
disp('Name Of Image');
disp(name)
disp('Mean Of Image');
disp(MI)
disp('Variance of Image');
disp(VI)
disp('Block Number=');
disp(k1)
disp('Mean of Block=');
disp(m1)
disp('Variance of Block=');
disp(v1)

subplot(1,3,1); imshow(I,[]); title('original image');
rectangle('Position',[x3,y3,16,16])
subplot(1,3,2); imshow(I1); title('-');
subplot(1,3,3); imshow(I2); title('+');

 Hash Function
function SaveHash(NumberOfAttackImages)
for num=1:NumberOfAttackImages
addr=sprintf('%s%d.jpg','attack set\',num);
A=imread(addr);
I=rgb2gray(A);
x=1;
y=1;
x2=16;
y2=16;
for k=1:256
if(rem(k,16)==0)
 k2=k-1;
 else
 k2=k;
 end
 cor=(fix(k2./y2).*x2);
 x3=cor+1;
 y3=((k-cor-1).*y2)+1;
 for o=x3:1:(x3+x2-1)
 for p=y3:1:(y3+x2-1);
 Q(p-y3+1,o-x3+1)=I(p,o);
 end
 end
Q=double(Q);
M(k)=round(mean(mean(Q)));
end
S=sort(M); %sort averages from min to max
Md=S(127); %find median
H=M>Md;
H=sprintf('%d',H);
for p=1:256
H1(num,p)=H(p);
end

64

end
xlswrite('attack set\AH.xls',H1);
end

 Find Similar Hash
%%%%%%%%%%%%%%%%% SIMILAR HASH %%%%%%%%%%%%%%%%%%%%%%%%%%%
function num=SimilarHash(NameOfOriginalImage)
addr=sprintf('%s.jpg',NameOfOriginalImage);
A=imread(addr);
I=RGB2gray(A);
x=1;
y=1;
x2=16;
y2=16;
for k=1:256
if(rem(k,16)==0)
 k2=k-1;
 else
 k2=k;
 end
 cor=(fix(k2./y2).*x2);
 x3=cor+1;
 y3=((k-cor-1).*y2)+1;
 for o=x3:1:(x3+x2-1)
 for p=y3:1:(y3+x2-1);
 Q(p-y3+1,o-x3+1)=I(p,o);
 end
 end
Q=double(Q);
M(k)=round(mean(mean(Q)));
end
S=sort(M); %sort averages from min to max
Md=S(127); %find median
H0=M>Md;
H0=sprintf('%d',H0);

H1=xlsread('attack set\AH.xls');
x=size(H1);

for i=1:x(1)
H2=sprintf('%d',H1(i,:));
Dist(i)=sum(H2~=H0);
end
[va,num]=min(Dist);
num=sprintf('%d',num);
end

65

Hash Distance
function HashDist(I1,S1,I2,S2)
add1=sprintf('%s.%s',I1,S1);
add2=sprintf('%s.%s',I2,S2);
A1=imread(add1);
A2=imread(add2);
[a,b,c]=size(A1);
if(c==3), A1=rgb2gray(A1); end
[a,b,c]=size(A2);
if(c==3), A2=rgb2gray(A2); end

x=1;
y=1;
x2=16;
y2=16;
%HashNumber Of 1st Image --
for k=1:256
if(rem(k,16)==0)
 k2=k-1;
 else
 k2=k;
 end
 cor=(fix(k2./y2).*x2);
 x3=cor+1;
 y3=((k-cor-1).*y2)+1;
 for o=x3:1:(x3+x2-1)
 for p=y3:1:(y3+x2-1);
 Q(p-y3+1,o-x3+1)=A1(p,o);
 end
 end
Q=double(Q);
me(k)=round(mean(mean(Q)));
end
So=sort(me);
Md=So(127);
H1=me>Md;
H1=sprintf('%d',H1)
%--
%HashNumber Of 2nd Image --
for k=1:256
if(rem(k,16)==0)
 k2=k-1;
 else
 k2=k;
 end
 cor=(fix(k2./y2).*x2);
 x3=cor+1;
 y3=((k-cor-1).*y2)+1;
 for o=x3:1:(x3+x2-1)
 for p=y3:1:(y3+x2-1);
 Q(p-y3+1,o-x3+1)=A2(p,o);
 end
 end
Q=double(Q);
me(k)=round(mean(mean(Q)));
end

66

So=sort(me);
Md=So(127);
H2=me>Md;
H2=sprintf('%d',H2)
%--
Dist=sum(H2~=H1)
end

 Stage 1
%%%%%%%%%%%%%%%%%%%%%%%% Stage 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%
function
[I1,I2,H2,Dist2,Dist1]=Stage1M(OriginalImageName,cond,BD,wh,bl,method,ShRe,Sa
Re)
%--
name=OriginalImageName;
name2=SimilarHash(name);
%--
addr=sprintf('%s.jpg',name);
A=imread(addr);
I=rgb2gray(A);
x=1;
y=1;
x2=16;
y2=16;

%Find Median & Mean of Blocks (1 to 256)for OriginalImage -----------------
for k=1:256
if(rem(k,16)==0)
 k2=k-1;
 else
 k2=k;
 end
 cor=(fix(k2./y2).*x2);
 x3=cor+1;
 y3=((k-cor-1).*y2)+1;
 for o=x3:1:(x3+x2-1)
 for p=y3:1:(y3+x2-1);
 Q(p-y3+1,o-x3+1)=I(p,o);
 end
 end
Q=double(Q);
me(k)=round(mean(mean(Q)));
end
So=sort(me);
Md=So(127);
%--
%Caclulate Hash Number of OriginalImage------------------------------------
H=me>Md;
H2=sprintf('%d',H);
%--
%Make Original Image Hash bit as a Picture (MASK)--------------------------
for i=1:16
 for j=1:16
 H00(j,i)=H(j+(16.*(i-1)));
 end
end

67

%--

%read attack Image --
addr=sprintf('%s%s.jpg','attack set\',name2);
A=imread(addr);
I2=rgb2gray(A);
I2=uint8(I2);

%Find Median and Mean of Blocks of Original attack Image ------------------
for k=1:256
if(rem(k,16)==0)
 k2=k-1;
 else
 k2=k;
 end
 cor=(fix(k2./y2).*x2);
 x3=cor+1;
 y3=((k-cor-1).*y2)+1;
 for o=x3:1:(x3+x2-1)
 for p=y3:1:(y3+x2-1);
 Q(p-y3+1,o-x3+1)=I2(p,o);
 end
 end
Q=double(Q);
me(k)=round(mean(mean(Q)));
end
So=sort(me);
Md=So(127);
%--
%Calculate Hash number of Original attack number --------------------------
H=me>Md;
H4=sprintf('%d',H);
%Make Modified attack Image Hash bit as a Picture -------------------------
for i=1:16
 for j=1:16
 H11(j,i)=H(j+(16.*(i-1)));
 end
end
%--
Dist1=sum(H2~=H4);% Hamming Distance of Original Image with Original Attack
Image
ad='attack set\';
if((Dist1-2)>cond)
 name2=FavSimilarHash(name);
 ad='attack set\Fav\';
%read attack Image again---
addr=sprintf('%s%s.jpg',ad,name2);
A=imread(addr);
I2=rgb2gray(A);
I2=uint8(I2);

%Find Median and Mean of Blocks of Original attack Image ------------------
for k=1:256
if(rem(k,16)==0)
 k2=k-1;
 else

68

 k2=k;
 end
 cor=(fix(k2./y2).*x2);
 x3=cor+1;
 y3=((k-cor-1).*y2)+1;
 for o=x3:1:(x3+x2-1)
 for p=y3:1:(y3+x2-1);
 Q(p-y3+1,o-x3+1)=I2(p,o);
 end
 end
Q=double(Q);
me(k)=round(mean(mean(Q)));
end
So=sort(me);
Md=So(127);
%--
%Calculate Hash number of Original attack number --------------------------
H=me>Md;
H4=sprintf('%d',H);
%Make Modified attack Image Hash bit as a Picture -------------------------
for i=1:16
 for j=1:16
 H11(j,i)=H(j+(16.*(i-1)));
 end
end
%--
Dist1=sum(H2~=H4);% Hamming Distance of Original Image with Original Attack
Image
end

%--
BA = double(imresize(H00, 16)); % Resize H00(HashBit Image(Mask) to 256x256)
if(method==2)
for i=1:1:30
 MaB=im2bw(imread(['Masks\(',num2str(i),').jpg']));
 cor(i)=sum(sum(MaB.*BA));
end
[vcor,icor]=max(cor);
BA=im2bw(imread(['Masks\(',num2str(icor),').jpg']));
end

B3 = BA; %imclose(BA,strel('square',28));
%BD=level of bluring as an input for function
B = conv2(double(B3),fspecial('average',BD),'same');%Smooth Mask by BD...
%BD determines the level of bluring, Higher BD -> more blurring ->less
%changes in picture

%method1---
B2=(B.*(wh-bl))+bl;%Complete the mask by setting some degree of effects on
Smoothed Mask
%--
if(ShRe==1)
% show result
subplot(1,3,1); imshow(BA); title('OriginalImage Mask');

69

subplot(1,3,2); imshow(B); title('Smoothed Mask of OriginalImage By BD');
subplot(1,3,3); imshow(B2); title('Final Mask of OriginalImage By ofset');
figure()
end
%--

% read the attack image again ---
addr=sprintf('%s%s.jpg',ad,name2);
A=imread(addr);
I1=double(rgb2gray(A));
if((Dist1-2)>cond)
 I1=I1.*B2;% multiply attack image by mask to get a similar hash number
end
I1=uint8(I1);

%Find Median and Mean of Blocks of Modified attack Image ------------------
for k=1:256
if(rem(k,16)==0)
 k2=k-1;
 else
 k2=k;
 end
 cor=(fix(k2./y2).*x2);
 x3=cor+1;
 y3=((k-cor-1).*y2)+1;
 for o=x3:1:(x3+x2-1)
 for p=y3:1:(y3+x2-1);
 Q(p-y3+1,o-x3+1)=I1(p,o);
 end
 end
Q=double(Q);
me(k)=round(mean(mean(Q)));
end
So=sort(me);
Md=So(127);
%--
%Calculate Hash number of Modified attack number --------------------------
H=me>Md;
H3=sprintf('%d',H);
%Make Modified attack Image Hash bit as a Picture -------------------------
for i=1:16
 for j=1:16
 H22(j,i)=H(j+(16.*(i-1)));
 end
end
%--

Dist2=sum(H2~=H3);% Hamming Distance of Original Image with Modified Attack
Image

if(ShRe==1)
% show result
 subplot(2,3,1); imshow(I,[]);title('Original image');
 subplot(2,3,2); imshow(I2,[]); title('attack image');
 subplot(2,3,3); imshow(I1,[]); title('modified attack image Stage1');

70

 subplot(2,3,4); imshow(H00,[]); title('hash bit of original image');
 subplot(2,3,5); imshow(H11,[]); title('hash bit of attack image');
 subplot(2,3,6); imshow(H22); title('hash bit of modified attack image
Stage1');
 figure();
end
%--
 if(SaRe==1)
%save result
dead=sprintf('%sName=%s--1stStage--Dist=%d%sBD=%d%swh=%d--
bl=%d%s','result\',name,Dist2,'--',BD,'--',wh,bl,'.bmp');
imwrite(I1,dead);
end
%--
End

 Stage 2
%%%%%%%%%%%%%%%%% Stage 2 %%%%%%%%%%%%%%%%%%%%%%%
function [I,Dist1]=Stage2M(I,H0,limit,BEST,name,ShRe,SaRe)

%find the Median, Mean hash bit of stage1 modified attack Image------------
x=1;
y=1;
x2=16;
y2=16;
for k=1:256
if(rem(k,16)==0)
 k2=k-1;
 else
 k2=k;
 end
 cor=(fix(k2./y2).*x2);
 x3=cor+1;
 y3=((k-cor-1).*y2)+1;
 for o=x3:1:(x3+x2-1)
 for p=y3:1:(y3+x2-1);
 Q(p-y3+1,o-x3+1)=I(p,o);
 end
 end
Q=double(Q);
M0(k)=round(mean(mean(Q)));
V(k)=var(var(Q));
end
S=sort(M0); %sort averages from min to max
Md=S(127); %find median
H=M0>Md;
H=sprintf('%d',H);
Dist=sum(H0~=H); % hamming distance of stage1 modified attack image with
original image
%--

M=M0;
%Vn LOOKUP TABLE

71

Vn=[0 0 100 100 1000 1000 20000 20000 30000 30000 30000 30000 30000 30000
30000 2500000 2500000 2500000 2500000 2500000 2500000 2500000 2500000
2500000];

% which bits are different? put them in HDi array--------------------------
t=0;
HDi=[];
i=1;
while(i-1~=Dist)
 t=t+1;
 if(H(t)~=H0(t)), HDi(i)=t; i=i+1; end
end
%--
 I1=I;
liD=limit;% Conditin -- if Dist become less than Limit Stop Modifying--as an
input for function

%Start Modifing Stage2---
n=0;
z=0;
while(Dist>liD && n<=(23+z))
 n=n+1;
 if(z~=0), Vn(n)=0; end
 for i=1:numel(HDi)
 if((M(HDi(i))==Md+n)&& (V(HDi(i))>=Vn(n)))
 [I1]=ChangeMean(I1,n,HDi(i),'+');
 M(HDi(i))=Md;
 S=sort(M);
 H(HDi(i))='0';
 HDi(i)=0;
 end
 end
 ei=find(HDi==0);
 for i=1:numel(ei)
 HDi(ei(i)-i+1)=[];
 end
 ei=[];
 Dist=sum(H0~=H);

m=1;
while(Dist>liD && m<=n)
 for i=1:numel(HDi)
 if((M(HDi(i))==Md-m+1)&& (V(HDi(i))>=Vn(n)) && (S(128)==Md))
 I1=ChangeMean(I1,m,HDi(i),'-');
 M(HDi(i))=Md+1;
 S=sort(M);
 H(HDi(i))='1';
 HDi(i)=0;
 end
 end
 ei=find(HDi==0);
 for i=1:numel(ei)
 HDi(ei(i)-i+1)=[];
 end
 ei=[];
 Dist=sum(H0~=H);

72

 m=m+1;
end
if((n==24) && (Dist>liD) && strcmp(BEST,'no') && (z==0)),n=0; z1=255-Md;
z2=Md; z=max(z1,z2); end
end
%--

% disp(n) %max change in pixel intensity-----------------------------------
if(ShRe==1)
%show result
subplot(1,2,1); imshow(I); title('Stage1 Modified attack Image');
subplot(1,2,2); imshow(I1); title('Stage2 Modified attack Image (Final)');
figure();
end

%verification--
I=I1;
x=1;
y=1;
x2=16;
y2=16;
for k=1:256
if(rem(k,16)==0)
 k2=k-1;
 else
 k2=k;
 end
 cor=(fix(k2./y2).*x2);
 x3=cor+1;
 y3=((k-cor-1).*y2)+1;
 for o=x3:1:(x3+x2-1)
 for p=y3:1:(y3+x2-1);
 Q(p-y3+1,o-x3+1)=I(p,o);
 end
 end
Q=double(Q);
M1(k)=round(mean(mean(Q)));
end
S=sort(M1); %sort averages from min to max
Md=S(127); %find median
H1=M1>Md;
H1=sprintf('%d',H1);

Dist1=sum(H0~=H1); % hamming distance of Original Image with Stage2 modified
attack Image
%--
 if(SaRe==1)
%save result
dead=sprintf('%sName=%s--2ndStage--Dist=%d%s','result\',name,Dist1,'.bmp');
imwrite(I,dead);
end
%--

end

73

 PSNR
%%%%%%%%%%%%%%%%% PSNR %%%%%%%%%%%%%%%%%%%
function p = psnr(x,y, vmax)

if nargin<3
 m1 = max(abs(x(:)));
 m2 = max(abs(y(:)));
 vmax = max(m1,m2);
end

d = mean((double(x(:))-double(y(:))).^2);

p = 10*log10(vmax^2/d);
end

 Final Code
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FINAL RESULT %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
HammingDistanceLimit2=16;
 %=Stage1M(Original
ImagName,HammingDistanceLimit1,BD,wh,bl,method,ShRe if =1 ->show,SaReif =1 -
>save)
[I1,I2,H2,Dist1,Dist0]=Stage1M(OriginalImageName,HammingDistanceLimit1,20,2,0
.5,1,1,0);
 %=Stage2M(I1,H2,Hamming Distance Limit,yes/no-> if no=lose
quality,OIN,ShRe if =1 ->show,SaReif =1 ->save)
[I,Dist2]=Stage2M(I1,H2,HammingDistanceLimit2,'yes',OriginalImageName,0,0);
p=psnr(I2,I,255);

disp('Original Hamming Distance :')
disp(Dist0)
disp('1st Stage Hamming Distance :')
disp(Dist1)
disp('2nd Stage (Final) Hamming Distance :')
disp(Dist2)
disp('PSNR in dB :')
disp(p)
imshow(I); title('Final attack Image');

