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I 

ABSTRACT 
 

 

 

Transactional memory (TM), a new programming 

paradigm, is one of the latest approaches to write 

programs for next generation multicore and 

multiprocessor systems. TM is an alternative to lock-based 

programming. It is a promising solution to a hefty and 

mounting problem that programmers are facing in 

developing programs for Chip Multi-Processor (CMP) 

architectures by simplifying synchronization to shared 

data structures in a way that is scalable and compos-able. 

Software Transactional Memory (STM) a full software 

approach of TM systems can be defined as non-blocking 

synchronization mechanism where sequential objects are 

automatically converted into concurrent objects.  

 

In this thesis, we present performance comparison of 

four different STM implementations – RSTM of V. J. 

Marathe, et al., TL2 of D. Dice, et al., TinySTM of P. 

Felber, et al. and SwissTM of A. Dragojevic, et al. It helps 

us in deep understanding of potential tradeoffs involved. It 

further helps us in assessing, what are the design choices 

and configuration parameters that may provide better 

ways to build better and efficient STMs. In particular, 

suitability of an STM is analyzed against another STM. A 

literature study is carried out to sort out STM 

implementations for experimentation. An experiment is 

performed to measure performance tradeoffs between 

these STM implementations. 

 

The empirical evaluations done as part of this thesis 

conclude that SwissTM has significantly higher 

throughput than state-of-the-art STM implementations, 

namely RSTM, TL2, and TinySTM, as it outperforms 

consistently well while measuring execution time and 

aborts per commit parameters on STAMP benchmarks. 

The results taken in transaction retry rate measurements 

show that the performance of TL2 is better than RSTM, 

TinySTM and SwissTM. 

 

Keywords: Multiprocessor, Concurrent Programming, 

Synchronization, Software Transactional Memory, 

Performance 
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INTRODUCTION 
 

Today we are living in an age of multicore and multiprocessor systems where the world is 

moving from single processor architectures towards multicore processors. There is an ever 

growing enhancement and development in processing power of CPUs and parallel 

applications that are being built to give end users more processing capabilities to accomplish 

complex and protracted jobs easily and rapidly. High performing and flexible parallel 

programming is the only means of utilizing the full power of multicore processors. Parallel 

programming has proven to be far more difficult than sequential programming.  

 

Parallel programming poses many new challenges to mainstream parallel software 

developers, one of which is synchronizing simultaneous accesses to shared memory by 

multiple threads. Composing scalable parallel software using the conventional lock-based 

approaches is complicated and full of drawbacks [1]. Locks are either error prone (if fine-

grained) or not scalable (if coarse-grained) and undergo a variety of problems like deadlocks, 

convoying, priority inversion and inefficient fault tolerance.  One solution for such kind of 

problems is a lock-free parallel processing system which supports scalability and robustness 

[2, 3]. 

 

For decades in the database community, transactions offer a proven abstraction mechanism 

of dealing with concurrent computations [3]. Transactions do not suffer from locking 

drawbacks and take a concrete step towards making parallel programming easier [1]. 

Incorporating transactions into the parallel programming model builds a new concurrency 

control paradigm for future multicore systems named Transactional Memory (TM).  A TM 

system executes code sequences atomically which allows application threads to operate on 

shared memory through transactions.  

 

Transactions are a sequence of memory operations that either executes completely (commits) 

or has no effect (aborts). TM tries to simplify the development of parallel applications as 

compared to traditional lock-based programming techniques.  TM is of three kinds [3], 

Hardware Transactional Memory (HTM), Software Transactional Memory (STM) and 

Hybrid Transactional Memory (HyTM). The first HTM idea was introduced in 1993 [4] and 

then in 1995 [5] STM was proposed  to extend this idea. HyTM [6] is a combination of both 

hardware and software transactional memory. These pioneering works have paved the way 

for the development of many different versatile versions and extensions of hardware, 

software and hybrid TM implementations.  

 

We focus here on STM which is a software system that implements nondurable transactions 

along with ACI (failure atomicity, consistency, and isolation) properties for threads 

manipulating shared data. The performance of recent STM systems has reached up to a level 

where these systems have gained an acme that makes them a reasonable vehicle for 

experimentation and prototyping. However, it is not clear how minimal the overhead of STM 

can reach without hardware support [3].   In trying to understand the performance tradeoffs 

of an STM in our thesis project we consider the key design aspects of four different STM 

implementations. They are 

 

 RSTM [7] – a non-blocking (obstruction-freedom) STM,  

 TL2 [8] – a lock-based STM with global version-clock validation,  

 TinySTM [9] – a lock-based STM, and  

 SwissTM [10] – a lock-based STM for mixed workloads. 

 

Design and implementation differences in TM systems can affect a system’s programming 

model and performance [3]. To compare the performance of these state-of-the-art STM 
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implementations we use the STAMP benchmark suite [11], a collection of realistic medium-

scale workloads. It currently consists of eight different applications and ten workloads as 

they inherently exploit the level of concurrency of the underlying STM implementation. 

Nearly all benchmarks measure the effectiveness of an STM as CPU time by varying 

contention and scalability parameters. 

 

Thesis Outline 

In this section we present the structure of the thesis. A brief introduction of each chapter is 

discussed here. 

 

Chapter 1 (Problem Definition) provides us more detail about the problem and objectives of 

the study. It comprises of Problem Definition, Problem Focus, Aims and objective, and 

Research Questions. 

 

Chapter 2 (Background) presents the background material and related works in the areas of 

parallel programming and transactional memory. This chapter discusses briefly Single Chip 

Parallel Computers, Database System and Transactions vs. Locks.  This chapter also 

describes Transactional Memory and its different types. Finally, this chapter introduces the 

design alternatives and tradeoffs made by designers of software transactional memory 

systems. 

 

Chapter 3 (Methodology) covers the Research Methodology that we adopted to exert with 

this thesis. It explains the research techniques, methods and components used during the 

findings of the study.  

 

Chapter 4 (Theoretical Work) includes detailed description of all four STM systems – 

RSTM, TL2, TinySTM, and SwissTM. Finally, it summarizes the research which is related 

to our work.  

 

Chapter 5 (Empirical Study) gives detail about our experimental platform. Along with it the 

STAMP benchmark’s design and applications are also discussed. 

 

Chapter 6 (Empirical Results) presents our experimental results and describes the 

observation and finding of our empirical study. It discusses the analysis result of the 

conducted empirical study in detail. 

  

Chapter 7 (Discussion and Related Work) generalizes the results and relates them to the 

available literature in this regard. 

 

Finally, we conclude the dissertation and suggest areas for further research. 

 



3 

1CHAPTER 1: PROBLEM DEFINITION 
 

Initially there was not much emphasis on building and developing applications for parallel 

architectures. Most of the applications were being developed for sequential architectures, and 

sequential architectures performed well for many years. With the advent of the technology, 

computers became popular in all spheres of life. It was a dire need of the time to build such 

systems which can fulfill our present and future needs in the theme of more processing 

capable systems. Further increase in the processor speed was not possible due to some design 

limitations in sequential architectures. One solution to this problem was parallel computing. 

In parallel computing we have more than one processor to accomplish a task. The parallel 

computing can give us power of doing complex and lengthy tasks in a trivial time as 

compared to sequential computing. Parallel computers share their resources like memory, 

hard disk and processors to process complex and lengthy instructions easily, and in a timely 

manner. 

 

No doubt there are many advantages of parallel computing, but we are lacking in standards 

on which parallel applications can be built. It is hard for a programmer to code, build, debug 

and test applications for parallel architectures [1]. Working with concurrent programs is 

difficult but database community has been using concurrent architectures successfully for 

decades, both on sequential and parallel architectures. The basic entity of a database is the 

transaction, which constitutes a set of instructions that is completed in an atomic way. The 

similar transaction mechanism was taken from database for parallel architectures, where 

instructions in memory are transactionally processed. 

 

As described above in introduction, the transactional memory is of three kinds HTM, STM 

and HyTM. We focus on STM implementations of transactional memory. A lot of research is 

going on in this area to build the most efficient STM implementation. This research study 

focuses on performance comparison of four different STM implementations. The STM 

implementations that we choose for experimental purposes are: 

 

 Rochester Software Transactional Memory System (RSTM) [7] 

 Transactional Locking II (TL2) [8] 

 TinySTM [9] 

 SwissTM [10] 

 

1.1  Problem Focus 

There are a number of STM systems available, each one having advantages and drawbacks. 

Some are good with heavy workloads while others deal well with tiny workload. Some work 

fine in high contention environment, while others in low contention environment. Some are 

good in both managed and unmanaged environment while on the other hand some only work 

in a managed environment.  

 

1.2 Aims and objectives 

The aim of this study is to investigate and compare different approaches of STMs which 

helps in a deeper understanding of various design choices and potential performance 

tradeoffs.  Later on, this study analyzes the suitability of an STM with respect to another 

STM. It also presents transactional execution metrics commonly used to characterize TM 

applications. 
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To achieve this aim we have set the following objectives: 

 

 Finding problems with traditional lock-based approaches 

 Identifying the design alternatives in STM systems 

 Comparing performance of STMs on the basis of transactional execution metrics 

 

1.3 Research Questions 

In order to understand the performance tradeoffs of different implementations of STM a 

comprehensive comparative study is required. Although some comparison studies [12-14] 

have been carried out in the past but those were very focused in their scope and covered only 

a few STM implementations. That’s why our proposed study and experiment is important 

enough to warrant a study. This master thesis will primarily address the following research 

questions (RQ): 

 

 RQ1: Which approaches exist to support software transactional memory? 

 RQ2: What are the performance tradeoffs between the various approaches? 
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2CHAPTER 2: BACKGROUND 
 

Computer technology has gone through profound changes since its invention. Every decade 

added new attributes to it and better mechanisms were replaced with substandard ones. 

Computers have aided humans competently in different areas of life including engineering, 

medical, automobile industry, space, defense etc since its very beginning, making human life 

easy in several aspects. Computers became a consumer product and got popularity with the 

advent of personal computers PCs. The development of microprocessors turned into PCs 

affordable for general public as they were low in cost as compared to mainframes. The 

mainframes were large, costly computers owned by large corporations, government and 

educational institutes, and similar size organizations, but they were not affordable by general 

public.  

 

The advent of microprocessor served well for several years due to the fact that quantity of 

transistors was being increased exponentially after every two years according to Moore’s law 

[15]. Increasing clock speed to get better performance is also not feasible due to power 

consumption and cooling issues. This bound is an inflection point for the replacement of 

conventional uniprocessor systems as Intel’s founder, Andrew Grove says “time in the life of 

a business when its fundamentals are about to change” [16].  

 

2.1 Single Chip Parallel Computers 

To fill this gap of halted performance in processing capacity of single microprocessor, single 

chip parallel computers were introduced, known as chip multiprocessors or multicore 

processors. The theme of this type of architecture is to put two or more processors onto a 

single chip. The architecture defined in single chip processors is similar to shared memory 

multiprocessors. The number of processors that can be fixed on a chip can be increased and 

the number of instructions that can be processed in a second will also keep on increasing 

according to Moore’s law [15], even without increasing clock speed. If we want higher 

performance, we can add more processors according to this architecture. 

 

Although people have worked with parallel computing structures for more than 40 years, 

there are not many well appreciated programs written for this architecture. It’s a tough job to 

write programs for parallel architectures as compared to sequential architecture. Coding, 

debugging, testing parallel programs is tough, because there are not well defined standards to 

debug and test parallel programs [3]. 

 

2.2 Database Systems and Transactions 

In [17], Herb Sutter and James Larus pointed out, The concurrency revolution is primarily a 

software revolution. The problem is not building multicore hardware, but programming it in 

a way that lets mainstream applications benefit from the continued exponential growth in 

CPU performance. To write programs for parallel systems has been a difficult task, but on 

the other side database community has been using concurrency for decades.  

 

Databases are working successfully on parallel and sequential architectures. All the 

concurrency control mechanisms are handled implicitly by the database. At the core of 

database systems are transactions. A transaction is a set of instructions executed as a whole 

and used to access and modify concurrent objects. A transaction can be successful when it 

changes some state in underlying database, and non-successful or aborted when there is no 

change in the state of a database. Transactions are implemented through a database system or 
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by a transaction monitor, which hides complex details from a user and provides a simple 

interface to communicate with [3]. 

 

As databases were dealing well with transactions on both sequential and parallel 

architectures, and providing satisfactory results. Therefore, using transactions in the memory 

was considered a good idea to employ with parallel architectures, so the basic idea of 

transactional memory is taken from database transactions. Database transactions and 

transactional memory differ in some aspects because of their basic design needs. Database 

transactions are saved on disks which can afford to take more time to execute a transaction 

as compared to transactional memory works in memory which have trivial time to complete 

a transaction. A database transaction constitutes of a set of instructions that are indivisible 

and instantaneous. Database transactions have four basic properties Atomicity, Consistency, 

Isolation and Durability collectively called ACID. 

 

Atomicity: Atomicity means that either all actions are completed successfully or none of 

them starts its execution. If a transaction fails partially due to some reasons then it fails 

completely and needs to be restarted.  

 

Consistency: Consistency means transition from one stable state to another stable state. If 

there is some transaction taken place in a database or memory, then that database or memory 

will only be considered in a consistent state when the transaction is executed or aborted 

successfully. 

 

Isolation: Isolation means a transaction is producing results correctly without intervention of 

other transactions. Running parallel transactions will have no effect on the working of other 

transactions. A successful transaction will not have any effect and interference on concurrent 

transactions during its execution. 

 

Durability: The final property of database systems is durability and it is only specific to 

database transactions. Durability means if some changes have taken place in a database then 

these are made permanent. This proper is only needed in databases, because memory 

transactions become obsolete as soon as the system shuts down. 

 

2.3 Transactions vs. Locks  

The following figure 1 taken from [1] gives us an idea of how the performance improves as 

we compare transactions with locking (coarse-grained and fine-grained).  

 

  
Figure 1: Performance of Transactions vs. Locks [1] 

 

In this figure three different versions of Hash Map are compared. It compares time different 

versions take to complete a fixed set of insert, update and delete operations on a 16-way 

Symmetric Multiprocessor (SMP) machine. As the figure shows, increasing number of 

processors has no effect on coarse-grain while fine-grain and transactions give better 
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performance. Thus coarse-grain locking is not scalable whereas fine-grain locking and 

transactions are scalable. That’s why according to Adl-Tabatabai in [1] transactions give us 

same results as lock-grain with less programming effort. 

 

It is hard and time consuming to select an appropriate locking strategy for any given 

problem, and it becomes even more difficult by following additional challenges of the lock-

based programming language as presented in [18]. Due to the below mentioned problems 

and drawbacks, lock-based parallel programming is not a suitable paradigm for an average 

programmer.  

 

 Deadlock primarily occurs when two or more threads acquire locks which are 

required by some other threads in order to proceed, and it causes a state known as 

circular dependence which is hard to satisfy. As the entire threads wait until lock is 

released by the other thread, none of threads can make any sort of progress which 

results in application hang. Deadlock may easily arise if fine-grained locking is used 

and no strict method of lock acquisitions is enforced. If such methods are not 

sufficient, resolution schemes and deadlock detection can provide backup in this 

regard. It is worth mentioning that these schemes are quite difficult to implement 

and are also vulnerable to live locks, specifically where threads frequently interfere 

with each other and as a result demising the progress. 

 

 Convoying occurs upon de-scheduling of a thread holding a lock. During sleep, all 

other threads execute until and unless they require a lock, due to which many threads 

had to wait for the acquisition of same lock. As the lock releases, all the threads in a 

wait contend for this lock which thus causing excessive context switching. However, 

unlike deadlocks, application continues to progress but at relatively slower pace. 

 

 Priority inversion occurs when a thread of lower priority holds a lock which is 

required by some other thread having high priority. In such a scenario, high priority 

threads will have to discontinue its execution until the lock is released by lower 

priority thread causing its effective and temporary demotion to the priority level of 

other thread. In other scenario, if a thread having medium priority is present it may 

further delay both high and low priority threads and cause inversion of medium and 

high priorities. There is a problem in priority inversion when discussing it for real 

time systems, because a thread having high priority may be blocked thus breaching 

time and response guarantees. However, for general purpose computing, these high 

priority threads are quite often used to accommodate user interaction tasks not the 

critical ones. Priority reduction may affect the performance of an application. 

 

 Lock based code cannot be considered as composable. It means that combining lock 

protected atomic operations into operations having large magnitude and still remain 

atomic is quite impossible.  

 

 Finally, lock-based code is quite susceptible to faults and failures which are known 

as fault tolerance.  In a case when a single thread holding a lock fails, all of the 

other threads requiring that particular lock will eventually stop making progress. 

Failures are likely to increase as the numbers of processors are growing in parallel 

machines. 

 

2.4 Transactional Memory 

Transactional memory is a lock free synchronization mechanism defined for multiprocessor 

architectures. It is an alternative to lock-based programming. It provides programmers the 

ease of using read-modify-write operations on independently chosen words of memory. 

Transactional memory makes parallel programming easy by allowing programmers to 
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enclose multiple statements accessing shared memory into transactions. Isolation is the 

primary task of transactions however, failure atomicity and consistency are also important. 

In a TM system a failure atomicity provides automatic recovery on errors. But if a 

transaction is in an inconsistent state then it will not be possible for a written program to 

produce consistent and correct results. If a transaction fails it can leave results in an 

inconsistent state. There should be some proper mechanism to revert changes to a previous 

consistent state.  

 

Many proposed TM systems exist, ranging from full hardware solution (HTM) [19-22] to 

full software approach (STM) [23-26]. Hybrid TM (HyTM) [6, 27-29] is an additional loom 

which combines the best of both hardware and software i.e. the performance of HTM and the 

virtualization, cost, and flexibility of STM.  

 

2.4.1 Hardware Transactional Memory 

The idea of hardware transactional memory was introduced by Herlihy and Moss [4] in 

1993. Hardware transactional memory (HTM) was first presented as a cache and cache-

coherency mechanism to ease lock-free synchronization [30]. The HTM system must 

provide atomicity and isolation properties for application threads to operate on shared data 

without sacrificing concurrency. It supports atomicity through architectural means [19], and 

proposes strong isolation. It also provides an outstanding performance with a little overhead. 

However, it is often not efficient in generality. It bounds TM implementations to hardware to 

keep the speculative updated state and as such is fast but suffer from resource limitations 

[31].  

 

Modern HTMs are divided into different categories that support unbounded transactions and 

those that support large but bounded transactions. Most of them concentrate on a mechanism 

to enlarge the buffering for transactions seamlessly [3]. Bounded HTMs enforce limits on 

transaction working set size, ensuring that transactions following this set size will be able to 

commit. Best-effort HTMs implement limits by leverage available memory already present 

in L1 and L2 caches. Unbounded HTMs have been proposed recently that is contrary to 

bounded HTMs, it allows a transaction to survive context switch events [3]. However to 

implement these systems is complex and costly. It is most likely that HTMs will prevail as 

STMs are particularly gaining a lot of attention these days. These HTMs can effectively be 

utilized with the existing hardware products and also provide an early prospect of gaining 

experience by utilizing actual TM systems and programming models. 

 

2.4.2 Software Transactional Memory 

The idea of software transactional memory was introduced in 1995 by N. Shavit and D. 

Touitou [5]. Software transactional memory (STM) implements TM mechanisms in software 

without imposing any hardware requirements. Since all TM mechanisms are implemented 

entirely in software without having any particular hardware requirements, STMs offers a 

better flexibility and generality as all mechanisms are implemented in the entire software. 

The STM can be defined as non-blocking synchronization mechanism where sequential 

objects are automatically converted into concurrent objects. In STM, a transaction is a finite 

sequence of instructions which atomically modifies a set of concurrent objects [32]. The 

STM system supports atomicity through languages, compilers, and libraries [19].  

 

The recent research in STM systems has focused mainly on realistic dynamic transactions. 

The latest work in STM systems has made them a perfect tool for experimenting and 

prototyping. As software is more flexible than hardware, it is possible to implement and 

experiment it on new algorithms. It supports different features like garbage collection that 

are already available in different languages [3]. In addition, STMs are based on a very 



9 

critical component being used by number of hybrid TMs, which provide leverage to HTM 

hardware. Because of this perspective STMs provide a basic foundation to build more 

efficient HTMs. As a matter of fact, primarily STM systems are considered for this thesis. 

 

STM vs. database transactions: We believe an STM needs not to preserve its transactions 

to survive the crash as databases do. Concurrency analysis by Felber et al. [33] is a sensitive 

and crucial issue which needs full attention of the programmer. 

 

 Durability is a challenge for database transactions. An STM system does not need to 

preserve its transactions to survive the crash. Therefore in STM transactions, we do 

not need durability as we need it in databases.  

 

 In terms of programming languages, the database transactions run as SQL 

statements where each statement runs as a single transaction, different transactions 

cooperate with each other in order to accomplish a task. While in memory 

transactions, it is the responsibility of the programmer to define a block of code that 

runs atomically.  

 

 In terms of Semantics, databases use serializability to protect its data from expected 

behavior. Serializability means each individual transaction is marked non-

overlapping in time if it produces the same results as it would have been executing 

serially. Concurrency analysis is a sensitive and crucial issue which needs full 

attention of the programmer. As accessing data from transactional and non 

transactional code, any shortfall in concurrency analysis may lead towards totally 

inconsistent and devastating results. However concurrent STM transactions may lead 

to read-write conflicts, producing non-serialized results. STM runtime should 

implement recoverability theory to avoid this problem. Another problem is to handle 

conflicts caused by transaction reading between two updates of concurrent 

transactions overwriting each other. 

 

 Transformation of transactional code is also a challenge in STM. In databases non 

transactional code runs inherently as a transaction. In STM this is done by either 

separating transactional and non transactional code or dynamically categorizing their 

access to shared objects. Monitoring of read access and write access is very crucial 

in the implementation of STM transactions. It is a challenging task to differentiate 

between these accesses, as even the use of encapsulation is not sufficient for their 

separation. To gain optimization and boost in performance, STM transactions are 

designed to run on multi-core systems, in contradiction to database transactions. To 

achieve this level of optimal performance is yet another challenging task in STM. 

 

2.4.3 Hybrid Transactional Memory 

Hybrid Transactional Memory (HyTM) was introduced in 2006 by P. Damron et al [6]. They 

worked on a new approach by which transactional memory can work on already existing 

systems. It has both the flavors of HTM and STM. HyTM can give the best performance and 

is scalable as well. The HyTM can utilize HTM properties to get better performance for 

transactions that do not exceed hardware limitations and can obviously execute transactions 

in STM. When STMs are combined with HTMs like in HyTM, they provide support for 

unbounded transactions without requiring any complex hardware. In HyTM small 

transactions are processed on lower overhead of HTMs, while larger transactions fall back 

onto unbounded STMs. This model of transaction handling is quite appealing in TM as it 

gives flexibility of adding new hardware with lower development and testing cost and 

decreased risk [27].  
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2.5 STM Design Alternatives 

Design differences in STM systems can affect a system’s programming model and 

performance [3]. In this section we review some distinctive STM design differences that 

already have been explored in the literature. Our purpose is to be able to identify the impact 

of these design differences on system performance.  

 

2.5.1 Transaction Granularity 

The basic unit of storage over which an STM system detects conflicts is called transaction 

granularity [3]. Word-based and object-based are two classes of transaction granularity in 

STMs. Detecting conflicts at word level gives the highest accuracy but it also has higher 

communication and bookkeeping cost. In object-based STMs, resources are managed at the 

object level granularity. This implies that the STM uses an object oriented language 

approach which is more understandable, easy to implement, and less expensive. 

 

2.5.2 Update Policy  

A transaction normally updates an object and modifies its contents. When a transaction 

completes its execution successfully it updates the object’s original values with updated 

values. Based on the update strategy,  direct update and deferred update are two alternative 

methods described in [3]. 

 

Direct update: In direct update, a transaction directly updates the value of an object. Direct 

update requires a mechanism to record the original value of an updated object, so that it can 

be reversed in case if a transaction aborts. 

 

Deferred update: In deferred update, a transaction updates the value of an object in a 

location that is private to the transaction. The transaction ensures that it has read the updated 

value from this location. The value of this object is updated when a transaction commits. The 

transaction is updated by copying values from the private copy. In case the transaction 

aborts, the private copy is discarded.  

 

2.5.3 Write Policy 

Whenever a transaction is executed it can make some changes in shared resources. 

Atomically the transaction either modifies all or nothing. Committing or aborting a 

transaction is not always successful. That is why, in STM systems, a mechanism is provided 

to handle both successful commits and aborts. The two approaches that are used to handle 

this problem are Write-through or undo and Buffered write described in [34]. 

 

Write-through or undo: In this approach changes are directly written to the shared 

memory. For safe side, each transaction keeps an undo list and reverts their updates in case 

they need to abort. The write-through approach is really fast as changes are made directly to 

the shared memory. But aborting a transaction can be very expensive as all the made changes 

need to be undone. 

 

Buffered write: In this approach, writes are buffered and changes are only made upon 

successful commit to the shared memory. Here in buffered write approach, aborting a 

transaction is simple as no changes are made to the shared memory. To commit a transaction 

values are copied from the buffer to the shared memory. 
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2.5.4 Acquire Policy 

Accessing the shared memory exclusively is called acquiring it. There are two strategies of 

acquiring shared memory are Eager and Lazy acquire described in [34]. 

 

Eager acquire: If a transaction acquires shared resources and modifies them as well then, it 

is called eager acquire. Using eager acquire transactions has advantages, because they know 

as soon as possible that the shared resource is being accessed by some other transaction. 

Eager acquire has drawbacks in case of long transactions, because the current long 

transaction will not allow any other transaction to access the shared resources until it 

completes its working.  

 

Lazy acquire: The lazy acquire strategy works best with buffered writes as the memory is 

modified only at the commit time. Using this approach ensures that as all the computations 

are completed, all the changes can be written back to shared memory without any 

intervention. Using the lazy acquire with the write-through and undo does not suit as it will 

not do any work at the commit time, therefore it is the wastage of resources.  

 

2.5.5 Read Policy 

There are two kinds of read policies [34] invisible and visible reads. In invisible reads 

multiple transactions can read the same shared resources without any conflict, so most STM 

systems make shared resources invisible. In invisible reads each transaction validates its read 

set before commit. In visible reads, STM systems acquire locks or offer a list of readers for 

each read set on shared objects.  In this policy when a transaction wants to modify a shared 

resource, it checks if there are any readers on that shared resource. If other reader found then 

it must wait until the resources get free. 

 

2.5.6 Conflict Detection 

An important task of STM is to detect conflicts. A conflict occurs when two or more 

transactions try to acquire and operate on the same object. Most of the STMs employ single-

write multiple-read strategy. They also distinguish between RW (Read-Write) and WW 

(Write-Write) conflicts. The Conflict can be detected at different phases of a running 

transaction [3]. Detecting conflict before commit falls into the category of early conflict 

detection which reduces the amount of computation by the aborted transaction. Detecting 

conflict on commit is known as late conflict detection which maximizes the amount of 

computation discarded when a transaction aborts. 

 

2.5.7 Concurrency Control 

An STM system that executes more than one transaction concurrently requires 

synchronization among the transactions to arbitrate simultaneous accesses to an object [3]. 

This is necessary both in direct update and deferred update systems. These three events 

(conflict occurrence, detection, and resolution) can occur at different times but not in 

different order. In general, there are two alternative approaches to concurrency control.  

 

Pessimistic concurrency control: With pessimistic concurrency control, all three events 

happen at the same time in execution. As a transaction tries to access a location, the system 

detects conflict and resolves it. In this type of concurrency control, a system claims exclusive 

access to a shared resource and prevents other transactions from accessing it.  

 

Optimistic concurrency control: With optimistic concurrency control, detection and 

resolution of conflicts can happen after conflicts occur. In this type of concurrency control 
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multiple transactions can access an object concurrently. It detects and resolves conflicts 

before a transaction commits.   

Another feature of concurrency control is that its forward progress guarantees with two 

approaches blocking synchronization (lock-based) and non-blocking synchronization (wait-

free, lock-free, and obstruction-free).  

 

Lock-based: This STM does not provide any guarantee of progress because locks are used 

in the implementation in order to ensure mutual and exclusive access to the shared resources. 

 

Wait-free: A wait-free STM guarantees greater progress. In wait free, progress is made by 

all the threads in a finite number of steps keeping an entire system in context. It is quite 

difficult to achieve such high progress as it requires that a thread which may not even get 

CPU time should be assigned by the scheduler in order to make progress in a finite number 

of system steps. In such an STM, all the threads require to workout with each other in order 

to make sure that every thread is making progress. 

 

Lock-free: The main difference between the lock-free and wait-free is that a STM which 

guarantees lock-free only makes sure that the progress is made by at least one thread in a 

finite number of steps keeping an entire system in context. This minor difference has a 

significant impact on the STM implementation. However threads still may need to work out 

with each other only in the scenario when a conflict is raised. If there is not conflict amongst 

the thread than each of the thread can run without any hitches. 

 

Obstruction-free: An obstruction-free STM guarantees even further less progress. A precise 

fact of obstruction-free is that it ensures the progress of at least one thread in a finite number 

of steps in the absence of disputation. Furthermore, in obstruction-free STM if one thread is 

making some sort of progress than other threads, it will be aborted in order to resolve any 

conflict. However, one interesting fact of obstruction-free STM is that it surpassed lock- and 

wait-free STM implementations. This highlights that an increase in the performance by 

minimizing the guarantees is much larger than the overheads which may be introduced by 

any amount of additional aborts. 

 

2.5.8 Memory Management 

Classen described in [34], the memory management is referred to as allocation and de-

allocation of memory. If a transaction allocates memory and is not successful, it should be 

possible to free the allocated memory; otherwise it can result into memory leakage. On the 

other side if a transaction de-allocates memory and is not successful or it aborts, then this 

memory should still be available to restore into previous state. The allocation and de-

allocation of memory can be viewed as another form of write operations.  

 

2.5.9 Contention Management 

According to Classen [34], an STM needs a contention manager. The role of contention 

manager is to resolve conflicts. There is an attacker and a victim during a conflict among 

different transactions. Upon a conflict between two transactions, the contention manager can 

abort the victim, or abort the attacker, or force the attacker to retry after some period. The 

contention manager can use different techniques to avoid future conflicts. Following are 

different management schemes for conflict resolution: 

 

 The simplest Timid [35] – always aborts a transaction whenever a conflict occurs. 

 

 Polka [23] – backs off for different intervals equal to the difference in priorities 

between the transaction and its enemy. 
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 Greedy [36] – The greedy contention manager guarantees that each transaction 

commits within a finite or bounded time. 

 

 Serializer [37] – The serializer works like greedy contention manager with an 

exception that on aborting a transaction , each transaction gets a new priority. 

 

Regardless of the management schemes a contention manager implements, it must select one 

of the following options whenever a conflict occurs: 

 

Wait: A simple way of resolving a conflict is to wait for some time until the resolution of an 

issue on its own.  This may seem to be a naive way but it has the tendency to work in many 

scenarios. 

 

Abort self: In some cases, it is not possible for a transaction to carry on its work due to the 

fact that another transaction may be holding the shared resource which is required by this 

transaction. A way to resolve this situation is that this transaction aborts itself and restarts 

again. This option can be considered as another simpler way to implement because all STMs 

must have a mechanism of aborting a transaction. 

 

Abort other: One of the last options is to abort the transaction which is holding the lock of 

required shared resources by the in progress transaction. This option can be considered as 

quite practical if transactions are priority based. A transaction having high priority aborts 

those transactions having low priority. This option is quite difficult to implement as 

compared to the above two options. 
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3CHAPTER 3: METHODOLOGY 
 

This chapter addresses the methodology chosen to answer the presented research questions 

to achieve the main goals of this research. We are using a mixed methodology to explore 

deeply our study area. According to C. B. Seaman, a mixed methodology is such a 

methodology that covers both qualitative and quantitative areas of a research [38]. The 

motivation behind selecting mixed approach was to first get better and extensive 

understanding of the problem by conducting literature review. In the second phase, an 

experiment was conducted in order to address and solve this problem. 

 

3.1 Qualitative Research Methodology 

The qualitative part of research is composed of exploration of any activity [38]. The 

qualitative part of our research is used to answer RQ1 and it also partially answers RQ2. We 

are using the qualitative research methodology in the following way. 

 

3.1.1 Literature Review 

First, a literature study is carried out to collect the material related to both STM performance 

issues and the techniques developed to solve these issues. The literature review is a 

qualitative approach [39] that helps in collecting a wide range of information. It is used to 

increase our knowledge on the topic by analyzing the viewpoints of different researchers. 

The research papers close to our research area are sorted out by identifying the significant 

material that will aid us in fully understanding STMs and their performance. This study 

provided us sound ground knowledge generally about transactional memory and especially 

about understanding of different software transactional memory systems. The digital libraries 

and online databases which were utilized in this regard are as follows: 

 

 IEEE Xplore 

 ACM Digital library 

 Springer Link 

 Google Scholar (scholar.google.com) 

 Transactional Memory Bibliography (cs.wisc.edu/trans-memory/biblio/index.html) 

 

3.1.2 Background Study 

Background study is presented basic understanding of different factors that influence 

different STMs and affect their performance and prepared the ground about the thesis. It 

endows with basic concepts required to understand this study. This research starts with 

identifying the different research articles and books related to our research work which help 

us in better comprehension of different STM techniques.  

 

3.1.3 Selection and Suitability of STM systems 

There exist many implementations of STM i.e. WSTM [40], OSTM [41], DSTM2 [42], 

SXM [43], McRT-STM [25], DracoSTM [44], and STM-Haskell [24]. In this study, we 

chose four STM systems for experimental purposes which are briefly described in chapter 4. 

All systems cover different design properties of software transactional memory. These 

systems give different results in different environments, with different workloads, different 

contention management schemes, and deal differently with applied overhead. We have 

chosen four STM implementations due to the following reasons: 
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 They are the state-of-the-art STM systems, well appreciated in the research 

community and all of them are publicly available. Furthermore, they support the 

manual instrumentation of concurrent applications with transactional accesses. 

Definitely our objective is to evaluate the performance of the core STM algorithm, 

not the detail of measuring the efficiency of the higher layers such as STM 

compilers.  

 

 They characterize an extensive diversity of known STM design choices such as 

obstruction-free vs. lock-based implementation, invisible vs. visible reads, eager vs. 

lazy updates, and word-level vs. object level access granularity at which they 

perform logging. Lock-based STM systems, first proposed in [45], implement some 

variant of the two-phase locking protocol [46]. Obstruction-free STM systems [47] 

do not use any blocking mechanisms, and guarantee progress even when some of the 

transactions are delayed.  

 

 These systems also allow for experiments with different contention management 

approaches, from simply aborting a transaction on a conflict, through exponential 

back off, up to advanced contention managers like Greedy [36], Serializer [37], or 

Polka [23].   

 

3.1.4 Selection and Suitability of Benchmarks 

We chose STAMP – Stanford Transactional Applications for Multi-Processing [11] – 

benchmark suite to compare the performance of our STMs because it offers variety of 

workloads and has been extensively used to evaluate TM implementations [48]. It is portable 

across a whole range of transactional memory implementations including: hardware 

transactional memory, software transactional memory and hybrid transactional memory. It 

covers a wide range of transactional behaviors. It consists of eight applications including 

bayes, genome, intruder, kmeans, labyrinth, ssca2, vacation and yada. It is publicly available 

at http://stamp.stanford.edu. 

 

3.2 Quantitative Research Methodology 

A quantitative study is presented where we performed performance measurements on real 

hardware. The quantitative research methodology is used to answer RQ2. We are using the 

quantitative research methodology in the following way. 

 

3.2.1 Selection and Suitability of STM Performance Metrics 

For analyzing, the transactional behaviors of a set of complex realistic TM applications, 

following metrics are commonly used:  

 

 Commit Phase Time and Abort Phase Time  

 Commit Reads and Abort Reads  

 Commit Writes and Abort Writes  

 Execution time 

 Aborts per Commit 

 Transaction Retry Rate 

 

The metrics that we measured during this study are Execution time, Aborts per Commit and 

Transaction Retry Rate. The inspiration behind selecting these metrics is that they help in 

determining the transactional scalability of the applications. The execution time shows the 

transactional effectiveness of application scale with respect to the increasing number of 
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threads. Since transactional memory is a scheme that imposes the committing or aborting of 

transaction sequences, the important issue while trying to monitor the transactional 

management is naturally the ratio of aborted transactions to committed transactions. Finally, 

the last metric is used to exploit the inherent concurrency of the underlying STM 

implementation. 

 

3.2.2 Experimentation 

Experiments are considered the cornerstone of the empirical study which is performed on a 

subject when we have control over the environment. The experiments are used to test the 

behavior of this subject directly, precisely and systematically.  Experiments are performed 

more than once in order to validate the subject’s outcome.   

 

3.2.3 Analysis of Gathered Results 

After we performed experiments on the chosen metrics we got some data. This data was 

scrutinized and on the basis of this data we were able to fetch some results. These results are 

further discussed in order to attain a final conclusion. 
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4CHAPTER 4: THEORETICAL WORK 
 

This chapter clearly describes the four STMs i.e. RSTM [7], TL2 [8], TinySTM [9], and 

SwissTM [10]  in detail employed for performance evaluation in this thesis. These systems 

represent a wide spectrum of design choices.  

 

4.1 RSTM 

4.1.1 RSTM Overview 

The RSTM [7] system was designed by Marathe et al. at the University of Rochester to 

improve the performance of an obstruction-free deferred-update STM. It was written as a 

fast STM library for C++ multithreaded programs but an equivalent library could also be 

implemented for C language, though it would not be more convenient. Obstruction freedom 

[12] is the weakest guarantee of non-blocking synchronization that simplifies 

implementation by guaranteeing progress only in the absence of conflict. To make this 

guarantee, RSTM employs Polka [23] as a contention manager. Contention manager decides 

what to do on conflict either abort a transaction or spin-wait and which transaction to abort if 

there is any conflict between transactions. 

 

The basic unit of concurrency over which RSTM detects conflicts is an object. Inside a 

transaction, objects may be opened for read-only or read-write access. Objects that are 

opened for read-write are replicas, and those for read-only are not. A transaction that wishes 

to update any object must first acquire it before committing. Acquiring an object is getting 

exclusive access to that object. It can be done in eager or lazy fashion. Eager systems 

acquires an object as soon as it’s opened while lazy systems acquires it some time prior to 

committing the transaction. In some existing STM systems (e.g. DSTM [47], SXM [43], 

WSTM [40] and McRT [25]) writers acquire objects and perform conflict detection eagerly, 

whereas some others (e.g. OSTM [41], STM Haskell [24]) do it lazily. Eager acquire aborts 

doomed transactions immediately, but causes more conflicts. However lazy acquire enables 

readers to run together with a writer that is not committing yet. A thread that opens an object 

for reading may become a visible or invisible reader. In either case eager or lazy conflict 

detection, writers are visible to readers and writers but readers may or may not be visible to 

writers. RSTM currently supports both eager and lazy acquire and both visible and invisible 

readers.   

 

The information about acquired objects is maintained in a transactional metadata. RSTM 

adopts a novel organization for transaction metadata with only a single level of indirection to 

access an object rather than the two levels used by other systems like DSTM or ASTM [49]. 

This cache-optimized metadata organization reduces the expected number of cache misses.  

To further reduce overhead, RSTM is considered for non-garbage-collected languages by 

maintaining its own epoch-based collector. This lightweight memory collector avoids 

dynamic allocation for its data structure (i.e. Object Headers, Transaction Descriptors, 

private read and write lists), except for cloning data objects. The garbage-collected 

languages increase the cost of tracing and reclamation. RSTM avoids tracing altogether for 

transactional metadata by a simpler solution to mark superseded objects as retired. 

 

4.1.2 Design Features 

One of RSTM’s prominent features is a visible reader list which avoids the aggregate 

quadratic cost of validating a transaction’s invisible read list each time it opens an object. An 

Object Header reserves a fixed-size room for a modest number of pointers to visible reader 



18 

Transaction Descriptors. When a transaction acquires the object for write, it immediately 

aborts each transaction in the visible reader list. A transaction on a visible reader list does not 

need to validate reads, since a conflicting write will abort the transaction. This implicitly 

gives writers precedence over readers because there is no chance that a visible reader will 

escape a writer’s notice. However, RSTM arranges for each transaction to maintain its 

private read list and validate it. Even so, visible readers can reduce the size of this read list 

and the cost to validate it. 

 

According to [3], the authors of RSTM strongly argue that STM should be implemented with 

non-blocking synchronization, because blocking synchronization is vulnerable to a number 

of problems like thread failure, priority inversion, preemption, convoying, and page faults.  

 

4.1.3 Implementation 

In RSTM, every shared object is accessed through an Object Header, which holds the bitmap 

of the visible readers and the New Data field that identifies the current version of the object 

as shown in the figure 2. RSTM limits the number of visible readers. The New Data field is a 

single word that holds a pointer to the Data Object and a dirty bit. In RSTM this lower bit of 

the New Data field is used as a flag which tells whether Data Object is a clean object or a 

write-made replica. If the flag is set to zero, then the New Data pointer refers to the current 

copy of the Data Object. It saves dereference in the common case of non-conflicting access. 

Otherwise, if the flag is set to one, then a transaction has the object open for writing 

whenever that object’s Owner pointer points to Transaction Descriptor. 

 

 
Figure 2: RSTM Transactional Metadata [7] 

 

The Transaction Descriptor determines the transaction’s state, which holds the lists of 

opened objects (i.e. visible or invisible reads and eager or lazy writes) and the Status that can 

be ACTIVE, COMMITTED, ABORTED. If the Status is COMMITTED, then Data Object 

is the current version of the object. If the Status is ABORTED, then Data Object’s Old Data 

pointer is the current version. If the Status is ACTIVE, no other transaction can read or write 

the object without first aborting the transaction. To avoid dynamic allocation, each thread 

has a static Transaction Descriptor that is used for all transactions of this thread. 

 

A transaction opens an object before accessing it. In order to open the object for write, the 

transaction must first acquire it. To affect an acquire, the transaction reads the Object 

Header’s New Data pointer to identifying the current Data Object and makes sure no other 

transaction owns it. If it is owned, the contention manager is invoked to tune performance. 

Then allocation of a new Data Object and copying of data from object’s current version to 

the new and initialization of the Owner and Old Data fields in the new object are done. After 

this step, the transaction uses a CAS to atomically swap the header’s New Data pointer to 
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point to the newly allocated Data Object. At the end, the transaction adds the object to its 

private write list, so the header can be cleaned up on abort. If the object is open for a read, 

the transaction adds the object to its visible reader list for post-transaction cleanup. 

Otherwise if the list is full, it adds the object to the transaction’s private read list for 

incremental validation. 

 

4.2 TL2 

4.2.1 TL2 Overview 

TL2 [8] is mainly interested in mechanical methods of code transformation from sequential 

or coarse-grained to concurrent. Mechanical means the transformation of code is done either 

by hand or preprocessor or compiler. TL2 works fine with any system’s memory life cycle 

including a support for malloc/free methods used to allocate and free the memory. The user 

code is guaranteed to work in a consistent state by efficiently consuming execution 

time. 

 
TL2 provides solution to two potential threats that STM implementations are facing. First 

threat is Closed Memory Systems and second one is Specialized Runtime Environments. A 

closed memory system or closed TM is where memory can either be used transactionally or 

non-transactionally. This implementation is easy to adopt in languages that support garbage 

collection like java, but it is difficult to handle in languages like C/C++, where user has to 

code manually to handle memory allocation and free operations. The unmanaged 

environments give room for execution of Zombie transactions. A transaction is a zombie 

transaction when it founds an inconsistent read set, but it has not yet aborted the transaction. 

Efficient STM implementations need special runtime environments that can handle irregular 

effects of inconsistent states in unmanaged environments. The efficient runtime 

environments use traps to find problems in transactions and use retry statements to execute a 

transaction again in hope that it will succeed. 

 

The algorithm provided in TL2 offers a solution to both of the above mention problems i.e. 

closed memory systems and specialized runtime environment. TL2 by Dice, Shalev and 

Shavit used open memory system that provides solution to this problem by employing global 

version clock and commit time locking  [8]. 

 

4.2.2 Global Version Clock 

The global version clock is incremented each time a transaction writes to memory and is read 

by all other transactions. Transactions recorded in databases use time stamping. Database 

time stamping is used for large database transactions. But we need such a mechanism that 

can work efficiently with small memory transactions. To overcome this problem the global 

clock version used in TL2 is used, which is different from database because it supports 

working with small memory transactions efficiently. The global clock was also used by 

Reigel et al. in [50]. Reigel et al. global clock supports time stamping for non-blocking 

STMs and it is costly. The global clock version used in TL2 is lock based and simple. 

 

In TL2 all memory locations are augmented by a lock which contains version number. 

Extending or augmenting all memory locations with version number can give a consistent 

memory state to a transaction at a very little cost. The transactions that need to write or 

update memory need to know the read and write set before committing. Once read and write 

sets are available, locks are applied i.e. transactions acquire locks so that no other transaction 

can change the current state of acquired read or write sets. The transaction will try to commit 

its new values by incrementing global version clock and checking validity of read sets. Upon 
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successful completion, the transaction will release locks on read and write sets, update 

memory locations with new value of global version clock  [8]. 
 

4.2.3 TL2 – Algorithm 

The TL2 algorithm uses commit-time locking instead of encounter time locking mechanism 

to update transactions. The global version clock is read incremented by a write transaction 

and is ready by all other transactions. To implement data structure in memory we use per 

object (PO) and per stripe (PS) locks. A PO is assigned to a single object, while PS is 

assigned to a large number of objects and memory is divided into different portions using 

some hash function. As PS is defined in TL2 algorithm, almost the same way PO can also be 

defined. TL2 is defined for write transactions and low cost read only transactions [8]. 
 

Write Transaction: There is a sequence of operations that is followed before any write 

transaction successfully completes. The current global version clock’s value is stored in a 

local variable read-version (rv). Transactional code is executed. Read and write set addresses 

are locally maintained. Locks are acquired on write set. If locks cannot be acquired due to 

some reason, the transaction fails. When a lock is successfully acquired on a write set, a 

value is incremented in global version clock and is written back in local write version (wv). 

Finally before updating the memory locations with write set, it is confirmed that the read set 

is consistent. It has not been changed after locks were acquired on write set. Every location 

is written or updated with write set. The lock is released and the memory locations are made 

available to be used by other operations 

 

Low Cost Read-Only Transactions: Another task that this algorithm supports is the 

efficient execution of read only transactions. The value of global version clock is loaded into 

a local variable read version (rv). There are different ways to implement global version. It 

can easily become a bottleneck if it is not implemented intelligently. It may introduce 

contention and cache sharing problems. The solution to this problem is to divide global 

version clock into version number and thread ID. By using this scheme a thread would not 

have to change its version number if it is different from last one it used.  

 

Mixed Transactional and Non-Transactional Memory Management: TL2 

implementation either divides memory into transactional and non transactional areas thus 

mix transactional and non transactional operations are not possible. The memory used by a 

transactional operation should not be allowed to be used by a non transactional operation. 

But it is a dire need of an STM implementation that memory used transactionally may later 

be used by non-transactionally. Languages like java support such operations implicitly. But 

in languages like C/C++, one has to code explicitly to handle memory. Malloc () function is 

used to allocate memory and free () function is used to free memory space used by a 

transaction. 

 

Mechanical Transformation of Sequential Code: TL2 supports mechanical code 

transformation. Code written for sequential programs can automatically be transferred to 

concurrent code. But manually written code has always edge over mechanically transformed 

code. 

 

4.2.4 TL2 – Variants 

The open-source TL2 library contains several variants which differ in how they manage the 

global version number. As originally described, TL2 increments the global version number 

at commit-time for each updated transaction. All transactions must fetch the global version 

number variable as its timestamp. Thus every transaction has a unique timestamp, and TL2 
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refers this form of clock management as “GV1”. TL2 later developed and more refined clock 

management schemes are known as GV4, GV5, and GV6 [51]. 
 

GV4: In its default mode, called GV4, TL2 tries to minimize the risk of contention on the 

global version number by using a pass-on-failure strategy: if a transaction fails to increment 

the global version number, it does not retry to increment it, but uses the new value of the 

global version number as its timestamp. This is safe because the global version number is 

incremented after a transaction has locked all the ownership records “orecs” associated with 

its writes, and validated its reads. So, transactions that try to increment the global version 

number do not conflict with each other and can commit at the same time using the same 

timestamp. 

  

GV5: Another variant of TL2 is GV5, which further minimizes the contention for the global 

version number on the basis that every transaction is not required to make an attempt to 

increment the global version number. As an alternative, a transaction reads and increments 

global version number locally and uses the resulting value as its timestamp but does not 

write the incremented value back to the global version number. Though GV5 further 

minimizes contention on the global version number but it increases unnecessary aborts. 

 

GV6: It is an adaptive hybrid of GV4 and GV5 to perform the best possible results. This 

strategy tries to avoid unnecessary aborts as in GV5 and avoid bottlenecks on advancing 

global number less frequently than GV4. 

 

4.3 TinySTM 

4.3.1 TinySTM Overview 

The performance of a STM system depends on different design choices and configuration 

parameters. We have to select from different design choices, either current STM system is 

going to be word based or object based, lock based or non-blocking, write through or write 

back, encounter time locking or commit time locking. Similarly regarding STM 

implementations, we do make choices among different configuration parameters like the 

number of locks used to handle concurrent access to shared data or to map locks to memory 

addresses. These factors are invariably used on different system architectures due to their 

CPU or cache line size [9].  

 

The work load of an STM implementation plays a major role in selecting right design choice 

and configuration parameters. The ratios to update read only transactions, the size of read 

and write sets and contention on shared memory; all these factors make it difficult achieving 

a STM that is perfectly suitable in all situations. Some STMs are good for one kind of 

environment but they do not perform well in other type of environment. For example, time 

based TMs are excellent in read only transactions, but they are not that good in an 

environment where transactions are updated frequently, validation read sets in larger 

transactions is also an issue [9]. 

 

4.3.2 TinySTM – Algorithm 

Locks and Versions: TinySTM uses shared array of locks to manage concurrent access. 

Addresses are mapped on per stripe which is locked using a hash function. Lock represents 

size of address in memory. Locks least significant bit shows whether lock is owned or not. If 

least significant bit of lock is owned, remaining bits of address store owner transaction in 

case of write-through method or write set owner transaction in case of write-back. And if 

least significant bit of lock is not owned, a version number is stored in remaining set bits that 

are based on commit timestamp of the latest transaction (see Figure 5). 
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Reads and Writes: When a transaction reads a memory location, it first checks whether the 

read set is currently being read or written by any other transaction. If no other transaction 

holds lock on the current read set, and the value of read set is not changed then the read set is 

consistent. When a transaction writes to a memory location, it reads lock entry from selected 

memory addresses. If it finds lock bit is set then it verifies either the current transaction is the 

owner or not. If current transaction is the owner, then it simply writes new value to memory 

location. If it is not owner of the current transaction then the current transaction waits for 

some time to get resources free or abort immediately. TinySTM uses abort immediate option. 

 

Write-through vs. Write-back: In write-through design changes are directly updated in 

memory and these changes are saved in an undo log buffer to revert previous values in case 

of abort. The write-through design has lesser commit time. In write-back design changes are 

held in a write log until the commit time. The write-back design has lesser abort overhead.   

 

Memory Management: Dynamic memory management can be complex in unmanaged 

languages and environments. TinySTM has provided memory management functions that 

help in handling dynamic memory efficiently. Every transaction keeps a record of allocated 

and freed memory. Memory management functions properly dispose off the allocated 

memory and freed memory is upheld until commit. 

 

Clock Management: TinySTM is based on shared counter clock which is efficiently 

working in SMP architectures. If due to some reason this shared counter clock mechanism is 

creating problem in large systems, a more scalable time based clock or multiple 

synchronized physical clocks can be used.[52] TinySTM can work on 32 bit and 64 bit 

architectures. The maximum value of clock on 32 bit architecture is 231 and maximum value 

for 64 bit architecture is 263. Frequent commit statements can easily exploit maximum value 

on 32 bit architectures. TinySTM provides its solution through roll-over mechanism [9]. 

When a transaction detects that it is facing maximum value, it waits for a little time during 

which all pending transactions are completed or aborted, the clock counter is restarted.  

 

4.3.3 Implementation 

TinySTM is a light weight highly efficient lock based, word based STM implementation. 

Using word based design choice supports to adopt the direct mapping of memory to any 

subsystem. Word based STMs allow memory access at word granularity and can be used in 

unmanaged environments. TinySTM is based on encounter time locking. There are two 

reasons to use encounter time locking: 

 

 Detecting contention as they occur helps in increasing transaction’s throughput, 

because transactions do not have to work extra. However, commit time locking may 

give some advantage of read write conflicts, but conflicts detected late cannot be 

solved without aborting one of the transactions. 

 

 Reads-after-writes are efficiently handled using encounter time locking and is 

especially good with large write sets. 

 

Along with encounter time locking, two other strategies are used in TinySTM to access 

memory: write-through and write-back access. In write-through access transactions 

immediately write to memory and undo updates if aborted. In write-back access transactions 

do not update until the commit time. In TinySTM such a procedure is followed that any 

transaction does not need to access another transaction’s memory [9]. 
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Figure 3: Data structures in TinySTM [9] 

 

4.3.4 Hierarchical Locking 

LSA algorithm [31] guarantees that there is a consistent read set for read only transactions, 

therefore read only transactions do not need to validate their read sets. Update transactions 

do need to validate their read sets before they update any value of the memory locations. 

Large read sets validation may be costly. To validate read sets fast, number of locks can be 

reduced. Reducing number of locks can increase abort rate. The solution of this problem was 

the introduction of hierarchical locking as proposed by the authors of TinySTM [9]. Hash 

function is used to map memory addresses to counters which are consistent to lock arrays. 

Memory locations that are mapped to same lock are also mapped to same counter. Every 

transaction keeps two private data structures. A read mask and write mask of hierarchical h 

bits. Read sets are divided into h parts.  

 

4.3.5 Dynamic Tuning 

TinySTM uses dynamic tuning parameters that affect its performance in achieving higher 

transaction throughput. First one is using a hash function to map locks to memory locations. 

TinySTM uses right shifts that provide control over how many contiguous memory locations 

can be mapped using same lock. Second is number of entries/addresses in lock array. The 

smaller value will be able to map more locks on a single lock, which decreases the size of 

read set. Third is the array size used for hierarchical locking. Higher value of hierarchical 

locking increases atomic operations but it decreases validation overhead and contention. 

 

4.4 SwissTM 

4.4.1 SwissTM Overview 

SwissTM [10] is a deferred, lock based STM system that uses invisible reads and relies on a 

time-based scheme to reduce the cost of transaction validation and speed up read-set 

validation, like TL2 [8] and TinySTM [9]. It is a C++ implementation of LSA with dynamic 

snapshot extensions. It uses a variant of two-phase locking for concurrency control that 

causes no overhead on all short read-write and read-only transactions while favoring the 

progress of transactions that have performed a significant number of updates. Two-phase 

contention manager with random linear back-off embedded in SwissTM is bimodal, 

distinguishing between small and large transactions. The random linear back-off also 

increases scalability. 

 

SwissTM uses mixed invalidation [53] conflict detection scheme in which write-write 

conflicts are noticed early, but  conflicts detected in read-write case are not acted upon until 

the commit time. By using early write-write conflict detection, it avoids wasted work in 
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transactions that is almost certain to abort, since at most one the conflicting transactions can 

ever commit. By detecting read-write conflicts late, it reduces the number of unnecessary 

aborts due to false read-write conflicts, in this case both may commit if the reader does so 

first. Thus SwissTM takes the best of both worlds to support mixed workloads consisting of 

both short and long transactions, as well as simple and possibly complex data structure. This 

combined strategy is beneficial for large transactions and complex objects as it introduces no 

significant overheads on short transactions and simple data structures [10].   

 

The contention management scheme underlying SwissTM gets invoke only on write-write 

conflicts. To provide good performance across a wide range of mixed workloads, the 

contention manager aborts conflicting transaction that performed less work by using a shared 

counter to establish a total order among transactions, similarly to Greedy [36], but it avoids 

updates to the shared counter for short transactions, resulting in a two-phase contention 

manager [48]. The two-phase contention management scheme is a variation of the Greedy 

contention manager. Though Greedy performs poorly on short transactions, two-phase 

contention manager improves both performance and scalability by overcoming this issue 

completely. This is because it allows all read-only and short transactions to commit without 

incrementing the shared counter yet it provides the strong progress guarantees of Greedy.  

The more complex transactions switch dynamically to the Greedy mechanism that involves 

more overhead but favors these transactions, preventing starvation [10]. 

 

4.4.2 Design philosophy 

All transactions share a global commit counter commit-ts, incremented by every commit. 

Every transaction has a transaction descriptor, tx, containing the value of commit-ts, and the 

transaction’s read and write logs. The value of Commit-ts is read upon the transaction 

beginning or updated by every subsequent validation. Each memory word m is globally 

mapped to a pair of lock entries for r-lock and w-lock. Lock w-lock is eagerly acquired by a 

writer T to prevent other transactions from writing to m. Lock r-lock is lazily acquired by T 

to prevent other transactions from reading word m. In addition when r-lock is released it 

contains the version number of m, as a result, observing inconsistent states of words written 

by T. Every 4 consecutive memory words share a lock [10]. 

 

  
Figure 4: Mapping of memory words to global lock table entries.[10] 
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4.4.3 Locking granularity 

The design of SwissTM is a result of trial-and-error, various choices that might have seemed 

natural, revealed inappropriate. An important implementation choice underlying SwissTM is 

its lock table granularity, in particular the size of memory that gets mapped to the same lock. 

Increasing the size of memory stripes increases abort rates due to false conflicts but reduces 

locking and validation time due to data access locality. The optimal value for this parameter 

is application specific. For the experiments described in [10], the value of 4 words was the 

best. It’s interesting to note that picking a different value for the lock granularity may affect 

the performance but it is not preventing scalability.  

 

4.4.4 Contention Manager – Algorithm 

 

cm-start(tx) 

if not-restart(tx) then tx.cm-ts  ∞; 

cm-on-write (tx) 

if tx.cm-ts = ∞ and size(tx.write-log)=Wn  then 

tx.cm-ts  increment&get(greedy-ts); 

cm-should-abort(tx,w-lock) 

if tx.cm-ts = ∞ then return true; 

lock-owner = owner(w-lock); 

if lock-owner.cm-ts < tx.cm-ts then return true; 

else abort(lock-owner); return false; 

cm-on-rollback(tx) 

wait-random(tx.succ-abort-count); 

Figure 5: Pseudo-code representation of the two-phase contention manager [10] 

 

The contention manager gets invoked by the main algorithm, 

• At transaction start, 

• On a write/write conflict, 

• After a successful write, and 

• After restart.  

Conceptually, every transaction starts with an infinite value of a counter – tx.cm-ts. This is a 

variation of the Greedy counter greed-ts. This counter gets updated after Wn
th writes of the 

transactions. Upon a conflict, the transaction with higher value of cm-ts is aborted. After 

restarting, transactions are delayed using a randomized back-off scheme. 
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4.5 STM Feature Comparison 

Table 1 illustrates a summary of the design aspects and outlines the most significant 

difference among the four state-of-the-art STM systems – RSTM, TL2, TinySTM, and 

SwissTM – employed for performance evaluation in this study.   

 

Table 1: Feature comparison of the four state-of-the-art STM systems 

System 

Name 

Granularity Update 

Policy 

Write 

Policy 

Acquire 

Policy 

Read 

Policy 

Conflict 

Detection 

Concurrency 

Control 

Progress 

Guarantee 

RSTM Object-

based 

Deferred Buffered Both Both1 Both2 Optimistic Obstruction-

free 

TL2 Both Deferred Buffered Lazy Invisible Both Optimistic Lock-based 

TinySTM Word-based Both Both Both Invisible3 Early4 Optimistic Lock-based 

SwissTM Word-based Deferred Buffered Both Invisible Mixed 

invalidation5 

Both Lock-based 

                                                      
1 visible for up to 32 threads 
2 early or late (selectable) 
3 by default invisible, but can switch to visible to help with contention management 
4 early, but depends on acquire policy (if acquire is commit-time, conflict detection is obviously late) 
5 A conflict detection scheme in which write-write conflicts are noticed early, but read-write conflicts 

are detected late. 
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5CHAPTER 5: EMPIRICAL STUDY 
 

In the preceding chapter we sketched the key design aspects of the most recent STM 

implementations. One goal of this thesis is to identify performance tradeoffs of these STM 

design alternatives. In order to evaluate these systems, the applications of the STAMP 

benchmark suite [11] have been ported to these systems.  In this chapter we introduce our 

evaluation framework and cover STAMP in detail. 

 

5.1 Experimental Platform 

To compare the performance of all the four STMs – RSTM, TL2, TinySTM and SwissTM – 

we conducted different tests on a computer with 2 quad-core Intel(R) Xeon(R) CPU E5335 

@ 2.00GHz processors (in total 8 cores). This machine has 16 GB of RAM running with 

Linux operating system. All observations were gathered by running each STM system more 

than once. In order to analyze the outputs and to obtain fully qualified results, averaged 

results were taken from multiple runs. All the performance tests were performed using the 

STAMP Benchmark. The acquired results are graphically presented in this chapter.  

 

We used RSTM (version 5), the TL2-x86 0.9.6 implementation, TinySTM (version 0.9.9), 

and SwissTM (release dated: 2009-09-10). All these STMs were tested using STAMP 

Benchmark suit (version 0.9.10). These STM implementations are available from their 

respective websites. We performed tests on these implementations on their default 

configurations: RSTM was configured to use (eager conflict detection, invisible reads with 

commit counter heuristic, and the polka contention manager), TL2 is configured to use (lazy 

conflict detection and Global Version 4 (GV4)), TinySTM is configured to use (encounter 

time locking and timid contention manager), and SwissTM is configured on (mixed 

validation: Optimistic (commit-time) conflict detection for read/write conflicts and 

pessimistic (encounter-time) conflict detection for write/write conflicts, and a new two-phase 

contention manager). 

 

5.2 STAMP Benchmark 

Benchmarks for STM implementations are still very few [54]. Recently, some complex 

benchmarks for elongating STM implementations have emerged. STAMP [11] is a new 

comprehensive benchmark suite designed for TM research which currently consists of eight 

different applications representative of real-world medium-scale workloads. In table 2 we 

specify a brief description of these applications. They provide runtime transactional 

characteristics like varying transaction lengths, frequent or rare use of transactions, time 

spent in transactions and the average number of retries per transaction.   

 

Table 2: The eight applications in the STAMP suite [11] 

Application Domain Description 

Bayes Machine learning Bayesian network structure learning 

Genome Bioinformatics Performs gene sequencing 

Intruder Security Network intrusions detection 

Kmeans Data mining Implements partition-based  clustering 

Labyrinth Engineering Routes shortest-distance in maze 

ssca2 Scientific Efficient graph construction 

Vacation Online transaction processing Client/server travel reservation system 

Yada Scientific Refines a Delaunay mesh 
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We choose STAMP to compare the performance of our STMs because it offers a variety of 

workloads and has been extensively used to evaluate TM implementations [48]. Moreover, 

STAMP is portable across many types of TM implementations, including hardware, 

software, and hybrid implementations and publicly available at http://stamp.stanford.edu. 

 

5.2.1 STAMP – Design 

The design of the STAMP benchmark suite offers a comprehensive breadth and depth 

analysis and is portable to many kinds of TMs (HW, SW, and Hybrid) to make it an effective 

tool for evaluating TM systems. 

 

Breadth: STAMP consists of eight different applications covering different domains and 

algorithms. TM simplified development of each ones that are not trivially parallelizable as 

they can get benefit from TM’s optimistic concurrency.  

 

Depth: STAMP covers a wide range of important transactional behaviors. STAMP is also 

facilitated by multiple input data sets and different configuration settings per application.  

STAMP applications spend a significant portion of their execution time within transactions. 

 

Portability: STAMP can easily work with HTM, STM, and HyTM systems. The code for all 

benchmarks is written in C with macro-based transaction annotations to indicate both 

transaction boundaries and memory accesses that require instrumentation for STMs and 

HyTM designs. The same annotations are used by TM versions of the code. C macros make 

these annotations easy to replace, remove, or port to different systems.  

 

5.2.2 STAMP – Applications 

The STAMP applications include a Bayesian structure learning network “Bayes”, a gene 

sequencing program “Genome”, a network intrusion detection algorithm “Intruder”, a k-

means clustering algorithm “KMeans”, a maze routing algorithm “Labyrinth”, a set of graph 

kernels “SSCA2”, a client-server travel reservation system simulating SPECjbb2000 

“Vacation” and finally a Delaunay mesh refinement algorithm “Yada”. 

 

Bayes: This application implements an algorithm for learning the structure of Bayesian 

networks, which is an important part of machine learning. Often, Bayesian networks are 

learned from observed data. Conceptually, a Bayesian network is represented as a directed 

acyclic graph, where a node represents a variable and an edge represents a conditional 

dependence between variables. The graph tries to represent the relation between variables in 

a data set.  This particular algorithm is based on the hill climbing strategy that combines 

local and global search, similar to the technique described in [55]. For efficient estimates of 

probability distributions, the ad-tree data structure from [56] is used.  All operations on the 

acyclic graph occur within transactions. Overall, this application has a high amount of 

contention as the sub-graphs change frequently.  

 

Genome:  This application implements a gene sequencing program that processes a list of 

DNA segments and matches them to reconstruct the original larger genome. The algorithm 

uses transactions for removing duplicate segments by using hash-set to create a set of unique 

segments and paring them with existing segments using a Rabin-Karp string matching 

algorithm [57]. Conflicts occur when threads try to use the same segment during the 

matching phase [54]. In general, the application is highly parallel and almost contention free. 

Additionally, the transactions are of moderate length and have moderate sizes of read and 

write sets. 
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Intruder: Signature-based Network Intrusion Detection Systems (NIDS) scan network 

packets for matches against a known set of intrusion signatures. Haagdorens et al. in [58] 

presents various techniques for implementing network-intrusion detection. This application 

implements “Design5” of the NIDS described by Haagdorens et al. which splits the 

algorithm into three stages (capture, reassembly, and detection) to exploit pipelined 

parallelism of network packets.  Transactions are used to protect the FIFO queue in stage one 

(capture) and in stage two (reassembly) transactions use the dictionary that contains lists of 

packets. Overall, since two of the three stages are spent in transactions, this application has a 

moderate amount of total transactional execution time. 

 

K-means: This application was taken from MineBench [59]. The K-means algorithm is a 

partition-based method [60] and is commonly used clustering technique where a number of 

objects with numerous attributes are partitioned into a number of clusters. K-means 

represents a cluster which is the mean value of all objects contained in it. This algorithm is 

essentially data parallel. Conflicts occur when two threads attempt to insert objects into the 

same partition. Varying the number of partitions affects the amount of contention among 

threads but transactions in K-means are used to update the cluster centers, for which there is 

very little contention. 

 

Labyrinth: This application implements a variant of Lee’s algorithm [61] in which the maze 

is represented as a three-dimensional uniform grid, where each grid point can contain 

connections to adjacent, non-diagonal grid points. This algorithm is guaranteed to find the 

shortest path between the start and end points of a connection. Overall, almost all of 

labyrinth’s execution time is taken by the calculation of the path. This operation also reads 

and writes an amount of data proportional to the number of total maze grid points. While 

creating the transactional version of this program, the techniques described in [62] were used 

to reduce the chance of conflicts. Transactions are beneficial for implementing this program 

as deadlock avoidance techniques would be required in a lock-based approach. The amount 

of contention is very high in it because of the large number of transactional accesses to 

memory. 
 

Ssca2: The Scalable Synthetic Compact Applications 2 (SSCA2) application [63] is 

comprised of four kernels that operate on a large, directed, and weighted multi-graph. 

STAMP focuses on Kernel 1, which constructs an efficient graph data structure using 

adjacency arrays and auxiliary arrays. The transactional version of SSCA2 has threads which 

add nodes to the graph in parallel, and uses these transactions to protect accesses to data to 

adjacent arrays. Due to the fact that this operation is small, transactions do not take much 

time to execute. In addition, transaction’s length and their read and write sets size is also 

small. Due to this the amount of contention in this application is also low. 

 

Vacation: This application implements an enterprise travel reservation system powered by a 

non-distributed database. The 3-tier design of vacation shown in figure 6 is similar in design 

to SPECjbb2000 [64]. The system consists of several client threads interact with an in-

memory database via the system’s transaction manager that implements the tables as Red-

Black trees. In particular, client threads acting as customers try to reserve, cancel, and update 

their records, while performing actions such as, booking hotel rooms, flights and renting 

cars. Coarse-grain transactions are used during each of these client sessions to ensure 

validity of the database. In conclusion, these transactions greatly simplified the 

parallelization for all the data structures in vacation. 
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Figure 6: Vacation’s 3-tier design 

 

Yada: The Yet Another Delaunay Application (YADA)  implements the Delaunay mesh 

refinement [65]. There are primarily two data structures (1) a set that contains the mesh 

segments, and (2) a task queue that stores the generated mesh triangles that need to be 

refined. Transactions protect accesses to the work queue. The usage of transactions in yada is 

similar in design to one presented in [66]. The operations on the task queue are complex and 

involve large reads and write sets which leads to a moderate amount of contention.  

 

5.3 Application TM Characteristics 

STAMP applications can be configured with different parameters to classify different 

workloads in order to represent several application domains and exercise a wide spectrum of 

transactional behaviors such as short or long transactions, different sizes of read and write 

sets, and varying degrees of contention.  In all the experiments, we executed STAMP 

applications using the parameters suggested in the guidance notes supplied with the STAMP 

benchmark suite 0.9.10 distribution. Table 3 specifies those recommended workloads and 

highlights their transactional characteristics. 

 

Table 3: STAMP workloads and their qualitative transactional characteristics [11] 

Workload Parameters Tx Length R/W Set Contention 

bayes -v32 -r4096 -n10 -p40 -i2 -e8 

-s1 

Long Large High 

genome -g16384 -s64 -n16777216 Medium Medium Low 

intruder -a10 -l128 -n262144 -s1 Short Medium High 

kmeans -m40 -n40 -t0.00001 -i 

inputs/random-n65536-d32-

c16.txt 

Short Small Low 

labyrinth -i inputs/random-x512-y512-

z7-n512.txt 

Long Large High 

ssca2 -s20 -i1.0 -u1.0 -l3 -p3 Short Small Low 

vacation -n2 -q90 -u98 -r1048576 -

t4194304 

Medium Medium Medium 

yada -a15 -i 

inputs/ttimeu1000000.2 

Long Large Medium 

 

Ten realistic complex benchmark configurations are executed for each application as shown 

in table 4. Two applications kmeans and vacation are executed with high and low data 

contention configurations. Each complex benchmark configuration is repeated five times and 

the averaged results are presented for our performance experimentation. From here onwards, 

experimentation is referred to by its configuration names introduced in table 4. 
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Table 4: Application configurations used in the evaluation [11] 

Configuration 

Name 

Application Configuration 

Bay Bayes max_edges_learned_per_variable:8, 

edge_insert_penalty:2, 

max_number_of_parents:10, 

percent_chance_of_parent:40, 

number_of_records:4096, 

random_seed:1, 

number_of_variables:32 

Gen Genome gene_length:16384, 

segment_length:64, 

number_of_segments:16777216 

Intr Intruder percent_of_attacks:10, 

max_number_of_packets_per_stream:128, 

total_number_of_streams:262144, 

random_seed:1 

KmL Kmeans low 

contention 

max_clusters:40, 

min_clusters:40, 

threshold:0.00001, 

input_file_name:inputs/random-n65536-d32-c16.txt 

KmH Kmeans high 

contention 

max_clusters:15, 

min_clusters:15, 

threshold:0.00001, 

input_file_name:inputs/random-n65536-d32-c16.txt 

Lbr Labyrinth input_file:inputs/random-x512-y512-z7-n512.txt 

Ss2 Ssca2 probability_of_inter_clique:1.0, 

max_path_length:3, 

max_number_of_parallel_edges:3, 

problem_scale:20, 

probability_unidirectional:1.0 

VacL Vacation low 

contention 

number_of_queries_per_task:2, 

%_of_relations_queried:90, 

number_possible_relations:1048576, 

%_of_user_tasks:98, 

number_of_tasks:4194304 

VacH Vacation 

high 

contention 

number_of_queries_per_task:4, 

%_of_relations_queried:60, 

number_possible_relations:1048576, 

%_of_user_tasks:90, 

number_of_tasks:4194304 

Yada Yada angle_constraint:15, 

file_prefix:inputs/ttimeu1000000.2, 
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6CHAPTER 6: EMPIRICAL RESULTS 
 

Our empirical results of all the four state-of-the-art STMs – RSTM[7], TL2[8], TinySTM[9], 

and SwissTM[10] – were measured on a computer with 2 quad-core processors (section 5.1). 

This chapter strives to make a quantitative comparison between the design peculiarities of 

these STM implementations. In this chapter, we highlight the performance tradeoffs 

embodied by these four different STM designs and present commonly used metrics to 

characterize TM applications. To capture execution data from the execution of the 

applications, we instrumented all these designs. The graphs of the experimental evaluation 

and analysis of the results is also presented in this chapter. 

 

6.1 A First-Order Runtime Analysis 

It is quite important to have an idea about the execution time of the STAMP’s applications 

before starting to examine other TM behaviors. The time of execution is measured from an 

instant where multiple threads start executing transactions to an instant where they terminate 

executing transactions. Hence any setup and shut down time is excluded [13]. To allow 

direct comparison on our hardware platform, we measure the performance of ten variants of 

the STAMP applications by presenting the execution time. The time of execution is 

presented in order to show wellness of application scale with respect to the increasing 

number of threads. It also presents the measure with respect to effectiveness of the 

transactional execution of the applications. The execution time primarily depends on the 

characteristics of both i.e. the application and the TM implementation [67].  

 

    
 

    
Figure 7: Performance comparison of the different STM systems for each application 
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Figure 7 presents how long, in seconds, the execution time of each of the target applications 

ported to execute under our four STM systems. Each application was run for 1, 2, 4 and 8 

threads to provide experimental results. Its purpose was to check how fast an STM runs with 

respect to others by varying resource contention and scalability parameters. The execution 

time bar charts normalized to sequential execution with code that does not have an extra 

overhead. Thus, comparisons among the scalability of different applications are 

straightforwardly visible. Most of the applications have smaller runtimes as the number of 

threads rises. Figure 7 also shows that the Bay application does not scale well beyond four 

cores, when we ported it with RSTM, TL2, and SwissTM, since for larger number of 

processors, it degrades its performance. 

 

Scalability [68] is the standard metric used to demonstrate how well applications execute 

with more processing resources. It is the ratio of total time to the number of threads used. It 

provides an important evaluation of the application’s parallelism, and runtime system’s 

efficiency of an STM. This scalability motivates the study of the metrics described below. 

 

6.2 Analyzed Metrics 

For this evaluation, we record characteristics in tabular forms and visualization charts to 

understand the behavior of an application that uses transactional memory because many 

transactional workloads contain heterogeneous transactions and different synchronization 

patterns throughout runtime execution. Since transactional memory is a scheme that imposes 

the committing or aborting of transaction sequences, the first issue while trying to monitor 

the transactional management is naturally the ratio of aborted transactions to committed 

transactions. Later in this work, other values are observed, such as the transaction retry rate 

in all four STMs.  

 

6.2.1 Aborts per Commit (ApC) 

In order to get better understanding of the transactional behavior of STAMP’s applications 

we found ApC the most indicative metric. This criterion of performance comparison depicts 

the ratio of aborted transactions to committed transactions. It is a measure of wasted 

execution as granularity of a transaction corresponds directly to the time frame during which 

transactions maintains read, write possession along with the amount of work lost on a 

particular abort. This metric indicates the efficiency with which computing resources have 

been utilized as amount of work committed is assessed by the workload inputs. Architectural 

decisions can have vast influence and variations on the functions related to the transaction 

abortion. 

 

Often transactions conflict with each other. In order to deal with conflicts, there exists a 

common approach which is to abort one of the conflicting transactions. A contention 

manager is resorted by the transactional framework for the resolution of conflicts. This 

conflict resolution depends on the policies of the contention manager as some transactions 

are more likely to be getting aborted than others e.g. preference may be given to smaller or 

larger transactions or to the transactions sharing smaller or higher resources etc. 

 

The purpose of investigating it is that a good contention management should be able to 

reduce ApC in an application that exhibit repeat conflicts. For instance, if a contention 

manager aborts a long transaction and favors short transactions, this indicates that there may 

be a poor contention management. Examining and studying the application may correspond 

to the enhanced contention management policies. However it is very important as it assists in 

quantifying the effects of other associated characteristics on the whole execution of the 

application. For example, a workload containing those transactions which are highly 

contentious but in fact they are only in execution for short intervals. It may expose quite less 



34 

actual contention than that of a workload which is comprised of less contentious transactions 

but occurs frequently. 

 

In tables 5-14 we are presenting the TM behavior of ten variants of the STAMP applications. 

They include the number of transactions (Txns) and the number of aborts per commit (ApC). 

Each application was run for 2, 4 and 8 threads to provide ApC results. As expected, with a 

single thread ApC is zero. All the implementations show that a significant amount of work 

has been wasted by the aborted transactions.  

 

Results also showed that the most suitable STM is SwissTm for Bay, Gen, Intr, KmL, KmH, 

VacL, VacH, and Yada as shown in table 5, 6, 7, 8, 9, 10, 13, and 14 respectively. 

Furthermore, it was observed that SwissTM is also suitable for K-means and Vacation even 

when ApC was set at high and low contention levels. However, there exists some difference 

in the calculated values of ApC for high and low contention as shown in the table 8, 9,10, 

and 13.The pattern in the difference suggested that for low contention levels the ApC levels 

were also low and as the contention levels were increased values of ApCs also tend to 

increase. In addition, for Ss2 application it was observed that TL2 STM is most suitable as 

presented in the table 11. For Lbr application, it was observed that by varying the scalability, 

suitability of STMs also vary i.e. for 2, 4 and 8 threads the most suitable STM are RSTM, 

TinySTM, SwissTM respectively as shown in the table 10. In general, it was observed that 

when we scale each application by 8 threads the most suitable STM tends to be SwissTM 

apart from Ss2 application. These results were inferred on the basis of calculating minimum 

ApC values for each application, as minimum ApC value corresponds to most suitable STM. 

 

Results showed that the TinySTM was not suitable for application Gen, Intr, KmL, KmH, 

and Yada as shown in the table 6, 7, 8, 9, and 14. Furthermore for VacH and Ss2 the STMs 

which are not suitable are TL2 and RSTM respectively. These results were inferred on the 

basis of calculating maximum ApC values for each application, as maximum ApC values 

corresponds to least suitable STM. 

 

Table 5: Transactional behaviors of Bay 

Procs 
RSTM TL2 TinySTM SwissTM 

Txns ApC Txns ApC Txns ApC Txns ApC 

2 2411 0.006221 2621 0.006124 2520 0.006746 925 0.005405 

4 2691 0.017466 2851 0.013197 2201 0.012267 913 0.009858 

8 2252 0.059059 2973 0.044845 2417 0.056268 885 0.019209 

 

Table 6: Transactional behaviors of Gen 

Procs 
RSTM TL2 TinySTM SwissTM 

Txns ApC Txns ApC Txns ApC Txns ApC 
2 2489218 0.001 2494027 0.002 2489218 0.005793 2489220 0.000423 

4 2489220 0.003 2500861 0.005 2489220 0.006575 2489220 0.002138 

8 2489220 0.01 2514437 0.01 2489220 0.059450 2489220 0.003999 

 

Table 7: Transactional behaviors of Intr 

Procs 
RSTM TL2 TinySTM SwissTM 

Txns ApC Txns ApC Txns ApC Txns ApC 

2 23428127 0.05 33438023 0.30 23428127 0.67 23428127 0.02 

4 23428129 0.29 47910526 0.51 23428129 2.48 23428129 0.06 

8 23428133 1.74 59110273 0.60 23428133 5.68 23428133 0.24 
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Table 8: Transactional behaviors of KmL 

Procs 
RSTM TL2 TinySTM SwissTM 

Txns ApC Txns ApC Txns ApC Txns ApC 
2 23428127 0.09 33438023 0.05 23428127 0.23 23428127 0.02 

4 23428129 0.40 47910526 0.17 23428129 0.73 23428129 0.06 

8 23428133 1.38 59110273 0.32 23428133 1.39 23428133 0.12 

 

Table 9: Transactional behaviors of KmH 

Procs 
RSTM TL2 TinySTM SwissTM 

Txns ApC Txns ApC Txns ApC Txns ApC 

2 23428127 0.42 33438023 0.18 23428127 0.82 23428127 0.06 

4 23428129 1.62 47910526 0.39 23428129 2.33 23428129 0.16 

8 23428133 4.47 59110273 0.58 23428133 6.53 23428133 0.40 

 

Table 10: Transactional behaviors of Lbr 

Procs 
RSTM TL2 TinySTM SwissTM 

Txns ApC Txns ApC Txns ApC Txns ApC 
2 1022 0.018591 1062 0.037665 1022 0.019569 1022 0.019569 

4 1026 0.087719 1105 0.071493 1026 0.038986 1026 0.039961 

8 1034 0.101547 1228 0.15798 1034 0.095745 1034 0.088975 

 

Table 11: Transactional behaviors of Ss2 

Procs 
RSTM TL2 TinySTM SwissTM 

Txns ApC Txns ApC Txns ApC Txns ApC 
2 22362283 5E-06 22362291 4E-07 22362283 5E-06 22362283 2E-06 

4 22362285 2E-05 22362335 2E-06 22362285 1E-05 22362285 4E-06 

8 22362295 8E-05 22362444 7E-06 22362293 3E-05 22362293 9E-06 

 

Table 12: Transactional behaviors of VacL 

Procs 
RSTM TL2 TinySTM SwissTM 

Txns ApC Txns ApC Txns ApC Txns ApC 

2 4194304 0.0005 4197789 0.00083 4194304 0.0006 4194304 4E-05 

4 4194304 0.001 4204698 0.002472 4194304 0.0021 4194304 0.0001 

8 4194304 0.004 4221569 0.006458 4194304 0.0071 4194304 0.0003 

 

Table 13: Transactional behaviors of VacH 

Procs 
RSTM TL2 TinySTM SwissTM 

Txns ApC Txns ApC Txns ApC Txns ApC 
2 4194304 0.001 4255578 0.014399 4194304 0.002712 4194304 1E-04 

4 4194304 0.003 4382163 0.042869 4194304 0.01135 4194304 0.0003 

8 4194304 0.01 4766462 0.120038 4194304 0.040623 4194304 0.0009 

 

Table 14: Transactional behaviors of Yada 

Procs 
RSTM TL2 TinySTM SwissTM 

Txns ApC Txns ApC Txns ApC Txns ApC 
2 23428127 0.25 33438023 0.424933 23428127 14.14 23428127 0.11 

4 23428129 0.33 47910526 0.529542 23428129 29.70 23428129 0.22 

8 23428133 0.36 59110273 0.517905 23428133 58.88 23428133 0.35 
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6.2.2 Transaction Retry Rate 

STM systems normally support condition synchronization by the use of a retry mechanism 

[24]. In this mechanism, a transaction self aborts explicitly and in the process it also 

reschedules itself after detecting its precondition for the operation, which may not hold any 

longer.  The set of location which have been read by retryer are then tracked by the runtime, 

and at the same time it also refrain these set of locations from getting rescheduled, until at 

least any one of the location in the set is modified by any other transaction. 

 

Classifying the total number of retries can give input to an STM regarding the retry policies. 

Furthermore, it also can give input to the programmers on data layouts of application that 

may be the reason of conflicts related to synchronization. In Figure 8, we could easily find 

that the number of retries grow significantly with the number of threads, e.g. for TinySTM, 

when we are running 8 threads, there are 7 times of the number of retries than that of 2 

threads. Retries in large numbers indicate that the application lacks inherent concurrency, or 

may be certain design choices of STM are causing unrequited conflicts. In order to 

differentiate between these stated cases, numbers are collected by implementing different 

STMs which highlight about three concerns that are related to the scalability of TM: 

 

 If an application is not scaled even by having a low retry rate, it indicates the cause 

is not likely associated to synchronization but may be with other causes like cache 

performance or data layout etc. 

 

 The designer of TM runtime should pay extra attention to the runtime behavior 

specifically for transaction aborts. Even though the proportion of retries has not 

much significance now, it may have a high growth rate if it is run on more cores by 

utilizing numerous threads. 

 

 The programmers should also get aware of the fact that the prospect of retries is 

rapidly increasing when there are more threads. For this reason programmers should 

incorporate more efforts in decreasing the overhead of abort and thus memory 

accesses in the transactions will also be decreased. 

 

 
Figure 8: No. of retries in Bayes for different STM implementations. Lower is better. 
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6.3 Validity Threats 

There are some potential facts that limit the outcomes of this study. The following sections 

explain the validity threats related to the experimentation.  

 

6.3.1 Internal Validity 

There are many types of STM systems, benchmarks and metrics. We have subjectively 

chosen four STM systems and three metrics for the experimental purposes. Similarly, 

benchmarks are also subjectively chosen to exploit the level of concurrency of the 

underlying STM implementation. Hence threat of not using other systems, benchmarks and 

metrics cannot be ruled out for this study. 

 

We performed our experimentation up to 8 cores for the reason that our chosen STM 

implementation and STAMP applications did not scale well beyond 8 cores. We analyzed 

this scalability problem could be due to the following reasons: 

 Lack of concurrency in the application – we use STAMP applications 

 The implementation of an STM – we use RSTM, TL2, TinySTM, and SwissTM 

 The system architecture – we use a computer with 2 quad-core processors in total 8 

cores. 

 

6.3.2 External Validity 

Since, all the experiments were run on one machine due to limited resources. The overall 

results of the experiment cannot be generalized for other machines hence results of the 

current study are only generalizable to limited extent for 2 quad-core processors machine. 
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7CHAPTER 7: DISCUSSION AND RELATED WORK  
 

In the current study, the non-trivial TM applications such as STAMP [11] have been 

analyzed keeping the transactional behavior in context. Each application was used to show 

the scalability of four STM implementations, and the metrics which were presented are 

commonly used to characterize TM applications. Scalability is one of the classic metrics 

which is utilized to present how well an application executes with more processing 

resources. Scalability is the ratio of total time to total number of threads used. It is a key 

measure of the application’s parallelism, and an STM runtime system’s efficiency. Thus, 

comparisons among the scalability of different applications showed most of the applications 

had smaller runtimes as the number of threads raised.  

 

One of the key features of applications is that ApC can assist in determining the transactional 

scalability of an application. Specifically in a scenario when distinct threads are involved in 

constantly updating the same variables, there exists no such method of making critical 

sections parallel, hence institutively it is anticipated that it will have large number of aborts. 

In the case, where transactions may abort several times, there may be a need of dynamically 

tuning the runtime system to restrain from excessive aborts.  All of the four implementations 

showed that there was a significant amount of work which was wasted by the aborted 

transactions. Another useful metric which we chose in order to evaluate the performance of 

STM was transaction retry overhead. Retries in large numbers indicate that an application 

lacks inherent concurrency. Our work showed that retries rapidly increased as the number of 

threads were raised. 

 

As transactional memory is an emerging research area, little work has been done to 

understand the performance tradeoffs of different implementations of STM. 

 

Perfumo et al. in [13] performed execution characterizations of Haskell TM benchmarks; 

however the metrics presented were different as discussed in this thesis. Furthermore, non-

trivial TM applications were also not considered in this paper. However this thesis provides a 

detailed study of non-trivial TM applications. 

 

Ansari in [67] profiled the execution of applications against DSTM2. This profiling and its 

relation to the performance was applied to several popular non-trivial TM applications, such 

as STAMP [2] applications i.e. Genome, KMeans, and Vacation. The aim of this profiling 

was to get better understanding of the factors which may have any impact on the overall 

performance. Statistical data presented in this thesis had similar goals as of Ansari’s work. In 

this thesis 8 non-trivial applications have been ported across 4 STM implementations to 

generate execution characteristics of applications. 

 

Chung et al. in [69] presented a comprehensive study which looked into 35 distinct TM 

applications in order to identify some key features that are related to transactional behavior. 

Wealth of data was provided by evaluating the performance with respect to nested 

transaction depth, transactions size, sizes of readset and writeset etc. They did not evaluated 

non-trivial application TM applications which have been studied in this thesis, and they also 

did not generate any execution characteristics as presented here. 
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CONCLUSION 
 

In this thesis an attempt was made to study real world and complex TM applications i.e. 

STAMP benchmark suite in order to characterize their transactional behaviors with STM 

systems. In this report we have reported some figures associated with the performance in 

conjunction with execution characteristics for the studied TM applications.  The study has 

been performed on four state-of-the-art STM implementations – RSTM, TL2, TinySTM, 

SwissTM – to obtain execution data, and metrics to examine the execution characteristics of 

these TM applications up to maximum 8 threads. These characteristics associated with the 

execution provide key insights into the design of efficient STM systems for both 

synchronization and parallelization. This thesis study has navigated through the metrics to 

understand the observed scalability.  

 

This dissertation makes the following observations: 

 

 Transactional Memory is discussed in general with main focus on Software 

Transactional Memory. TM’s potential advantages are defined along with its 

different design alternatives.  

 

 An overview of four different STM implementations encompassing RSTM, TL2, 

TinySTM and SwissTM is presented. 

 

 Performance comparison of four STM implementations is conducted on Execution 

Time, Aborts per Commit and Transaction Retry Rate parameters. 

 

 The SwissTM performs better than RSTM, TL2 and TinySTM while measuring 

execution time and Aborts per Commit parameters. 

 

 The TL2 performs better than RSTM, TinySTM and SwissTM while measuring 

Transaction Retry Rate parameter.  

 

By the comparison study done as part of this master thesis it can be summarized that, 

  

 Additional cores and atomic safety tend to provide application with much more 

increased and promising performance. However the overhead related to the TM 

management may also be increased. 

 

 It is hard to build an STM system that can perform consistently well in all kind of 

situations.   
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FUTURE WORK 
 

Transactional Memory is a lock free data-structure specifically designed to run on parallel 

architectures. In this research work we emphasized on performance tradeoffs among 

different Software Transactional Memory implementations. We have discussed in detail all 

our chosen STM implementations, their potential strengths and weaknesses. Although we 

have studied these systems qualitatively and quantitatively, which has helped us in coming to 

a conclusion which STM implementation performs better than others, on the basis of our 

selected performance metrics. But there is always a room for more research and better 

understanding from a different view point, in a research work. As far as we consider, this 

study can further be extended and researched in the future in the following ways: 

 

 We compared performance tradeoffs of four software transactional memory systems 

namely RSTM, TL2, TinySTM, and SwissTM. All these systems were implemented 

using C/C++ language. This research could further be extended by investigating 

some other software transactional memory systems that are built by using other 

languages like Java, Haskell, C# etc. 

 

 The metric selection is critical while performing performance tradeoffs, we chose 

execution time, aborts per commit, and transaction retry rate. This could be 

interesting if someone chose other metrics and perform performance comparisons. 

By doing this, one can reach onto new conclusions that can find and provide help in 

understanding software transactional memory systems from a different perspective. 

 

 We run all our selected software transactional memory systems on the STAMP 

Benchmark suit along with the chosen performance metrics. Many benchmarks have 

been created by researchers and industry practitioners in order to evaluate the 

parallel systems. Some of the benchmarks which have emerged are NBP OpenMP 

[70], and SPEComp [71]. TM systems and performance metrics can be evaluated by 

running on these benchmarks to see the strengths, and shortcomings of them. 

 

 We conducted all our experiments up to 8 cores. This experiment can further be 

conducted on more than 8 cores, to see the behavior of these STM systems while 

executing on more cores. 

 

 Finally, more future research work is required to cope with the issues such as 

compatibility of present system architecture with the STM to fulfill the needs of 

transactional management. It is mandatory to have such STMs which are applicable 

in many cores. 
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