Development and evaluation of dispatching strategies for the IPSI AGV system

by Patrik Kosowski and Olof Persson
Container Terminal Issues:
• Increasing overall throughput (1984-2004, 39 million to 356 million TEU)
• Space restrictions
• Provide as fast ship turnaround time as possible ($180 000 operating cost)
• Automated technology
e.g. Automated Guided Vehicles (AGV)

Automated Guided Vehicles (AGV):
• IPSI (Improved Port Ship Interface) AGV:
a cassette-based AGV system
• Problem Areas: Dispatching, Routing, Navigation,…
• No studies on dispatching IPSI AGVs: Greedy, Look ahead, Inventory and Hybrid.
Equipment found at a CT

- Quay-Crane
- Trucks
- Straddle Carrier
- AGV
- Stacking-Crane
Equipment found at a CT

- Quay-Crane
- Trucks
- Straddle Carrier
- AGV
- Stacking-Crane
Equipment found at a CT

- Quay-Crane
- Trucks
- Straddle Carrier
- AGV
- Stacking-Crane
Equipment found at a CT

- Quay-Crane
- Trucks
- Straddle Carrier
- AGV
- Stacking-Crane
Equipment found at a CT

- Quay-Crane
- Trucks
- Straddle Carrier
- AGV
- Stacking-Crane
Equipment found at a CT

- Quay-Crane
- Trucks
- Straddle Carrier
- AGV
- Stacking-Crane
Equipment found at a CT

- Quay-Crane
- Trucks
- Straddle Carrier
- AGV
- Stacking-Crane
Equipment found at a CT

- Quay-Crane
- Trucks
- Straddle Carrier
- AGV
- Stacking-Crane
Visualization of CT

CT Simulation

IPSI AGV 1

IPSI AGV 2

IPSI AGV 3
Investigated Dispatching Strategies

- **Greedy**
 - Lowest cost based on distance
 - FIFO (First In First Out)

- **Greedy Look-Ahead**
 - Lowest combination cost based on distance
 - Using due times for job selection

- **Inventory**
 - Highest crane inventory level
 - FCFS (First Come First Served)

- **Hybrid**
 - Combination of Greedy and Inventory
Simulation Model

Active entities
- Quay-Crane
- AGV
- Stacking-Crane

Non-active entities
- Ship (Job list)
- Cassette
- Yard
The AGV Simulator

- DESMO-J / JAVA
- Process oriented implementation
 - Own lifecycles and data structures
- Verification
 - Basic scenarios without interruptions was calculated
 - Quay-Crane Service time
 - AGV traveled distance
Simulation Experiment

Yard parameters:
- Number of jobs: 6960
- Number of containers: 12480
- Yard width: 50 meters
- Buffer width: 20 meters

QC parameters:
- Number of Quay-Cranes: 6
- Quay-Crane throughput: 40 / h
- Quay-Crane buffer size: 6

AGV parameters:
- AGV speed without any load: 12.5 m/s
- AGV speed with half full load: 11.1 m/s
- AGV speed with maximum load: 8.3 m/s
- AGV raising and lowering delay: 15 seconds

SC parameters:
- Number of Stacking-Cranes: 12
- Stacking-Crane throughput: 40 / h
- Stacking-Crane buffer size: 8

Simulations:
- Pre-Runs without interruptions: 112
- Number of AGVs: 6 10 14 18
 - Number of Cassettes: 42 42 42 42
- Number of Runs: 10*4*12
Results – Unloading time

GREEDY
GREEDY LOOK AHEAD
INVENTORY
HYBRID

AGV - Cassette

Seconds

0 50000 100000 150000 200000 250000 300000 350000

Results – Unloading cost

Observations:
• High cost = low amount of cassettes
• IPSI AGV specifications

<table>
<thead>
<tr>
<th>AGVs-Cassettes</th>
<th>Greedy</th>
<th>G. Look-Ahead</th>
<th>Inventory</th>
<th>Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-18</td>
<td>$108 437</td>
<td>$105 659</td>
<td>$179 169</td>
<td>$113 183</td>
</tr>
<tr>
<td>6-36</td>
<td>$9 345</td>
<td>$9 325</td>
<td>$73 781</td>
<td>$9 660</td>
</tr>
<tr>
<td>6-42</td>
<td>$8 549</td>
<td>$8 524</td>
<td>$69 394</td>
<td>$8 533</td>
</tr>
<tr>
<td>10-18</td>
<td>$100 085</td>
<td>$97 150</td>
<td>$137 497</td>
<td>$105 390</td>
</tr>
<tr>
<td>10-36</td>
<td>$9 928</td>
<td>$9 948</td>
<td>$14 201</td>
<td>$10 073</td>
</tr>
<tr>
<td>10-42</td>
<td>$9 708</td>
<td>$9 711</td>
<td>$10 082</td>
<td>$9 714</td>
</tr>
<tr>
<td>14-18</td>
<td>$98 252</td>
<td>$94 441</td>
<td>$117 653</td>
<td>$105 249</td>
</tr>
<tr>
<td>14-36</td>
<td>$11 047</td>
<td>$11 003</td>
<td>$12 453</td>
<td>$11 189</td>
</tr>
<tr>
<td>14-42</td>
<td>$10 874</td>
<td>$12 047</td>
<td>$10 913</td>
<td>$10 886</td>
</tr>
<tr>
<td>18-18</td>
<td>$99 513</td>
<td>$93 995</td>
<td>$98 947</td>
<td>$105 580</td>
</tr>
<tr>
<td>18-36</td>
<td>$12 214</td>
<td>$12 182</td>
<td>$12 824</td>
<td>$12 318</td>
</tr>
<tr>
<td>18-42</td>
<td>$12 046</td>
<td>$12 060</td>
<td>$12 063</td>
<td>$12 038</td>
</tr>
</tbody>
</table>
Epilogue

Conclusions:
• Performance dependent on cassettes
• One AGV per QC (when using 6 QCs)
• Cost est. more suited than inventory based

Future Work:
• Find solutions for the job due time problem (Look Ahead)
• More investigation on the Hybrid algorithm
• Increase the number of runs with other scenarios

Questions:
Thank You!

THE END