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Abstract
Recent development in Graphics Processing Units (GPUs) has enabled in-
expensive high-performance computing for general-purpose applications.
The K-Nearest Neighbors problem is widely used in applications ranging
from classification to gathering of photons in the Photon Mapping algo-
rithm. Using the euclidean distance measure when gathering photons
can cause false bleeding of colors between surfaces. Ellipsoidical search
boundaries for photon gathering are shown to reduce artifacts due to this
false bleeding. Shifted Sorting has been found to yield high performance
on GPUs while simultaneously retaining a high approximation rate. This
study presents an algorithm for approximatively solving the K-Nearest
Neighbors problem modified to use a distance measure creating an ellip-
soidical search boundary. The ellipsoidical search boundary is used to
alleviate the issue of false bleeding of colors between surfaces in Photon
Mapping. The Approximative K-Nearest Neighbors algorithm presented
is a modification of the Shifted Sorting algorithm. The algorithm is
found to be highly parallelizable and performs to a factor of 86% queries
processed per millisecond compared to a reference implementation using
spherical search boundaries implied by the euclidean distance. The
rate of compression from spherical to ellipsoidical search boundary is
appropriately chosen in the range 3.0 to 7.0. The algorithm is found
to scale well in respect to increases in both number of data points and
number of query points.



Referat
Grafikprocessorer (GPU-er) har på senare tid möjliggjort högprestan-
daberäkningar till låga kostnader för generella applikationer. K-Nearest
Neighbors problemet har vida applikationsområden, från klassifikation
inom maskininlärning till insamlande av fotoner i Photon Mapping för
rendering av tredimensionella scener. Användning av euklidiska avstånd
vid insamling av fotoner kan leda till en felaktig bladning av färger
mellan ytor. Ellipsoidiska sökområden vid fotoninsamling har visats
reducera artefakter oraskade av denna typ av felaktiga färgutbland-
ning. Shifted Sorting har visats ge hög prestanda på GPU-er utan att
förlora kvalitet av approximationsgrad. Denna rapport undersöker hur
den approximativa varianten av K-Nearest Neighborsalgoritmen med
Shifted Sorting presterar på GPU-er med avståndsmåttet modifierat
sådant att ett ellipsoidiskt sökområde bildas. Algoritmen används för
att reduceras problemet av felaktig blanding av färg i Photon Mapping.
Algoritmen visas vara mycket parallelliserbar och presterar till en grad
av 86% behandlade sökpunkter per millisekund i jämförelse med en
referensimplementation som använder sfäriska sökområden. Kompres-
sionsgraden längs sökpunktens ytnormal väljs fördelaktligen till ett värde
i intervallet 3, 0 till 7, 0. Algoritmen visas skala väl med avseende på
både ökningar i antal data punkter och antal sökpunkter.
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Chapter 1

Introduction

The K-Nearest Neighbors Algorithm is a Nearest Neighbor Search algorithm and an
optimization problem for finding the k closest points given a query point. Closeness
is determined using a distance function or a distance measure.

The applications of the K-Nearest Neighbors problem are many and ranges from
classification in machine learning to anomaly detection in data mining and therefore
it is of importance to find a fast algorithm to solve the K-Nearest Neighbors problem.

The K-Nearest Neighbors problem may be defined using a set of data points, D
and a set of query points Q as shown in figure 1.1. Let D = {d1, d2, d3, ..., dn} and
Q = {q1, q2, q3, ..., qm} for each qi ∈ Q find the k points in D that are the closest
to the query point qi. The k points are found using the distance measure which is
commonly the euclidean distance between qi and dj . These points are the points
within the sphere with radius equal to the distance between qi and the k-th data
point from qi.

Figure 1.1: K-Nearest Neighbors with k=5 where the green point in the center is a
query point and the red points are points in D

1



Using the GPU for finding the k nearest neighbors yields significant speedup com-
pared to calculating K-Nearest Neighbors on the CPU. Even a “brute-force” imple-
mentation on the GPU may be faster than a more sophisticated implementation on
the CPU. (Garcia, Debreuve, and Barlaud 2008)

K-Nearest Neighbors is commonly solved using a k-d tree on the CPU in order to
limit the search space when finding the nearest data points to a query point but
Li et al. (2012) describes a modern approach for approximately solving K-Nearest
Neighbors using shifted sorting that performs better on the GPU.

In Photon Mapping the K-Nearest Neighbors algorithm is widely used to calculate
the illumination of a distinct point by finding the k closest photons. To calculate the
distance to these points it is common to use the euclidean distance. This can cause
false bleeding of colors between surfaces leading to a superfluous influence of colors
from nearby surfaces when estimating radiance. A more accurate way to obtain
the closest photons that limits this problem is to instead use a disc or ellipsoid
compressed in the direction of the surface normal at the point. (Jarosz, Jensen, and
Donner 2008)

1.1 Problem statement

The purpose of this study is to evaluate how the Approximate K-Nearest Neighbors
algorithm suggested by Li et al. (2012) will preform when using an ellipsoid as search
boundary. It will also check if the ellipsoid search boundary have any significant
improvement on the problem of false bleeding between surfaces.

This project will focus on using K-Nearest Neighbors in Photon Mapping as described
by Henrik Wann Jensen, specifically implementing the proposed ellipsoid version of
K-Nearest Neighbors that reduces false bleeding of colors between surfaces. (Jarosz,
Jensen, and Donner 2008)

In order to allow for fast calculation of the k nearest neighbors we propose imple-
menting a modified version of the algorithm suggested by Li et al. (2012) that takes
the ellipsoidic measure into account. For calculating such a measure we require both
a position and a normal vector for every query point qi ∈ Q.

Using a different search boundary however may have consequences on how to most
efficiently store the data points and parallel calculation of distances may prove
difficult which in turn may incur performance penalties on rendering scenes. It
is therefore important to verify if the performance characteristics still hold when
modifying Shifted Sorting Approximate K-Nearest Neighbors to use ellipsoidic
progression of the search boundary when gathering the nearest points.
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Research Questions

• Is is possible to implement the Approximate K-Nearest Neighbors algorithm in
a highly parallel fashion on consumer-grade GPUs while using an ellipsoid as
the search boundary?

• What shape of the ellipsoid is appropriate to use and how should k be chosen in
order to gain a satisfiable approxmiation when rendering 3-dimensional scenes
with Photon Mapping?

• What data structures should be used to store the points in order to retain a
good approximation when using the ellipsoidic search boundary?
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Chapter 2

Background

The following chapter presents the underlying theories and background needed for
developing an algorithm that may answer the research questions in section 1.1.

2.1 Physically based 3-d rendering

Physically based rendering of 3-dimensional scenes is generally done by solving or
approximating the rendering equation presented by Kajiya (1986). The rendering
equation describes the outgoing radiance from a given point in the direction of a
solid angle. Outgoing radiance is based on the irradiance to the point, the material
properties of the surface and the emitted radiance at the point. This is illustrated
in figure 2.1

Figure 2.1: The rendering equation describes the total amount of light emitted from
a point x along a particular viewing direction

The reflected radiance Lr with wavelength λ at time t from the surface point x in
the outgoing direction ωo is:
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Lr(x, ωo, λ, t) =
∫

Ω
fr(x, ωi, ωo, λ, t)Li(x, ωi, λ, t)(ωi · n) dωi (2.1)

where
fr is the bi-directional reflectance distribution function of the surface material at
point x.
Li is the irradiance in the incoming direction ωi to the point x.
Ω is the hemisphere above the point x.
n is the surface normal at the point x.

The outgoing radiance is:

Lo(x, ωo, λ, t) = Le(x, ωo, λ, t) + Lr(x, ωo, λ, t) (2.2)

where
Le is the emitted radiance in the outgoing direction ωo.

2.1.1 Ray Tracing

Ray Tracing is an algorithm that is commonly used to render 3-dimensional scenes
on computers. Ray Tracing handles multiple reflections and refracted light in a more
straightforward fashion than rasterization algorithms. Ray Tracing was originally
developed by Appel (1967) for creating line drawings where directly visible and
invisible lines are shown. It was later revised by Rubin and Whitted (1980) to
enable its main modern application as an algorithm for approximating the rendering
equation.

Despite light rays naturally travelling from the light sources to the eye, in the ray
tracing algorithm light rays are traced in the opposite direction, i.e. from the eye,
or camera, to the light source. For every pixel on the screen a ray is shot from
the camera through the pixel. If the ray intersects an object the intersection point
together with a shading model is then used to calculate the color of that pixel. For
specular materials a new ray is then traced in the direction reflected by the surface
normal and the radiance at the intersection point of this new ray is then added when
calculating the radiance of the first point.

Ray Tracing only supports direct illumination and specular reflections. It is unable
to express more complex light paths such as those that modelling multiple diffuse
reflections between surfaces. Without these light paths the rendered image can be
perceived as harsh. The interreflections between surfaces are required in order to
produce a more “soft” image.

6



2.1.2 Photon Mapping

Photon Mapping is an algorithm that extends ray tracing to handle indirectly
illuminated scenes in order to more accurately approximate the rendering equation.
This is done by adding a pre-render pass that for each light source emits photons
from the light source. Photon paths are traced throughout the scene and when a
photon’s path intersects a surface the photon is stored in a map with the position,
flux and incoming direction. (Jarosz, Jensen, and Donner 2008)

The Monte Carlo method Russian Roulette is used to determine at each intersection
point if a photon should be diffusely reflected, specularly reflected or absorbed when
emitting the photon. (Jarosz, Jensen, and Donner 2008)

The Photon Map is later used in the rendering pass to calculate indirect illumination
and caustics. When determining the radiance of a point the K-Nearest Neighbors
algorithm is used to find the closest photons and integrating over these taking the
surface area into account. (Jarosz, Jensen, and Donner 2008)

The radiance at a point is calculated by approximating the term Lr from equation
2.1 as a sum of the power of photons gathered from a small area on a surface. This
sum is then weighted by the area of the disc under the hemisphere the photons lie
within. The approximation of radiated light can now be directly found from the
Photon Map and is calculated as shown in equation 2.3. (Jensen 2001)

Lr(x, ωo) =
N∑
p=1

fr(x, ωi, ωo)
∆Φp(x, ωi)

πr2 (2.3)

Note the exclusion of time and wavelength in equation 2.3 as the intensity ∆Φp(x, ωi)
of a photon uses the color stored as the flux of that photon and as the Photon
Mapping algorithm does not take time-dependent rendering into account.

Jensen and Christensen (2007) notes however, that using the Photon Map directly
to calculate radiance would require a large number of photons to correctly represent
light. Jensen and Christensen (2007) then developed a method to more efficiently
calculate the radiance with high fidelity using only a fraction of the otherwise needed
photons in the Photon Map. This method is based on irradience-caching as described
by Ward and Heckbert (1992).

The radiance term of the rendering equation is split into four parts, direct illumination,
specular reflections, caustics and indirect illumination. Each part is then calculated
separately and integrated to obtain the total illumination radiated from the point
(Jensen and Christensen 2007).
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2.2 K-Nearest Neighbors

The K-Nearest Neighbors problem defined by using a set of data points, D and a set
of query points Q is used to find the k nearest data points for each query point. Let
D = {d1, d2, d3, ..., dn} and Q = {q1, q2, q3, ..., qm}. For each qi ∈ Q find k distinct
datapoints dj ∈ D that minimizes the distance δ(qi, dj)
Closeness between query points and data points are calculated using a distance
measure. For low-dimensional applications of the K-Nearest Neighbors algorithm
the euclidean distance between the points is commonly used as this measure. The
euclidean distance measure results in a spherical search boundary around each query
point with the sphere containing the k nearest data points.

2.2.1 Ellipsoid distance measure for K-Nearest Neighbors

Using conventional K-Nearest Neighbors for gathering the photons when calculating
the radiance estimate introduces the problem of extraneous bleeding of colors between
surfaces. This is because photons on nearby surfaces may lie closer in 3-dimensional
space than photons on the same surface. Jensen and Christensen (2007) recommends
using a disc as the search boundary when gathering photons to reduce the impact of
this false bleeding of colors as shown in figure 2.2.

Figure 2.2: Example of using the euclidean distance(left), and ellipsoid distance(right)

Having a too high compression rate collapses the entire coordinate-space into the
tangent plane for the query point and the ellipsoidical boundary is effectively a disc
on this plane. Distances along the normal are now so distant that it is very unlikely
that data points will be found that do not lie in this plane. This can lead to artifacts
in the image caused by a different kind of false bleeding. Here photons are gathered
from distant surfaces that intersect the tangent plane as there are too few photons
within the plane in the vicinity of the query point. One must therefore take caution
not to increase the compression rate too much. In figure 2.3 photons are gathered
from the floor despite the query point lying on the surface of the sphere causing
false bleeding.
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Figure 2.3: Overly compressed ellipsoid gathering false photons

2.3 K-Nearest Neighbors using GPGPU

General Purpose computing on graphical processing units (GPGPU) is a method
for using graphical processing units (GPUs) to perform operations the GPU was not
originally developed for.

GPUs were initially only able to perform specialized operations in order to produce
rasterized renders of 3-dimensional scenes. However with the advent of shaders
that support floating-point operations more general applications of the GPU were
made possible (Fung and Mann 2004). The benefits of using GPUs over CPUs for
performing calculations are mainly that the architecture of the GPU allows for more
highly parallel execution as there are many cores on the GPU that may execute
independently of each other (Mittal and Vetter 2015).

GPGPU was introduced to consumers in the early 2000s as the commercial tech-
nologies OpenCL and CUDA (Tompson and Schlachter 2012). Both technologies
exploit the floating point operating shader architectures using a specialized C-like
programming language to enable programmers write functions that may run in
parallel on the multiple cores of the GPU (Che et al. 2008).

2.3.1 CUDA

CUDA is an extension of the C++ programming language defining kernel functions
(Che et al. 2008). A kernel function is a C++ function for executed by one sequential
thread. (Nickolls et al. 2008)

CUDA uses a hierarchal model for distributing work across the GPU or GPUs. The
complete set of GPUs is called a grid which is divided into thread blocks. A thread
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block is set of threads that run concurrently. Threads within the same block may
cooperate using shared memory and synchronization intrinsics. Because each thread
executes the kernel the different threads may run in parallel to each other. (Nickolls
et al. 2008)

Kernel functions should be designed to not depend on other threads when executing
in order to achieve high levels of parallelization. Inter-dependence of executing
threads and excessive synchronization in a block limits the parallelizability of the
execution.

CUDA’s memory management is also hierarchal ranging from global and texture
memory to registers for a specific thread as shown in figure 2.4. Global memory
together with texture memory and constant memory constitute the memory accessible
by all thread blocks on the grid. Each thread block has its own area of shared
memory that is accessible from all threads executing in that block. Every thread in
a thread block also have local memory area as well as GPU registers. (Nickolls et al.
2008, Luebke (2008))

Access to global memory in CUDA take hundreds of processor clock cycles. Shared
memory and register access do not incur such a penalty for accessing the memory
there. To increase memory bandwidth and reduce latency memory may be copied
from global memory to shared memory. This results in a speedup if the data is
accessed multiple times in a single thread block. (Nickolls et al. 2008)

Figure 2.4: The memory model of CUDA
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2.3.2 K-Nearest Neighbors using CUDA

K-Nearest Neighbors is an algorithm that is suited for computation on the GPU as
the different query points’ k nearest neighbors may be calculated independently of
each other.

Naive brute-force algorithms may be sufficient to yield a significant speedup obtaining
the k nearest neighbors for all query points when utilising the GPU (Garcia, Debreuve,
and Barlaud 2008). However using more sophisticated methods may yield even
greater speedups. Speedups are especially prominent in the step to gather the k
nearest neighbors of a given query point (Arefin et al. 2012). Furthermore, more
sophisticated methods may also increase the cache-locality by avoiding access to all
of the data points utilising greater data reuse so that the memory accesses may be
limited to local shared memory when computing the neighbors (Barrientos et al.
2010).

2.3.3 Approximative K-Nearest Neighbors

Some applications do not need to give the exact k nearest neighbors but an approxi-
mate result may be sufficient to produce an acceptable result. Photon Mapping is
such an application. (Li et al. 2012)

By trading precision for cache-locality and performance a near-correct solution may
be found by only calculating the distance between the query point and some of the
data points.

2.3.4 Shifted Shorting

Li et al. (2012) describes a highly parallel algorithm for approximately obtaining
the k nearest neighbors by using Morton Codes and shifted sorting. Morton Codes
of the locations for the data points and query points are computed and then sorted
by the Morton Codes.

This creates an implied octtree order of the points where points with nearby indices
in the sorted array of points lies in the same octtree-node. The octtree structure
may be poorly aligned to the points and therefore all points are shifted by a small
amount and morton codes re-calulated. The 2k approximate nearest points for each
shift are gathered, k in each direction of the query point, and then merged while
only retaining the k nearest neighbors to the query point during each merge.

The shifted sorting algorithm obtains high parallelization because all query points
approximate nearest neighbors are found simultaneously. The sorting performed in
the initial step of the algorithm finds these approximate nearest neighbors to the
query points by placing them next to each query point. It implies however that since
the Morton Codes are pre-calculated and used for sorting all points together that
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different query points cannot have different frames of reference, i.e. all distances
must be calculated in the same coordinate-space when obtaining the Morton Codes.
As such, different ellipsoid boundaries cannot be used in this step for each of the
query points when calculating distances to the data points without duplicating all
data points for every query point. Such a duplication of data would in turn severely
limit the parallel nature of the algorithm and is therefore not a feasible solution.
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Chapter 3

Implementation

Our algorithm described in algorithm 3.1 continues the work by Li et al. (2012).
In order to provide an ellipsoidical search boundary as suggested by Jensen and
Christensen (2007) we create a coordinate-space for each query point. All distances
in this space along the query point’s surface normal are greater. By scaling the
space along the surface normal within this coordinate-space we effectively create an
ellipsoidical space within the standard Cartesian coordinate-space.

However, in order to allow for high levels of parallelization we need to calculate
the approximate nearest neighbors for many query points in parallel. Having a
separate coordinate-space for each query point would either require duplicating all
data points for each query point or rescaling all distances for each query point. Both
of which would quickly become unfeasible as the number of data points or query
points increase.

If approximate nearest neighbors are gathered using the spherical boundary some
of the approximate nearest neighbors may become distant when transforming the
points into the query point’s ellipsoidical coordinate-space. Therefore, we divide
all query points into separate buckets, each representing a coordinate-space. Query
points are then partitioned into these buckets according to the minimum angle
between the query point’s surface normal and the normal of the bucket.

Distances in the bucket coordinate-space are approximately equal to distances in
the query point’s coordinate-space due to having the query point’s surface normal
approximately equal to the bucket normal. This allows us to find approximate
nearest neighbors to query points within a bucket by initially using the bucket
coordinate-space when measuring distances. However, if the compression rate of the
bucket-space is too high, points that are near the query point inside the query point’s
coordinate-space may become distant in the bucket-space. These points would be
excluded when initially gathering approximate nearest neighbors. Thus, by using
the data structure of buckets we hope to see an improvement in approximation rate.
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The bucket normals are carefully chosen such that they are distributed as evenly as
possible on the unit sphere. Noting that surfaces commonly are axis-aligned in 3-d
scenes we also include the axes as bucket normals. Having too few buckets leads to
the bucket spaces being very dissimilar to the query points’ spaces within the bucket
and the approximate nearest neighbors may find data points distant in the query
point’s space. Conversely, having too many buckets leads to superfluous work being
done without improving the approximation. We chose to have 18 buckets, six of
which are the axis aligned spaces and twelve that are normals chosen as the vertices
on a regular icosahedron. The angles between the query normals and the bucket
normals are thus guaranteed to be at most π

8 radians.

In order to reduce data consumption we do not duplicate the data points for each
bucket. Instead, we transform the points from standard Cartesian space into the
bucket coordinate-space when entering a bucket. After calculating the nearest
neighbors for all query points in the current bucket we then transform all points
back into the standard Cartesian coordinate-space.

In order to determine which query points lie within the current bucket we loop over
all points noting whether the point is a data point or if it is a query point. Data
points are marked as 0, query points within the current bucket are marked as 1.
This is done by maximizing the dot product between the bucket normal and query
normal. If the index of the maximum dot product equals this bucket then the query
point is assumed to lie within this bucket. Query points not within the current
bucket are marked as 2.

Before continuing we create an array storing all the original indices and values of
both the query points and the data points. The array of indices and values are then
sorted in ascending order based on the array previously created marking data points
and query points. This leaves us with the query points outside the current bucket at
the end of the array of indices and values. The sorted array of indices and values
also let us find the index of points in the original input.

With the array sorted we then traverse the array marking points. This time we
replace all 2’s with 1’s and other values with 0. The sum of this array is then found.
Note that this sum represents the number of query points outside the current bucket.
With this information the total number of points and the number of points within
the current bucket are obtained.

All points within the bucket then transformed into the coordinate-space of the bucket.
We then find the bounds for each axis within this space and scale the points to the
range [0, 0.70) as proposed by Li et al. (2012). Having the points in the bucket
coordinate-space and rescaled, morton codes are calculated for all points within the
bucket. The morton codes describe an implicit octtree where codes close to each
other lie within the same subtree of the octtree.

The points are sorted into the morton code order together with the original indices
retrieved in the first step of the algorithm. An array marking query points as 1 and
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data points as 0 are then created from the array of sorted points. The number of
query points to the left of every data point are then obtained by performing an
inclusive prefix sum on this array. The array of points are then compacted into two
separate arrays. One containing the data points and the other containing an index
into the array of data points for each query point. The index notes the data point
to the right of the query point as shown in algorithm 3.2.

2λk candidate nearest neighbors are found for each query in the bucket coordinate-
space. λk threads are created for each query point. The natural number λ is a
constant chosen to improve the approximation accuracy for the ellipsoid boundary.
Each thread responsible for finding 2 candidate nearest neighbors for this query
point as shown in algorithm 3.3.

For each query point in the bucket, the 2λk data points are now filtered down to
the nearest k points. The k points are obtained by first transforming the 2λk data
points into the query point’s coordinate-space and then sorted with bitonic sort
according to it’s distance to the query point within the query point coordinate-space.

With the initial approximate k nearest points being found for each query within this
bucket we now shift all points by 0.05 along all axes as suggested by Li et al. (2012).
This is to improve the accuracy of the approximation. Especially in the cases where
points lie close each other but across different subtrees of the octtree created by the
morton codes. Morton codes are then recalculated, points sorted in the morton code
order and compaction done with this new ordering of the points.

Another 2λk candidate nearest neighbors are then found by spawning 2λk threads
for each query in the bucket. Each thread is now responsible for obtaining one
candidate nearest neighbor to the query point as shown in algorithm 3.4. The data
point is then transformed into the query point’s coordinate-space and the distance
in this space is obtained. Binary search yields what index in the array of the k
nearest points this new point should have. If this index is equal to k, the candidate is
discarded. Otherwise, the value at the index for this location in an array of counters
is atomically incremented. An exclusive prefix sum is performed on the array of
counters. Finally the candidates are then merged into the array of the k nearest
neighbors taking the indices from the counter array into account. These steps are
then repeated 3 more times each time shifting by another 0.05 yielding a better
approximation of the k nearest neighbors.

After all of the four shifts are finished and our k nearest neighbors found for all query
points within the current bucket all points within the bucket are then transformed
back into the standard Cartesian coordinate-space and we continue to the next
bucket.
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Algorithm 3.1: K-Nearest Neighbors with ellipsoidic distance measure

1: function K-Nearest Neighbors(values0, normals, results)
2: n← Length(values0)
3: for i = 0 to 18 do
4: indexedV alues← store original indices and values of values
5: marks← mark queries not in- and in bucket
6: indexedV alues← sort indexedValues in marks order
7: outsideBucket← NotInBucket(marks)
8: indexedV alues←Move to Bucket Space(bucket, indexedV alues)
9: indexedV alues←Scale Values(indexedV alues)

10: reverseIndices← store reverse indices of indexedValues
11: for j = 0 to 4 do
12: indexedV alues← indexedV alues+ 0.05 ∗ j
13: mortoncodes←Compute Morton Codes(indexedV alues)
14: indexedV alues← sort values in morton code order
15: queriesToLeft←MarkQueries(indexedV alues)
16: queriesToLeft←Inclusive Prefix Sum(queriesToLeft)
17: compacted←Compact Values(indexedV alues, reverseIndices, queriesToLeft)
18: (data, queryIndices) = compacted
19: for query in current bucket pardo
20: iq ← queryIndices[query]
21: 2λk candidates← data[iq − λk − 1, iq + λk)
22: if j = 0 then
23: sort candidates by distance from query in query ellipsoid space
24: Save the k nearest candidates into results
25: else
26: Merge 2λk new candidates into results
27: sort results by distance from query in ellipsoid space
28: end if
29: end for
30: end for
31: indexedV alues←Rescale Values(indexedV alues)
32: indexedV alues←Move to Unit Space(bucket, indexedV alues)
33: end for
34: end function
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Algorithm 3.2: Compact Values to data points only remembering indices of queries
into the data point array

1: function Compact Values(indexedV alues, reverseIndices, queriesToLeft)
2: for value ∈ indexedV alues pardo
3: if IsQuery(value) then
4: originalIndex← original index of value
5: queryIndex← reverseIndices[originalIndex]− numData
6: dataIndex← i− queriesToLeft[i] + 1 . index of data point to right
7: queryIndices[queryIndex]←Pack 64-bit(dataIndex, i)
8: else
9: dataIndex← i− queriesToLeft[i]

10: data[dataIndex]← values[i]
11: end if
12: end for
13: end function

Algorithm 3.3: Find candidates

1: function Find Candidates(indexedV alues, data, result)
2: i← thread index
3: query ← block index
4: candidates← allocate array of size 2λk in shared memory
5: ellipsoidSpace← allocate matrix for query point in shared memory
6: if first thread in block then
7: ellipsoidSpace← calculate conversion martix for query point
8: end if
9: for two of the 2λk nearest neighbor candidates of this query pardo

10: find two candidates in bucket space
11: calculate distance for candidates in query ellipsoid space
12: store the two new candidates in candidates
13: end for
14: Bitonic Sort(candidates, 2λk, i)
15: for the first k threads pardo
16: store the k nearest candidates in result
17: end for
18: end function
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Algorithm 3.4: Find and merge condidates

1: function Find and Merge Candidates(indexedV alues, data, allNearestNeighbors)
2: i← thread index
3: query ← block index
4: ellipsoidSpace← allocate matrix for query point in shared memory
5: counter ← allocate array of size 2k in shared memory
6: counterScan← allocate array of size 2k in shared memory
7: currentNN allocate array of size k in shared memory
8: updatedNN allocate array of size k in shared memory
9: currentNN [i]← allNerestNeighbors[q ∗ k + i]

10: for every counter[i] pardo
11: if i is odd then
12: counter[i]← 1
13: else
14: counter[i]← 0
15: end if
16: end for
17: if first thread in block then
18: ellipsoidSpace← calculate conversion martix for query point
19: end if
20: for one of the 2λk new nearest neighbor candidates of this query pardo
21: find candidate nearest neightbor in bucket space
22: calculate distance for candidate in query ellipsoid space
23: loc← binary search the location of candidate in currentNN
24: if loc = k then
25: Stop processing this candidate by marking it as inactive
26: else
27: offset← previous value in counter[loc*2]
28: Atomically increment counter[loc*2]
29: end if
30: end for
31: if first thread in block then
32: counterScan←Exclusive Prefix Sum(counter)
33: end if
34: for candidate in currentNN[i] pardo
35: index← counterScan[2i+ 1]
36: if index < k then
37: updatedNN [index]← currentNN [i]
38: end if
39: end for
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Algorithm 3.4: Find and merge candidates (continued)

40: for every active candidate in candidates pardo
41: index← counterScan[2loc] + offset
42: if index < k then
43: updatedNN [index]← candidate
44: end if
45: end for
46: if i < k then
47: allNearestNeighbors[q ∗ k + i]← updatedNN [i]
48: end if
49: end function
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Chapter 4

Result

The following chapter presents the results obtained by comparing our implementation
as described in chapter 3 to a reference implementation based on the implementation
described by Li et al. (2012). Approximation rate of our implementation is also
evaluated.

4.1 Hardware

The implementation was run on a Nvida GeForce GTX 970 GPU using CUDA 7.2
with compute capabilities 5.2. The GTX 970 card has a global memory size of 4
GiB, a processing power of 3494 GFLOPS and a shared memory size of 48 KiB.
The CPU of the benchmarking computer was Intel Core i5-6600 Skylake a 4-core
processor with clock frequency of 3.3 GHz.

4.2 Benchmarks

Our implementation of K-Nearest Neighbors using ellipsoidic distance was compared
to a reference implementation based on the algorithm described by Li et al. (2012)
using the same datasets for both implementations. The datasets used are Uniformly
distributed random points in 3-d space, a set of 3-dimensional clusters of gaussian
normal distribution, the Stanford Bunny and data points from the Photon Map
when rendering a scene similar to the Cornell Box.
The results were compared varying the constant k, the constant λ, the compression
rate, c, along the surface normal of the ellipsoidic search boundary introduced
by our algorithm. Approximation rate of the algorithm was also compared to an
implementation collecting the nearest neighbors exactly. The ellipsoidic search
boundary of the exact implementation was assigned the same shape as the search
boundary used in our implementation.
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Figure 4.1 shows the performance of our implementation compared to the reference
implementation by varying the number of query points from 128 to 2M in both
implementations. A variant of our implementation where buckets were not used
was also compared. In this implementation the query points are not sorted into
buckets but all queries handled at the same time. However points are scaled into
the ellipsoidic space created by each query point after gathering 2λk approximate
nearest neighbors in standard Cartesian space. Compression Rate of the ellipsoidical
search boundary was selected to c = 4.0.
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Figure 4.1: KNN on 2M data points varying number of query points from 128 to
2M, k = 64, c = 4.0 (higher is better)

The reference implementation processed on average 2016 query points per millisecond
when using 2M query points. Our implementation without using buckets processed
on average 1738 query points per millisecond. Our implementation using buckets
processed on average 1130 query points per millisecond. This equates to a factor of
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0.56 for our implementation with buckets and a factor of 0.86 for our implementation
without using buckets. Similar performance characteristics as those obtained by
Li et al. (2012) are achieved in all implementations. However, it is notable that
our implementation performs worse on the uniformly distributed points when using
buckets. On the contrary it is also notable that the our implementation without
using buckets performs better than the reference implementation in some cases.

By varying the number of data points when performing the K-Nearest Neighbors
Search we find a small linear decrease in number of queries processed each millisecond
when increasing the number of data points in the reference implementation as shown
in figure 4.2. These results are reproduced in our implementation except for the data
set of uniformly distributed points in the variant using buckets. For this data set we
find an exponentially decreasing number of query points per millisecond processed
where the exponent is a slightly negative value.
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Figure 4.2: KNN on 1M query points varying number of data points from 128 to
2M, k = 64, c = 4.0 (higher is better)

Even when varying the constant k similar performance characteristics are obtained
for our implementation compared to the reference implementation. Figure 4.3 shows
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performance of the implementations with k being increased in steps of 10 in the
range [10, 160]. The curves follow a pattern of powers of two where there is only
a slight linear decrease in performance within an order of magnitude. However
increasing k to the next order of magnitude yields a significant drop in performance.
This is most likely due to bitonicSort requiring the array to be of a size that is a
power of 2 which in turn requires the shared memory and number of threads used
per block to be padded to this size. Because of this it is therefore wise to choose k
to be a power of 2.
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Figure 4.3: KNN on 1M query points and 1M data points by varying k, c = 4.0
(higher is better)
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The constant λ introduced in algorithm 3.1 was evaluated with respect to performance.
Increasing λ yields results much like those obtained by increasing k. Figure 4.4
shows that the product 2λk is favorably chosen to be a power of 2.
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Figure 4.4: KNN on 1M query points and 1M data points by varying λ, k = 32,
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By transforming all points into ellipsoidical spaces the approximation factor is now
mainly determined by the rate of compression. The approximation was calculated as
the factor of dividing the exact distance from the query point to the k-th data point
into the distance of the query point to the approximately obtained k-th data point.
Figure 4.5 shows the approximation rate for uniform and Photon Mapping data sets
with k = 256 with 1M data points and 128 query points. The compression rate was
then varied from c = 1.0 to c = 8.0 and the approximation factor was calculated.
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Figure 4.5: Approximation factors for different compression rates

The implementation was found to be memory-bound in both the variant using
buckets and the variant without buckets. Running on the Nvidia GTX 970 card we
were able to handle 1024 candidate nearest neighbors. The number of candidates
used is found by calculating the product 2λk. Running on hardware with larger
shared memory area would allow for higher number of candidates being processed.
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4.3 Rendering

Images were rendered directly estimating radiance from the Photon Map as this
more clearly visualized the problem of false bleeding. In a real-world scenario one
should consider using the distributed ray tracing approach described by Jensen and
Christensen (2007) where direct and indirect illumination are handled separately.

This problem of false bleeding is shown in figure 4.6 where a spherical search
boundary was used when gathering photons. Note the bands of red and green color
on the floor in the vicinity of the red and green walls respectively. In this case the
Photon Mapper was modified to exclude reflection of photons and as such only direct
illumination is handled in the radiance estimate.

Figure 4.6: Direct illumnation with false bleeding of colors

Transforming all points into the ellipsoidical spaces created by the query points
yields renders with much less false bleeding between surfaces as figure 4.7 shows.
This render was performed using the variant of our implementation sorting query
points into separate buckets using a compression rate c = 4.0 along the query points’
surface normals and k = 256.
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Figure 4.7: Direct illumnation with alliviated problem of false bleeding by using an
ellipsoidical search boundary

Figure 4.8 shows artifacts due to a too high compression rate. The images were
rendered with a compression rate of c = 7.0. By varying the constant λ we were
able to obtain the same rate of false bleeding between walls despite lowering the
value of k. Note the bleeding from the floor on the sphere in the left image.

(a) k = 256, λ = 1 (b) k = 128, λ = 2

Figure 4.8: Same compression rate using different values of λ. k is chosen to give
equivalent rate of false bleeding between walls and floor

After introducing diffuse interreflection between surfaces the problem of false bleeding
persists when using a spherical search boundary for gathering the photons for the
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radiance estimate. Figure 4.9 was rendered using k = 256, varying the compression
rate from c = 1.0 (spherical) to c = 5.0. Note the dark artifacts in the corners of the
box. These are caused by the false bleeding of colors between the surfaces.

With a compression rate of c = 2.5 there is slight, but noticeable bleeding of colors
between the walls. Increasing the compression rate to c = 3.5 results in a degree
of false bleeding that is barely visible. Further increasing the compression rate
eliminates the problem of bleeding altogether. Choosing the compression rate to
c = 5.0 yields renders where the false bleeding is not visible at viewing distances.
However, increasing the rate of compression also introduces slight artifacts visible
on the sphere due to the false bleeding caused by gathering photons from the floor.

(a) c = 1.0 (b) c = 2.5

(c) c = 3.5 (d) c = 5.0

Figure 4.9: Box scene rendered by varying compression rate
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Approximation factor is very similar both when using buckets and when excluding
them as shown in figure 4.5 the. Figure 4.10 was rendered once using buckets and
once without buckets. The visual results are indistinguishable from each other both
in terms of false bleeding and other rendering artifacts. A difference image between
the two renders were obtained by using the open software ImageMagick. Most areas
are equal and the differing areas are likely due to randomness when emitting the
photons into the scene.

(a) Using buckets (b) Without buckets

(c) Difference between the images

Figure 4.10: Comparison of renders with and without sorting query points into
buckets
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Chapter 5

Discussion

The purpose of this study was to evaluate how the Approximate K-Nearest Neighbors
algorithm suggesed by Li et al. (2012) performs when using an ellipsoidical search
boundary as suggested by Jensen and Christensen (2007). The ellipsoidical search
boundary is introduced in order to increase the quality of renders by eliminating
false bleeding of colors between surfaces. Performance impacts incurred by the
ellipsoidical search boundary were presented in figures 4.1 to 4.4.

Performance characteristics in all benchmarks were found to be similar to those
presented by Li et al. (2012). The faster Nvidia GeForce GTX 970 GPU did
however yield an approximate speedup of 2.0 compared to the results shown by
Li et al. (2012). Increasing the number of data points were shown not to highly
affect the performance. Increasing the number of query points yields a higher rate
of queries processed each millisecond in a logarithmic fashion. Contrarily, increasing
k decreases the rate of queries processed per millisecond closely following the power
of 2’s such that for each order of magnitude the speed is lowered to a factor of
approximately 0.6 of the previous magnitude.

The algorithm is shown to be appropriate for computations on graphical processing
units (GPUs). The execution is memory-bound where the most limiting factor is
the size of the available shared memory on the GPU. The Nvidia GeForce GTX 970
card allows calculations with the number of candidate nearest neighbors (2λk) of
values up to 1024. The algorithm however is not tightly coupled to the specific card
and we suspect high degrees of applicability when using different GPUs. It should
be noted that larger shared memory areas are recommended.

The impact on the approximation factor of using different shapes and compression
rates for the ellipsoidical search boundary was evaluated as presented in figure 4.5.
Rendering quality was evaluated when varying the shape as shown in section 4.3.
The impact on performance and quality of renders for choosing different values of k
and λ were presented in figures 4.3 and 4.4 as well as section 4.3.
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The ellipsoidical search boundary incurs a performance penalty of a factor of 0.56
when using buckets and a factor of 0.86 when not partitioning query points into
buckets. These factors were consistent throughout all benchmarks. This performance
penalty however is to be expected as more work is required for each query. Especially
the work due to the matrix multiplication when transforming points into the query
point’s coordinate-space which is performed for each of the 2λk candidate nearest
neighbors for each query point. The performance penalty of the ellipsoidical version
using buckets was greatest for the data set of uniformly distributed points. Due
to the coupling of the scene geometry and the query points’ surface normals, using
buckets when rendering scenes may still be applicable. Given that surfaces are either
approximately aligned to the buckets or that there are few non-flat surfaces in the
scene the approximation rate is likely high. However, the decrease in performance
when using buckets may make the algorithm unsuitable where high speeds are
required, unless a near-exact solution is required for renders. The version not using
buckets however did perform at speeds close to those obtained by the reference
implementation and as such is highly recommended for Photon Mapping purposes.

Approximation rate was examined for structuring the points by partitioning query
points into separate buckets as shown in figure 4.5. This was also compared to an
implementation where query points were not partitioned into buckets. Difference in
quality of renders for these versions were presented in figure 4.10.

Figure 4.5 shows that higher degrees of compression along the surface normal when
creating the ellipsoidical search boundary yields a small decrease in quality of
approximation. The factor of this decrease was found to be approximately 0.04
without buckets and approximate 0.07 when using buckets. The higher degree of error
in the version using buckets is likely due to the problem of over-compression described
in section 2.2.1. When using points from the Photon Mapper the approximate solution
was found to be very close to the exact solution with an approximation factor of at
most 1.029 (ε = 0.029) without using buckets and at most 1.085 (ε = 0.085) when
using buckets. Figure 4.9 shows that compression rates higher than 3.0 are sufficient
to reduce the problem of false bleeding. Figure 4.5 shows that the version using
buckets yield better approximations for compression rates up to 4.0. The rate of
compression is thus appropriately chosen to be in the range of 3.0 to 7.0 when not
using buckets and in the range of 3.0 to 4.0 when using buckets.

Further research is needed in order to find causes of difference in approximation rate
between the bucket variant compared to the variant not using buckets. It should
also be evaluated if it is possible to limit the copy of data for each bucket in order
to improve performance of the variant using buckets.

Due to the very similar approximation factors of the two ellipsoidical versions for
Photon Mapping data near-equal results were obtained when rendering the 3-d scene.
This result is presented in figure 4.10.
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5.1 Conclusion

This study presents an algorithm for approximately solving the K-Nearest Neighbors
problem modified to use a distance measure creating an ellipsoidical search boundary.
The ellipsoidical search boundary is used to alleviate the issue of false bleeding of
colors between surfaces in Photon Mapping. The algorithm was implemented using
CUDA to run on consumer GPU hardware allowing for highly parallelized execution.
Increasing the constant k incurs a performance penalty. However, the algorithm
scales well with respect to increases in number of query points and number of data
points.

Near-exact results were obtained for Photon Mapping data sets where the problem
of false bleeding was eliminated by the ellipsoidical search boundary. Appropriate
values of compression rate when compressing the search boundary into an ellipsoid
were found to be in the range 3.0 to 7.0.

The introduction of the ellipsoidical search boundary only resulted in a linear
decrease in performance, measured as the number of processed query points per
millisecond. This factor was found to be approximately 0.86. A version with a data
structure partitioning query points into buckets were created, yielding better rates
of approximation for compression rates up to 4.0.
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