

Bachelor Thesis

Polynomial based RSA

Author: Izabela Beatrice Gafitoiu

Supervisor: Per-Anders Svensson

Examiner: Marcus Nilsson

Date: 2015-06-10

Course Code: 2MA11E

Subject: Mathematics

Level: Bachelor

Department Of Mathematics

Abstract

The RSA public-key cryptosystem has a major role in information security even today, after more
than three decades since it was invented. The reason why is that the security provided by this algorithm
relies on the fact that integer factorization is considered to be a hard problem. The day someone finds an
efficient algorithm to factor integers, is the day when the RSA cryptosystem, used millions of times every
day, will not be secure anymore. A good perspective is to look ahead of that day, and start thinking
about alternatives. A polynomial version of the RSA cryptosystem is one such idea someone can think
about. The idea will be analyzed from three main points of view, namely whether it is easy to encrypt
messages, whether it is correct, that is whether the private key will always restore the plaintext, and the
last point to be analyzed is the degree of difficulty of breaking the code, or in other words how secure the
algorithm is. The original RSA cryptosystem and the polynomial version will be discussed in parallel all
the time.

It will result that the mathematical operations used in the encryption and decryption processes
become more complex in the case of the polynomial RSA, and the problem behind its security has been
well and successfully studied along the years.

That being said, it will follow that the polynomial version of the RSA public-key cryptosystem is not
a good alternative if one day someone succeeds breaking the original RSA.

Polynomial based RSA

Contents

1 Introduction 2

2 RSA Construction 4
2.1 Key-Construction . 4

2.1.1 Original RSA . 4
2.1.2 Polynomial RSA . 7

3 Why does it work? 16

4 Security 20
4.1 Integer factorization . 20

4.1.1 Special-purpose factoring algorithms . 20
4.1.2 General-purpose factoring algorithms . 21

4.2 The RSA problem . 22
4.3 Polynomial factorization . 23

4.3.1 Berlekamp’s algorithm . 23

5 Discussions 25

6 Application 26
6.1 Encoding . 26
6.2 Choosing the irreducible polynomials . 26
6.3 Factoring polynomials . 27
6.4 Encrypting . 27

Appendices 30
.1 Encryption . 31
.2 Decryption . 32

Chapter 0 Izabela Gafitoiu 1

Polynomial based RSA

Chapter 1

Introduction

Keeping information private while communicating over the internet and digital data secure are major
concerns in the virtual world. Personal information that goes into the wrong hands might have devastat-
ing effects. The art and science of secure transmission of confidential information defines cryptography.
Encryption is the process of transforming information so that it is unreadable to anyone but the intended
receiver, whereas decryption is the process of restoring the message that was sent. Asymmetric cryp-
tography, or public-key cryptography, defines a class of cryptographic algorithms which have two kind
of keys, a public key, used for encryption, and a private key, used for decryption. An algorithm having
a public key implies that everybody can have access to it, everybody can encrypt messages using that
key, while only the holder of the private key can decrypt messages. A real-world analogy to public-key
cryptography is a padlock. Everyone can easily close a padlock, while doing the opposite becomes a
challenge if you do not have the right key that opens the padlock. Imagine that Alice sends an open
padlock to Bob. Bob writes a message, puts it in a box, and then he locks the box with the padlock
received from Alice and sends the box to her. It does not matter through how many hands the box will
travel, no one but Alice can open it since she has the key to the padlock.

Such kind of algorithm ensures nowadays the authenticity and privacy of the email and the security
of electronic credit-card payment systems.

Back in 1977, Ronald Rivest, Adi Shamir, and Leonard Adleman invented what we call today the
RSA Public-Key Cryptosystem. The latter authors published their work in 1978 [26]. The public key in
this cryptosystem consists of the value n, which is called the modulus, and the value e, which is called
the public exponent. The private key consists of the two prime factors of n, p and q, and the value
d, which is called the private exponent. In other words the pair (n, e) denotes the public key used for
encryption, and being available to everyone, and the triple (p, q, d) denotes the private key, used for
decryption, and being available only to the intended receiver. More than thirty years since its invention,
the cryptosystem is used millions of times every day, passing thus, the test of time.

What is therefore the reason behind its longevity? Not difficult to imagine, the combination between
the easiness to encrypt messages and the difficulty to break them has made this coding method so popular
and reliable.

At the heart of RSA’s security is the mathematical problem of integer factorization. Despite hun-
dreds of years of study, nobody has yet discovered an efficient algorithm to find the prime factors of
a presumably large integer. What is interesting is that a fast method for integer factorization exists
actually in theory, but it runs on computers that have not yet been built [30]. On such a computer the
task of integer factorization would be as easy as integer multiplication.

An important area in cryptography is the alternatives one has, in case one of the current public-key
cryptosystems is broken in the future. What if one day someone finds an efficient algorithm for integer
factorization? We have to find another solution quickly, another way to maintain the security of our
private information, which is so important for us.

This is therefore the reason why, in this report we will take a look at the polynomial version of the
RSA public-key cryptosystem. In the second chapter we will firstly explain how the original algorithm
works, as well as the polynomial version of it. Proceeding to the third chapter, we will see why both
versions of the same idea work for encrypting messages and successfully decrypting them, while in the
fourth chapter we will analyze the theory behind the cryptosystem’s security. In particular, algorithms

Chapter 1 Izabela Gafitoiu 2

Polynomial based RSA
for integer factorization as well as for polynomial factorization will be discussed. In the fifth chapter
we will find a comparison between the original RSA and the polynomial RSA, displaying key strengths
of them both and raising the conclusion on whether the version of RSA, proposed in this report, meets
the requirements to replace the original version of RSA. In the sixth chapter an interactive computer
application will be presented. The application allows any user to build up values for the polynomial
RSA, testing encryption and decryption for an input of his choice. How to use the application as well as
examples of an execution of it, will be also shown there.

Chapter 1 Izabela Gafitoiu 3

Polynomial based RSA

Chapter 2

RSA Construction

RSA is a public key cryptosystem, meaning that the key used for encryption is made public, while the
key used for decryption is kept private. Everyone can encrypt messages but only the holder of the private
key can decrypt them.

2.1 Key-Construction
2.1.1 Original RSA
In order to understand how the algorithm works, as well as easily follow the steps involved in the
encryption and decryption process, we will recall some fundamental topics from elementary number
theory.

Theorem 2.1. Let a and b be integers with b > 0. Then there exists unique integers q and r such that

a = bq + r

with 0 ≤ r < b.

For a proof of the theorem see [16].

Definition 2.1. For any positive integer n > 1, let Zn denote the set {0, 1, . . . , n− 1}. An element
a ∈ Zn is invertible modulo n if and only if there is an element b ∈ Zn such that ab ≡ 1(mod n). The
element b exists if and only if the greatest common divisor of a and n, namely the largest integer d such
that d|a and d|n, denoted by gcd(a, n), is equal to 1.

Theorem 2.2. The Euclidean algorithm is a method for computing the greatest common divisor of
two positive integers. The first step in finding the gcd between two integers, say a and b with a > b, is
dividing a by b, hence represent a in the form

a = q1b+ r1.

If r1 = 0 then b divides a and the greatest common divisor is b. If r 6= 0, then continue by representing
b in the form

b = q2r1 + r2.

Continue in this way until the remainder is zero

r1 = q3r2 + r3

...

rk−2 = qkrk−1 + rk

rk−1 = qk+1rk.

Chapter 2 Izabela Gafitoiu 4

Polynomial based RSA
It results that gcd(a, b) = rk.

The extended Euclidean algorithm finds integers x and y such that

ax+ by = gcd(a, b).

The first step is writing the last non-zero remainder from the next-to-last equation in the Euclidean
algorithm, as a linear combination of the other two terms, namely rk = rk−2 − qkrk−1. The next
step is writing the remainder obtained before the last non-zero remainder as a linear combination of
the other terms, and substituting it in the equation obtained previously. More precisely, write rk−1 =
rk−3 − qk−1rk−2, and substitute it in rk = rk−2 − qkrk−1. Continue in this way until rk will be a linear
combination of a and b.

For a proof of the theorem see [27] (p.98-99, p.104).
Let us illustrate this with an example.

Example 2.1. Consider the set Z28. Find the inverse, in case it exists, for the elements 2 and 5
respectively, in Z28 .

Solution: Finding the inverse of the element 2 in Z28 is equivalent to solving the equation:

2 · x ≡ 1 mod 28,

for x ∈ Z28. The first thing we need to do is to check whether the inverse of 2 exists. How do we do
this? We compute the gcd(2, 28) and if the result is equal to 1 then we proceed to finding the inverse.
In this particular case we see the prime factorizations of 2 and 28, namely 2 = 2 · 1 and 28 = 22 · 7,
from which we conclude that gcd(2, 28) = 2. It follows that we cannot find the inverse of 2 because it
does not exist.

Let us now attempt to find the inverse of the element 5 in Z28. This is equivalent to solving the
congruence:

5 · x ≡ 1 mod 28,

for x ∈ Z28. Does the inverse exist? In order to answer this question we firstly compute the gcd(5, 28),
using this time the Euclidean algorithm since it is more efficient than prime factorization method
used previously. In what follows we will show how the Euclidean algorithm is used.
First, divide 28, the larger of the two integers, by 5, the smaller, to obtain

28 = 5 · 5 + 3.

Any divisor of 5 and 3 must also be a divisor of 28 = 5 · 5 + 3. Thus, the greatest common divisor of 5
and 28 is the same as the greatest common divisor of 5 and 3. This means that the problem of finding
gcd(28, 5) has been reduced to the problem of finding gcd(5, 3).

Next, divide 5 by 3 to obtain
5 = 3 · 1 + 2.

Any divisor of 3 and 2 must also be a divisor of 5 = 3 · 1 + 2. It follows that gcd(5, 3) = gcd(3, 2).
Next, divide 3 by 2 to obtain

3 = 2 · 1 + 1.

Continue by dividing 2 by 1, to obtain
2 = 2 · 1 + 0.

Because 1 divides 2, it follows that gcd(2, 1) = 1. Furthermore, because gcd(5, 28) = gcd(5, 3) =
gcd(3, 2) = gcd(2, 1) = 1, the original problem has been solved.

Finding the greatest common divisor of 28 and 5 being equal to 1, it means that we can go on and
find the inverse of 5, since we know now that it exists. For this we will use the extended Euclidean
algorithm that will be explained step by step in what follows.

To find the greatest common divisor of 5 and 28, the Euclidean algorithm uses 4 divisions as we
previously saw. Using the second-to-last division (the third one), we can express gcd(5, 28) = 1 as a
linear combination of 3 and 2. We find that

1 = 3− 2 · 1.

Chapter 2 Izabela Gafitoiu 5

Polynomial based RSA
The second division tells us

2 = 5− 3 · 1.

Substituting this expression for 2 into the previous equation, we can express 1 as a linear combination
of 3 and 5. We get

1 = 3− 2 · 1 = 3− 1 · (5− 3 · 1) = −5 + 2 · 3.

The first division tells us that
3 = 28− 5 · 5.

Substituting this expression for 3 into the previous equation, we can express 1 as a combination of 28
and 5. We conclude that

1 = −5 + 2(28− 5 · 5) = 2 · 28− 11 · 5.

Now writing this equation as a congruence equation modulo 28 we get

2 · 28− 11 · 5 ≡ 1 mod 28.

But 2 · 28 is equivalent to 0 modulo 28, therefore

−11 · 5 ≡ 1 mod 28.

Hence we have now found an integer belonging to Z28 such that when multiplied by 5 modulo 28 it gives
the result 1. As such -11, which is congruent to 17 modulo 28 , is the inverse of 5.

Definition 2.2. Let n ≥ 1 be an integer. The Euler phi function denoted by φ(n) is the number of
positive integers less than n that are relatively prime to n.

Example 2.2. Calculate the value of the Euler phi function for 12, 13 and 14.

Solution: In order to calculate φ(12) we look for the integers smaller than 12 , which are relatively
prime to 12. The number of such integers represents the value of the Euler phi function.

φ(12) = | {1, 5, 7, 11} | = 4.

In the same way
φ(13) = | {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} | = 12

and
φ(14) = | {1, 3, 5, 9, 11, 13} | = 6.

We now recall how one forms both the public and private key for the RSA cryptosystem:

1. Choose two large primes p and q such that p 6= q. Finding a large range of primes is usually done
with the help of a prime number sieve, which works by creating a list of all integers up to a
desired limit and progressively removing the composite numbers until only primes are left. The
oldest such sieve is the sieve of Eratosthenes. For generating large primes used in cryptography,
a random range of odd numbers of a desired size is sieved against small primes (usually all primes
less than 65000). The remaining probable primes are randomly tested using primality tests, such
as the Miller-Rabin primality test, which states whether the given input is either not a prime
or a probable prime [17].

2. Put n = pq.

3. Calculate the number of elements in Zn that are invertible modulo n. Denote it s. We notice here
that the number of invertible elements in Zn is in fact the number of elements which are relatively
prime to n.

Theorem 2.3. The number of invertible elements in Zn denoted by s, with n being the product of
two primes p and q, is given by the following formula:

s = (p− 1)(q − 1).

Chapter 2 Izabela Gafitoiu 6

Polynomial based RSA
Proof. In order to calculate the number of invertible elements in Zn, simply enough to imagine,
we have to delete from this set those elements that are not invertible. We recall that an element a
belonging to a set Zm has an inverse, say ainv in this set, such that

aainv ≡ 1 mod m,

if and only if gcd(a,m) = 1. See [7].
This means that we have to delete those elements that are not relatively prime to n. Since n is
the product of the two primes p and q it results that the greatest common divisor of n and p or of
n and a multiple of p will always be p .The same happens for q. Thus, n and any multiple of p or
q are not relatively prime. Therefore in order to find the invertible elements, we have to delete all
multiples of p and all multiples of q and of course add the common multiples of p and q because
we do not want to delete one element twice.
Firstly, we find the multiples of p and q respectively in the set Zpq.The multiples of p are: 0 · p, 1 ·
p, . . . , (q − 1) · p. The multiples of q are: 0 · q, 1 · q, . . . , (p − 1) · q. We see here that there are q
multiples of p and p multiples of q. Now we have to find the common multiples. Before doing that
we recall the Fundamental Theorem of Arithmetic which states that every integer greater
than 1 either is prime itself or is the product of prime numbers. The factorization into primes is
unique [19]. We know therefore that the factorization of n into the product of the prime numbers
p and q is unique. As such this is the reason why the only common multiple of p and q can be 0.
We recall now that we said we would find the number of invertible elements in Zn by deleting
from the number of all elements in Zn, namely n elements, the number of elements that are not
invertible. In other words, in our case s is :
s =number of elements in Zn− multiples of p− multiples of q+ common multiples of p and q.
Having found all the values we need in the formula above, we can replace them, getting thus the
following:

s = n− q − p+ 1 = pq − p− q + 1 = (p− 1)(q − 1).

This proves the theorem.

4. Choose e ∈ Zs such that gcd(e, s) = 1.

5. Compute the multiplicative inverse d = e−1 mod s.

The pair (n,e) will be the public key, while the triple (p,q,d) represents the private key. To encrypt, the
plaintext (the message to be sent) is first encoded into a sequence of integers m1, m2,. . . ,mk ∈ Zn. Each
mi is then encrypted by computing

ci = me
i mod n.

To decrypt, one has to compute
mi = cd

i mod n.

How and why the decryption formula works, will be explained in Chapter 3.

2.1.2 Polynomial RSA
In order to fully understand how the polynomial version of RSA, proposed in this report, works, one
needs a quick refreshment of several concepts found in abstract algebra.

Definition 2.3. Let M be a set. By a binary operation ∗ on M we mean a mapping

M ×M 3 (a, b) 7−→ a ∗ b ∈M.

Example 2.3. Which of the following arithmetic operations +,−,×,÷ are binary operations on N?

Chapter 2 Izabela Gafitoiu 7

Polynomial based RSA
Solution: Let us first check whether addition is a binary operation on N. The definition above tells

us that for the operation to be binary then for any two numbers in N, their addition should also belong
to N, namely for a, b ∈ N, a + b ∈ N. This holds for every number in N, therefore addition is a binary
operation on N.

For subtraction, the question is whether the difference of two natural numbers is always a natural
number, namely if for a, b ∈ N , a − b ∈ N. This is not true for all a, b ∈ N, since if a is smaller than
b, then their difference would be a negative number, which is not in N. Therefore subtraction is not a
binary operation on N.

For multiplication to be a binary operation, then a× b should belong to N for any a, b ∈ N. This is
true so multiplication is in fact a binary operation on N.

In the case of division, the question is whether any two natural numbers, when divided, give a natural
number, namely if for a, b ∈ N, a÷b ∈ N. The answer is no since for two relatively prime natural numbers,
their division is definitely not a natural number. Therefore division is not a binary operation on N.

Definition 2.4. Let G be a non-empty set and ∗ a binary operation on G. The pair (G, ∗) is called a
group if

• ∗ is associative, which means that for all a, b, c ∈ G (a ∗ b) ∗ c = a ∗ (b ∗ c),

• G contains an identity element with respect to ∗, meaning that there is an element e ∈ G such that
for all a ∈ G a ∗ e = e ∗ a = a ,

• each element in G has an inverse in G with respect to ∗, meaning that for every a ∈ G, there exists
an element a′ ∈ G such that a ∗ a′ = a′ ∗ a = e.

If in addition ∗ is commutative, meaning that for all a,b ∈ G a ∗ b = b ∗ a, then the group is called an
Abelian group.

The group G is said to be finite if it has a finite number of elements. In this case, the number of
elements in G is called the order of G and is denoted by |G|. A group with infinitely many elements is
said to have infinite order.

Example 2.4. Show that (Z5,+), where addition is a binary operation defined as addition modulo 5,
forms an Abelian group.

Solution: In order to prove that the given structure is an Abelian group, we have to show that the
three axioms defined in the definition above, are true.

1. Associativity
We easily see that if for any a, b, c ∈ Z5, (a+ b) + c = a+ (b+ c) holds.

2. Identity element
There exists an element e ∈ Z5 such that for any a ∈ Z5, e+ a = a+ e = a , namely e = 0.

3. Inverse element
There exists an element a′ ∈ Z5 for every a ∈ Z5, such that a+ a′ = a′ + a = e, namely a′ = −a.
Because the addition modulo 5 is also commutative, since for any a, b ∈ Z5 a + b = b + a, and
because we have proved that the three axioms above hold, we conclude that (Z5,+) is an Abelian
group.

Definition 2.5. If a subset H of a group G is closed under the binary operation of G, and if H with
the induced operation from G is itself a group, then H is a subgroup of G.

Example 2.5. One can see that (Q+, ·) is a subgroup of (R+, ·).

Definition 2.6. Let H be a subgroup of a group G. The subset aH = ah|h ∈ H of G is the left coset
of H containing a, while the subset Ha = ha|h ∈ H is the right coset of H containing a.

Example 2.6. Exhibit the left and the right cosets of 5Z the subgroup of Z.

Chapter 2 Izabela Gafitoiu 8

Polynomial based RSA
Solution: The notation here is additive so the left coset of 5Z containing l is l+ 5Z. Taking l = 0, we
see that

5Z = {. . . ,−15,−10,−5, 0, 5, 10, 15, . . . }

is itself one of its left cosets, the coset containing 0. To find another left coset, we select an element of
Z, not in 5Z, say 1, and find the left coset containing it. We have

1 + 5Z = {. . . ,−14,−9,−4, 1, 6, 11, 16, . . . } .

The two left cosets, 5Z and 5Z + 1, do not exhaust Z. For example, 2 is in none of them. The left coset
containing 2 is

2 + 5Z = {. . . ,−13,−8,−3, 2, 7, 12, 17, . . . } .

The left coset containing 3 is

3 + 5Z = {. . . ,−12,−7,−2, 3, 8, 13, 18, . . . } .

The left coset containing 4 is

4 + 5Z = {. . . ,−11,−6,−1, 4, 9, 14, 19, . . . } .

It is clear that these five left cosets we have found do exhaust Z, so they are the partition of Z into left
cosets of 5Z.

Since Z is abelian, the left and right cosets are the same, so the partition of Z into right cosets is the
same.

Definition 2.7. The order of an element a belonging to a finite group G, denoted by o(a) is the smallest
positive integer k such that

ak = 1G,

where 1G is the identity element of the group.

Theorem 2.4. The order of an element of a finite group divides the order of the group.

For a proof of the theorem see [8] (p.101).

Definition 2.8. A ring is a triple (R,+, ·), where R is a set and where + and · are binary operations
on R, called addition and multiplication respectively, such that

• (R,+) is an Abelian group

• · is associative

• · is distributive over +, meaning that for all a, b, c ∈ G, the following two equalities hold

a · (b+ c) = (a · b) + (a · c)

(b+ c) · a = (b · a) + (c · a) .

Example 2.7. Show that the structure (Z5,+, ·), where addition and multiplication are binary opera-
tions defined as addition and multiplication modulo 5, forms a ring.

Solution: In order to prove what it is required, we have to show that the three axioms, defined in
the above definition, hold.

1. (Z5,+) forms an Abelian group
We have proved this in the previous example.

2. Associativity of ·.
It is clear that for any a, b, c ∈ Z5 the associativity law holds (a · b) · c = a · (b · c).

Chapter 2 Izabela Gafitoiu 9

Polynomial based RSA
3. Distributivity

We have learned in our first years of school that multiplication is distributive over addition, namely
that a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a both are true. The same happens also for
addition and multiplication modulo an integer.
Therefore we conclude that that (Zn,+, ·) is a ring.

Definition 2.9. An integral domain D is a commutative ring with unity 1 6= 0 (the multiplicative
identity element), in which the product of any two nonzero elements is nonzero.

Example 2.8. We notice that Z and Zp for any prime p, are integral domains.

Definition 2.10. An additive subgroup N of a ring R satisfying the properties

aN ⊆ N

and
Nb ⊆ N

for all a, b ∈ R is an ideal.

Definition 2.11. If R is a commutative ring with unity and a ∈ R, the ideal ra|r ∈ R of all multiples
of a is the principal ideal generated by a and is denoted by 〈a〉. An ideal N of R is a principal ideal if
N = 〈a〉 for some a ∈ R.

Example 2.9. Every ideal of the ring Z is of the form nZ, which is generated by n, so every ideal of Z
is a principal ideal.

Definition 2.12. Let N be an ideal of a ring R. Then the additive cosets of N form a ring R/N with
the binary operations defined by

(a+N) + (b+N) = (a+ b) +N

(a+N)(b+N) = ab+N,

called the factor ring of R by N .

Example 2.10. Consider the factor group Z/5Z with the cosets shown in Example 2.6. We can add
(3 + 5Z) + (4 + 5Z) by choosing 3 and 4, finding 3 + 4 = 7, and noticing that 7 is in the coset 2 + 5Z. We
could as well add these two cosets by choosing -12 in 3 + 5Z and 19 in 4 + 5Z. The sum −12 + 19 = 7 is
still in the coset 2 + 5Z.

Definition 2.13. A polynomial in one determinant x, over a ring R is an infinite formal sum

f (x) =
∞∑

k=0
akx

k = a0 + a1x+ · · ·+ anx
n + . . . ,

where ak ∈ R for all k, and where ak = 0R for all but a finite number of values of k. We denote the set
of such polynomials by R [x].

Definition 2.14. Let R be a ring, and let f (x) =
∞∑

k=0
akx

k and g (x) =
∞∑

k=0
bkx

k be two polynomials in

R [x]. Then the sum of f (x) and g(x) is defined as

f (x) + g (x) =
∞∑

k=0
akx

k,

where ck = ak + bk ∈ R for all k.
The product of f (x) and g (x) is defined as

f(x)g(x) =
∞∑

k=0
dkx

k,

where dk =
k∑

j=0
ajbk−j ∈ R for all k.

Chapter 2 Izabela Gafitoiu 10

Polynomial based RSA
Theorem 2.5. If R is a ring, then the set R[x] of all polynomials over R is also a ring with respect to
addition and multiplication of polynomials.

Example 2.11. Let f(x) = 2x2 + 3x+ 5 and g(x) = 4x2 + 2x+ 1 be two polynomials in Z5. Compute
their sum and their product.

Solution:
Their sum is

f(x) + g(x) = (2x2 + 3x+ 1) + (4x2 + 2x+ 1)

f(x) + g(x) = (2 + 4)x2 + (3 + 2)x+ (1 + 1)

f(x) + g(x) = x2 + 2

Their product is
f(x)g(x) = (2x2 + 3x+ 1)(4x2 + 2x+ 1)

f(x)g(x) = (2 · 4)x4 + (3 · 4 + 2 · 2)x3 + (1 · 4 + 2 · 3 + 2 · 1)x2 + (1 · 2 + 3 · 1)x+ 1

f(x)g(x) = 3x4 + x3 + 3x2 + 1.

Definition 2.15. A field is a triple (F,+, ·), where F is a set and where + and · are binary operations
on F, called addition and multiplication respectively, such that

• (F,+) is an Abelian group

• (F \ {0} , ·) is an Abelian group

• · is distributive over +

Example 2.12. Show that the algebraic structure (Z5,+, ·), where addition and multiplication are
binary operations defined as addition and multiplication modulo 5, forms a field.

Solution: In order to show that a structure is a field, we have to show that the three axioms defined
above are true.

We have previously showed (Example 2.5), that (Z5,+) is an Abelian group and that multiplication
modulo 5 is distributive over addition modulo 5.

Thus the only thing left to show is that (Z5 \ {0} , ·) is an Abelian group. In the following we will use
the notation Z∗5 for Z5 \ {0}. The binary operation · fulfills the associative law (a · b) · c = a · (b · c), the
commutative law a · b = b · a, for all a, b, c ∈ Z∗5 ,there exists an identity element e ∈ Z∗5 such that for any
a ∈ Z∗5 a · e = e · a = a, namely e = 1, and also there exists an element a′ ∈ Z5 for every a ∈ Z5, such
that a · a′ = e = 1. In order to attest the existence of such a′, we shall recall that an equation ax ≡ 1
mod n with a ∈ Zn has a solution for x if the gcd(a, n) = 1. In our case we shall demonstrate that every
element from the set Z∗5 = {1, 2, 3, 4} has an inverse in this set, more precisely that the equation ax ≡ 1
mod 5 has a solution for every a ∈ {1, 2, 3, 4}. Since in this specific case n = 5, a prime number, we see
directly that the greatest common divisor between 5 and any of the elements in the set Z∗5 is equal to 1.
Therefore there is an inverse for every element in the set.

Hence we have now proved that the structure (Z5,+, ·) is a field.

Definition 2.16. Let F be a field. A non-constant polynomial f(x) ∈ F[x] is said to be irreducible over
F if it is not possible to write f(x) as a product f(x) = g(x)h(x) of two polynomials g(x), h(x) ∈ F[x],
both of smaller degree than f(x). If f(x) is not irreducible, then it is said to be reducible.

Example 2.13. Show that the polynomial x2 + 3x+ 2 is reducible over Z5. In addition, show that the
polynomial x2 + 2 is irreducible over Z5.

Solution: In order to show that the polynomial x2 + 3x+ 2 is reducible over Z5, we have to show
that it can be written as a product of two polynomials, say h(x), g(x) ∈ Z5 [x], both of degree smaller
than the degree of the given polynomial. This means that the polynomials h(x) and g(x) should be both
of degree one. It is easy to see that for h(x) = x+ 1 and g(x) = x+ 2, then the product h(x)g(x) gives
exactly the polynomial x2 + 3x+ 2. Hence, the polynomial x2 + 3x+ 2 is reducible over Z5.

In order to show that the polynomial x2 + 2 is irreducible over Z5, we have to fail to find a way to
write it as a product of two polynomials, say m(x) and n(x) ∈ Z5 [x], both of degree smaller than the

Chapter 2 Izabela Gafitoiu 11

Polynomial based RSA
degree of the given polynomial. This means that for any two polynomials of degree one, that belong to
Z5 [x], their product will never be x2 + 2. Consider m(x) = ax+ b and n(x) = cx+d, with a, b, c, d ∈ Z5.
Suppose that x2 +2 = m(x)n(x), that is x2 +2 = acx2 +(b+d)x+ bd. This is possible only if we succeed
finding elements a, b, c, d ∈ Z5, such that the product ac is congruent to one modulo five, the sum b+ d
is congruent to zero modulo five, and the product bd is congruent to two modulo five. In other words
the elements a, b, c, d must fulfill the following system of congruences:

ac ≡ 1 mod 5

b+ d ≡ 0 mod 5

bd ≡ 2 mod 5.

From the second congruence it follows that b ≡ −d mod 5, which in turn means that b ≡ (−1) · d mod
5. Since −1 ≡ 4 mod 5, we get that b ≡ 4 · d mod 5. Substituting b in the third congruence of the
system, we get that 4d2 ≡ 2 mod 5. Multiplying this equation with the inverse of four, which is in fact
four (4 · 4 ≡ 1 mod 5), we get d2 ≡ 3 mod 5. Now, the problem of showing that the polynomial x2 + 2 is
irreducible, boils down to showing that there is no element d ∈ Z5, such that its square root is congruent
to three modulo five. With the five computations 02 ≡ 0 mod 5, 12 ≡ 1 mod 5, 22 ≡ 4 mod 5, 32 ≡ 4
mod 5 and 42 ≡ 1 mod 5, we have showed that there is no element in Z5 such that when raised to the
power of two is congruent to three modulo five, which implies that the polynomial x2 + 2 is irreducible
over Z5.

Definition 2.17. We say that f(x), g(x) ∈ Zp[x] are associated polynomials if f(x) = ug(x) for
some unit (invertible element) u ∈ Zp.

Theorem 2.6. Let
f(x) = anx

n + an−1x
n−1 + · · ·+ a0

and
g(x) = bmx

m + bm−1x
m−1 + · · ·+ b0

be two elements of a field F [x], with an and bm both nonzero elements of F and m > 0. Then there are
unique polynomials q(x) and r(x) such that f(x) = g(x)q(x) + r(x), where either r(x) = 0 or the degree
of r(x) is less than the degree m of g(x).

For a proof of the theorem see [8] (p.210).

Definition 2.18. Let F be a field and let f(x), g(x) ∈ F [x]. A common divisor of f(x) and g(x) is
a polynomial d(x) ∈ F [x] such that d(x)|f(x) and d(x)|g(x). The common divisor of highest degree is
called the greatest common divisor.

Example 2.14. Compute the gcd(x3 + 4x2 + x+ 4, x2 + 4) in Z5 [x].

Solution: Just as in the case of integer greatest common divisor computation, the Euclidean algo-
rithm will be used here as well. The algorithm follows the same steps, as described in Theorem 2.2, just
that here instead of integer divisions one will deal with polynomial divisions.

First, divide x3 + 4x2 + x + 4, the polynomial with higher degree, by x2 + 4, the polynomial with
lower degree, to obtain

x3 + 4x2 + x+ 4 = (x2 + 4)(x+ 4) + 2x+ 3.

Any divisor of x2 + 4 and 2x+ 3 must also be a divisor of x3 + 4x2 + x+ 4 = (x2 + 4)(x+ 4) + 2x+ 3. It
follows that gcd(x3 + 4x2 + x+ 4, x2 + 4) = gcd(x2 + 4, 2x+ 3). Next, divide x2 + 4 by 2x+ 3 to obtain

x2 + 4 = (2x+ 3)(3x+ 3) + 0.

Because 3x + 3 divides x2 + 4, it follows that gcd(x2 + 4, 2x + 3) = 3x + 3. Furthermore, because
gcd(x3 + 4x2 + x+ 4, x2 + 4) = gcd(x2 + 4, 2x+ 3) = 3x+ 3, the original problem has been solved.

Definition 2.19. Let f(x), g(x) and n(x) belong to a field F [x] with n(x) 6= 0. We say that f(x) is
congruent to g(x) modulo n(x) if n(x) divides f(x)− g(x), and we write f(x) ≡ g(x)(mod n(x)).

Chapter 2 Izabela Gafitoiu 12

Polynomial based RSA
Example 2.15. Show that the polynomials x2 + 2 and 2x belonging to Z5 [x] are congruent modulo
x+ 1.

Solution: The definition above tells us that x2 + 2 is congruent to 2x modulo x+ 1 if x+ 1 divides
x2 − 2x + 2. Since −2 ≡ 3 mod 5, the polynomial x2 − 2x + 2 can be written as x2 + 3x + 2. We see
that when dividing x2 + 3x + 2 by x + 1 we get the quotient x + 2 and the remainder zero. Hence, we
have showed that x+ 1 divides x2 + 3x+ 2 which implies that

x2 + 2 ≡ 2x mod (x+ 1).

Definition 2.20. A polynomial f(x) ∈ F [x] is said to be invertible modulo n(x) ∈ F [x] if there is a
polynomial g(x) ∈ F [x] such that f(x)g(x) ≡ 1(mod n(x)).

Example 2.16. Show that the polynomial f(x) = x+ 2 ∈ Z5 [x] is invertible modulo x.

Solution: In order to show that f(x) is invertible modulo x, we have to find a polynomial g(x) such
that the product f(x)g(x) is congruent to one modulo x. In other words, we have to find g(x) ∈ Z5 [x]
such that

(x+ 2)g(x) ≡ 1 mod x.

This means that the polynomial x has to divide the difference (x+ 2)g(x)−1. If we choose g(x) = x+ 3,
then the difference becomes (x+ 2)(x+ 3)− 1 = x2 + 5x+ 6− 1 = x2. We notice that x2 is divisible by
x and since the polynomial n(x) = x divides f(x)g(x)− 1 = (x+ 2)(x+ 3)− 1, it follows that

(x+ 2)(x+ 3) ≡ 1 mod x.

Theorem 2.7. Let F be a field, and f(x) a nonzero member of F [x]. Then f(x) can be written as a
product f(x) = c

n∏
k=1

fk(x) of a nonzero constant c and a collection of monic irreducible polynomials

fk(x). This factorization is unique up to the order in which the irreducibles fk(x) are taken.

For a proof of the theorem see [18].
Whereas in the original version of RSA cryptosystem the plaintext blocks and the ciphertext blocks

respectively are encoded as elements in Zn, which is a ring with respect to addition and multiplication
modulo n, in the version proposed in this report, the RSA implementation will be done in the polynomial
ring

Zp [x] =
{
a0 + a1x+ · · ·+ akx

k|k ≥ 0, ai ∈ Zp

}
where p is a prime and the operations addition and multiplication are done modulo a polynomial.

We now pattern after the RSA construction as follows:

1. Pick two irreducible polynomials P (x), Q (x) ∈ Zp [x]; P (x) and Q(x) not associated. Generating
irreducible polynomials of degree n, over the finite field Fq is done following the same path as in the
case of generating primes, randomizing at first a monic polynomial of degree n, and then applying
an irreducibility test on that specific polynomial, such as Rabin’s test for irreducibility. The
algorithm takes as input a polynomial f(x) ∈ Fq [x] of degree n. Let p1, . . . , pk be all the prime
divisors of n, and denote ni = n/pi, for 1 ≤ i ≤ k. The Rabin’s irreducibility test is based on
the fact that a polynomial f(x) ∈ Fq [x] is irreducible in Fq [x] if and only if gcd(f(x), xqni − x
mod f) = 1 for 1 ≤ i ≤ k, and f(x) divides xqn − x. See [25].

2. Compute N (x) = P (x)Q (x) in Zp [x].

3. Let R = Zp [x] / 〈N(x)〉 denote the set consisting of all possible remainders when any polynomial
in Zp [x] is divided by N (x). Calculate the number of elements in R that are invertible modulo
N (x). Denote it s.
In other words, the set R represents all the polynomials in Zp of degree smaller than the degree of
N(x). The question now is how to find the number of all the polynomials in R that are actually
invertible. Since finding the polynomials that are not invertible proves to be an easier task we will
find the value of s, denoting the number of invertible elements, by subtracting from the set R all
the polynomials that are not invertible.

Chapter 2 Izabela Gafitoiu 13

Polynomial based RSA
Theorem 2.8. Let A(x) and N(x) be two polynomials in Zp [x]. The polynomial A(x) has an
inverse A−1(x) ∈ Zp [x] modulo N(x), for which

A(x)A−1(x) ≡ 1 mod (N(x)),

if and only if gcd(A(x), N(x)) = 1.

Proof. Suppose the following congruence holds

A(x)A−1(x) ≡ 1 mod (N(x))

It follows that there exists Q(x) ∈ Zp [x] such that A(x)A−1(x) = N(x)Q(x) + 1. Having D(x)
denoting the gcd(A(x), N(x)), we know that D(x) divides both A(x) and N(x). Therefore D(x)
divides any linear combination of A(x) and N(x), and hence D(x) divides 1 = A(x)A−1(x) −
Q(x)N(x). Since D(x)|1, the largest it could possibly be is the constant polynomial 1 itself.

Since N(x) is the product of the two irreducible polynomials P (x) and Q(x) it follows that the
greatest common divisor between N(x) and any multiple of P (x) or Q(x) is different from 1.
Therefore the number of invertible polynomials in R is calculated by subtracting from R the
multiples of P (x), the multiples of Q(x) and add the common multiples of the polynomials because
we do not want to subtract any polynomial twice.
By assuming that the two irreducible polynomials, factors of N(x), are not associated and due to
the fact that the factorization is unique, as stated in Theorem 2.6 we may conclude that the only
common multiple of P (x) and Q(x) is the zero polynomial, just as the only common multiple of
two primes is zero.

Theorem 2.9. The number of invertible polynomials in the ring R, denoted by s, is given by the
following formula

s = (pm − 1)(pn − 1).

Proof. First of all, we have to calculate the number of polynomials in the set R. That is, find all
polynomials in Zp[x] of degree smaller than the degree of N(x). We consider

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

Q(x) = bmx
m + bm−1x

m−1 + · · ·+ b1x+ b0

N(x) = P (x)Q(x)
with degree n of P (x), degree m of Q(x) and degree m+ n of N(x).

A polynomial K(x) ∈ Zp [x] of degree smaller than m + n is of the form K(x) =
m+n−1∑

i=0
kix

i for

some ki ∈ Zp. We see here that K(x) can be chosen in pm+n different ways since we have m + n
coefficients k0, k1, . . . , km+n−1 to choose, and each of them can be chosen in p different ways.
Next, we will find out the number of multiples of P (x) and Q(x) respectively. A multiple of P (x)

is of the form P (x)A(x), where degA(x) < m. Therefore A(x) =
m−1∑
i=0

kix
i for some ki ∈ Zp. We

see here that the polynomial A(x) can be chosen in pm different ways since we have m coefficients
k0, k1, . . . , km−1 to chose, and each of them can be chosen in p different ways.
The same situation is when we compute the number of multiples of Q(x). A multiple of Q(x) is

of the form Q(x)B(x), where degB(x) < n. Therefore B(x) =
n−1∑
i=0

kix
i for some ki ∈ Zp. We

see here that the polynomial B(x) can be chosen in pn different ways since we have n coefficients
k0, k1, . . . , kn−1 to choose, and each of them can be chosen in p different ways.
Gathering all what we have found previously , we find a general formula for computing the number
of invertible polynomials in the set R

s = pm+n − pm − pn + 1 = (pm − 1)(pn − 1).

Chapter 2 Izabela Gafitoiu 14

Polynomial based RSA
4. Choose e ∈ Zs = {0, 1, 2, 3, 4, . . . s− 1} such that gcd(e, s) = 1.

5. Compute the multiplicative inverse d = e−1 mod s , in other words find d ∈ Zs such that ed ≡ 1
mod s.

Chapter 2 Izabela Gafitoiu 15

Polynomial based RSA

Chapter 3

Why does it work?

In this chapter we will explain why the decryption algorithm successfully restores the plaintext as well as
how the mathematics that stand behind the decryption process assures the cryptosystem’s correctness.

To begin with we will look at the original RSA. As we have seen earlier one encrypts a message m in
the following way

me mod n.

This message, denoting the ciphertext c, might then be decrypted by performing

cd mod n.

The question we might ask ourselves is how and why does this procedure work. First of all we know that
the ciphertext c represents the eth power of the initial message m modulo n, namely

c = me mod n.

The plaintext is then restored by taking the dth power of the ciphertext modulo n, namely

cd = (me)d = med mod n.

When calculating the decryption exponent d, we solve the congruence ed ≡ 1 mod s. From this equation
we can write the product ed in terms of s in this way ed = sk + 1, where k is an integer. As such the
decryption process becomes

cd = med = msk+1 = mskm = (ms)km mod n.

In what follows we will show that for any message m ∈ Zn ms ≡ 1 mod n, where s denotes as we
remember the number of elements in Zn that are invertible modulo n.

Definition 3.1. A ring with identity is a ring R that contains an element 1R satisfying this axiom

a · 1R = 1R · a = a,

for all a ∈ R.

Theorem 3.1. If R is a ring with identity, then the set U of all units (invertible elements) in R is a
group under multiplication.

For a proof of the theorem see [8] (p.186).

Theorem 3.2. Let (G, ·) be a finite group under multiplication with |G| = n and let 1G denote the
identity element. Then for any a ∈ G the following holds

an = 1G.

Chapter 3 Izabela Gafitoiu 16

Polynomial based RSA
Proof. Let (G, ·) be a finite group under multiplication with |G| = n and let 1G denote the identity
element. The order of any element a ∈ G is the smallest k such that ak = 1G. By Theorem 2.4 we know
that the order of an element a ∈ G divides the order of the group which is in this case n. Hence, it
follows that o(a)|n, from which it results that n = o(a) ·m for some integer m. Now, raising an element
a to the power of n, we get

an = ao(a)·m = ao(a)m
= 1G

m = 1G,

which proves the theorem.

The residue class Zn together with the two binary operations addition and multiplication modulo n,
forms the structure of a ring. Since there exists an element e1 ∈ Zn such that e1 · a = a · e1 = a, namely
e1 = 1, it means that the ring (Zn,+, ·) is a ring with identity.

The theorem above tells us that the set of all invertible elements in Zn, denoted by Z∗n, is a group
under multiplication. In other words the algebraic structure (Z∗n, ·) represents a group. In addition it
is a finite group with |Z∗n| = s = φ(n) = (p − 1)(q − 1). By Theorem 3.2 it follows that any element
belonging to Z∗n raised to the power s is equal to the identity element with respect to multiplication
modulo n, which in this case is equal to 1. Therefore we have showed that for any a ∈ Z∗n

as ≡ 1 mod n.

Going back to our decryption equation, we have

cd = (ms)km = 1km = m mod n.

We have now showed that the decryption formula works for any message a belonging to Z∗n.
One might ask now what if a chosen plaintext is not encoded in Z∗n. In other words what happens if

the message to be sent is first encoded as an integer in Zn, which is not relatively prime to n. Will the
decryption formula still work?

We write the decryption formula as before, but this time modulo p and q respectively

cd = med = msk+1 = mskm = (ms)km mod p,

cd = med = msk+1 = mskm = (ms)km mod q.

As we have earlier proved, the number of integers less than n, that are relatively prime to n, denoted by
s, representing Euler’s Phi function φ(n), is given by the formula s = φ(n) = (p−1)(q−1). Substituting
s in the two formulas above, we get

med = (m(p−1)(q−1))km = (mp−1)(q−1)km mod p

med = (m(p−1)(q−1))km = (mq−1)(p−1)km mod q.

Theorem 3.3. (Fermat’s Little Theorem) Let a be a positive integer and p a prime. If a is not
divisible by p, then the following is true

ap−1 ≡ 1 mod p.

For a proof of the theorem see [27] (p.217-218).
By using the above theorem we see that

(mp−1)(q−1)km ≡ 1(q−1)km ≡ m mod p,

(mq−1)(p−1)km ≡ 1(p−1)km ≡ m mod q.

Theorem 3.4. (Chinese Remainder Theorem) Let m1,. . . , mr be positive integers that are pairwise
relatively prime. The system of congruences

x ≡ a1 mod m1

...
x ≡ armodmr

has then a unique solution modulo M = m1 · · · · ·mr.

Chapter 3 Izabela Gafitoiu 17

Polynomial based RSA
For a proof of the theorem see [27] (p. 159).
We have now the system of the two congruences

med ≡ m mod p

med ≡ m mod q.

The Chinese Remainder Theorem tells us that the solution for med modulo pq is unique. We can
rewrite the above system of congruences as

med −m ≡ 0 mod p

med −m ≡ 0 mod q.

We see that med −m is both divisible by p and q. Since p and q are two different primes, it follows that
med −m is also divisible by the product of p and q

med −m ≡ 0 mod pq.

Hence we have now proved that
med ≡ m mod n.

This means that the decryption of the ciphertext will always restore the plaintext.
Just as for the original RSA, the reasoning behind the correctness of the polynomial based RSA

follows the same path. In this case we will implement RSA in the polynomial ring (Zp [x] ,+, ·) where p
is a prime and the operations addition and multiplication are done modulo a polynomial. We have to
show here that for any plain-text M(x) belonging to R = Zp [x] / 〈N(x)〉, it is true that

(M(x)e)d ≡M(x) mod N(x).

That is the dth power of the ciphertext C(x), which is in turn equal to the eth power of the message
M(x) should restore the message M(x) that was sent.

When calculating the decryption exponent d, we solve the congruence ed ≡ 1 mod s, where e is the
encryption exponent and s denotes as we remember the number of invertible polynomials in R. From
this equation we can write the product ed in terms of s in this way ed = sk + 1, where k is an integer.
As such the decryption process becomes

C(x)d = M(x)ed = M(x)sk+1 = M(x)skM(X) = (M(x)s)kM(x) mod N(x).

Since there exists an element E(x) ∈ R such that for any A(x) ∈ R, A(x) · E(x) = E(x) · A(x) = A(x),
namely the constant polynomial E(X) = 1, it follows that the polynomial ring is a ring with unity.
Theorem 3.1 tells us that the set of all invertible elements belonging to the ring with unity R together
with the operation multiplication modulo a polynomial, form the algebraic structure of a group. That
is (R∗, ·) is a group, where R∗ denotes the set of units. The number of elements in R∗ is represented by
s, in other words |R∗| = s. Using the result of Theorem 3.2 we know that for any element B(x) ∈ R∗

B(x)|R
∗| = B(x)s = E(x) = 1.

This means that if someone wants to send a message M(x) and this message belongs to R∗(the message
M(x) is invertible modulo N(x)) then the sth power of it will always be equal to the identity element
of the group (R∗, ·), which is equal to the constant polynomial E(x) = 1. In the decryption process we
will have

C(x)d = (M(x)s)kM(x) = 1kM(x) = M(x) mod N(x).
We have now seen that in this case the message that was sent will be restored by the holder of the
decryption exponent.

Now, if someone wants to send a message M(x) which does not belong to R∗, but instead it belongs
to R, will the receiver be able to restore the message that was sent?

In order to show that the decryption still works we have to prove that for any plaintext M(x) ∈ R
the following congruence holds

(M(x)s)kM(x) ≡M(x) mod N(x).

Chapter 3 Izabela Gafitoiu 18

Polynomial based RSA
Substituting s with the expression we have earlier found and, and writing the congruence modulo

P (x) and Q(x) respectively, we get

(M(x)(pm−1)(pn−1))kM(x) ≡ (M(x)pn−1)k(pm−1)M(x) mod P (x)

(M(x)(pm−1)(pn−1))kM(x) ≡ (M(x)pm−1)k(pn−1)M(x) mod Q(x).

It follows that
M(x)ed ≡ 1k(pm−1)M(x) ≡M(x) mod P (x)

M(x)ed ≡ 1k(pn−1)M(x) ≡M(x) mod Q(x).

It results that
Med(x)−M(x) ≡ 0 mod P (x)

Med(x)−M(x) ≡ 0 mod Q(x).

We see thatM(x)ed−M(x) is both divisible by P (x) and Q(x). Since P (x) and Q(x) are two irreducible
polynomials that are not associated, it follows that Med(x) − M(x) is also divisible by the product
P (x)Q(x)

Med −M(x) ≡ 0 mod P (x)Q(x).

Hence, we have now proved that
Med ≡M(x) mod N(x).

This means that the decryption formula will always restore the plaintext.

Chapter 3 Izabela Gafitoiu 19

Polynomial based RSA

Chapter 4

Security

When the topic of any discussion is a certain cryptosystem, the question of security comes naturally,
being actually the most important aspect when considering whether one can use it in practice or not.

4.1 Integer factorization
For over 30 years, the RSA cryptosystem was found to be secure, supporting nowadays most of the
electronic commercial communications. At the heart of its security are the two mathematical, still
unsolved problems, namely efficient factorization of large numbers and the RSA problem.

Integer factorization (prime factorization) is the decomposition of a composite number into its
prime divisors. For example the prime factorizations of n = 65 and m = 20 are n = 5 · 13 and m = 22 · 5
respectively. Not all integers of a given length are equally hard to factor. The most difficult to factor
are semiprimes, the product of two primes, especially when they are large, and about the same size.
This is exactly the case here, where the security of RSA is relying on the inability of even the fastest
computers to factorize a large semiprime n, representing the product of the two primes p and q.

Definition 4.1. An algorithm is a clearly specified set of instructions to be followed to solve a problem.

When an algorithm has been specified for an operation, we can consider the amount of time required
to perform this algorithm on a computer. If any algorithm is correct but takes 10 years to solve the
problem, is hardly of any use. The main factors that affect the running time of an algorithm are the
algorithm used and the input to the algorithm.

Over the past years factoring algorithms were developed, but none of them proved to be efficient
enough when used in practice. These algorithms that were invented fall into two classes: special-
purpose factoring algorithms and general purpose ones.

4.1.1 Special-purpose factoring algorithms
The special-purpose algorithms are suitable for integers with specific types of factors. Therefore the run-
ning time of a special-purpose algorithm depends on the size of the number n being factored as well as
on the properties of the factors of n. None of these is useful to factor composites used in cryptosystems.
In order to understand how and when this kind of algorithms can be used we will briefly discuss one of
the following such special-purpose factoring algorithms:

1. Trial division

2. Pollard’s ρ algorithm

3. Pollard’s p− 1 algorithm

4. The elliptic curve method

5. Fermat’s factorization algorithm

Chapter 4 Izabela Gafitoiu 20

Polynomial based RSA
6. Euler’s factorization algorithm

Fermat’s factorization algorithm can be used for a composite integer n whose factors are close to
each other. The approach is trying to find two integers a, b such that their squares are congruent modulo
n. In other words, it finds a, b with

a2 ≡ b2 mod n.

The congruence is equivalent to saying that n|(a2 − b2). By replacing a2 − b2 = (a − b)(a + b), we
have that n|(a − b)(a + b). The right a and b can be found by trying each of the following values for
a = [

√
n] + 1, [

√
n] + 2, until we get a2−n to be a perfect square. Then b2 = a2−n. Then by computing

gcd(a+ b, n) and gcd(a− b, n) we might get the non-trivial factors of the given integer n.

Example 4.1. Find the factors of the integer 323 using Fermat’s method.

Solution: We begin by trying to find the two integers a, b such that

a2 ≡ b2 mod n.

The first try for a is a = b
√

323c + 1 = 17 + 1 = 18. We check if b2 = a2 − n is a perfect square.
By replacing the corresponding values we get b2 = 182 − 323 = 324− 323 = 1, which is what we hoped
for. Hence we have found a = 18 and b = 1. We now compute gcd(a + b, n) and gcd(a − b, n). When
substituting the values for a, b and n, we find gcd(18+1, 323) = 19 and gcd(18−1, 323) = 17, which being
non-trivial are in fact the actual factors of the given integer n. Hence, by using Fermat’s factorization
method we have found the factors of n = 323, namely 323 = 17 · 19.

4.1.2 General-purpose factoring algorithms
The running time of a general-purpose factoring algorithm depends only on the size of the number n
to be factored. The algorithms belonging to this group are used in cryptography. Some of the most
important to mention are:

1. Dixon’s algorithm

2. Quadratic sieve

3. General number field sieve.

Since they are of great interest right here in our discussion about the RSA security, we will take a closer
look at one of them in what follows.

Definition 4.2. A positive integer is called B-smooth if none of its prime factors is greater than B.

Example 4.2. Show that the integer 150 is 5-smooth.

Solution: In order to show that the given integer is 5-smooth, first of all we have to write its prime
factorization. We have 150 = 2 · 3 · 52. We see that none of the integer’s prime factors is greater than 5,
therefore we conclude that 150 is 5-smooth.

Dixon’s algorithm
Let n be the integer to be factored. Dixon’s factorization approach tries to find two elements a and

b ∈ Zn, such that their squares are congruent modulo n:

a2 ≡ b2 mod n.

In other words, it looks for elements a, b ∈ Zn such that a2−b2 (this being in turn equal to (a−b)(a+b))
is a multiple of n. Therefore, n will divide (a − b)(a + b), from which it follows that n divides gcd(a −
b, n) · gcd(a+ b, n).

Now, going back to finding congruences of squares Dixon’s algorithm proposes to pick some random
v, for which sv, the remainder of v2 modulo n, is smooth for a bound B. The algorithm continues until
it has found sufficiently many different pairs v, sv for which sv is smooth.

Example 4.3. Find the factors of the composite integer 323, using Dixon’s algorithm.

Chapter 4 Izabela Gafitoiu 21

Polynomial based RSA
Solution: We will use the smoothness bound B = 5 (that is sv is 5-smooth meaning that sv can

be factored using only the primes 2,3 and 5).
We begin by selecting v at random. Let v = 26. We find that

sv = v2 = 262 = 676 ≡ 30 mod 323.

Since 30 = 2 · 3 · 5, we find s26 to be smooth. Hence, we will keep the pair (26, s26) and the identity

262 ≡ 21 · 31 · 51 mod 323.

Next, we randomly choose v = 32. We have that

s32 = 322 = 378 ≡ 55 mod 323.

Since 55 = 5 · 11, and thus it is not 5-smooth, it is not of further interest.
Proceeding to the next random v, say v = 33, we get that

s33 = 332 = 1089 ≡ 120 mod 323.

Since 120 = 23 · 3 · 5, we find s33 to be 5-smooth. Hence, we will keep the pair (33, s33) and the identity

332 ≡ 23 · 31 · 51 mod 323.

Having the two identity relations, we can now try to find the factors of the given integer. If we are
lucky, the two relation may suffice in achieving our goal to factorize 323. As we remember we found the
following two relations:

262 ≡ 21 · 31 · 51 mod 323

332 ≡ 23 · 31 · 51 mod 323.

By multiplying these two identity relations we get

(26 · 33)2 ≡ 24 · 32 · 52 mod 323.

As we observe on the left hand side of the congruence, we have a perfect square, namely the perfect
square of 26 · 33, and on the right hand side we also have a perfect square, namely the perfect square
of 22 · 3 · 5. Hence we have found some a and b for which a2 ≡ b2 mod n, as it was specified in the
description of the algorithm. Now, when computing the gcd(a − b, n) and gcd(a + b, n), we might find
the factors of n. In this case we have found a = 26 ·33 = 858 and b = 22 ·3 ·5 = 60. When computing the
respective greatest common divisors we get that gcd(858 + 60, 323) = 17 and gcd(858 − 60, 323) = 19.
Since both are non-trivial divisors, we have indeed found the factorization of the given integer, namely
323 = 17 · 19.

4.2 The RSA problem
First of all let us recall that in the RSA public-key cryptosystem the pair (n, e) represents the public
key, whereas the triple (p, q, d) represents the private key. When encrypting a message m, one performs
me mod n, which will be the corresponding ciphertext c. When decrypting, the holder of the private
key, more specifically the holder of the private exponent d, will be able to perform cd mod n, restoring
thus the message m that was sent.

The RSA problem is finding the plaintext m given the ciphertext c and the public key (n, e). More
precisely, it requires finding the eth root of an arbitrary ciphertext c modulo n (that is find e

√
c mod n).

Just as there is no firm mathematical ground on which the assumption that factoring a composite
integer is a hard problem, neither is there an evidence showing that the RSA problem is intractable. Still,
whether solving the RSA problem is equivalent, as for complexity, to factoring the integer n remains an
open question.

Chapter 4 Izabela Gafitoiu 22

Polynomial based RSA
4.3 Polynomial factorization
Factoring an univariate polynomial (that is, a polynomial in a single variable) refers to writing it as a
product of irreducible polynomials. Since the polynomial version of RSA is implemented in the polyno-
mial ring Zp [x] =

{
a0 + a1x+ · · ·+ akx

k|k ≥ 0, ai ∈ Zp

}
, in this section we will look at the factorization

of univariate polynomials over the finite field Zp.
As the security of the RSA public key cryptosystem is based on our failure to find an efficient algorithm

for integer factorization, the security of the polynomial RSA, proposed here, is based on the grade of
difficulty to factorize polynomials over finite fields.

The time complexity of an algorithm is estimated by counting the number of operations performed
by the algorithm. It is usually expressed using the big O notation, which excludes coefficients and
lower order terms. In the 60’s, Berlekamp described a probabilistic algorithm which factorizes univariate
polynomials with coefficients in a finite field, say Fq. Its complexity is polynomial in the size of the input
polynomial, namely O(d2 log q), where d is an integer such that the degree of the input polynomial is
smaller than d. In 1995, Kaltofen and Shoup , have come up with a better complexity bound for the
polynomial factorization with coefficients in the finite field Fq, namely O(d1.815 log q). Two years later,
they have given a lower bound of order O(d log2 q). For further details on the algorithms mentioned
above and their time complexities see [2].

In order to have an idea on how such a polynomial factoring algorithm works, we will present the
“basic” algorithm for solving the problem, which dates back in 1967 [23].

4.3.1 Berlekamp’s algorithm
Let f(x) = a0 + a1x+ a2x

2 + · · ·+ amx
m be a polynomial of degree m, with coefficients over the finite

field Zp, where p is a prime. The algorithm takes as input a monic (the leading coefficient is equal
to one, that is am = 1), squarefree polynomial (that is a polynomial with no repeated factors). Let
f1, f2, . . . , fr ∈ Zp [x] be the irreducible monic factors that we shall compute. The algorithm uses basic
polynomial operations such as products, divisions, greatest common divisor calculations, powers of one
polynomial modulo another.

Theorem 4.1. Let f ∈ Fq [x] be a monic polynomial and h ∈ Fq [x] is such that hq ≡ h mod f . Then
the following holds

f(x) =
∏

c∈Fq

gcd(f(x), h(x)− c).

Theorem 4.1 gives a way to calculate the factors of f(x) ∈ Fq [x], by computing q greatest common
divisors. Finding a polynomial h(x) such that h(x)q ≡ h(x) mod g = f(x) is done by reducing this
congruence to a system of linear equations. Let the degree of f(x) be equal to n. Then we construct the
matrix Bn×n by calculating the powers xiq mod f(x) with 0 ≤ i ≤ n− 1. Each row entry in the matrix
corresponds to the coefficients of the resulting polynomials when computing xiq mod f(x). Finding the
vectors that form the null space of the matrix B − I, where I is the identity matrix, is the way to find
such polynomials h(x) satisfying h(x)q ≡ h(x) mod f(x). The solutions of the equation (B − I)X = 0
correspond therefore to such polynomials h(x). Then, by computing the gcd(f(x), h(x) − c) for all
c ∈ Fq [x], we will have found the factors of f(x). We shall see this in the following example, where the
Berlekamp’s method will be presented step by step. Before that we will need the following theory.

Definition 4.3. The rank of a matrix is defined as the maximum number of linearly independent column
vectors in the matrix (or the maximum number of linearly independent row vectors in the matrix).

Example 4.4. Find the factorization of f(x) = x3 + 1 over Z2 using Berlekamp’s algorithm.

Solution: First of all we check whether the given polynomial is squarefree. We do this by computing
the greatest common divisor between f and it derivative by using the same algorithm as we do for integer
gcd’s calculations. We see that

gcd(x3 + 1, 3x2) = 1.
The result means that there are actually no repeated factors in f . The next step is to compute the
powers x2i mod f(x) for 0 ≤ i ≤ 2. We have that

x0 ≡ 1 mod f(x)

Chapter 4 Izabela Gafitoiu 23

Polynomial based RSA
x2 ≡ x2 mod f(x)
x4 ≡ x mod f(x).

We now form the matrix B of order 3×3, with each row entry representing the coefficients of the resulting
polynomials in the congruences above:

B =

1 0 0
0 0 1
0 1 0

 .

We compute then the difference B − I, where I represents the identity matrix

B − I =

0 0 0
0 1 1
0 1 1

 .

We now subtract the second row from the third one and the matrix becomes equivalent to

B − I ∼

0 0 0
0 1 1
0 0 0

 .

We see that there are 2 free variables, namely x1 and x3. Since there is one non-zero row, it follows that
the rank of the matrix is equal to 1. It results that f has 3 − 1 irreducible factors. The next step is
finding the vectors that form the null space of the matrix B − I. That is, we have to solve the equation

(B − I) ·X = 0.

More explicitly, we have to solve 0 0 0
0 1 1
0 0 0

 ·
x1
x2
x3

 =

0
0
0

 .

It leads to solving the following system

0 · x1 + 0 · x2 + 0 · x3 = 0

0 · x1 + x2 + x3 = 0
0 · x1 + 0 · x2 + 0 · x3 = 0.

From the second equation we find x2 = −x3. We can now write the solution as:x1
x2
x3

 = x1

1
0
0

+ x3

0
1
1

 .

Hence, the two vectors (1,0,0) and (0,1,1) form the basis for the null space of B − I. The corresponding
vectors are

h1(x) = 1
h2(x) = x+ x2.

The next step is to make use of Theorem 4.1 and compute

gcd(f(x), h2(x)− 0) = gcd(x3 + 1, x2 + x) = x+ 1

gcd(f(x), h2(x)− 1) = gcd(x3 + 1, x2 + x+ 1) = x2 + x+ 1.
Since we have seen that f has two irreducible factors, we can now conclude that we have found the
factorization of f , which is

f(x) = (x+ 1)(x2 + x+ 1).
As we have understood the Berlekamp’s algorithm finds the factors of a polynomial f(x) ∈ Fq [x] by
computing q greatest common divisors. Well, that is fine as long as the field we are working in, is small,
having thus few values c could be. If q is large, that is the basis field is large, we would be forced to
do a lot of computation. To avoid computing all possible greatest common divisors, the Zassenhaus
algorithm is used to characterize the elements c ∈ Fq for which gcd(f(x), h(x)−c) 6= 1. For a description
of the Zassenhaus algorithm see [11].

Chapter 4 Izabela Gafitoiu 24

Polynomial based RSA

Chapter 5

Discussions

We have now reached the point where, after analyzing the most important aspects regarding the original
RSA cryptosystem as well as the polynomial version of it, we shall refresh all we have learnt until now,
and try to make a comparison between them both, displaying advantages and disadvantages.

In the original RSA public key cryptosystem we start with the ring of integers Z (which as we earlier
saw it is an integral domain). We then choose two primes p and q in this ring, and move on to the ring Zn,
where n = pq. Now, the ring Zn can be seen as the factor ring of Z modulo the principal ideal 〈n〉 = nZ
of all multiples of n. In the same way, in the polynomial version of the RSA public key cryptosystem, we
start with the polynomial ring Zp [x], which is also an integral domain. We then choose two irreducible
polynomials P (x) and Q(x) in this ring, and move on to the factor ring of Zp [x] modulo the principal
ideal 〈N(x)〉 of all multiples of N(x) = P (x)Q(x). The encryption and decryption for the original RSA
occur in Zn (the factor ring Z/nZ) and so similarly the encryption and decryption for the polynomial
RSA occur in the factor ring Zp [x] / 〈N(x)〉.

As we have experienced, adding and multiplying integers modulo an integer, as in the case of the
original RSA implementation, is easier than adding and multiplying polynomials, modulo a polynomial,
as it is in the case of the polynomial RSA. As such even the encryption and decryption processes, where
the modular exponentiation computations are done, become easier and faster in the case of integers.

Regarding the most important aspect when considering any cryptosystem, namely its security, we
recall that the problem of polynomial factorization over finite fields was successfully studied, and with
today’s algorithms and computers we can factor large polynomials. On the other side, the problem of
integer factorization is still unsolved. We have not yet discovered an algorithm that efficiently finds the
factors of an integer, especially of a semiprime. Since integer factorization and polynomial factorization
stand behind the security of the cryptosystem, we can, from this point, conclude that the polynomial
version of RSA cannot be used in real life, since it would be insecure.

Since implementing the polynomial RSA in the polynomial ring Zp [x] proved not to be effective
regarding the security, an interesting idea would be that instead of using a finite base field (as in this
case Zp), we can replace it by an infinite field such as Q. Considering this idea, the problem of security will
be equivalent to the problem of factorizing polynomials over infinite fields. Given a nonzero polynomial
f ∈ Q [x] in one variable with rational coefficients, a polynomial-time algorithm to solve the problem is
given by Lenstra et. al. [21].

Once again, the simplicity and elegance which describes the RSA cryptosystem proves to pass the
test of time, winning over the more complicated version of the same idea.

Chapter 5 Izabela Gafitoiu 25

Polynomial based RSA

Chapter 6

Application

In order to have a better insight into how the polynomial version of the RSA public key cryptosystem
works, we will use an interactive computer application to encrypt and decrypt at will. The application
is implemented in Java, and we will see here how and under which circumstances can be used.

6.1 Encoding
To begin with, in this project we implement RSA in the polynomial ring Z29 [x]. That is, when encoding
the plaintext, the corresponding polynomial will be a member of the polynomial ring

Z29 [x] =
{
a0 + a1x+ a2x

2 + · · ·+ akx
k|k ≥ 0, ai ∈ Z29

}
.

The public key is represented by the pair (N(x), e), and the private key is represented by the triple
(P (x), Q(x), d). It will be possible to encode all the letters in the Swedish alphabet, which contains 29
letters. That being said, we see that this is the reason behind the choice of encoding the plaintext into
polynomials with coefficients belonging to Z29.

The plaintext will be encoded as a sequence of polynomials of degree smaller than the degree of
N(x), N(x) representing the product of the two irreducible polynomials P (x) and Q(x). For this specific
application the two polynomials P (x) and Q(x) will have degree at most three.

Each letter will be encoded into its corresponding position in the alphabet, starting with the letter
a having position zero, and the first letter of the plaintext will be the coefficient of the highest degree
term in the polynomial.

For example, if we are using two irreducible polynomials of degree two, say P (x) = ax2 + bx+ c and
Q(x) = dx2 + ex + f , having all coefficients in Z29, N(x) = P (x)Q(x) is a polynomial of degree four.
It follows that for encoding the plaintext hello, blocks of four letters will be encoded at a time. If we
cannot make all blocks of size four letters, then we add extra x′s until we can encode.

The plaintext hello will be encoded as a sequence of two polynomials, namely one corresponding to the
first four letters in the plaintextM1(x) = 7x3+4x2+11x+11, and the other one corresponding to the next
letter o, to which we add three of x to make it complete, having M2(x) = 14x3 + 23x2 + 23x+ 23. Then,
we perform the modular exponentiation M1(x)e mod N(x) = C1(x), and M2(x)e mod N(x) = C2(x),
obtaining the two polynomials, representing the ciphertext, whose coefficients represent in order the
position in the alphabet of each letter of the plaintext.

6.2 Choosing the irreducible polynomials
As we know, in order to start building the coding-scheme, the first step is to choose the polynomials
P (x) and Q(x). The user of the application can choose his own polynomials, or he can simply push the
Generate button leaving this job for the computer.

One thing to mention is that when writing your own polynomials, one has to write explicitly every
coefficient and every power of each term (i.e. one has to write 1 ∗ x2 + 5 ∗ x1 + 7, even though on paper
we do not write coefficients and powers of one).

Chapter 6 Izabela Gafitoiu 26

Polynomial based RSA
6.3 Factoring polynomials
Since the application accepts polynomials P (x) and Q(x) of degree at most three, it will only be possible
to factor a polynomial N(x) of degree at most six. What we have to do in order to factor a polynomial is
simply to type it in the box underneath N(x). The polynomial will be factored, and the corresponding
factors will be put in the corresponding boxes (i.e. underneath the labels P (x) and Q(x)). Then one can
proceed to calculating the public and private exponent and then to encrypting and decrypting messages.

6.4 Encrypting
After having chosen the polynomials P (x) and Q(x), the next thing to do is to push the button CalcD. If
the two polynomials are not irreducible then the computer will ask you to choose another polynomial(s).
After the button is pushed, N(x) will automatically be calculated, as well as the encryption and decryp-
tion exponents. The encryption exponent e will be randomly chosen from the set Zs = {0, 1 . . . , s− 1},
such that it fulfills the condition gcd(e, s) = 1 (as we shall recall s denotes the number of invertible
polynomials modulo N(x) in Zp [x] / 〈N(x)〉). The decryption exponent will then be found by computing
the multiplicative inverse of e modulo s. After this, the button Test shall be pushed in order to start
encrypting. An encryption window will appear, where we will type the plaintext to be encrypted, and
the corresponding ciphertext will be shown underneath. In order to test that the encryption and decryp-
tion processes worked as they should, we can then push the button Decrypt and restore the plaintext.
An execution of the application in three steps, namely, generating the polynomials P (x) and Q(x) and
computing the exponents, encryption of a message and decryption of the message that was encrypted,
look like this :

Chapter Izabela Gafitoiu 27

Polynomial based RSA

Chapter Izabela Gafitoiu 28

Polynomial based RSA

Chapter Izabela Gafitoiu 29

Polynomial based RSA

Appendices

Chapter Izabela Gafitoiu 30

Polynomial based RSA
.1 Encryption

i f (e . getSource () . equa l s (encrypt)){
int sp l i tBy=polynomialP . getDegree ()+
polynomialQ . getDegree () ;
// the l e n g t h o f each b l o c k o f l e t t e r s
message=p l a i n t e x tF i e l d . getText () ;
// i f the l e n g t h o f the message i s
//odd then we add an ex t ra l e t t e r to
// the p l a i n t e x t
// a l e t t e r which doesn ’ t make sense
// in the contex t , namely " x " ;
// i f the message cannot be s p l i t i n t o equa l b l o k s
while (message . l ength ()% sp l i tBy !=0){

message+="x " ;
}

s t r i n g s = new ArrayList<Str ing >() ;
int index = 0 ;
while (index < message . l ength ()) {

s t r i n g s . add (message . sub s t r i ng (index ,
Math . min (index+spl i tBy , message . l ength ()))) ;
index += sp l i tBy ;

}
c o e f f P l a i n t e x t=new int [sp l i tBy] ;
c o e f fC iphe r t e x t=new int [sp l i tBy] ;
Poly c o e f f S p l i t=new Poly () ;
Poly c i ph e r t e x t=new Poly () ;
S t r ing s t r=" " ;
for (int j =0; j<s t r i n g s . s i z e () ; j++){
for (int i =0; i<sp l i tBy ; i++)

c o e f f P l a i n t e x t [i]= alphabet . indexOf (
s t r i n g s . get (j) . charAt (i)) ;
c o e f f S p l i t=new Poly (c o e f f P l a i n t e x t) ;
c i ph e r t ex t=power1 (c o e f f S p l i t ,
encryptExp , polynomialN) ;
c o e f fC iphe r t e x t=c i phe r t e x t . g e tCoe f f () ;

for (int m=0;m<sp l i tBy ;m++)
s t r+=alphabet . charAt (
c o e f fC iphe r t e x t [m]) ;

}

c i ph e r t e x tF i e l d . setText (s t r) ;

}

Chapter Izabela Gafitoiu 31

Polynomial based RSA
.2 Decryption

else i f (e . getSource () . equa l s (decrypt)){
code=c i ph e r t e x tF i e l d . getText () ;
int sp l i tBy=polynomialP . getDegree ()+
polynomialQ . getDegree () ;
s t r i n g s 1 = new ArrayList<Str ing >() ;
int index = 0 ;
while (index <code . l ength ()) {

s t r i n g s 1 . add (code . sub s t r i ng (index ,
Math . min (index+spl i tBy , code . l ength ()))) ;
index +=sp l i tBy ;
}

c o e f f P l a i n t e x t 1=new int [sp l i tBy] ;
c o e f fC iphe r t ex t 1=new int [sp l i tBy] ;
Poly c o e f f S p l i t=new Poly () ;
Poly p l a i n t e x t=new Poly () ;
S t r ing s t r=" " ;
for (int j =0; j<s t r i n g s 1 . s i z e () ; j++){

for (int i =0; i<sp l i tBy ; i++)
co e f fC iphe r t ex t 1 [i]= alphabet . indexOf (
s t r i n g s 1 . get (j) . charAt (i)) ;

c o e f f S p l i t=new Poly (c o e f fC iphe r t ex t 1) ;
p l a i n t e x t=power1 (c o e f f S p l i t , decryptExp ,
polynomialN) ;
c o e f f P l a i n t e x t 1=p l a i n t e x t . g e tCoe f f () ;

for (int m=0;m<sp l i tBy ;m++)
s t r+=alphabet . charAt (c o e f fP l a i n t e x t 1 [m]) ;

}
c i ph e r t e x tF i e l d . setText (s t r) ;

}

Chapter 6 Izabela Gafitoiu 32

Polynomial based RSA

Bibliography

[1] Manindra Agrawal, Lecture notes on Dixon’s Algorithm for Factoring Integers, http:
//www.cse.iitk.ac.in/users/manindra/CS681/2005/Lecture21.pdf, 15.07.2014

[2] Ali Ayad, A lecture on the Complexity of Factoring Polynomials over Global Fields, 2010,
http://www.m-hikari.com/imf-2010/9-12-2010/ayadIMF9-12-2010.pdf, 20.01.2015

[3] Majid Bakhtiari and Mohd Aizaini Maarof, Serious Security Weakness in RSA Cryptosys-
tem, http://ijcsi.org/papers/IJCSI-9-1-3-175-178.pdf, 18.07.2014

[4] Kostas Bimpikis and Ragesh Jaiswal, Modern Factoring Algorithms, http://www.cs.
columbia.edu/~rjaiswal/factoring-survey.pdf, 15.07.2014

[5] Dan Boneh, Twenty Years of Attacks on the RSA Cryptosystem, http://crypto.
stanford.edu/~dabo/papers/RSA-survey.pdf, 18.07.2014

[6] Pete L. Clark, Arithemtical Functions I: Multiplicative Functions, http://math.uga.
edu/~pete/4400arithmetic.pdf, 26.06.2014

[7] Dr. Marcel B. Finan, Lecture notes on Elementary Modern Algebra, http://faculty.
atu.edu/mfinan/4033/absalg12.pdf, 23.06.2014

[8] John B. Fraleigh, A First Course in Abstract Algebra, 7th Edition, Pearson, 2002

[9] Shuhong Gao and Daniel Panario, Tests and Constructions of Irreducible Polynomials over
Finite Fields, http://www.math.clemson.edu/~sgao/papers/GP97a.pdf, 30.06.2014

[10] Joachim Von Zur Gathen and Daniel Panario, Factoring Polynomials Over Fi-
nite Fields: A Survey, http://people.csail.mit.edu/dmoshkov/courses/codes/
poly-factorization.pdf, 20.07.2014

[11] Sajid Hanif and Muhammad Imran, Factorization Algorithms for Polynomials over Finite
Fields, Linnaeus University, 2011

[12] Thomas W. Hungerford, Abstract Algebra An Introduction third edition, Cengage Learn-
ing, 2013

[13] Avi Kak, Public-Key Cryptography and the RSA Algorithm https://engineering.
purdue.edu/kak/compsec/NewLectures/Lecture12.pdf

[14] Burt Kaliski, The Mathematics of the RSA Public-Key Cryptosystem,http://www.
mathaware.org/mam/06/Kaliski.pdf, 10.06.2014

[15] Piyush P. Kurur, Cantor-Zassenhaus Algorithm, http://www.cmi.ac.in/~ramprasad/
lecturenotes/comp_numb_theory/lecture11.pdf, 20.07.2014

[16] Lecture notes, https://www.math.okstate.edu/~binegar/3613/3613-l07.pdf

[17] Lecture notes on The Miller-Rabin Randomized Primality Test, http://www.cs.
cornell.edu/courses/cs482/2008sp/handouts/mrpt.pdf, 21.07.2014

Chapter 6 Izabela Gafitoiu 33

Polynomial based RSA
[18] Lecture notes (Theorem 9.16), https://www.math.okstate.edu/~binegar/3613/

3613-l19.pdf, 22.07.2014

[19] Lecture notes, http://www.math.hawaii.edu/~lee/courses/fundamental.pdf,
25.06.2014

[20] Arjen K. Lenstra, Integer Factoring, http://modular.math.washington.edu/edu/124/
misc/arjen_lenstra_factoring.pdf, 15.07.2014

[21] A. K. Lenstra, H. W. Lenstra and L. Lovasz, Factoring polynomials with rational coeffi-
cients, http://www.math.elte.hu/~lovasz/scans/lll.pdf, 29.08.2014

[22] A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography, http:
//cacr.uwaterloo.ca/hac/about/chap8.pdf, 22.06.2014

[23] Robert J. McEliece, Factorization of Polynomials over Finite Fields, http:
//www.ams.org/journals/mcom/1969-23-108/S0025-5718-1969-0257039-X/
S0025-5718-1969-0257039-X.pdf, 22.07.2014

[24] Robert J. McEliece, Finite Fields for Computer Scientists and Engineers, Springer, 1987,
22.07.2014

[25] Daniel Panario, Boris Pittel, Bruce Richmond and Alfredo Viola, Analysis of Rabin’s
irreducibility test for polynomials over finite fields, http://www.fing.edu.uy/inco/
pedeciba/bibliote/reptec/TR0116.pdf

[26] R.L. Rivest, A. Shamir, and L. Adleman, A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems, http://people.csail.mit.edu/rivest/Rsapaper.
pdf, 10.06.2014

[27] Kenneth H. Rosen, Elementary Number Theory and Its Applications (5th International
Edition), Addison Wesley, 2005

[28] David Seal, Lecture notes,http://www.math.msu.edu/~seal/teaching/sp12/4-4.8.
pdf, 27.07.2014

[29] Dr. David Singer and Mr Ari Singer, The Role Played by Mathematics in Inter-
net Commerce, http://www.case.edu/affil/sigmaxi/files/CryptoslidesSinger.
pdf, 28.07.2014

[30] Peter W. Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete Log-
arithms on a Quantum Computer, http://arxiv.org/pdf/quant-ph/9508027v2.pdf,
15.07.2014

[31] Barry Steyn, Why RSA Works: Three Fundamental Questions Answered, http:
//doctrina.org/Why-RSA-Works-Three-Fundamental-Questions-Answered.html,
29.06.2014

[32] Per-Anders Svensson, Lecture notes on Algebraic Structures, Fall 2013

[33] Lerk R. Vermani, Elements of Algebraic Coding Theory, Chapman Hall, 1996

[34] Dr Francis J. Wright, Mathematics and Algorithms for Computer Algebra, http://www.
cs.berkeley.edu/~fateman/282/F\%20Wright\%20notes/week6.pdf, 1.07.2014

Chapter 6 Izabela Gafitoiu 34

Faculty of Technology

SE-391 82 Kalmar | SE-351 95 Växjö

Phone +46 (0)772-28 80 00

teknik@lnu.se

Lnu.se/faculty-of-technology?l=en

