
Master Thesis

Computer Science

Thesis no: MCS-2010-28

May 2010

School of Computing

Blekinge Institute of Technology

Box 520

SE – 372 25 Ronneby

Sweden

Performance Tradeoffs in Software

Transactional Memory

Gulfam Abbas

Naveed Asif

School of Computing

Blekinge Institute of Technology

Sweden

Contact Information:

Author(s):

Gulfam Abbas

Address: Älgbacken 4:081, 372 34 Ronneby, Sweden.

E-mail: rjgulfam@hotmail.com

Naveed Asif

Address: c/o Gulfam Abbas, Älgbacken 4:081, 372 34 Ronneby, Sweden .

E-mail: naveed_asif77@hotmail.com

University advisor(s):

Professor Dr. Håkan Grahn

School of Computing
Blekinge Institute of Technology, Sweden

Internet : www.bth.se/com

Phone : +46 455 38 50 00

Fax : +46 455 38 50 53

This thesis is submitted to the School of Computing at Blekinge Institute of Technology in

partial fulfillment of the requirements for the degree of Master of Science in Computer Science.

The thesis is equivalent to 20 weeks of full time studies.

School of Computing

Blekinge Institute of Technology

SE – 371 79 Karlskrona

Sweden

I

ABSTRACT

Transactional memory (TM), a new programming

paradigm, is one of the latest approaches to write

programs for next generation multicore and

multiprocessor systems. TM is an alternative to lock-based

programming. It is a promising solution to a hefty and

mounting problem that programmers are facing in

developing programs for Chip Multi-Processor (CMP)

architectures by simplifying synchronization to shared

data structures in a way that is scalable and compos-able.

Software Transactional Memory (STM) a full software

approach of TM systems can be defined as non-blocking

synchronization mechanism where sequential objects are

automatically converted into concurrent objects.

In this thesis, we present performance comparison of

four different STM implementations – RSTM of V. J.

Marathe, et al., TL2 of D. Dice, et al., TinySTM of P.

Felber, et al. and SwissTM of A. Dragojevic, et al. It helps

us in deep understanding of potential tradeoffs involved. It

further helps us in assessing, what are the design choices

and configuration parameters that may provide better

ways to build better and efficient STMs. In particular,

suitability of an STM is analyzed against another STM. A

literature study is carried out to sort out STM

implementations for experimentation. An experiment is

performed to measure performance tradeoffs between

these STM implementations.

The empirical evaluations done as part of this thesis

conclude that SwissTM has significantly higher

throughput than state-of-the-art STM implementations,

namely RSTM, TL2, and TinySTM, as it outperforms

consistently well while measuring execution time and

aborts per commit parameters on STAMP benchmarks.

The results taken in transaction retry rate measurements

show that the performance of TL2 is better than RSTM,

TinySTM and SwissTM.

Keywords: Multiprocessor, Concurrent Programming,

Synchronization, Software Transactional Memory,

Performance

II

ACKNOWLEDGEMENTS

In the Name of Allah who is The Most Merciful and Beneficent

Prophet Mohammad (Peace Be Upon Him) said:

“Seek knowledge from the cradle to the grave”

We would like to congratulate and extend our gratitude for Professor Dr. Håkan Grahn on

effectively guiding us in the achievement of this critical milestone. The successful

completion of this research work was not likelihood without Professor Dr. Håkan Grahn

consistent and valuable support.

The unconditional love, prayers, and sacrifices that our parents always gifted us are

worthwhile mentioning. It would not have been possible for us to achieve this big success

without their pure support.

In general we also would like to pay are special thanks to all our friends for their direct and

indirect support which motivated us during all the times.

At last but not least we dedicate our degree to the great nation of ISLAMIC REPUBLIC OF

PAKISTAN, the land which gave us identity, prestige, honor and the will to learn.

III

CONTENTS

ABSTRACT .. I

ACKNOWLEDGEMENTS .. II

CONTENTS ... III

LIST OF ACRONYMS ... V

LIST OF FIGURES ... VI

LIST OF TABLES .. VII

INTRODUCTION .. 1

THESIS OUTLINE ... 2

1 CHAPTER 1: PROBLEM DEFINITION .. 3

1.1 PROBLEM FOCUS .. 3
1.2 AIMS AND OBJECTIVES ... 3
1.3 RESEARCH QUESTIONS .. 4

2 CHAPTER 2: BACKGROUND .. 5

2.1 SINGLE CHIP PARALLEL COMPUTERS .. 5
2.2 DATABASE SYSTEMS AND TRANSACTIONS .. 5
2.3 TRANSACTIONS VS. LOCKS .. 6
2.4 TRANSACTIONAL MEMORY .. 7

2.4.1 Hardware Transactional Memory .. 8
2.4.2 Software Transactional Memory ... 8
2.4.3 Hybrid Transactional Memory ... 9

2.5 STM DESIGN ALTERNATIVES .. 10
2.5.1 Transaction Granularity ... 10
2.5.2 Update Policy ... 10
2.5.3 Write Policy .. 10
2.5.4 Acquire Policy .. 11
2.5.5 Read Policy ... 11
2.5.6 Conflict Detection ... 11
2.5.7 Concurrency Control .. 11
2.5.8 Memory Management ... 12
2.5.9 Contention Management ... 12

3 CHAPTER 3: METHODOLOGY .. 14

3.1 QUALITATIVE RESEARCH METHODOLOGY .. 14
3.1.1 Literature Review .. 14
3.1.2 Background Study ... 14
3.1.3 Selection and Suitability of STM systems .. 14
3.1.4 Selection and Suitability of Benchmarks ... 15

3.2 QUANTITATIVE RESEARCH METHODOLOGY .. 15
3.2.1 Selection and Suitability of STM Performance Metrics .. 15
3.2.2 Experimentation .. 16
3.2.3 Analysis of Gathered Results .. 16

4 CHAPTER 4: THEORETICAL WORK .. 17

4.1 RSTM .. 17
4.1.1 RSTM Overview .. 17
4.1.2 Design Features .. 17
4.1.3 Implementation ... 18

4.2 TL2 .. 19
4.2.1 TL2 Overview.. 19

IV

4.2.2 Global Version Clock.. 19
4.2.3 TL2 – Algorithm .. 20
4.2.4 TL2 – Variants .. 20

4.3 TINYSTM .. 21
4.3.1 TinySTM Overview ... 21
4.3.2 TinySTM – Algorithm.. 21
4.3.3 Implementation ... 22
4.3.4 Hierarchical Locking .. 23
4.3.5 Dynamic Tuning .. 23

4.4 SWISSTM ... 23
4.4.1 SwissTM Overview .. 23
4.4.2 Design philosophy .. 24
4.4.3 Locking granularity .. 25
4.4.4 Contention Manager – Algorithm ... 25

4.5 STM FEATURE COMPARISON ... 26

5 CHAPTER 5: EMPIRICAL STUDY .. 27

5.1 EXPERIMENTAL PLATFORM ... 27
5.2 STAMP BENCHMARK .. 27

5.2.1 STAMP – Design ... 28
5.2.2 STAMP – Applications .. 28

5.3 APPLICATION TM CHARACTERISTICS .. 30

6 CHAPTER 6: EMPIRICAL RESULTS ... 32

6.1 A FIRST-ORDER RUNTIME ANALYSIS .. 32
6.2 ANALYZED METRICS ... 33

6.2.1 Aborts per Commit (ApC) ... 33
6.2.2 Transaction Retry Rate ... 36

6.3 VALIDITY THREATS ... 37
6.3.1 Internal Validity .. 37
6.3.2 External Validity ... 37

7 CHAPTER 7: DISCUSSION AND RELATED WORK ... 38

CONCLUSION ... 39

FUTURE WORK .. 40

REFERENCES ... 41

V

 LIST OF ACRONYMS

 ApC Aborts per Commit

 CMP Symmetric Multiprocessor

 GV Global Version

 HTM Hardware Transactional Memory

 HyTM Hybrid Transactional Memory

 NIDS Network Intrusion Detection System

 OREC Ownership Records

 RSTM Rochester Software Transactional Memory

 SMP Symmetric Multiprocessor

 SSCA2 Scalable Synthetic Compact Applications 2

 STAMP Stanford Transactional Applications for Multi-Processing

 STM Software Transactional Memory

 TL2 Transactional Locking II

 TM Transactional Memory

 YADA Yet Another Delaunay Application

VI

LIST OF FIGURES

Figure 1: Performance of Transactions vs. Locks [1] ... 6
Figure 2: RSTM Transactional Metadata [7] .. 18
Figure 3: Data structures in TinySTM [9] .. 23
Figure 4: Mapping of memory words to global lock table entries.[10] 24
Figure 5: Pseudo-code representation of the two-phase contention manager [10] 25
Figure 6: Vacation’s 3-tier design .. 30
Figure 7: Performance comparison of the different STM systems for each application 32
Figure 8: No. of retries in Bayes for different STM implementations. Lower is better. 36

VII

LIST OF TABLES

Table 1: Feature comparison of the four state-of-the-art STM systems 26
Table 2: The eight applications in the STAMP suite [11] .. 27
Table 3: STAMP workloads and their qualitative transactional characteristics [11] 30
Table 4: Application configurations used in the evaluation [11] .. 31
Table 5: Transactional behaviors of Bay .. 34
Table 6: Transactional behaviors of Gen .. 34
Table 7: Transactional behaviors of Intr ... 34
Table 8: Transactional behaviors of KmL .. 35
Table 9: Transactional behaviors of KmH .. 35
Table 10: Transactional behaviors of Lbr ... 35
Table 11: Transactional behaviors of Ss2 ... 35
Table 12: Transactional behaviors of VacL .. 35
Table 13: Transactional behaviors of VacH ... 35
Table 14: Transactional behaviors of Yada .. 35

1

INTRODUCTION

Today we are living in an age of multicore and multiprocessor systems where the world is

moving from single processor architectures towards multicore processors. There is an ever

growing enhancement and development in processing power of CPUs and parallel

applications that are being built to give end users more processing capabilities to accomplish

complex and protracted jobs easily and rapidly. High performing and flexible parallel

programming is the only means of utilizing the full power of multicore processors. Parallel

programming has proven to be far more difficult than sequential programming.

Parallel programming poses many new challenges to mainstream parallel software

developers, one of which is synchronizing simultaneous accesses to shared memory by

multiple threads. Composing scalable parallel software using the conventional lock-based

approaches is complicated and full of drawbacks [1]. Locks are either error prone (if fine-

grained) or not scalable (if coarse-grained) and undergo a variety of problems like deadlocks,

convoying, priority inversion and inefficient fault tolerance. One solution for such kind of

problems is a lock-free parallel processing system which supports scalability and robustness

[2, 3].

For decades in the database community, transactions offer a proven abstraction mechanism

of dealing with concurrent computations [3]. Transactions do not suffer from locking

drawbacks and take a concrete step towards making parallel programming easier [1].

Incorporating transactions into the parallel programming model builds a new concurrency

control paradigm for future multicore systems named Transactional Memory (TM). A TM

system executes code sequences atomically which allows application threads to operate on

shared memory through transactions.

Transactions are a sequence of memory operations that either executes completely (commits)

or has no effect (aborts). TM tries to simplify the development of parallel applications as

compared to traditional lock-based programming techniques. TM is of three kinds [3],

Hardware Transactional Memory (HTM), Software Transactional Memory (STM) and

Hybrid Transactional Memory (HyTM). The first HTM idea was introduced in 1993 [4] and

then in 1995 [5] STM was proposed to extend this idea. HyTM [6] is a combination of both

hardware and software transactional memory. These pioneering works have paved the way

for the development of many different versatile versions and extensions of hardware,

software and hybrid TM implementations.

We focus here on STM which is a software system that implements nondurable transactions

along with ACI (failure atomicity, consistency, and isolation) properties for threads

manipulating shared data. The performance of recent STM systems has reached up to a level

where these systems have gained an acme that makes them a reasonable vehicle for

experimentation and prototyping. However, it is not clear how minimal the overhead of STM

can reach without hardware support [3]. In trying to understand the performance tradeoffs

of an STM in our thesis project we consider the key design aspects of four different STM

implementations. They are

 RSTM [7] – a non-blocking (obstruction-freedom) STM,

 TL2 [8] – a lock-based STM with global version-clock validation,

 TinySTM [9] – a lock-based STM, and

 SwissTM [10] – a lock-based STM for mixed workloads.

Design and implementation differences in TM systems can affect a system’s programming

model and performance [3]. To compare the performance of these state-of-the-art STM

2

implementations we use the STAMP benchmark suite [11], a collection of realistic medium-

scale workloads. It currently consists of eight different applications and ten workloads as

they inherently exploit the level of concurrency of the underlying STM implementation.

Nearly all benchmarks measure the effectiveness of an STM as CPU time by varying

contention and scalability parameters.

Thesis Outline

In this section we present the structure of the thesis. A brief introduction of each chapter is

discussed here.

Chapter 1 (Problem Definition) provides us more detail about the problem and objectives of

the study. It comprises of Problem Definition, Problem Focus, Aims and objective, and

Research Questions.

Chapter 2 (Background) presents the background material and related works in the areas of

parallel programming and transactional memory. This chapter discusses briefly Single Chip

Parallel Computers, Database System and Transactions vs. Locks. This chapter also

describes Transactional Memory and its different types. Finally, this chapter introduces the

design alternatives and tradeoffs made by designers of software transactional memory

systems.

Chapter 3 (Methodology) covers the Research Methodology that we adopted to exert with

this thesis. It explains the research techniques, methods and components used during the

findings of the study.

Chapter 4 (Theoretical Work) includes detailed description of all four STM systems –

RSTM, TL2, TinySTM, and SwissTM. Finally, it summarizes the research which is related

to our work.

Chapter 5 (Empirical Study) gives detail about our experimental platform. Along with it the

STAMP benchmark’s design and applications are also discussed.

Chapter 6 (Empirical Results) presents our experimental results and describes the

observation and finding of our empirical study. It discusses the analysis result of the

conducted empirical study in detail.

Chapter 7 (Discussion and Related Work) generalizes the results and relates them to the

available literature in this regard.

Finally, we conclude the dissertation and suggest areas for further research.

3

1CHAPTER 1: PROBLEM DEFINITION

Initially there was not much emphasis on building and developing applications for parallel

architectures. Most of the applications were being developed for sequential architectures, and

sequential architectures performed well for many years. With the advent of the technology,

computers became popular in all spheres of life. It was a dire need of the time to build such

systems which can fulfill our present and future needs in the theme of more processing

capable systems. Further increase in the processor speed was not possible due to some design

limitations in sequential architectures. One solution to this problem was parallel computing.

In parallel computing we have more than one processor to accomplish a task. The parallel

computing can give us power of doing complex and lengthy tasks in a trivial time as

compared to sequential computing. Parallel computers share their resources like memory,

hard disk and processors to process complex and lengthy instructions easily, and in a timely

manner.

No doubt there are many advantages of parallel computing, but we are lacking in standards

on which parallel applications can be built. It is hard for a programmer to code, build, debug

and test applications for parallel architectures [1]. Working with concurrent programs is

difficult but database community has been using concurrent architectures successfully for

decades, both on sequential and parallel architectures. The basic entity of a database is the

transaction, which constitutes a set of instructions that is completed in an atomic way. The

similar transaction mechanism was taken from database for parallel architectures, where

instructions in memory are transactionally processed.

As described above in introduction, the transactional memory is of three kinds HTM, STM

and HyTM. We focus on STM implementations of transactional memory. A lot of research is

going on in this area to build the most efficient STM implementation. This research study

focuses on performance comparison of four different STM implementations. The STM

implementations that we choose for experimental purposes are:

 Rochester Software Transactional Memory System (RSTM) [7]

 Transactional Locking II (TL2) [8]

 TinySTM [9]

 SwissTM [10]

1.1 Problem Focus

There are a number of STM systems available, each one having advantages and drawbacks.

Some are good with heavy workloads while others deal well with tiny workload. Some work

fine in high contention environment, while others in low contention environment. Some are

good in both managed and unmanaged environment while on the other hand some only work

in a managed environment.

1.2 Aims and objectives

The aim of this study is to investigate and compare different approaches of STMs which

helps in a deeper understanding of various design choices and potential performance

tradeoffs. Later on, this study analyzes the suitability of an STM with respect to another

STM. It also presents transactional execution metrics commonly used to characterize TM

applications.

4

To achieve this aim we have set the following objectives:

 Finding problems with traditional lock-based approaches

 Identifying the design alternatives in STM systems

 Comparing performance of STMs on the basis of transactional execution metrics

1.3 Research Questions

In order to understand the performance tradeoffs of different implementations of STM a

comprehensive comparative study is required. Although some comparison studies [12-14]

have been carried out in the past but those were very focused in their scope and covered only

a few STM implementations. That’s why our proposed study and experiment is important

enough to warrant a study. This master thesis will primarily address the following research

questions (RQ):

 RQ1: Which approaches exist to support software transactional memory?

 RQ2: What are the performance tradeoffs between the various approaches?

5

2CHAPTER 2: BACKGROUND

Computer technology has gone through profound changes since its invention. Every decade

added new attributes to it and better mechanisms were replaced with substandard ones.

Computers have aided humans competently in different areas of life including engineering,

medical, automobile industry, space, defense etc since its very beginning, making human life

easy in several aspects. Computers became a consumer product and got popularity with the

advent of personal computers PCs. The development of microprocessors turned into PCs

affordable for general public as they were low in cost as compared to mainframes. The

mainframes were large, costly computers owned by large corporations, government and

educational institutes, and similar size organizations, but they were not affordable by general

public.

The advent of microprocessor served well for several years due to the fact that quantity of

transistors was being increased exponentially after every two years according to Moore’s law

[15]. Increasing clock speed to get better performance is also not feasible due to power

consumption and cooling issues. This bound is an inflection point for the replacement of

conventional uniprocessor systems as Intel’s founder, Andrew Grove says “time in the life of

a business when its fundamentals are about to change” [16].

2.1 Single Chip Parallel Computers

To fill this gap of halted performance in processing capacity of single microprocessor, single

chip parallel computers were introduced, known as chip multiprocessors or multicore

processors. The theme of this type of architecture is to put two or more processors onto a

single chip. The architecture defined in single chip processors is similar to shared memory

multiprocessors. The number of processors that can be fixed on a chip can be increased and

the number of instructions that can be processed in a second will also keep on increasing

according to Moore’s law [15], even without increasing clock speed. If we want higher

performance, we can add more processors according to this architecture.

Although people have worked with parallel computing structures for more than 40 years,

there are not many well appreciated programs written for this architecture. It’s a tough job to

write programs for parallel architectures as compared to sequential architecture. Coding,

debugging, testing parallel programs is tough, because there are not well defined standards to

debug and test parallel programs [3].

2.2 Database Systems and Transactions

In [17], Herb Sutter and James Larus pointed out, The concurrency revolution is primarily a

software revolution. The problem is not building multicore hardware, but programming it in

a way that lets mainstream applications benefit from the continued exponential growth in

CPU performance. To write programs for parallel systems has been a difficult task, but on

the other side database community has been using concurrency for decades.

Databases are working successfully on parallel and sequential architectures. All the

concurrency control mechanisms are handled implicitly by the database. At the core of

database systems are transactions. A transaction is a set of instructions executed as a whole

and used to access and modify concurrent objects. A transaction can be successful when it

changes some state in underlying database, and non-successful or aborted when there is no

change in the state of a database. Transactions are implemented through a database system or

6

by a transaction monitor, which hides complex details from a user and provides a simple

interface to communicate with [3].

As databases were dealing well with transactions on both sequential and parallel

architectures, and providing satisfactory results. Therefore, using transactions in the memory

was considered a good idea to employ with parallel architectures, so the basic idea of

transactional memory is taken from database transactions. Database transactions and

transactional memory differ in some aspects because of their basic design needs. Database

transactions are saved on disks which can afford to take more time to execute a transaction

as compared to transactional memory works in memory which have trivial time to complete

a transaction. A database transaction constitutes of a set of instructions that are indivisible

and instantaneous. Database transactions have four basic properties Atomicity, Consistency,

Isolation and Durability collectively called ACID.

Atomicity: Atomicity means that either all actions are completed successfully or none of

them starts its execution. If a transaction fails partially due to some reasons then it fails

completely and needs to be restarted.

Consistency: Consistency means transition from one stable state to another stable state. If

there is some transaction taken place in a database or memory, then that database or memory

will only be considered in a consistent state when the transaction is executed or aborted

successfully.

Isolation: Isolation means a transaction is producing results correctly without intervention of

other transactions. Running parallel transactions will have no effect on the working of other

transactions. A successful transaction will not have any effect and interference on concurrent

transactions during its execution.

Durability: The final property of database systems is durability and it is only specific to

database transactions. Durability means if some changes have taken place in a database then

these are made permanent. This proper is only needed in databases, because memory

transactions become obsolete as soon as the system shuts down.

2.3 Transactions vs. Locks

The following figure 1 taken from [1] gives us an idea of how the performance improves as

we compare transactions with locking (coarse-grained and fine-grained).

Figure 1: Performance of Transactions vs. Locks [1]

In this figure three different versions of Hash Map are compared. It compares time different

versions take to complete a fixed set of insert, update and delete operations on a 16-way

Symmetric Multiprocessor (SMP) machine. As the figure shows, increasing number of

processors has no effect on coarse-grain while fine-grain and transactions give better

7

performance. Thus coarse-grain locking is not scalable whereas fine-grain locking and

transactions are scalable. That’s why according to Adl-Tabatabai in [1] transactions give us

same results as lock-grain with less programming effort.

It is hard and time consuming to select an appropriate locking strategy for any given

problem, and it becomes even more difficult by following additional challenges of the lock-

based programming language as presented in [18]. Due to the below mentioned problems

and drawbacks, lock-based parallel programming is not a suitable paradigm for an average

programmer.

 Deadlock primarily occurs when two or more threads acquire locks which are

required by some other threads in order to proceed, and it causes a state known as

circular dependence which is hard to satisfy. As the entire threads wait until lock is

released by the other thread, none of threads can make any sort of progress which

results in application hang. Deadlock may easily arise if fine-grained locking is used

and no strict method of lock acquisitions is enforced. If such methods are not

sufficient, resolution schemes and deadlock detection can provide backup in this

regard. It is worth mentioning that these schemes are quite difficult to implement

and are also vulnerable to live locks, specifically where threads frequently interfere

with each other and as a result demising the progress.

 Convoying occurs upon de-scheduling of a thread holding a lock. During sleep, all

other threads execute until and unless they require a lock, due to which many threads

had to wait for the acquisition of same lock. As the lock releases, all the threads in a

wait contend for this lock which thus causing excessive context switching. However,

unlike deadlocks, application continues to progress but at relatively slower pace.

 Priority inversion occurs when a thread of lower priority holds a lock which is

required by some other thread having high priority. In such a scenario, high priority

threads will have to discontinue its execution until the lock is released by lower

priority thread causing its effective and temporary demotion to the priority level of

other thread. In other scenario, if a thread having medium priority is present it may

further delay both high and low priority threads and cause inversion of medium and

high priorities. There is a problem in priority inversion when discussing it for real

time systems, because a thread having high priority may be blocked thus breaching

time and response guarantees. However, for general purpose computing, these high

priority threads are quite often used to accommodate user interaction tasks not the

critical ones. Priority reduction may affect the performance of an application.

 Lock based code cannot be considered as composable. It means that combining lock

protected atomic operations into operations having large magnitude and still remain

atomic is quite impossible.

 Finally, lock-based code is quite susceptible to faults and failures which are known

as fault tolerance. In a case when a single thread holding a lock fails, all of the

other threads requiring that particular lock will eventually stop making progress.

Failures are likely to increase as the numbers of processors are growing in parallel

machines.

2.4 Transactional Memory

Transactional memory is a lock free synchronization mechanism defined for multiprocessor

architectures. It is an alternative to lock-based programming. It provides programmers the

ease of using read-modify-write operations on independently chosen words of memory.

Transactional memory makes parallel programming easy by allowing programmers to

8

enclose multiple statements accessing shared memory into transactions. Isolation is the

primary task of transactions however, failure atomicity and consistency are also important.

In a TM system a failure atomicity provides automatic recovery on errors. But if a

transaction is in an inconsistent state then it will not be possible for a written program to

produce consistent and correct results. If a transaction fails it can leave results in an

inconsistent state. There should be some proper mechanism to revert changes to a previous

consistent state.

Many proposed TM systems exist, ranging from full hardware solution (HTM) [19-22] to

full software approach (STM) [23-26]. Hybrid TM (HyTM) [6, 27-29] is an additional loom

which combines the best of both hardware and software i.e. the performance of HTM and the

virtualization, cost, and flexibility of STM.

2.4.1 Hardware Transactional Memory

The idea of hardware transactional memory was introduced by Herlihy and Moss [4] in

1993. Hardware transactional memory (HTM) was first presented as a cache and cache-

coherency mechanism to ease lock-free synchronization [30]. The HTM system must

provide atomicity and isolation properties for application threads to operate on shared data

without sacrificing concurrency. It supports atomicity through architectural means [19], and

proposes strong isolation. It also provides an outstanding performance with a little overhead.

However, it is often not efficient in generality. It bounds TM implementations to hardware to

keep the speculative updated state and as such is fast but suffer from resource limitations

[31].

Modern HTMs are divided into different categories that support unbounded transactions and

those that support large but bounded transactions. Most of them concentrate on a mechanism

to enlarge the buffering for transactions seamlessly [3]. Bounded HTMs enforce limits on

transaction working set size, ensuring that transactions following this set size will be able to

commit. Best-effort HTMs implement limits by leverage available memory already present

in L1 and L2 caches. Unbounded HTMs have been proposed recently that is contrary to

bounded HTMs, it allows a transaction to survive context switch events [3]. However to

implement these systems is complex and costly. It is most likely that HTMs will prevail as

STMs are particularly gaining a lot of attention these days. These HTMs can effectively be

utilized with the existing hardware products and also provide an early prospect of gaining

experience by utilizing actual TM systems and programming models.

2.4.2 Software Transactional Memory

The idea of software transactional memory was introduced in 1995 by N. Shavit and D.

Touitou [5]. Software transactional memory (STM) implements TM mechanisms in software

without imposing any hardware requirements. Since all TM mechanisms are implemented

entirely in software without having any particular hardware requirements, STMs offers a

better flexibility and generality as all mechanisms are implemented in the entire software.

The STM can be defined as non-blocking synchronization mechanism where sequential

objects are automatically converted into concurrent objects. In STM, a transaction is a finite

sequence of instructions which atomically modifies a set of concurrent objects [32]. The

STM system supports atomicity through languages, compilers, and libraries [19].

The recent research in STM systems has focused mainly on realistic dynamic transactions.

The latest work in STM systems has made them a perfect tool for experimenting and

prototyping. As software is more flexible than hardware, it is possible to implement and

experiment it on new algorithms. It supports different features like garbage collection that

are already available in different languages [3]. In addition, STMs are based on a very

9

critical component being used by number of hybrid TMs, which provide leverage to HTM

hardware. Because of this perspective STMs provide a basic foundation to build more

efficient HTMs. As a matter of fact, primarily STM systems are considered for this thesis.

STM vs. database transactions: We believe an STM needs not to preserve its transactions

to survive the crash as databases do. Concurrency analysis by Felber et al. [33] is a sensitive

and crucial issue which needs full attention of the programmer.

 Durability is a challenge for database transactions. An STM system does not need to

preserve its transactions to survive the crash. Therefore in STM transactions, we do

not need durability as we need it in databases.

 In terms of programming languages, the database transactions run as SQL

statements where each statement runs as a single transaction, different transactions

cooperate with each other in order to accomplish a task. While in memory

transactions, it is the responsibility of the programmer to define a block of code that

runs atomically.

 In terms of Semantics, databases use serializability to protect its data from expected

behavior. Serializability means each individual transaction is marked non-

overlapping in time if it produces the same results as it would have been executing

serially. Concurrency analysis is a sensitive and crucial issue which needs full

attention of the programmer. As accessing data from transactional and non

transactional code, any shortfall in concurrency analysis may lead towards totally

inconsistent and devastating results. However concurrent STM transactions may lead

to read-write conflicts, producing non-serialized results. STM runtime should

implement recoverability theory to avoid this problem. Another problem is to handle

conflicts caused by transaction reading between two updates of concurrent

transactions overwriting each other.

 Transformation of transactional code is also a challenge in STM. In databases non

transactional code runs inherently as a transaction. In STM this is done by either

separating transactional and non transactional code or dynamically categorizing their

access to shared objects. Monitoring of read access and write access is very crucial

in the implementation of STM transactions. It is a challenging task to differentiate

between these accesses, as even the use of encapsulation is not sufficient for their

separation. To gain optimization and boost in performance, STM transactions are

designed to run on multi-core systems, in contradiction to database transactions. To

achieve this level of optimal performance is yet another challenging task in STM.

2.4.3 Hybrid Transactional Memory

Hybrid Transactional Memory (HyTM) was introduced in 2006 by P. Damron et al [6]. They

worked on a new approach by which transactional memory can work on already existing

systems. It has both the flavors of HTM and STM. HyTM can give the best performance and

is scalable as well. The HyTM can utilize HTM properties to get better performance for

transactions that do not exceed hardware limitations and can obviously execute transactions

in STM. When STMs are combined with HTMs like in HyTM, they provide support for

unbounded transactions without requiring any complex hardware. In HyTM small

transactions are processed on lower overhead of HTMs, while larger transactions fall back

onto unbounded STMs. This model of transaction handling is quite appealing in TM as it

gives flexibility of adding new hardware with lower development and testing cost and

decreased risk [27].

10

2.5 STM Design Alternatives

Design differences in STM systems can affect a system’s programming model and

performance [3]. In this section we review some distinctive STM design differences that

already have been explored in the literature. Our purpose is to be able to identify the impact

of these design differences on system performance.

2.5.1 Transaction Granularity

The basic unit of storage over which an STM system detects conflicts is called transaction

granularity [3]. Word-based and object-based are two classes of transaction granularity in

STMs. Detecting conflicts at word level gives the highest accuracy but it also has higher

communication and bookkeeping cost. In object-based STMs, resources are managed at the

object level granularity. This implies that the STM uses an object oriented language

approach which is more understandable, easy to implement, and less expensive.

2.5.2 Update Policy

A transaction normally updates an object and modifies its contents. When a transaction

completes its execution successfully it updates the object’s original values with updated

values. Based on the update strategy, direct update and deferred update are two alternative

methods described in [3].

Direct update: In direct update, a transaction directly updates the value of an object. Direct

update requires a mechanism to record the original value of an updated object, so that it can

be reversed in case if a transaction aborts.

Deferred update: In deferred update, a transaction updates the value of an object in a

location that is private to the transaction. The transaction ensures that it has read the updated

value from this location. The value of this object is updated when a transaction commits. The

transaction is updated by copying values from the private copy. In case the transaction

aborts, the private copy is discarded.

2.5.3 Write Policy

Whenever a transaction is executed it can make some changes in shared resources.

Atomically the transaction either modifies all or nothing. Committing or aborting a

transaction is not always successful. That is why, in STM systems, a mechanism is provided

to handle both successful commits and aborts. The two approaches that are used to handle

this problem are Write-through or undo and Buffered write described in [34].

Write-through or undo: In this approach changes are directly written to the shared

memory. For safe side, each transaction keeps an undo list and reverts their updates in case

they need to abort. The write-through approach is really fast as changes are made directly to

the shared memory. But aborting a transaction can be very expensive as all the made changes

need to be undone.

Buffered write: In this approach, writes are buffered and changes are only made upon

successful commit to the shared memory. Here in buffered write approach, aborting a

transaction is simple as no changes are made to the shared memory. To commit a transaction

values are copied from the buffer to the shared memory.

11

2.5.4 Acquire Policy

Accessing the shared memory exclusively is called acquiring it. There are two strategies of

acquiring shared memory are Eager and Lazy acquire described in [34].

Eager acquire: If a transaction acquires shared resources and modifies them as well then, it

is called eager acquire. Using eager acquire transactions has advantages, because they know

as soon as possible that the shared resource is being accessed by some other transaction.

Eager acquire has drawbacks in case of long transactions, because the current long

transaction will not allow any other transaction to access the shared resources until it

completes its working.

Lazy acquire: The lazy acquire strategy works best with buffered writes as the memory is

modified only at the commit time. Using this approach ensures that as all the computations

are completed, all the changes can be written back to shared memory without any

intervention. Using the lazy acquire with the write-through and undo does not suit as it will

not do any work at the commit time, therefore it is the wastage of resources.

2.5.5 Read Policy

There are two kinds of read policies [34] invisible and visible reads. In invisible reads

multiple transactions can read the same shared resources without any conflict, so most STM

systems make shared resources invisible. In invisible reads each transaction validates its read

set before commit. In visible reads, STM systems acquire locks or offer a list of readers for

each read set on shared objects. In this policy when a transaction wants to modify a shared

resource, it checks if there are any readers on that shared resource. If other reader found then

it must wait until the resources get free.

2.5.6 Conflict Detection

An important task of STM is to detect conflicts. A conflict occurs when two or more

transactions try to acquire and operate on the same object. Most of the STMs employ single-

write multiple-read strategy. They also distinguish between RW (Read-Write) and WW

(Write-Write) conflicts. The Conflict can be detected at different phases of a running

transaction [3]. Detecting conflict before commit falls into the category of early conflict

detection which reduces the amount of computation by the aborted transaction. Detecting

conflict on commit is known as late conflict detection which maximizes the amount of

computation discarded when a transaction aborts.

2.5.7 Concurrency Control

An STM system that executes more than one transaction concurrently requires

synchronization among the transactions to arbitrate simultaneous accesses to an object [3].

This is necessary both in direct update and deferred update systems. These three events

(conflict occurrence, detection, and resolution) can occur at different times but not in

different order. In general, there are two alternative approaches to concurrency control.

Pessimistic concurrency control: With pessimistic concurrency control, all three events

happen at the same time in execution. As a transaction tries to access a location, the system

detects conflict and resolves it. In this type of concurrency control, a system claims exclusive

access to a shared resource and prevents other transactions from accessing it.

Optimistic concurrency control: With optimistic concurrency control, detection and

resolution of conflicts can happen after conflicts occur. In this type of concurrency control

12

multiple transactions can access an object concurrently. It detects and resolves conflicts

before a transaction commits.

Another feature of concurrency control is that its forward progress guarantees with two

approaches blocking synchronization (lock-based) and non-blocking synchronization (wait-

free, lock-free, and obstruction-free).

Lock-based: This STM does not provide any guarantee of progress because locks are used

in the implementation in order to ensure mutual and exclusive access to the shared resources.

Wait-free: A wait-free STM guarantees greater progress. In wait free, progress is made by

all the threads in a finite number of steps keeping an entire system in context. It is quite

difficult to achieve such high progress as it requires that a thread which may not even get

CPU time should be assigned by the scheduler in order to make progress in a finite number

of system steps. In such an STM, all the threads require to workout with each other in order

to make sure that every thread is making progress.

Lock-free: The main difference between the lock-free and wait-free is that a STM which

guarantees lock-free only makes sure that the progress is made by at least one thread in a

finite number of steps keeping an entire system in context. This minor difference has a

significant impact on the STM implementation. However threads still may need to work out

with each other only in the scenario when a conflict is raised. If there is not conflict amongst

the thread than each of the thread can run without any hitches.

Obstruction-free: An obstruction-free STM guarantees even further less progress. A precise

fact of obstruction-free is that it ensures the progress of at least one thread in a finite number

of steps in the absence of disputation. Furthermore, in obstruction-free STM if one thread is

making some sort of progress than other threads, it will be aborted in order to resolve any

conflict. However, one interesting fact of obstruction-free STM is that it surpassed lock- and

wait-free STM implementations. This highlights that an increase in the performance by

minimizing the guarantees is much larger than the overheads which may be introduced by

any amount of additional aborts.

2.5.8 Memory Management

Classen described in [34], the memory management is referred to as allocation and de-

allocation of memory. If a transaction allocates memory and is not successful, it should be

possible to free the allocated memory; otherwise it can result into memory leakage. On the

other side if a transaction de-allocates memory and is not successful or it aborts, then this

memory should still be available to restore into previous state. The allocation and de-

allocation of memory can be viewed as another form of write operations.

2.5.9 Contention Management

According to Classen [34], an STM needs a contention manager. The role of contention

manager is to resolve conflicts. There is an attacker and a victim during a conflict among

different transactions. Upon a conflict between two transactions, the contention manager can

abort the victim, or abort the attacker, or force the attacker to retry after some period. The

contention manager can use different techniques to avoid future conflicts. Following are

different management schemes for conflict resolution:

 The simplest Timid [35] – always aborts a transaction whenever a conflict occurs.

 Polka [23] – backs off for different intervals equal to the difference in priorities

between the transaction and its enemy.

13

 Greedy [36] – The greedy contention manager guarantees that each transaction

commits within a finite or bounded time.

 Serializer [37] – The serializer works like greedy contention manager with an

exception that on aborting a transaction , each transaction gets a new priority.

Regardless of the management schemes a contention manager implements, it must select one

of the following options whenever a conflict occurs:

Wait: A simple way of resolving a conflict is to wait for some time until the resolution of an

issue on its own. This may seem to be a naive way but it has the tendency to work in many

scenarios.

Abort self: In some cases, it is not possible for a transaction to carry on its work due to the

fact that another transaction may be holding the shared resource which is required by this

transaction. A way to resolve this situation is that this transaction aborts itself and restarts

again. This option can be considered as another simpler way to implement because all STMs

must have a mechanism of aborting a transaction.

Abort other: One of the last options is to abort the transaction which is holding the lock of

required shared resources by the in progress transaction. This option can be considered as

quite practical if transactions are priority based. A transaction having high priority aborts

those transactions having low priority. This option is quite difficult to implement as

compared to the above two options.

14

3CHAPTER 3: METHODOLOGY

This chapter addresses the methodology chosen to answer the presented research questions

to achieve the main goals of this research. We are using a mixed methodology to explore

deeply our study area. According to C. B. Seaman, a mixed methodology is such a

methodology that covers both qualitative and quantitative areas of a research [38]. The

motivation behind selecting mixed approach was to first get better and extensive

understanding of the problem by conducting literature review. In the second phase, an

experiment was conducted in order to address and solve this problem.

3.1 Qualitative Research Methodology

The qualitative part of research is composed of exploration of any activity [38]. The

qualitative part of our research is used to answer RQ1 and it also partially answers RQ2. We

are using the qualitative research methodology in the following way.

3.1.1 Literature Review

First, a literature study is carried out to collect the material related to both STM performance

issues and the techniques developed to solve these issues. The literature review is a

qualitative approach [39] that helps in collecting a wide range of information. It is used to

increase our knowledge on the topic by analyzing the viewpoints of different researchers.

The research papers close to our research area are sorted out by identifying the significant

material that will aid us in fully understanding STMs and their performance. This study

provided us sound ground knowledge generally about transactional memory and especially

about understanding of different software transactional memory systems. The digital libraries

and online databases which were utilized in this regard are as follows:

 IEEE Xplore

 ACM Digital library

 Springer Link

 Google Scholar (scholar.google.com)

 Transactional Memory Bibliography (cs.wisc.edu/trans-memory/biblio/index.html)

3.1.2 Background Study

Background study is presented basic understanding of different factors that influence

different STMs and affect their performance and prepared the ground about the thesis. It

endows with basic concepts required to understand this study. This research starts with

identifying the different research articles and books related to our research work which help

us in better comprehension of different STM techniques.

3.1.3 Selection and Suitability of STM systems

There exist many implementations of STM i.e. WSTM [40], OSTM [41], DSTM2 [42],

SXM [43], McRT-STM [25], DracoSTM [44], and STM-Haskell [24]. In this study, we

chose four STM systems for experimental purposes which are briefly described in chapter 4.

All systems cover different design properties of software transactional memory. These

systems give different results in different environments, with different workloads, different

contention management schemes, and deal differently with applied overhead. We have

chosen four STM implementations due to the following reasons:

15

 They are the state-of-the-art STM systems, well appreciated in the research

community and all of them are publicly available. Furthermore, they support the

manual instrumentation of concurrent applications with transactional accesses.

Definitely our objective is to evaluate the performance of the core STM algorithm,

not the detail of measuring the efficiency of the higher layers such as STM

compilers.

 They characterize an extensive diversity of known STM design choices such as

obstruction-free vs. lock-based implementation, invisible vs. visible reads, eager vs.

lazy updates, and word-level vs. object level access granularity at which they

perform logging. Lock-based STM systems, first proposed in [45], implement some

variant of the two-phase locking protocol [46]. Obstruction-free STM systems [47]

do not use any blocking mechanisms, and guarantee progress even when some of the

transactions are delayed.

 These systems also allow for experiments with different contention management

approaches, from simply aborting a transaction on a conflict, through exponential

back off, up to advanced contention managers like Greedy [36], Serializer [37], or

Polka [23].

3.1.4 Selection and Suitability of Benchmarks

We chose STAMP – Stanford Transactional Applications for Multi-Processing [11] –

benchmark suite to compare the performance of our STMs because it offers variety of

workloads and has been extensively used to evaluate TM implementations [48]. It is portable

across a whole range of transactional memory implementations including: hardware

transactional memory, software transactional memory and hybrid transactional memory. It

covers a wide range of transactional behaviors. It consists of eight applications including

bayes, genome, intruder, kmeans, labyrinth, ssca2, vacation and yada. It is publicly available

at http://stamp.stanford.edu.

3.2 Quantitative Research Methodology

A quantitative study is presented where we performed performance measurements on real

hardware. The quantitative research methodology is used to answer RQ2. We are using the

quantitative research methodology in the following way.

3.2.1 Selection and Suitability of STM Performance Metrics

For analyzing, the transactional behaviors of a set of complex realistic TM applications,

following metrics are commonly used:

 Commit Phase Time and Abort Phase Time

 Commit Reads and Abort Reads

 Commit Writes and Abort Writes

 Execution time

 Aborts per Commit

 Transaction Retry Rate

The metrics that we measured during this study are Execution time, Aborts per Commit and

Transaction Retry Rate. The inspiration behind selecting these metrics is that they help in

determining the transactional scalability of the applications. The execution time shows the

transactional effectiveness of application scale with respect to the increasing number of

16

threads. Since transactional memory is a scheme that imposes the committing or aborting of

transaction sequences, the important issue while trying to monitor the transactional

management is naturally the ratio of aborted transactions to committed transactions. Finally,

the last metric is used to exploit the inherent concurrency of the underlying STM

implementation.

3.2.2 Experimentation

Experiments are considered the cornerstone of the empirical study which is performed on a

subject when we have control over the environment. The experiments are used to test the

behavior of this subject directly, precisely and systematically. Experiments are performed

more than once in order to validate the subject’s outcome.

3.2.3 Analysis of Gathered Results

After we performed experiments on the chosen metrics we got some data. This data was

scrutinized and on the basis of this data we were able to fetch some results. These results are

further discussed in order to attain a final conclusion.

17

4CHAPTER 4: THEORETICAL WORK

This chapter clearly describes the four STMs i.e. RSTM [7], TL2 [8], TinySTM [9], and

SwissTM [10] in detail employed for performance evaluation in this thesis. These systems

represent a wide spectrum of design choices.

4.1 RSTM

4.1.1 RSTM Overview

The RSTM [7] system was designed by Marathe et al. at the University of Rochester to

improve the performance of an obstruction-free deferred-update STM. It was written as a

fast STM library for C++ multithreaded programs but an equivalent library could also be

implemented for C language, though it would not be more convenient. Obstruction freedom

[12] is the weakest guarantee of non-blocking synchronization that simplifies

implementation by guaranteeing progress only in the absence of conflict. To make this

guarantee, RSTM employs Polka [23] as a contention manager. Contention manager decides

what to do on conflict either abort a transaction or spin-wait and which transaction to abort if

there is any conflict between transactions.

The basic unit of concurrency over which RSTM detects conflicts is an object. Inside a

transaction, objects may be opened for read-only or read-write access. Objects that are

opened for read-write are replicas, and those for read-only are not. A transaction that wishes

to update any object must first acquire it before committing. Acquiring an object is getting

exclusive access to that object. It can be done in eager or lazy fashion. Eager systems

acquires an object as soon as it’s opened while lazy systems acquires it some time prior to

committing the transaction. In some existing STM systems (e.g. DSTM [47], SXM [43],

WSTM [40] and McRT [25]) writers acquire objects and perform conflict detection eagerly,

whereas some others (e.g. OSTM [41], STM Haskell [24]) do it lazily. Eager acquire aborts

doomed transactions immediately, but causes more conflicts. However lazy acquire enables

readers to run together with a writer that is not committing yet. A thread that opens an object

for reading may become a visible or invisible reader. In either case eager or lazy conflict

detection, writers are visible to readers and writers but readers may or may not be visible to

writers. RSTM currently supports both eager and lazy acquire and both visible and invisible

readers.

The information about acquired objects is maintained in a transactional metadata. RSTM

adopts a novel organization for transaction metadata with only a single level of indirection to

access an object rather than the two levels used by other systems like DSTM or ASTM [49].

This cache-optimized metadata organization reduces the expected number of cache misses.

To further reduce overhead, RSTM is considered for non-garbage-collected languages by

maintaining its own epoch-based collector. This lightweight memory collector avoids

dynamic allocation for its data structure (i.e. Object Headers, Transaction Descriptors,

private read and write lists), except for cloning data objects. The garbage-collected

languages increase the cost of tracing and reclamation. RSTM avoids tracing altogether for

transactional metadata by a simpler solution to mark superseded objects as retired.

4.1.2 Design Features

One of RSTM’s prominent features is a visible reader list which avoids the aggregate

quadratic cost of validating a transaction’s invisible read list each time it opens an object. An

Object Header reserves a fixed-size room for a modest number of pointers to visible reader

18

Transaction Descriptors. When a transaction acquires the object for write, it immediately

aborts each transaction in the visible reader list. A transaction on a visible reader list does not

need to validate reads, since a conflicting write will abort the transaction. This implicitly

gives writers precedence over readers because there is no chance that a visible reader will

escape a writer’s notice. However, RSTM arranges for each transaction to maintain its

private read list and validate it. Even so, visible readers can reduce the size of this read list

and the cost to validate it.

According to [3], the authors of RSTM strongly argue that STM should be implemented with

non-blocking synchronization, because blocking synchronization is vulnerable to a number

of problems like thread failure, priority inversion, preemption, convoying, and page faults.

4.1.3 Implementation

In RSTM, every shared object is accessed through an Object Header, which holds the bitmap

of the visible readers and the New Data field that identifies the current version of the object

as shown in the figure 2. RSTM limits the number of visible readers. The New Data field is a

single word that holds a pointer to the Data Object and a dirty bit. In RSTM this lower bit of

the New Data field is used as a flag which tells whether Data Object is a clean object or a

write-made replica. If the flag is set to zero, then the New Data pointer refers to the current

copy of the Data Object. It saves dereference in the common case of non-conflicting access.

Otherwise, if the flag is set to one, then a transaction has the object open for writing

whenever that object’s Owner pointer points to Transaction Descriptor.

Figure 2: RSTM Transactional Metadata [7]

The Transaction Descriptor determines the transaction’s state, which holds the lists of

opened objects (i.e. visible or invisible reads and eager or lazy writes) and the Status that can

be ACTIVE, COMMITTED, ABORTED. If the Status is COMMITTED, then Data Object

is the current version of the object. If the Status is ABORTED, then Data Object’s Old Data

pointer is the current version. If the Status is ACTIVE, no other transaction can read or write

the object without first aborting the transaction. To avoid dynamic allocation, each thread

has a static Transaction Descriptor that is used for all transactions of this thread.

A transaction opens an object before accessing it. In order to open the object for write, the

transaction must first acquire it. To affect an acquire, the transaction reads the Object

Header’s New Data pointer to identifying the current Data Object and makes sure no other

transaction owns it. If it is owned, the contention manager is invoked to tune performance.

Then allocation of a new Data Object and copying of data from object’s current version to

the new and initialization of the Owner and Old Data fields in the new object are done. After

this step, the transaction uses a CAS to atomically swap the header’s New Data pointer to

19

point to the newly allocated Data Object. At the end, the transaction adds the object to its

private write list, so the header can be cleaned up on abort. If the object is open for a read,

the transaction adds the object to its visible reader list for post-transaction cleanup.

Otherwise if the list is full, it adds the object to the transaction’s private read list for

incremental validation.

4.2 TL2

4.2.1 TL2 Overview

TL2 [8] is mainly interested in mechanical methods of code transformation from sequential

or coarse-grained to concurrent. Mechanical means the transformation of code is done either

by hand or preprocessor or compiler. TL2 works fine with any system’s memory life cycle

including a support for malloc/free methods used to allocate and free the memory. The user

code is guaranteed to work in a consistent state by efficiently consuming execution

time.

TL2 provides solution to two potential threats that STM implementations are facing. First

threat is Closed Memory Systems and second one is Specialized Runtime Environments. A

closed memory system or closed TM is where memory can either be used transactionally or

non-transactionally. This implementation is easy to adopt in languages that support garbage

collection like java, but it is difficult to handle in languages like C/C++, where user has to

code manually to handle memory allocation and free operations. The unmanaged

environments give room for execution of Zombie transactions. A transaction is a zombie

transaction when it founds an inconsistent read set, but it has not yet aborted the transaction.

Efficient STM implementations need special runtime environments that can handle irregular

effects of inconsistent states in unmanaged environments. The efficient runtime

environments use traps to find problems in transactions and use retry statements to execute a

transaction again in hope that it will succeed.

The algorithm provided in TL2 offers a solution to both of the above mention problems i.e.

closed memory systems and specialized runtime environment. TL2 by Dice, Shalev and

Shavit used open memory system that provides solution to this problem by employing global

version clock and commit time locking [8].

4.2.2 Global Version Clock

The global version clock is incremented each time a transaction writes to memory and is read

by all other transactions. Transactions recorded in databases use time stamping. Database

time stamping is used for large database transactions. But we need such a mechanism that

can work efficiently with small memory transactions. To overcome this problem the global

clock version used in TL2 is used, which is different from database because it supports

working with small memory transactions efficiently. The global clock was also used by

Reigel et al. in [50]. Reigel et al. global clock supports time stamping for non-blocking

STMs and it is costly. The global clock version used in TL2 is lock based and simple.

In TL2 all memory locations are augmented by a lock which contains version number.

Extending or augmenting all memory locations with version number can give a consistent

memory state to a transaction at a very little cost. The transactions that need to write or

update memory need to know the read and write set before committing. Once read and write

sets are available, locks are applied i.e. transactions acquire locks so that no other transaction

can change the current state of acquired read or write sets. The transaction will try to commit

its new values by incrementing global version clock and checking validity of read sets. Upon

20

successful completion, the transaction will release locks on read and write sets, update

memory locations with new value of global version clock [8].

4.2.3 TL2 – Algorithm

The TL2 algorithm uses commit-time locking instead of encounter time locking mechanism

to update transactions. The global version clock is read incremented by a write transaction

and is ready by all other transactions. To implement data structure in memory we use per

object (PO) and per stripe (PS) locks. A PO is assigned to a single object, while PS is

assigned to a large number of objects and memory is divided into different portions using

some hash function. As PS is defined in TL2 algorithm, almost the same way PO can also be

defined. TL2 is defined for write transactions and low cost read only transactions [8].

Write Transaction: There is a sequence of operations that is followed before any write

transaction successfully completes. The current global version clock’s value is stored in a

local variable read-version (rv). Transactional code is executed. Read and write set addresses

are locally maintained. Locks are acquired on write set. If locks cannot be acquired due to

some reason, the transaction fails. When a lock is successfully acquired on a write set, a

value is incremented in global version clock and is written back in local write version (wv).

Finally before updating the memory locations with write set, it is confirmed that the read set

is consistent. It has not been changed after locks were acquired on write set. Every location

is written or updated with write set. The lock is released and the memory locations are made

available to be used by other operations

Low Cost Read-Only Transactions: Another task that this algorithm supports is the

efficient execution of read only transactions. The value of global version clock is loaded into

a local variable read version (rv). There are different ways to implement global version. It

can easily become a bottleneck if it is not implemented intelligently. It may introduce

contention and cache sharing problems. The solution to this problem is to divide global

version clock into version number and thread ID. By using this scheme a thread would not

have to change its version number if it is different from last one it used.

Mixed Transactional and Non-Transactional Memory Management: TL2

implementation either divides memory into transactional and non transactional areas thus

mix transactional and non transactional operations are not possible. The memory used by a

transactional operation should not be allowed to be used by a non transactional operation.

But it is a dire need of an STM implementation that memory used transactionally may later

be used by non-transactionally. Languages like java support such operations implicitly. But

in languages like C/C++, one has to code explicitly to handle memory. Malloc () function is

used to allocate memory and free () function is used to free memory space used by a

transaction.

Mechanical Transformation of Sequential Code: TL2 supports mechanical code

transformation. Code written for sequential programs can automatically be transferred to

concurrent code. But manually written code has always edge over mechanically transformed

code.

4.2.4 TL2 – Variants

The open-source TL2 library contains several variants which differ in how they manage the

global version number. As originally described, TL2 increments the global version number

at commit-time for each updated transaction. All transactions must fetch the global version

number variable as its timestamp. Thus every transaction has a unique timestamp, and TL2

21

refers this form of clock management as “GV1”. TL2 later developed and more refined clock

management schemes are known as GV4, GV5, and GV6 [51].

GV4: In its default mode, called GV4, TL2 tries to minimize the risk of contention on the

global version number by using a pass-on-failure strategy: if a transaction fails to increment

the global version number, it does not retry to increment it, but uses the new value of the

global version number as its timestamp. This is safe because the global version number is

incremented after a transaction has locked all the ownership records “orecs” associated with

its writes, and validated its reads. So, transactions that try to increment the global version

number do not conflict with each other and can commit at the same time using the same

timestamp.

GV5: Another variant of TL2 is GV5, which further minimizes the contention for the global

version number on the basis that every transaction is not required to make an attempt to

increment the global version number. As an alternative, a transaction reads and increments

global version number locally and uses the resulting value as its timestamp but does not

write the incremented value back to the global version number. Though GV5 further

minimizes contention on the global version number but it increases unnecessary aborts.

GV6: It is an adaptive hybrid of GV4 and GV5 to perform the best possible results. This

strategy tries to avoid unnecessary aborts as in GV5 and avoid bottlenecks on advancing

global number less frequently than GV4.

4.3 TinySTM

4.3.1 TinySTM Overview

The performance of a STM system depends on different design choices and configuration

parameters. We have to select from different design choices, either current STM system is

going to be word based or object based, lock based or non-blocking, write through or write

back, encounter time locking or commit time locking. Similarly regarding STM

implementations, we do make choices among different configuration parameters like the

number of locks used to handle concurrent access to shared data or to map locks to memory

addresses. These factors are invariably used on different system architectures due to their

CPU or cache line size [9].

The work load of an STM implementation plays a major role in selecting right design choice

and configuration parameters. The ratios to update read only transactions, the size of read

and write sets and contention on shared memory; all these factors make it difficult achieving

a STM that is perfectly suitable in all situations. Some STMs are good for one kind of

environment but they do not perform well in other type of environment. For example, time

based TMs are excellent in read only transactions, but they are not that good in an

environment where transactions are updated frequently, validation read sets in larger

transactions is also an issue [9].

4.3.2 TinySTM – Algorithm

Locks and Versions: TinySTM uses shared array of locks to manage concurrent access.

Addresses are mapped on per stripe which is locked using a hash function. Lock represents

size of address in memory. Locks least significant bit shows whether lock is owned or not. If

least significant bit of lock is owned, remaining bits of address store owner transaction in

case of write-through method or write set owner transaction in case of write-back. And if

least significant bit of lock is not owned, a version number is stored in remaining set bits that

are based on commit timestamp of the latest transaction (see Figure 5).

22

Reads and Writes: When a transaction reads a memory location, it first checks whether the

read set is currently being read or written by any other transaction. If no other transaction

holds lock on the current read set, and the value of read set is not changed then the read set is

consistent. When a transaction writes to a memory location, it reads lock entry from selected

memory addresses. If it finds lock bit is set then it verifies either the current transaction is the

owner or not. If current transaction is the owner, then it simply writes new value to memory

location. If it is not owner of the current transaction then the current transaction waits for

some time to get resources free or abort immediately. TinySTM uses abort immediate option.

Write-through vs. Write-back: In write-through design changes are directly updated in

memory and these changes are saved in an undo log buffer to revert previous values in case

of abort. The write-through design has lesser commit time. In write-back design changes are

held in a write log until the commit time. The write-back design has lesser abort overhead.

Memory Management: Dynamic memory management can be complex in unmanaged

languages and environments. TinySTM has provided memory management functions that

help in handling dynamic memory efficiently. Every transaction keeps a record of allocated

and freed memory. Memory management functions properly dispose off the allocated

memory and freed memory is upheld until commit.

Clock Management: TinySTM is based on shared counter clock which is efficiently

working in SMP architectures. If due to some reason this shared counter clock mechanism is

creating problem in large systems, a more scalable time based clock or multiple

synchronized physical clocks can be used.[52] TinySTM can work on 32 bit and 64 bit

architectures. The maximum value of clock on 32 bit architecture is 231 and maximum value

for 64 bit architecture is 263. Frequent commit statements can easily exploit maximum value

on 32 bit architectures. TinySTM provides its solution through roll-over mechanism [9].

When a transaction detects that it is facing maximum value, it waits for a little time during

which all pending transactions are completed or aborted, the clock counter is restarted.

4.3.3 Implementation

TinySTM is a light weight highly efficient lock based, word based STM implementation.

Using word based design choice supports to adopt the direct mapping of memory to any

subsystem. Word based STMs allow memory access at word granularity and can be used in

unmanaged environments. TinySTM is based on encounter time locking. There are two

reasons to use encounter time locking:

 Detecting contention as they occur helps in increasing transaction’s throughput,

because transactions do not have to work extra. However, commit time locking may

give some advantage of read write conflicts, but conflicts detected late cannot be

solved without aborting one of the transactions.

 Reads-after-writes are efficiently handled using encounter time locking and is

especially good with large write sets.

Along with encounter time locking, two other strategies are used in TinySTM to access

memory: write-through and write-back access. In write-through access transactions

immediately write to memory and undo updates if aborted. In write-back access transactions

do not update until the commit time. In TinySTM such a procedure is followed that any

transaction does not need to access another transaction’s memory [9].

23

Figure 3: Data structures in TinySTM [9]

4.3.4 Hierarchical Locking

LSA algorithm [31] guarantees that there is a consistent read set for read only transactions,

therefore read only transactions do not need to validate their read sets. Update transactions

do need to validate their read sets before they update any value of the memory locations.

Large read sets validation may be costly. To validate read sets fast, number of locks can be

reduced. Reducing number of locks can increase abort rate. The solution of this problem was

the introduction of hierarchical locking as proposed by the authors of TinySTM [9]. Hash

function is used to map memory addresses to counters which are consistent to lock arrays.

Memory locations that are mapped to same lock are also mapped to same counter. Every

transaction keeps two private data structures. A read mask and write mask of hierarchical h

bits. Read sets are divided into h parts.

4.3.5 Dynamic Tuning

TinySTM uses dynamic tuning parameters that affect its performance in achieving higher

transaction throughput. First one is using a hash function to map locks to memory locations.

TinySTM uses right shifts that provide control over how many contiguous memory locations

can be mapped using same lock. Second is number of entries/addresses in lock array. The

smaller value will be able to map more locks on a single lock, which decreases the size of

read set. Third is the array size used for hierarchical locking. Higher value of hierarchical

locking increases atomic operations but it decreases validation overhead and contention.

4.4 SwissTM

4.4.1 SwissTM Overview

SwissTM [10] is a deferred, lock based STM system that uses invisible reads and relies on a

time-based scheme to reduce the cost of transaction validation and speed up read-set

validation, like TL2 [8] and TinySTM [9]. It is a C++ implementation of LSA with dynamic

snapshot extensions. It uses a variant of two-phase locking for concurrency control that

causes no overhead on all short read-write and read-only transactions while favoring the

progress of transactions that have performed a significant number of updates. Two-phase

contention manager with random linear back-off embedded in SwissTM is bimodal,

distinguishing between small and large transactions. The random linear back-off also

increases scalability.

SwissTM uses mixed invalidation [53] conflict detection scheme in which write-write

conflicts are noticed early, but conflicts detected in read-write case are not acted upon until

the commit time. By using early write-write conflict detection, it avoids wasted work in

24

transactions that is almost certain to abort, since at most one the conflicting transactions can

ever commit. By detecting read-write conflicts late, it reduces the number of unnecessary

aborts due to false read-write conflicts, in this case both may commit if the reader does so

first. Thus SwissTM takes the best of both worlds to support mixed workloads consisting of

both short and long transactions, as well as simple and possibly complex data structure. This

combined strategy is beneficial for large transactions and complex objects as it introduces no

significant overheads on short transactions and simple data structures [10].

The contention management scheme underlying SwissTM gets invoke only on write-write

conflicts. To provide good performance across a wide range of mixed workloads, the

contention manager aborts conflicting transaction that performed less work by using a shared

counter to establish a total order among transactions, similarly to Greedy [36], but it avoids

updates to the shared counter for short transactions, resulting in a two-phase contention

manager [48]. The two-phase contention management scheme is a variation of the Greedy

contention manager. Though Greedy performs poorly on short transactions, two-phase

contention manager improves both performance and scalability by overcoming this issue

completely. This is because it allows all read-only and short transactions to commit without

incrementing the shared counter yet it provides the strong progress guarantees of Greedy.

The more complex transactions switch dynamically to the Greedy mechanism that involves

more overhead but favors these transactions, preventing starvation [10].

4.4.2 Design philosophy

All transactions share a global commit counter commit-ts, incremented by every commit.

Every transaction has a transaction descriptor, tx, containing the value of commit-ts, and the

transaction’s read and write logs. The value of Commit-ts is read upon the transaction

beginning or updated by every subsequent validation. Each memory word m is globally

mapped to a pair of lock entries for r-lock and w-lock. Lock w-lock is eagerly acquired by a

writer T to prevent other transactions from writing to m. Lock r-lock is lazily acquired by T

to prevent other transactions from reading word m. In addition when r-lock is released it

contains the version number of m, as a result, observing inconsistent states of words written

by T. Every 4 consecutive memory words share a lock [10].

Figure 4: Mapping of memory words to global lock table entries.[10]

25

4.4.3 Locking granularity

The design of SwissTM is a result of trial-and-error, various choices that might have seemed

natural, revealed inappropriate. An important implementation choice underlying SwissTM is

its lock table granularity, in particular the size of memory that gets mapped to the same lock.

Increasing the size of memory stripes increases abort rates due to false conflicts but reduces

locking and validation time due to data access locality. The optimal value for this parameter

is application specific. For the experiments described in [10], the value of 4 words was the

best. It’s interesting to note that picking a different value for the lock granularity may affect

the performance but it is not preventing scalability.

4.4.4 Contention Manager – Algorithm

cm-start(tx)

if not-restart(tx) then tx.cm-ts ∞;

cm-on-write (tx)

if tx.cm-ts = ∞ and size(tx.write-log)=Wn then

tx.cm-ts increment&get(greedy-ts);

cm-should-abort(tx,w-lock)

if tx.cm-ts = ∞ then return true;

lock-owner = owner(w-lock);

if lock-owner.cm-ts < tx.cm-ts then return true;

else abort(lock-owner); return false;

cm-on-rollback(tx)

wait-random(tx.succ-abort-count);

Figure 5: Pseudo-code representation of the two-phase contention manager [10]

The contention manager gets invoked by the main algorithm,

• At transaction start,

• On a write/write conflict,

• After a successful write, and

• After restart.

Conceptually, every transaction starts with an infinite value of a counter – tx.cm-ts. This is a

variation of the Greedy counter greed-ts. This counter gets updated after Wn
th writes of the

transactions. Upon a conflict, the transaction with higher value of cm-ts is aborted. After

restarting, transactions are delayed using a randomized back-off scheme.

26

4.5 STM Feature Comparison

Table 1 illustrates a summary of the design aspects and outlines the most significant

difference among the four state-of-the-art STM systems – RSTM, TL2, TinySTM, and

SwissTM – employed for performance evaluation in this study.

Table 1: Feature comparison of the four state-of-the-art STM systems

System

Name

Granularity Update

Policy

Write

Policy

Acquire

Policy

Read

Policy

Conflict

Detection

Concurrency

Control

Progress

Guarantee

RSTM Object-

based

Deferred Buffered Both Both1 Both2 Optimistic Obstruction-

free

TL2 Both Deferred Buffered Lazy Invisible Both Optimistic Lock-based

TinySTM Word-based Both Both Both Invisible3 Early4 Optimistic Lock-based

SwissTM Word-based Deferred Buffered Both Invisible Mixed

invalidation5

Both Lock-based

1 visible for up to 32 threads
2 early or late (selectable)
3 by default invisible, but can switch to visible to help with contention management
4 early, but depends on acquire policy (if acquire is commit-time, conflict detection is obviously late)
5 A conflict detection scheme in which write-write conflicts are noticed early, but read-write conflicts

are detected late.

27

5CHAPTER 5: EMPIRICAL STUDY

In the preceding chapter we sketched the key design aspects of the most recent STM

implementations. One goal of this thesis is to identify performance tradeoffs of these STM

design alternatives. In order to evaluate these systems, the applications of the STAMP

benchmark suite [11] have been ported to these systems. In this chapter we introduce our

evaluation framework and cover STAMP in detail.

5.1 Experimental Platform

To compare the performance of all the four STMs – RSTM, TL2, TinySTM and SwissTM –

we conducted different tests on a computer with 2 quad-core Intel(R) Xeon(R) CPU E5335

@ 2.00GHz processors (in total 8 cores). This machine has 16 GB of RAM running with

Linux operating system. All observations were gathered by running each STM system more

than once. In order to analyze the outputs and to obtain fully qualified results, averaged

results were taken from multiple runs. All the performance tests were performed using the

STAMP Benchmark. The acquired results are graphically presented in this chapter.

We used RSTM (version 5), the TL2-x86 0.9.6 implementation, TinySTM (version 0.9.9),

and SwissTM (release dated: 2009-09-10). All these STMs were tested using STAMP

Benchmark suit (version 0.9.10). These STM implementations are available from their

respective websites. We performed tests on these implementations on their default

configurations: RSTM was configured to use (eager conflict detection, invisible reads with

commit counter heuristic, and the polka contention manager), TL2 is configured to use (lazy

conflict detection and Global Version 4 (GV4)), TinySTM is configured to use (encounter

time locking and timid contention manager), and SwissTM is configured on (mixed

validation: Optimistic (commit-time) conflict detection for read/write conflicts and

pessimistic (encounter-time) conflict detection for write/write conflicts, and a new two-phase

contention manager).

5.2 STAMP Benchmark

Benchmarks for STM implementations are still very few [54]. Recently, some complex

benchmarks for elongating STM implementations have emerged. STAMP [11] is a new

comprehensive benchmark suite designed for TM research which currently consists of eight

different applications representative of real-world medium-scale workloads. In table 2 we

specify a brief description of these applications. They provide runtime transactional

characteristics like varying transaction lengths, frequent or rare use of transactions, time

spent in transactions and the average number of retries per transaction.

Table 2: The eight applications in the STAMP suite [11]

Application Domain Description

Bayes Machine learning Bayesian network structure learning

Genome Bioinformatics Performs gene sequencing

Intruder Security Network intrusions detection

Kmeans Data mining Implements partition-based clustering

Labyrinth Engineering Routes shortest-distance in maze

ssca2 Scientific Efficient graph construction

Vacation Online transaction processing Client/server travel reservation system

Yada Scientific Refines a Delaunay mesh

28

We choose STAMP to compare the performance of our STMs because it offers a variety of

workloads and has been extensively used to evaluate TM implementations [48]. Moreover,

STAMP is portable across many types of TM implementations, including hardware,

software, and hybrid implementations and publicly available at http://stamp.stanford.edu.

5.2.1 STAMP – Design

The design of the STAMP benchmark suite offers a comprehensive breadth and depth

analysis and is portable to many kinds of TMs (HW, SW, and Hybrid) to make it an effective

tool for evaluating TM systems.

Breadth: STAMP consists of eight different applications covering different domains and

algorithms. TM simplified development of each ones that are not trivially parallelizable as

they can get benefit from TM’s optimistic concurrency.

Depth: STAMP covers a wide range of important transactional behaviors. STAMP is also

facilitated by multiple input data sets and different configuration settings per application.

STAMP applications spend a significant portion of their execution time within transactions.

Portability: STAMP can easily work with HTM, STM, and HyTM systems. The code for all

benchmarks is written in C with macro-based transaction annotations to indicate both

transaction boundaries and memory accesses that require instrumentation for STMs and

HyTM designs. The same annotations are used by TM versions of the code. C macros make

these annotations easy to replace, remove, or port to different systems.

5.2.2 STAMP – Applications

The STAMP applications include a Bayesian structure learning network “Bayes”, a gene

sequencing program “Genome”, a network intrusion detection algorithm “Intruder”, a k-

means clustering algorithm “KMeans”, a maze routing algorithm “Labyrinth”, a set of graph

kernels “SSCA2”, a client-server travel reservation system simulating SPECjbb2000

“Vacation” and finally a Delaunay mesh refinement algorithm “Yada”.

Bayes: This application implements an algorithm for learning the structure of Bayesian

networks, which is an important part of machine learning. Often, Bayesian networks are

learned from observed data. Conceptually, a Bayesian network is represented as a directed

acyclic graph, where a node represents a variable and an edge represents a conditional

dependence between variables. The graph tries to represent the relation between variables in

a data set. This particular algorithm is based on the hill climbing strategy that combines

local and global search, similar to the technique described in [55]. For efficient estimates of

probability distributions, the ad-tree data structure from [56] is used. All operations on the

acyclic graph occur within transactions. Overall, this application has a high amount of

contention as the sub-graphs change frequently.

Genome: This application implements a gene sequencing program that processes a list of

DNA segments and matches them to reconstruct the original larger genome. The algorithm

uses transactions for removing duplicate segments by using hash-set to create a set of unique

segments and paring them with existing segments using a Rabin-Karp string matching

algorithm [57]. Conflicts occur when threads try to use the same segment during the

matching phase [54]. In general, the application is highly parallel and almost contention free.

Additionally, the transactions are of moderate length and have moderate sizes of read and

write sets.

29

Intruder: Signature-based Network Intrusion Detection Systems (NIDS) scan network

packets for matches against a known set of intrusion signatures. Haagdorens et al. in [58]

presents various techniques for implementing network-intrusion detection. This application

implements “Design5” of the NIDS described by Haagdorens et al. which splits the

algorithm into three stages (capture, reassembly, and detection) to exploit pipelined

parallelism of network packets. Transactions are used to protect the FIFO queue in stage one

(capture) and in stage two (reassembly) transactions use the dictionary that contains lists of

packets. Overall, since two of the three stages are spent in transactions, this application has a

moderate amount of total transactional execution time.

K-means: This application was taken from MineBench [59]. The K-means algorithm is a

partition-based method [60] and is commonly used clustering technique where a number of

objects with numerous attributes are partitioned into a number of clusters. K-means

represents a cluster which is the mean value of all objects contained in it. This algorithm is

essentially data parallel. Conflicts occur when two threads attempt to insert objects into the

same partition. Varying the number of partitions affects the amount of contention among

threads but transactions in K-means are used to update the cluster centers, for which there is

very little contention.

Labyrinth: This application implements a variant of Lee’s algorithm [61] in which the maze

is represented as a three-dimensional uniform grid, where each grid point can contain

connections to adjacent, non-diagonal grid points. This algorithm is guaranteed to find the

shortest path between the start and end points of a connection. Overall, almost all of

labyrinth’s execution time is taken by the calculation of the path. This operation also reads

and writes an amount of data proportional to the number of total maze grid points. While

creating the transactional version of this program, the techniques described in [62] were used

to reduce the chance of conflicts. Transactions are beneficial for implementing this program

as deadlock avoidance techniques would be required in a lock-based approach. The amount

of contention is very high in it because of the large number of transactional accesses to

memory.

Ssca2: The Scalable Synthetic Compact Applications 2 (SSCA2) application [63] is

comprised of four kernels that operate on a large, directed, and weighted multi-graph.

STAMP focuses on Kernel 1, which constructs an efficient graph data structure using

adjacency arrays and auxiliary arrays. The transactional version of SSCA2 has threads which

add nodes to the graph in parallel, and uses these transactions to protect accesses to data to

adjacent arrays. Due to the fact that this operation is small, transactions do not take much

time to execute. In addition, transaction’s length and their read and write sets size is also

small. Due to this the amount of contention in this application is also low.

Vacation: This application implements an enterprise travel reservation system powered by a

non-distributed database. The 3-tier design of vacation shown in figure 6 is similar in design

to SPECjbb2000 [64]. The system consists of several client threads interact with an in-

memory database via the system’s transaction manager that implements the tables as Red-

Black trees. In particular, client threads acting as customers try to reserve, cancel, and update

their records, while performing actions such as, booking hotel rooms, flights and renting

cars. Coarse-grain transactions are used during each of these client sessions to ensure

validity of the database. In conclusion, these transactions greatly simplified the

parallelization for all the data structures in vacation.

30

Figure 6: Vacation’s 3-tier design

Yada: The Yet Another Delaunay Application (YADA) implements the Delaunay mesh

refinement [65]. There are primarily two data structures (1) a set that contains the mesh

segments, and (2) a task queue that stores the generated mesh triangles that need to be

refined. Transactions protect accesses to the work queue. The usage of transactions in yada is

similar in design to one presented in [66]. The operations on the task queue are complex and

involve large reads and write sets which leads to a moderate amount of contention.

5.3 Application TM Characteristics

STAMP applications can be configured with different parameters to classify different

workloads in order to represent several application domains and exercise a wide spectrum of

transactional behaviors such as short or long transactions, different sizes of read and write

sets, and varying degrees of contention. In all the experiments, we executed STAMP

applications using the parameters suggested in the guidance notes supplied with the STAMP

benchmark suite 0.9.10 distribution. Table 3 specifies those recommended workloads and

highlights their transactional characteristics.

Table 3: STAMP workloads and their qualitative transactional characteristics [11]

Workload Parameters Tx Length R/W Set Contention

bayes -v32 -r4096 -n10 -p40 -i2 -e8

-s1

Long Large High

genome -g16384 -s64 -n16777216 Medium Medium Low

intruder -a10 -l128 -n262144 -s1 Short Medium High

kmeans -m40 -n40 -t0.00001 -i

inputs/random-n65536-d32-

c16.txt

Short Small Low

labyrinth -i inputs/random-x512-y512-

z7-n512.txt

Long Large High

ssca2 -s20 -i1.0 -u1.0 -l3 -p3 Short Small Low

vacation -n2 -q90 -u98 -r1048576 -

t4194304

Medium Medium Medium

yada -a15 -i

inputs/ttimeu1000000.2

Long Large Medium

Ten realistic complex benchmark configurations are executed for each application as shown

in table 4. Two applications kmeans and vacation are executed with high and low data

contention configurations. Each complex benchmark configuration is repeated five times and

the averaged results are presented for our performance experimentation. From here onwards,

experimentation is referred to by its configuration names introduced in table 4.

31

Table 4: Application configurations used in the evaluation [11]

Configuration

Name

Application Configuration

Bay Bayes max_edges_learned_per_variable:8,

edge_insert_penalty:2,

max_number_of_parents:10,

percent_chance_of_parent:40,

number_of_records:4096,

random_seed:1,

number_of_variables:32

Gen Genome gene_length:16384,

segment_length:64,

number_of_segments:16777216

Intr Intruder percent_of_attacks:10,

max_number_of_packets_per_stream:128,

total_number_of_streams:262144,

random_seed:1

KmL Kmeans low

contention

max_clusters:40,

min_clusters:40,

threshold:0.00001,

input_file_name:inputs/random-n65536-d32-c16.txt

KmH Kmeans high

contention

max_clusters:15,

min_clusters:15,

threshold:0.00001,

input_file_name:inputs/random-n65536-d32-c16.txt

Lbr Labyrinth input_file:inputs/random-x512-y512-z7-n512.txt

Ss2 Ssca2 probability_of_inter_clique:1.0,

max_path_length:3,

max_number_of_parallel_edges:3,

problem_scale:20,

probability_unidirectional:1.0

VacL Vacation low

contention

number_of_queries_per_task:2,

%_of_relations_queried:90,

number_possible_relations:1048576,

%_of_user_tasks:98,

number_of_tasks:4194304

VacH Vacation

high

contention

number_of_queries_per_task:4,

%_of_relations_queried:60,

number_possible_relations:1048576,

%_of_user_tasks:90,

number_of_tasks:4194304

Yada Yada angle_constraint:15,

file_prefix:inputs/ttimeu1000000.2,

32

6CHAPTER 6: EMPIRICAL RESULTS

Our empirical results of all the four state-of-the-art STMs – RSTM[7], TL2[8], TinySTM[9],

and SwissTM[10] – were measured on a computer with 2 quad-core processors (section 5.1).

This chapter strives to make a quantitative comparison between the design peculiarities of

these STM implementations. In this chapter, we highlight the performance tradeoffs

embodied by these four different STM designs and present commonly used metrics to

characterize TM applications. To capture execution data from the execution of the

applications, we instrumented all these designs. The graphs of the experimental evaluation

and analysis of the results is also presented in this chapter.

6.1 A First-Order Runtime Analysis

It is quite important to have an idea about the execution time of the STAMP’s applications

before starting to examine other TM behaviors. The time of execution is measured from an

instant where multiple threads start executing transactions to an instant where they terminate

executing transactions. Hence any setup and shut down time is excluded [13]. To allow

direct comparison on our hardware platform, we measure the performance of ten variants of

the STAMP applications by presenting the execution time. The time of execution is

presented in order to show wellness of application scale with respect to the increasing

number of threads. It also presents the measure with respect to effectiveness of the

transactional execution of the applications. The execution time primarily depends on the

characteristics of both i.e. the application and the TM implementation [67].

Figure 7: Performance comparison of the different STM systems for each application

0

20

40

60

80

100

120

B
ay

G
en In
tr

K
m

L

km
H

Lb
r

Ss
2

V
ac

L

V
ac

H

Ya
d

a

E
x
ec

u
ti

o
n

 T
im

e

(a) Execution time of the applications

ported with RSTM.

1 thread 2 thread 4 thread 8 thread

0

20

40

60

80

100

120

B
ay

G
en In
tr

K
m

L

km
H

Lb
r

Ss
2

V
ac

L

V
ac

H

Ya
d

a

E
x
ec

u
ti

o
n

 T
im

e

(b) Execution time of the applications

ported with TL2.

1 thread 2 thread 4 thread 8 thread

0

20

40

60

80

100

120

B
ay

G
en In
tr

K
m

L

km
H

Lb
r

Ss
2

V
ac

L

V
ac

H

Ya
d

a

E
x

ec
u

ti
o

n
T

im
e

(c) Execution timeof the applications ported

with TinySTM.

1 thread 2 thread 4 thread 8 thread

0

20

40

60

80

100

120

B
ay

G
en In
tr

K
m

L

km
H

Lb
r

Ss
2

V
ac

L

V
ac

H

Ya
d

a

E
x

ec
u

ti
o

n
 T

im
e

(d) Execution time of the applications

ported with SwissTM.

1 thread 2 thread 4 thread 8 thread

33

Figure 7 presents how long, in seconds, the execution time of each of the target applications

ported to execute under our four STM systems. Each application was run for 1, 2, 4 and 8

threads to provide experimental results. Its purpose was to check how fast an STM runs with

respect to others by varying resource contention and scalability parameters. The execution

time bar charts normalized to sequential execution with code that does not have an extra

overhead. Thus, comparisons among the scalability of different applications are

straightforwardly visible. Most of the applications have smaller runtimes as the number of

threads rises. Figure 7 also shows that the Bay application does not scale well beyond four

cores, when we ported it with RSTM, TL2, and SwissTM, since for larger number of

processors, it degrades its performance.

Scalability [68] is the standard metric used to demonstrate how well applications execute

with more processing resources. It is the ratio of total time to the number of threads used. It

provides an important evaluation of the application’s parallelism, and runtime system’s

efficiency of an STM. This scalability motivates the study of the metrics described below.

6.2 Analyzed Metrics

For this evaluation, we record characteristics in tabular forms and visualization charts to

understand the behavior of an application that uses transactional memory because many

transactional workloads contain heterogeneous transactions and different synchronization

patterns throughout runtime execution. Since transactional memory is a scheme that imposes

the committing or aborting of transaction sequences, the first issue while trying to monitor

the transactional management is naturally the ratio of aborted transactions to committed

transactions. Later in this work, other values are observed, such as the transaction retry rate

in all four STMs.

6.2.1 Aborts per Commit (ApC)

In order to get better understanding of the transactional behavior of STAMP’s applications

we found ApC the most indicative metric. This criterion of performance comparison depicts

the ratio of aborted transactions to committed transactions. It is a measure of wasted

execution as granularity of a transaction corresponds directly to the time frame during which

transactions maintains read, write possession along with the amount of work lost on a

particular abort. This metric indicates the efficiency with which computing resources have

been utilized as amount of work committed is assessed by the workload inputs. Architectural

decisions can have vast influence and variations on the functions related to the transaction

abortion.

Often transactions conflict with each other. In order to deal with conflicts, there exists a

common approach which is to abort one of the conflicting transactions. A contention

manager is resorted by the transactional framework for the resolution of conflicts. This

conflict resolution depends on the policies of the contention manager as some transactions

are more likely to be getting aborted than others e.g. preference may be given to smaller or

larger transactions or to the transactions sharing smaller or higher resources etc.

The purpose of investigating it is that a good contention management should be able to

reduce ApC in an application that exhibit repeat conflicts. For instance, if a contention

manager aborts a long transaction and favors short transactions, this indicates that there may

be a poor contention management. Examining and studying the application may correspond

to the enhanced contention management policies. However it is very important as it assists in

quantifying the effects of other associated characteristics on the whole execution of the

application. For example, a workload containing those transactions which are highly

contentious but in fact they are only in execution for short intervals. It may expose quite less

34

actual contention than that of a workload which is comprised of less contentious transactions

but occurs frequently.

In tables 5-14 we are presenting the TM behavior of ten variants of the STAMP applications.

They include the number of transactions (Txns) and the number of aborts per commit (ApC).

Each application was run for 2, 4 and 8 threads to provide ApC results. As expected, with a

single thread ApC is zero. All the implementations show that a significant amount of work

has been wasted by the aborted transactions.

Results also showed that the most suitable STM is SwissTm for Bay, Gen, Intr, KmL, KmH,

VacL, VacH, and Yada as shown in table 5, 6, 7, 8, 9, 10, 13, and 14 respectively.

Furthermore, it was observed that SwissTM is also suitable for K-means and Vacation even

when ApC was set at high and low contention levels. However, there exists some difference

in the calculated values of ApC for high and low contention as shown in the table 8, 9,10,

and 13.The pattern in the difference suggested that for low contention levels the ApC levels

were also low and as the contention levels were increased values of ApCs also tend to

increase. In addition, for Ss2 application it was observed that TL2 STM is most suitable as

presented in the table 11. For Lbr application, it was observed that by varying the scalability,

suitability of STMs also vary i.e. for 2, 4 and 8 threads the most suitable STM are RSTM,

TinySTM, SwissTM respectively as shown in the table 10. In general, it was observed that

when we scale each application by 8 threads the most suitable STM tends to be SwissTM

apart from Ss2 application. These results were inferred on the basis of calculating minimum

ApC values for each application, as minimum ApC value corresponds to most suitable STM.

Results showed that the TinySTM was not suitable for application Gen, Intr, KmL, KmH,

and Yada as shown in the table 6, 7, 8, 9, and 14. Furthermore for VacH and Ss2 the STMs

which are not suitable are TL2 and RSTM respectively. These results were inferred on the

basis of calculating maximum ApC values for each application, as maximum ApC values

corresponds to least suitable STM.

Table 5: Transactional behaviors of Bay

Procs
RSTM TL2 TinySTM SwissTM

Txns ApC Txns ApC Txns ApC Txns ApC

2 2411 0.006221 2621 0.006124 2520 0.006746 925 0.005405

4 2691 0.017466 2851 0.013197 2201 0.012267 913 0.009858

8 2252 0.059059 2973 0.044845 2417 0.056268 885 0.019209

Table 6: Transactional behaviors of Gen

Procs
RSTM TL2 TinySTM SwissTM

Txns ApC Txns ApC Txns ApC Txns ApC
2 2489218 0.001 2494027 0.002 2489218 0.005793 2489220 0.000423

4 2489220 0.003 2500861 0.005 2489220 0.006575 2489220 0.002138

8 2489220 0.01 2514437 0.01 2489220 0.059450 2489220 0.003999

Table 7: Transactional behaviors of Intr

Procs
RSTM TL2 TinySTM SwissTM

Txns ApC Txns ApC Txns ApC Txns ApC

2 23428127 0.05 33438023 0.30 23428127 0.67 23428127 0.02

4 23428129 0.29 47910526 0.51 23428129 2.48 23428129 0.06

8 23428133 1.74 59110273 0.60 23428133 5.68 23428133 0.24

35

Table 8: Transactional behaviors of KmL

Procs
RSTM TL2 TinySTM SwissTM

Txns ApC Txns ApC Txns ApC Txns ApC
2 23428127 0.09 33438023 0.05 23428127 0.23 23428127 0.02

4 23428129 0.40 47910526 0.17 23428129 0.73 23428129 0.06

8 23428133 1.38 59110273 0.32 23428133 1.39 23428133 0.12

Table 9: Transactional behaviors of KmH

Procs
RSTM TL2 TinySTM SwissTM

Txns ApC Txns ApC Txns ApC Txns ApC

2 23428127 0.42 33438023 0.18 23428127 0.82 23428127 0.06

4 23428129 1.62 47910526 0.39 23428129 2.33 23428129 0.16

8 23428133 4.47 59110273 0.58 23428133 6.53 23428133 0.40

Table 10: Transactional behaviors of Lbr

Procs
RSTM TL2 TinySTM SwissTM

Txns ApC Txns ApC Txns ApC Txns ApC
2 1022 0.018591 1062 0.037665 1022 0.019569 1022 0.019569

4 1026 0.087719 1105 0.071493 1026 0.038986 1026 0.039961

8 1034 0.101547 1228 0.15798 1034 0.095745 1034 0.088975

Table 11: Transactional behaviors of Ss2

Procs
RSTM TL2 TinySTM SwissTM

Txns ApC Txns ApC Txns ApC Txns ApC
2 22362283 5E-06 22362291 4E-07 22362283 5E-06 22362283 2E-06

4 22362285 2E-05 22362335 2E-06 22362285 1E-05 22362285 4E-06

8 22362295 8E-05 22362444 7E-06 22362293 3E-05 22362293 9E-06

Table 12: Transactional behaviors of VacL

Procs
RSTM TL2 TinySTM SwissTM

Txns ApC Txns ApC Txns ApC Txns ApC

2 4194304 0.0005 4197789 0.00083 4194304 0.0006 4194304 4E-05

4 4194304 0.001 4204698 0.002472 4194304 0.0021 4194304 0.0001

8 4194304 0.004 4221569 0.006458 4194304 0.0071 4194304 0.0003

Table 13: Transactional behaviors of VacH

Procs
RSTM TL2 TinySTM SwissTM

Txns ApC Txns ApC Txns ApC Txns ApC
2 4194304 0.001 4255578 0.014399 4194304 0.002712 4194304 1E-04

4 4194304 0.003 4382163 0.042869 4194304 0.01135 4194304 0.0003

8 4194304 0.01 4766462 0.120038 4194304 0.040623 4194304 0.0009

Table 14: Transactional behaviors of Yada

Procs
RSTM TL2 TinySTM SwissTM

Txns ApC Txns ApC Txns ApC Txns ApC
2 23428127 0.25 33438023 0.424933 23428127 14.14 23428127 0.11

4 23428129 0.33 47910526 0.529542 23428129 29.70 23428129 0.22

8 23428133 0.36 59110273 0.517905 23428133 58.88 23428133 0.35

36

6.2.2 Transaction Retry Rate

STM systems normally support condition synchronization by the use of a retry mechanism

[24]. In this mechanism, a transaction self aborts explicitly and in the process it also

reschedules itself after detecting its precondition for the operation, which may not hold any

longer. The set of location which have been read by retryer are then tracked by the runtime,

and at the same time it also refrain these set of locations from getting rescheduled, until at

least any one of the location in the set is modified by any other transaction.

Classifying the total number of retries can give input to an STM regarding the retry policies.

Furthermore, it also can give input to the programmers on data layouts of application that

may be the reason of conflicts related to synchronization. In Figure 8, we could easily find

that the number of retries grow significantly with the number of threads, e.g. for TinySTM,

when we are running 8 threads, there are 7 times of the number of retries than that of 2

threads. Retries in large numbers indicate that the application lacks inherent concurrency, or

may be certain design choices of STM are causing unrequited conflicts. In order to

differentiate between these stated cases, numbers are collected by implementing different

STMs which highlight about three concerns that are related to the scalability of TM:

 If an application is not scaled even by having a low retry rate, it indicates the cause

is not likely associated to synchronization but may be with other causes like cache

performance or data layout etc.

 The designer of TM runtime should pay extra attention to the runtime behavior

specifically for transaction aborts. Even though the proportion of retries has not

much significance now, it may have a high growth rate if it is run on more cores by

utilizing numerous threads.

 The programmers should also get aware of the fact that the prospect of retries is

rapidly increasing when there are more threads. For this reason programmers should

incorporate more efforts in decreasing the overhead of abort and thus memory

accesses in the transactions will also be decreased.

Figure 8: No. of retries in Bayes for different STM implementations. Lower is better.

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8

N
o

. o
f

Tr
an

sa
ct

io
n

 R
et

ri
es

No. of Threads

TL2

RSTM

TinySTM

SwissTM

37

6.3 Validity Threats

There are some potential facts that limit the outcomes of this study. The following sections

explain the validity threats related to the experimentation.

6.3.1 Internal Validity

There are many types of STM systems, benchmarks and metrics. We have subjectively

chosen four STM systems and three metrics for the experimental purposes. Similarly,

benchmarks are also subjectively chosen to exploit the level of concurrency of the

underlying STM implementation. Hence threat of not using other systems, benchmarks and

metrics cannot be ruled out for this study.

We performed our experimentation up to 8 cores for the reason that our chosen STM

implementation and STAMP applications did not scale well beyond 8 cores. We analyzed

this scalability problem could be due to the following reasons:

 Lack of concurrency in the application – we use STAMP applications

 The implementation of an STM – we use RSTM, TL2, TinySTM, and SwissTM

 The system architecture – we use a computer with 2 quad-core processors in total 8

cores.

6.3.2 External Validity

Since, all the experiments were run on one machine due to limited resources. The overall

results of the experiment cannot be generalized for other machines hence results of the

current study are only generalizable to limited extent for 2 quad-core processors machine.

38

7CHAPTER 7: DISCUSSION AND RELATED WORK

In the current study, the non-trivial TM applications such as STAMP [11] have been

analyzed keeping the transactional behavior in context. Each application was used to show

the scalability of four STM implementations, and the metrics which were presented are

commonly used to characterize TM applications. Scalability is one of the classic metrics

which is utilized to present how well an application executes with more processing

resources. Scalability is the ratio of total time to total number of threads used. It is a key

measure of the application’s parallelism, and an STM runtime system’s efficiency. Thus,

comparisons among the scalability of different applications showed most of the applications

had smaller runtimes as the number of threads raised.

One of the key features of applications is that ApC can assist in determining the transactional

scalability of an application. Specifically in a scenario when distinct threads are involved in

constantly updating the same variables, there exists no such method of making critical

sections parallel, hence institutively it is anticipated that it will have large number of aborts.

In the case, where transactions may abort several times, there may be a need of dynamically

tuning the runtime system to restrain from excessive aborts. All of the four implementations

showed that there was a significant amount of work which was wasted by the aborted

transactions. Another useful metric which we chose in order to evaluate the performance of

STM was transaction retry overhead. Retries in large numbers indicate that an application

lacks inherent concurrency. Our work showed that retries rapidly increased as the number of

threads were raised.

As transactional memory is an emerging research area, little work has been done to

understand the performance tradeoffs of different implementations of STM.

Perfumo et al. in [13] performed execution characterizations of Haskell TM benchmarks;

however the metrics presented were different as discussed in this thesis. Furthermore, non-

trivial TM applications were also not considered in this paper. However this thesis provides a

detailed study of non-trivial TM applications.

Ansari in [67] profiled the execution of applications against DSTM2. This profiling and its

relation to the performance was applied to several popular non-trivial TM applications, such

as STAMP [2] applications i.e. Genome, KMeans, and Vacation. The aim of this profiling

was to get better understanding of the factors which may have any impact on the overall

performance. Statistical data presented in this thesis had similar goals as of Ansari’s work. In

this thesis 8 non-trivial applications have been ported across 4 STM implementations to

generate execution characteristics of applications.

Chung et al. in [69] presented a comprehensive study which looked into 35 distinct TM

applications in order to identify some key features that are related to transactional behavior.

Wealth of data was provided by evaluating the performance with respect to nested

transaction depth, transactions size, sizes of readset and writeset etc. They did not evaluated

non-trivial application TM applications which have been studied in this thesis, and they also

did not generate any execution characteristics as presented here.

39

CONCLUSION

In this thesis an attempt was made to study real world and complex TM applications i.e.

STAMP benchmark suite in order to characterize their transactional behaviors with STM

systems. In this report we have reported some figures associated with the performance in

conjunction with execution characteristics for the studied TM applications. The study has

been performed on four state-of-the-art STM implementations – RSTM, TL2, TinySTM,

SwissTM – to obtain execution data, and metrics to examine the execution characteristics of

these TM applications up to maximum 8 threads. These characteristics associated with the

execution provide key insights into the design of efficient STM systems for both

synchronization and parallelization. This thesis study has navigated through the metrics to

understand the observed scalability.

This dissertation makes the following observations:

 Transactional Memory is discussed in general with main focus on Software

Transactional Memory. TM’s potential advantages are defined along with its

different design alternatives.

 An overview of four different STM implementations encompassing RSTM, TL2,

TinySTM and SwissTM is presented.

 Performance comparison of four STM implementations is conducted on Execution

Time, Aborts per Commit and Transaction Retry Rate parameters.

 The SwissTM performs better than RSTM, TL2 and TinySTM while measuring

execution time and Aborts per Commit parameters.

 The TL2 performs better than RSTM, TinySTM and SwissTM while measuring

Transaction Retry Rate parameter.

By the comparison study done as part of this master thesis it can be summarized that,

 Additional cores and atomic safety tend to provide application with much more

increased and promising performance. However the overhead related to the TM

management may also be increased.

 It is hard to build an STM system that can perform consistently well in all kind of

situations.

40

FUTURE WORK

Transactional Memory is a lock free data-structure specifically designed to run on parallel

architectures. In this research work we emphasized on performance tradeoffs among

different Software Transactional Memory implementations. We have discussed in detail all

our chosen STM implementations, their potential strengths and weaknesses. Although we

have studied these systems qualitatively and quantitatively, which has helped us in coming to

a conclusion which STM implementation performs better than others, on the basis of our

selected performance metrics. But there is always a room for more research and better

understanding from a different view point, in a research work. As far as we consider, this

study can further be extended and researched in the future in the following ways:

 We compared performance tradeoffs of four software transactional memory systems

namely RSTM, TL2, TinySTM, and SwissTM. All these systems were implemented

using C/C++ language. This research could further be extended by investigating

some other software transactional memory systems that are built by using other

languages like Java, Haskell, C# etc.

 The metric selection is critical while performing performance tradeoffs, we chose

execution time, aborts per commit, and transaction retry rate. This could be

interesting if someone chose other metrics and perform performance comparisons.

By doing this, one can reach onto new conclusions that can find and provide help in

understanding software transactional memory systems from a different perspective.

 We run all our selected software transactional memory systems on the STAMP

Benchmark suit along with the chosen performance metrics. Many benchmarks have

been created by researchers and industry practitioners in order to evaluate the

parallel systems. Some of the benchmarks which have emerged are NBP OpenMP

[70], and SPEComp [71]. TM systems and performance metrics can be evaluated by

running on these benchmarks to see the strengths, and shortcomings of them.

 We conducted all our experiments up to 8 cores. This experiment can further be

conducted on more than 8 cores, to see the behavior of these STM systems while

executing on more cores.

 Finally, more future research work is required to cope with the issues such as

compatibility of present system architecture with the STM to fulfill the needs of

transactional management. It is mandatory to have such STMs which are applicable

in many cores.

41

REFERENCES

[1] A.-R. Adl-Tabatabai, et al., "Unlocking Concurrency," Queue, vol. 4, pp. 24-33,

2007.

[2] K. Fraser and T. Harris, "Concurrent programming without locks," ACM Trans.

Comput. Syst., vol. 25, p. 5, 2007.

[3] J. R. Larus and R. Rajwar, Transactional memory, 1st ed. [San Rafael, Calif.]:

Morgan & Claypool, 2007.

[4] M. Herlihy and J. E. B. Moss, "Transactional memory: architectural support for

lock-free data structures," SIGARCH Comput. Archit. News, vol. 21, pp. 289-300,

1993.

[5] N. Shavit and D. Touitou, "Software transactional memory," in Proceedings of the

fourteenth annual ACM symposium on Principles of distributed computing, Ottowa,

Ontario, Canada, 1995, pp. 204-213.

[6] P. Damron, et al., "Hybrid transactional memory," in Proceedings of the 12th

international conference on Architectural support for programming languages and

operating systems, San Jose, California, USA, 2006, pp. 336-346.

[7] V. J. Marathe, et al., "Lowering the Overhead of Software Transactional Memory,"

in ACM SIGPLAN Workshop on Transactional Computing, Held in conjunction with

PLDI 2006. Expanded version available as TR 893, Department of Computer

Science, University of Rochester, March 2006.

[8] D. Dice, et al., "Transactional Locking II," in Proceedings of the 20th International

Symposium on Distributed Computing, Stockholm, Sweden, 2006, pp. 194-208.

[9] P. Felber, et al., "Dynamic performance tuning of word-based software transactional

memory," in Proceedings of the 13th ACM SIGPLAN Symposium on Principles and

practice of parallel programming, Salt Lake City, UT, USA, 2008, pp. 237-246.

[10] A. Dragojevi, et al., "Stretching transactional memory," in Proceedings of the 2009

ACM SIGPLAN conference on Programming language design and implementation,

Dublin, Ireland, 2009, pp. 155-165.

[11] M. Chi Cao, et al., "STAMP: Stanford Transactional Applications for Multi-

Processing," in Workload Characterization, 2008. IISWC 2008. IEEE International

Symposium on, 2008, pp. 35-46.

[12] V. J. Marathe, et al., "Design tradeoffs in modern software transactional memory

systems," in Proceedings of the 7th workshop on Workshop on languages,

compilers, and run-time support for scalable systems, Houston, Texas, 2004, pp. 1-

7.

[13] C. Perfumo, et al., "The limits of software transactional memory (STM): dissecting

Haskell STM applications on a many-core environment," in Proceedings of the 5th

conference on Computing frontiers, Ischia, Italy, 2008, pp. 67-78.

[14] J. Lourenco, et al., "Understanding the behavior of transactional memory

applications," in Proceedings of the 7th Workshop on Parallel and Distributed

Systems: Testing, Analysis, and Debugging, Chicago, Illinois, 2009, pp. 1-9.

[15] G. E. Moore, "Cramming more components onto integrated circuits," in Readings in

computer architecture, ed: Morgan Kaufmann Publishers Inc., 2000, pp. 56-59.

[16] A. S. Grove, Only the paranoid survive! : the threat and promise of strategic

inflection points, 1st ed ed. New York: Currency Doubleday, 1996.

[17] H. Sutter and J. Larus, "Software and the Concurrency Revolution," Queue, vol. 3,

pp. 54-62, 2005.

[18] M. Olszewski, "A Dynamic Instrumentation Approach to Software Transactional

Memory " Master's Thesis, Department of Electrical and Computer Engineering,

University of Toronto, October, 2007.

[19] C. S. Ananian, et al., "Unbounded Transactional Memory," IEEE Micro, vol. 26, pp.

59-69, 2006.

42

[20] K. Olukotun and L. Hammond, "The Future of Microprocessors," Queue, vol. 3, pp.

26-29, 2005.

[21] L. Ceze, et al., "Bulk Disambiguation of Speculative Threads in Multiprocessors," in

Proceedings of the 33rd annual international symposium on Computer Architecture,

2006, pp. 227-238.

[22] R. Rajwar, et al., "Virtualizing Transactional Memory," in Proceedings of the 32nd

annual international symposium on Computer Architecture, 2005, pp. 494-505.

[23] I. William N. Scherer and M. L. Scott, "Advanced contention management for

dynamic software transactional memory," in Proceedings of the twenty-fourth

annual ACM symposium on Principles of distributed computing, Las Vegas, NV,

USA, 2005, pp. 240-248.

[24] T. Harris, et al., "Composable memory transactions," Commun. ACM, vol. 51, pp.

91-100, 2008.

[25] B. Saha, et al., "McRT-STM: a high performance software transactional memory

system for a multi-core runtime," in Proceedings of the eleventh ACM SIGPLAN

symposium on Principles and practice of parallel programming, New York, New

York, USA, 2006, pp. 187-197.

[26] D. J. Scales, et al., "Shasta: a low overhead, software-only approach for supporting

fine-grain shared memory," in Proceedings of the seventh international conference

on Architectural support for programming languages and operating systems,

Cambridge, Massachusetts, United States, 1996, pp. 174-185.

[27] C. C. Minh, et al., "An effective hybrid transactional memory system with strong

isolation guarantees," in Proceedings of the 34th annual international symposium on

Computer architecture, San Diego, California, USA, 2007, pp. 69-80.

[28] A. Shriraman, et al., "An integrated hardware-software approach to flexible

transactional memory," in Proceedings of the 34th annual international symposium

on Computer architecture, San Diego, California, USA, 2007, pp. 104-115.

[29] F. Tabba, et al., "NZTM: nonblocking zero-indirection transactional memory," in

Proceedings of the twenty-first annual symposium on Parallelism in algorithms and

architectures, Calgary, AB, Canada, 2009, pp. 204-213.

[30] S. Lie, "Hardware Support for Unbounded Transactional Memory," Master's Thesis,

Department of Electrical Engineering and Computer Science, Massachusetts

Institute of Technology, May 2004.

[31] S. Tomic, et al., "Hardware Transactional Memory with Operating System Support,

HTMOS," in Parallel Processing, ed, 2008, pp. 8-17.

[32] V. J. Marathe and M. L. Scott, "A qualitative survey of modern software

transactional memory systems," Technical Report TR 839, Department of Computer

Science, University of Rochester, June, 2004.

[33] P. Felber, et al., "Transactions are back---but are they the same?," SIGACT News,

vol. 39, pp. 48-58, 2008.

[34] S. Classen, "LibSTM: A fast and flexible STM Library," Master's Thesis, Laboratory

for Software Technology, Swiss Federal Institute of Technology, ETH Zurich, Feb,

2008.

[35] W. N. S. III and M. L. Scott, "Contention Management in Dynamic Software

Transactional Memory," in Proceedings of the ACM PODC Workshop on

Concurrency and Synchronization in Java Programs, St. John's, NL, Canada, July,

2004.

[36] R. Guerraoui, et al., "Toward a theory of transactional contention managers," in

Proceedings of the twenty-fourth annual ACM symposium on Principles of

distributed computing, Las Vegas, NV, USA, 2005, pp. 258-264.

[37] M. L. Scott. Applications Included with RSTM Web Page:

http://www.cs.rochester.edu/research/synchronization/rstm/applications.shtml.

[38] C. B. Seaman, "Qualitative Methods in Empirical Studies of Software Engineering,"

IEEE Trans. Softw. Eng., vol. 25, pp. 557-572, 1999.

http://www.cs.rochester.edu/research/synchronization/rstm/applications.shtml

43

[39] J. W. Creswell, Research design : qualitative, quantitative, and mixed methods

approaches, 2. ed. Thousand Oaks: Sage, 2003.

[40] T. Harris and K. Fraser, "Language support for lightweight transactions," SIGPLAN

Not., vol. 38, pp. 388-402, 2003.

[41] K. Fraser, "Practical lock freedom," Ph. D. dissertation, Computer Laboratory,

University of Cambridge, Feb, 2004.

[42] M. Herlihy, et al., "A flexible framework for implementing software transactional

memory," presented at the Proceedings of the 21st annual ACM SIGPLAN

conference on Object-oriented programming systems, languages, and applications,

Portland, Oregon, USA, 2006.

[43] R. Guerraoui, et al., "Polymorphic Contention Management in SXM," in DISC '05:

Proceedings of the nineteenth International Symposium on Distributed Computing,

Cracow, Poland, Sep, 2005, pp. 303-323.

[44] J. E. Gottschlich and D. A. Connors, "DracoSTM: a practical C++ approach to

software transactional memory," in Proceedings of the 2007 Symposium on Library-

Centric Software Design, Montreal, Canada, 2007, pp. 52-66.

[45] R. Ennals, "Software transactional memory should not be obstruction-free," Intel

Research Cambridge Tech Report IRC-TR-06-052,Jan, 2006.

[46] K. P. Eswaran, et al., "The notions of consistency and predicate locks in a database

system," Commun. ACM, vol. 19, pp. 624-633, 1976.

[47] M. Herlihy, et al., "Software transactional memory for dynamic-sized data

structures," in Proceedings of the twenty-second annual symposium on Principles of

distributed computing, Boston, Massachusetts, 2003, pp. 92-101.

[48] A. Dragojevic, et al., "Why STM can be more than a Research Toy," Technical

Report # LPD-REPORT-2009-003, University of Neuchatel, Switzerland,2009.

[49] V. J. Marathe, et al., "Adaptive Software Transactional Memory," in Proceedings of

the 19th International Symposium on Distributed Computing, Cracow, Poland, Sep,

2005, pp. 354–368.

[50] T. Riegel, et al., "A Lazy Snapshot Algorithm with Eager Validation," ed, 2006, pp.

284-298.

[51] L. Yossi , et al., "Anatomy of a Scalable Software Transactional Memory," in

TRANSACT '09: 4th Workshop on Transactional Computing, Feb, 2009.

[52] T. Riegel, et al., "Time-based transactional memory with scalable time bases," in

Proceedings of the nineteenth annual ACM symposium on Parallel algorithms and

architectures, San Diego, California, USA, 2007, pp. 221-228.

[53] M. F. Spear, et al., "Conflict Detection and Validation Strategies for

SoftwareTransactional Memory," in Proceedings of the Twentieth International

Symposium on Distributed Computing, Sep, 2006, pp. 179 - 193.

[54] C. Kotselidis, et al., "Investigating software Transactional Memory on clusters," in

IPDPS '08: IEEE International Symposium on Parallel and Distributed Processing,

2008, pp. 1-6.

[55] D. M. Chickering, et al., "A Bayesian approach to learning Bayesian networks with

local structure," in UAI ’97: Proceedings of the 13th Conference on Uncertainty in

Artificial Intelligence, pp. 80-89.

[56] A. Moore and M. S. Lee, "Cached Sufficient Statistics for Efficient Machine

Learning with Large Datasets," Journal of Artificial Intelligence Research, vol. 8,

pp. 67-91, March, 1998.

[57] R. M. Karp and M. O. Rabin, "Efficient randomized pattern-matching algorithms,"

IBM J. Res. Dev., vol. 31, pp. 249-260, 1987.

[58] B. Haagdorens, et al., "Improving the Performance of Signature-Based Network

Intrusion Detection Sensors by Multi-threading," in Proceedings of 5th International

Workshop on Information Security Applications, Jeju Island, Korea, August, 2004,

pp. 188-203.

44

[59] R. Narayanan, et al., "MineBench: A Benchmark Suite for Data Mining Workloads,"

IEEE International Symposium on Workload Characterization (IISWC), pp. 182-

188, Oct, 2006.

[60] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms:

Kluwer Academic Publishers, 1981.

[61] C. Y. Lee, "An Algorithm for Path Connections and its Applications," IRE

Transactions on Electronic Computers, vol. EC-10, pp. 346-365, September, 1961.

[62] I. Watson, et al., "A Study of a Transactional Parallel Routing Algorithm," in

Proceedings of the 16th International Conference on Parallel Architecture and

Compilation Techniques, 2007, pp. 388-398.

[63] D. Bader and K. Madduri, "Design and Implementation of the HPCS Graph Analysis

Benchmark on Symmetric Multiprocessors," in HIPC '05: Proceedings of 12th

International Conference on High Performance Computing, Goa, India, Dec, 2005,

pp. 465-476.

[64] http://www.spec.org/jbb2000/index.html. Standard Performance Evaluation

Corporation, SPECjbb2000 Java Business Benchmark.

[65] J. Ruppert, "A Delaunay refinement algorithm for quality 2-dimensional mesh

generation," J. Algorithms, vol. 18, pp. 548-585, 1995.

[66] M. Kulkarni, et al., "Using Transactions in Delaunay Mesh Generation," in

Proceedings of the Workshop on Transactional Memory Workloads, Ottawa,

Canada, June, 2006, pp. 23-31.

[67] M. Ansari, et al., "Profiling Transactional Memory Applications," in Proceedings of

the 17th Euromicro International Conference on Parallel, Distributed and Network-

based Processing, Washington, DC, 2009, pp. 11-20.

[68] M. Ansari, et al., "On the Characterisation of Complex Transactional Memory

Applications," Preprint Series, CSPP-44, School of Computer Science, The

University of Manchester, March, 2008.

[69] J. C. Chung, Hassan. Minh , Chi Cao. Mcdonald , Austen. Carlstrom , Brian D.

Kozyrakis , Christos. Olukotun, Kunle, "The Common Case Transactional

Behavior of Multithreaded Programs," in Proceedings of the 12th International

Conference on High-Performance Computer Architecture, 2006.

[70] A. Marowka, "Performance of OpenMP Benchmarks on Multicore Processors," in

Proceedings of the 8th international conference on Algorithms and Architectures for

Parallel Processing, Agia Napa, Cyprus, 2008, pp. 208-219.

[71] V. Aslot, et al., "SPEComp: A New Benchmark Suite for Measuring Parallel

Computer Performance," in Proceedings of the International Workshop on OpenMP

Applications and Tools: OpenMP Shared Memory Parallel Programming, 2001, pp.

1-10.

http://www.spec.org/jbb2000/index.html

