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1 Introduction

Due to the continuous demand nowadays for renewable energy sources, solar energy has become a focal
point. As a result a lot of effort has been made in order to construct solar cells with higher efficiencies
and lower cost. The main purpose in order to accomplish this task is the design of new materials that
fulfill specific requirements, which are necessary in order to get the desired results.

Our attention towards CulnSes was turned after the potential applications on solar cell technology
that can result from the study and understanding of it. CulnSes is now considered to be one of the most
promising materials for the construction of solar cells. In a paper published in 2012 by Wang et al. [I],
it is mentioned that CulnSe,; has chalcopyrite structure at room temperature and is a semiconductor
characterized by direct band gap. Moreover, it has a high rate of absorbing sunlight and it is a low cost
material.

In addition, a review article published in ”"Nature materials” by Curtarolo et al. in 2013 [2] describes
a new method in order to synthesize new materials for new desired applications and identify the existing
ones in the current applications, called high-throughput (HT). According to [2] a desired material for solar
cell applications should be a semiconductor having strong optical absorption coefficient, low cost and the
range of the band gap be at ~ 1.3 eV. In the http://pveducation.org/pvcdrom/materials/CulnSe2,
all the parameters and the properties of CulnSes are mentioned. One can then see that for CulnSes the
energy band gap is 1.02eV but it is also known thatquantum confinement effect allows the manipulation
of the band gap, so we can expand the band gap of CulnSe;. There is also the demand for an energy
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gap size around the the peak of sun-light intensity. So, we want to explore quantum confinement effects
in CulnSes; nanoparticles, hoping to optimize the gap for a suitable size of nanoparticles. For the above
reasons CulnSey; was chosen for the purposes of this project.

Our purpose in this project was to study the dependance between the energy gap and the diameter
for CulnSes nanoparticles (quantum dots). The theoretical background of the project is based on the
quantum confinement effect and the Density Functional Theory (DFT), whilst for the computational
part a FORTRAN 90 code was used for the construction of the nanoparticles, the Jmol software for
the visualization of them and the main part of the calculations was made by the the STESTA software.

The structure of this report is the following, first we start by introducing the quantum confinement
effect, some fundamental aspects of the DFT theory (Kohn-Sham equation,etc.), the idea of a pseudopo-
tential and by explaining basis set. Then we describe the software used for our task, we mention and
explain the code used for the construction of nanoparticles and the way calculations in STESTA software
take place. Finally we conclude by mentioning the results we got for the CulnSes; nanoparticles.

2 Theory

As mentioned above, this section consists of four parts:
e The explanation of the quantum confinement effect
e Some fundamental aspects of DFT
e The pseudopotential idea

e The basis set

2.1 Quantum confinement effect

In general the quantum confinement can be observed when the dimensions of a material are of the same
magnitude as the wavelengths of the electrons in the sample. When quantum confinement occurs a
change in the electronic structure of the material is observed and the electronic and optical properties
are different of those that characterize the bulk material.

When the dimensions are a lot greater than the electron’s wavelength in the sample the electron can
be considered as free and it is known from quantum mechanics that it will have a continuous spectrum.
The decreasing of the dimensions will cause the electron’s spectrum to become discrete and also an
increase the material’s band gap will be observed. A rough way to justify the previous statement is the
equation for the energy states of the three dimensional particle in a box model:

R2r2 ne \ > ny \ 2 n,\ 2
En Ny Mz — = a2 = 1
o= () +(2) +(2) 0

From equation it can be seen that a decrease in dimensions corresponds to an increase in the energy.
Figure [I| shows the transition from the bulk material to a quantum dot. In the same figure the blue shift
in the optical properties due to the increase of the energy can be observed.

Before moving forward we will try to describe the quantum confinement effect in a semiconductor. In
a semiconductor it is known that with the increase of temperature an electron can acquire higher energy
than the material’s band gap and jump from the valence to the conduction band leaving a hole in the
valence band. This electron-hole pair is called an exciton and it can be simulated by a hydrogen atom.
A way to test if we are in the quantum confinement regime is to compare the radius of the material R
with the exciton’s Bohr radius aj. We define the weak and the strong confinement regime as follows:

e When R/aj; ~ 1, then we are in the weak confinement regime

e When R/aj; < 1, then we are in the strong confinement regime

The exciton’s Bohr radius is:

m
5= r - 5 2
ap=ce ( *>a3 (2)
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Figure 1: The decrease of dimensions results in the increase of the band gap. The energy difference
results also the blue shift in optical properties. Figure taken from http://www.sigmaaldrich.com.

where ap ~ 0.53A is the Bohr radius, e, is the dielectric constant, m. is the mass of the electron and

m* = (m} -m})/(m} 4+ m}) is the effective reduced mass of the electron-hole system, where m}, m} are
the effective masses of the electron and the hole respectively. Finally the confinement energy for the

exciton is given by the formula:
RPm? (1 1
Econ = — > 3
202 (me + mh) ®)

where « is the exciton’s radius and m. and my the masses of the electron and the hole respectively.

2.2 Density Functional Theory

It is known from quantum mechanics that the wavefunction 1 of a system contains all the information
about the system and satisfies the Schrédinger equation:

Hy = ey, (4)

where H is the Hamiltonian operator and € the energy of the system. Exact solution for equation can
be found for the particle in a box, the harmonic oscillator, the hydrogen atom and maybe other physical
systems, but in general getting the exact solution of equation @ is very difficult. In addition, in the
three previous systems we have one particle for the first and the second case and two for the third (the
electron and the proton). In the case of an atom with many electrons or a molecule, equation @ can’t
be solved exactly and certains approximations should be applied.

Suppose that we want to solve equation for a system of N electrons and N’ nuclei. The wave-
function will have the for U =U(ry, ..., TN, Ry, .., R_;V) and the Schrodinger equation will be now:

HU = EV, (5)

where the Hamiltonian, under the Born-Oppenheimer approximation, will have the form:

1 X o2
47’(‘60 21]21|R _ 87r€0l21]21|7:;77ﬂ| (6)
J#i

where the first term is the kinetic energy of the electrons, the second the electrostatic energy between
electrons and nuclei and the third the electrostatic repulsion between electrons. In order for someone
to calculate the total energy of the system the repulsion between nuclei should also be taken under

i

1We switch to upper case ¥ to remark ourselves that we have a many electron system.
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consideration. Exact solution of equation with the Hamiltonian @ is not possible and the first
approximation method for that purpose was the Hartree-Fock approximation. Since the purpose of this
project is not a complete description of DFT we will not mention the details of this method and we refer
the reader to the relevant bibliography [3],[4].

The Thomas-Fermi model [4], which was stated in 1927, can be considered as a first step towards
DFT. It has the great advantage that it avoids painful calculations for the solution of equation , as
it was the case with the Hartree-Fock model. Before we describe the Thomas-Fermi model, we have to
mention first a very important principle of Physics, called the variational principle.

We know that the expectation value of energy for a system being in the state U is given by:

/ U Hudi
e (7)
/ U*Udi

the variational principle states now that: any other state W which is not the one that corresponds to
the ground state energy will result an energy which is an upper bound to the ground state state energy
Ey. Tt can be shown that minimization of the functional E[¥], with respect to the wavefunctions of
all electrons, in equation will give the ¥y and FEy, the ground state and the ground state energy
respectively. In the case now of the Thomas-Fermi model we will apply the variational principle, but the
variable with respect to which different quantities have to be minimized will not be the wavefunction ¥
but the electron density p(7).

Though the wavefunction contains all the information for the system, the calculation of it can be very
difficult. Thomas and Fermi, proposed a model based on the uniform electron gas, where the kinetic
energy and the total energy of an electron are both functionals of the electron density and are given by:

E[¥] =

=3

Trelp()] = 15372 [ #5007
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Now the correct density which should be applied to the second of equations , can be found by the
variational principle mentioned before. According to that model the density that gives the ground state
energy can be found, fulfilling the condition:

[ ptrrar=x, (9)

where N is the total number of electrons. That make sense because if we consider a non excited state of
the system then by integrating with respect to the electron density we must have the total number of
electrons, so in that way we have a good way to get the most proper density for equations .

Until that point we see that p(7) plays a very important role in our effort to find a way to solve
equation . This argument is also supported by two theorems which play a fundamental role in DFT
and were stated in 1964 by P.Hohenberg and W.Kohn [4], [5]. In the following we will mention the two
theorems and we will see their consequences. The proof of each theorem which is not given here can be
found in the relevant paper [5].

The first Hohenberg-Kohn theorem states that: for a system of interacting particles in an external
potential Ve, both the external potential and as a result the Hamiltonian are unique functionals of p(7).
The energy of the system can be written as a sum of three terms, where each term will be a functional
of p(7) and the same will be for the total energy. We get:

Elp(7)] = Tlp(7)] + VIp(7)] + Ulp(7)], (10)

where the first term in the right hand side of equation is the kinetic energy, the second is the external
potential and the third describes the electrostatic repulsions between the electrons. Now equation
can be written as:

E[p(?) = / (Vs + Frxc o), a1



with Frx[p(F)] given by:

Frr[p(m)] = Tlp(M)] + Ulp(7)]- (12)

Fyk[p@) is probably the most important quantity in DFT and if it could be exactly determined then
equation could be solved exactly as well. The advantage of introducing this method is its applicability
to all the systems, from atoms to molecules and solids. Unfortunately we can not know the exact form
of Fr[p(7)] but the second term in the right hand side of equation can be defined. It will be the
sum of the classical Coulomb repulsion and of non-classical terms, we get:

Ulp(7)] = % / / %dﬁd& Bt = J[p()] + Enet, (13)

the non-classical terms are the self interaction correction and the exchange and Coulomb correlation.
Up to that point we see that the only parameter in all the expressions for energy is the electron density
p(7) and if the ground state density is inserted into the energy expressions acquired above then we get
the ground state energy. This is the second Hohenberg-Kohn theorem which states that the functional
Frx[p(F)] will give the ground state energy if and only if the density inserted in it is the ground state
density. This is actually an implementation of the variational principle and it can be written as:

Eo < Elp()] = Tlp()] + VIp(F)] + Ulp(¥] (14)

From equation we see that any other density, except the ground state density, will give an energy
which will be an upper bound to the ground state energy of the system.

So by using the DFT we avoid difficult calculations in order to get an approximated solution of
equation (), but still some functionals can not be fully determined. This is of course the Fy g [p(7)]
functional, which it will be determined if T'[p(#)] and E, could be determined. That can be seen by
writing equation in the form:

Fuk|p(P)] = Tlp(M)] + Jp(7)] + Ener- (15)

Now the Thomas-Fermi model is not the best approximation for the kinetic energy functional T'[p(7)],
so W.Kohn and L.J.Sham in an article published in 1965 [4], [6] proposed a way to define the kinetic
energy functional. We will describe briefly what they did and we refer the reader to relevant paper for
a detailed description.

The main idea was to calculate the kinetic energy for a system of non-interacting particles which has
the same density as the one of the interacting particles. In that case, the kinetic energy and the density
will be given by:

K2 N N
T =g, 3 [0V o) =3 I (16)
In addition, they wrote the Fx[p(7)] functional in the form:
Frk[p(r)] = Tui + J[p(M)] + Exc[p(7)], (17)
where the Exc[p(7)] term is called the exchange-correlation energy and can is defined as:
Exclp(r)] = (T[p(M)] = Tni) + Ulp(7)] = J[p(7)]). (18)
Now the total energy for the interacting particles can be written in terms of T,,; and Ex¢|[p(7)] as:
Elp(7)] = Toi + J[p(M)] + Exclp(7)] + Vp(7)]. (19)

In equation (19), Exc[p(7)] is the only term for which we don’t have an analytical expression. If we
replace the other terms by their analytical expressions given by equations , , in equation
and apply the variational principle for the minimization of energy under the usual demand:

/ 67 (7) by (P = 635, (20)



then we obtain the Kohn-Sham equation:

(- 5+ Vol x() = (0, @

Let us know do some comments about equation . First we can say that it has the exact same
form as Schrédinger equation, but now instead of the many-electron wavefunction ¥ we have the single
particle wave-function for our non-interacting particles system ¢; (7). The Kohn-Sham potential Vs(7) is
given by:

Vs(7) = Vear (7) + Vx o (7) + Ve (), (22)

where Vi () is the Coulomb potential and Vx¢(7) is the exchange-correlation potential, obtained as the
variation of Exc[p(7)] with respect to p(7). Once the Kohn-Sham equation has been solved, we can
replace the ¢;(7) to the second of equations and get the density of the non-interacting system which
will be the same as the one of the interacting one. Finally we mention, without entering in more details,
that the orbitals ¢;(7) have little or strictly speaking no physical meaning.

In order for the Kohn-Sham equation to be solved, we need to obtain an expression for Exc[p(7)].
Such an expression can be obtained only through approximation methods and here we will mention
the two most common approximations, which are the Local Density Approzimation (LDA)MA] and the
Generalized Gradient Approzimation (GGA) [4].

The LDA is based on the uniform electron gas model, where the electrons are moving in a space of
positive charge and the system as a whole is neutral. The exchange-correlation energy is given by:

ELPA (7)) = / exc(p() p(P)F, (23)

where exc(p(7)) is the exchange-correlation energy density. It can be considered as the sum of two
terms:

exc(p(7) = ex(p(7) + ec(p(r)), (24)

where ex (p(7)) denotes the exchange contributions and ex(p(7)) denotes the correlation contributions.
Bloch and Dirac gave an expression for ex (p(7)) [4] which is:

A\ /3
ex<p<ﬂ>:—i(w) | (25)

™

There is no expression for ec(p(7)) but numerical quantum Monte-Carlo simulation can be found [7].

The GGA method is taking into account not only the density p(7) in a point 7 but also the gradient
of the density ﬁp(?) so that non-homogeneity of distribution can be included. The exchange-correlation
energy in GGA is given by:

ESEA () = [ exclold). oli)p(rar (26)

The main reason the LDA and GGA methods mentioned is, as we will see later, that they need to be
declared in the input file for Siesta DFT, the program used for the calculations that took place for this
project.

2.3 The pseudopotential

We saw in the previous the Kohn-Sham potential given by equation , which is necessary in order to
solve the Kohn-Sham equation . Since in the way the potential was defined made the calculations
easier, a general idea was to apply in equation a pseudopotential, so obtain a solution by avoiding
difficult calculations, which of course describes the properties of a system.

In our case, since we deal with many interacting atoms where only the valence electrons determine the
interactions, a good potential (pseudopotential) to replace the real complicated one, could be a potential
where the the effects emerging from the core (non-valence) electrons and the nuclei have been removed
and only the chemically active valence electrons have been taken under consideration.



We have to specify at this point, that the pseudopotential should have the same form and give the
same wavefunction with the real potential outside a cutoff radius r.. That can be seen in figure
Pseudopotentials characterized by large cutoff radii are called softer, i.e., converge rapidly but are also
less transferable, i.e., do not reproduce realistic results under different conditions.

For the calculations took place with SIESTA, http://departments.icmab.es/leem/siesta/, we
have used pseudopotentials. There are codes made in oder to generate pseudopotentials e.g. Opium,
http://opium.sourceforge.net/| since we had the pseudopotentials pre-generated we won'’t enter into
more details and mention here the mathematical forms of different pseudopotentials.
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Figure 2: After r. both the real potential and the pseudopotential are giving the same wavefunction.

2.4 Basis set

It is known from the theory of linear differential equations, that the linear combination of the solutions of
these equations is also a solution and that apply for both the ordinary and the partial linear differential
equations. The Schrédinger equation (4)) is in general a partial linear differential equation, so the solutions
of form a vector space and as it is also known from Linear Algebra, that each vector space has a basis
i.e. a set of linearly independent vectors, a linear combination of which can give any vector of the space.

In the above paragraph, the term vector has not been used to describe physical quantities that can be
represented by vectors like force, velocity etc. The functions that are solutions to and called atomic
orbitals, are now vectors and form a vector space. So as a basis set now we can have a set of atomic
orbitals, which, when written as a linear combination, give molecular orbitals, or a set of plane wave
functions as is often the case in materials physics.

Now in our case, for the calculations took place with STESTA, due to the fact that the pseudopotential
takes only the valence electrons into consideration, it is convenient to have a basis set where a basis
function will correspond to each valence atomic orbital. A basis set like that is called a split-valence basis
set. When multiple basis functions correspond to each valence orbital then we say that we have a double,
triple or quadruple - zeta (). In a more formal description that has to do with the radial functions per
angular momentum channel. So a single ¢ means one radial function per angular momentum channel
etc. We will come back to that when we will see the structure of an input file in SIESTA.

3 Computational Setup

In this section we mention and explain all the software used for the purposes of this project. In the
following we will describe:

e The FORTRAN code made for the construction of the nanoparticles
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e Their visualization with Jmol software

e The calculations with Siesta DFT

3.1 Construction of nanoparticle models

In order for someone to write a code for the construction of CulnSes nanoparticles, the unit cell of the
crystal has to be known. After the unit cell is known, one has to write down the coordinates of each
atom in the unit cell and expand this structures for different radii of nanoparticles. The unit cell can
be found at http://gurka.fysik.uu.se/ESP/|and it contains sixteen atoms. It can also be seen that
the lattice parameters of the unit cell are: a = b = 5.8A and ¢ = 11.7A, whilst for the angles we have
a = =~ =90° The positions of the atoms in the code have been expressed in fractional coordinates
(thus, each of the z,y, z coordinates is a fraction of a, b, ¢ respectively). According to all the previous,
we have the following code for the construction of nanoparticles:

program make_nano_CulnSel22
implicit none

double precision radius, alat, clat
double precision basis (3,16)

integer h,k,1l,hmax,kmax,lmax,ib,nb,nat
double precision r(3)

character (len=2) atbasis (16)

basis=reshape( (/0., 0., 0., &
1./2., 1./2., 0., &
1./2., 0., 1./4., &
0., 1./2., 1./4., &
1./4., 1./4., 1./8., &
3./4., 3./4., 1./8., &
3./4., 1./4., 3./8., &
1./4., 3./4., 3./8., &
0., 0., 1./2., &
1./2., 1./2., 1./2., &
1./2., 0., 3./4., &
0., 1./2., 3./4., &
1./4., 1./4., 5./8., &
3./4., 3./4., 5./8., &
3./4., 1./4., 7./8., &
1./4., 3./4., 7./8./), shape(basis))

atbasis= reshape( (/’Cu’, ’In’, ’In’, ’Cu’, ’Se’, ’Se’, ’Se’, ’Se’, ’In’,

>In’, ’Se’, ’Se’, ’Se’, ’Se’/), shape(atbasis))

alat=5.800

clat=11.700

radius=

nb= 16

hmax = ceiling(radius/alat)+1
kmax = ceiling(radius/alat)+1
lmax ceiling(radius/alat)+1

nat = 0

'Cu’,

’Cu
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do h=-hmax, hmax
do k=-kmax, kmax
do 1l=-1max, 1lmax
do ib = 1, nb
r(1) = alat*(dble(h)+basis(1,ib))
r(2) alat*(dble(k)+basis (2,ib))
r(3) clat*(dble(l)+basis (3,1ib))
if (sqrt (dot_product(r,r))<radius) then
write(30,’(a2,3f14.6)’) atbasis(ib), r
nat = nat + 1
write (40, ’(3f14.6,i5,a25,i5)°’) ((/dble(h),dble(k),dble(l)/)+basis(:,ib)), 1,
’Nanoparticleno. of  atoms’, nat
endif
enddo
enddo
enddo
enddo

print*, nat

end

Since the reader might not be familiar with programming, let us know explain what each line in the
previous code means. For a detailed explanation of FORTRAN language itself, we refer the reader to
the relevant bibliography [8]. The very first line starts with program, the code which should be executed
must be within the program block. At the end of the code there is also end which shows the end of
the block. In the second line of the code there is the implicit none statement. This statement is used
in order for the programmer to declare all the variables, which will be used. The reason someone uses
this statement is to avoid possible mistakes which are related with the way FORTRAN codes were made
when the language was first developed. Due to lack of memory the first codes were made as short as
possible and the type of a variable had to do with the first letter of the variable, so I,J,K,L M,N were
denoting an integer and all the other letters a real number. This way of making programs was commonly
resulting in mistakes so the safer implicit none statement is used.

In FORTRAN we have six types of data which are: real, double precision, complex, logical, integer,
character. The double precision statement used for the variables radius, alat, clat and r(3) has to be
explained now. During the calculations done, there will be real numbers which may have many decimal
digits. Now the computer can’t store in its memory all the digits, which in certain cases might be
infinite (e.g. e, m). When the double precision statement has been declared before the variable, then
the computer will use a certain number of bytes (usually 8 bytes) for the representation of the number
and that will result in a certain number of decimal digits which will be kept and is usually 15 digits.
The integer variables in this code are the indexes h, k,l and their max values hmax, Fmax, lmax and the
ib which denotes a random atom, nb which denotes the number of atoms in the unit cell, thus sixteen,
and the nat which is the total number of atoms. The character type is used in order to introduce the
the chemical symbol of the atoms. This statement does what the name suggests, inserting characters as
variables. The parentheses after the statement are used to declare the number of characters, which in
our case is two and then we denote that it refers to the atoms of the unit cell with the atbasis(16).

The reshape function is very important part of the code. The general structure of this function is
reshape(source,shape), where the source is used in order for the data to be inserted in array order and
the shape is used for the shape of of the array which will be produced. At this point we have to mention
that an array in FORTRAN can be made by an array constructor which is a list of constants (real,
integer) between the symbols (/.../). For example the array (/x,y, z/), where x,y, z are real numbers,
is a vector in a Cartesian coordinate system. So in our code we define the basis variable, which is
nothing more than the unit cell, with the reshape function. The source part contains all the data in an
array form and these are the position vectors of each atom in the unit cell. For example, for the first
atom is in the (0,0,0) position the vector will be of course (/0.,0.,0./). The dot after each number is
used in order to get a real number and not an integer when we must express the coordinate as a fraction.



For example, FORTRAN will give the value 0 to 1/2, so in order to get 0.5 one has to write 1./2. as a
coordinate. The shape part could have been written as (/3,16/). Instead we write shape(basis) and we
have already defined the dimensions of the basis to be (3,16) in the beginning with basis(3,16). The
same procedure has been followed and with the atbasis variable. The reshape function has been used
and now the source part consists of the chemical symbolisms of the atoms in an array form and the shape
instead of been written in the form (/1,16/), has been written as shape(atbasis) where the dimensions
have been defined one more time in the beginning with the atbasis(16). Now one should also notice
the correspondence between the two arrays, where a position vector in the first corresponds to a specific
atom in the second. We also mention that the ampersands (&) are used in FORTRAN in order to break
a line.

Next we have to assign a value both to the real and the integer variables. The values of lattice
parameters of the unit cell are known and in our case real variables. Moreover because a = b we just give
the value of a assigned as alat and equating it with 5.800. The ¢ value has been assigned as clat and it is
equal with 11.700. The lines following the exclamation marks (appeared with green color) are comments
and do not taken into account during the compilation of the code. In our case we comment that all the
values are measured in Angstrom (A) The next real variable, and probably the most important for our
purpose, is the radius of the nanoparticle. It is also expressed in A and the values used, since they do not
appear in the code, were 5A, 7.6A and 12A. After that we have assigned a value to an integer variable
which is the number of the atoms in the basis (unit cell), written as nb and be equal with 16. Then
we have to define the integer variables hmax, kmax, lmax. These three variables are the maximum
values of the Miller indexes and have to be integer. For that reason we use the ceiling function, which
has the general form ceiling(M) which gives the smallest integer which is greater than or equal to the
argument M. So the maximum value of each index should be the integer given by the ceiling function
when it’s argument is (radius/alat) and then add one. For reasons that will become obvious shortly,
the last integer variable which is the total number of atoms in the nanoparticle, nat, has been set equal
to zero.

Now that we have set the maximum values of h,k,l we want the code to assign to each index all
the values from the negative of the maximum value until the maximum value. In order to accomplish
that in FORTRAN one has to use the do statement. So by typing do h=-hmax, hmax, one says the
code to assign in h all the values between the selected range. This procedure is called a loop. A loop is
taking place in oder for someone to get an output, shortly we will see which is the output we want and
how we will get it. In addition, the loop has to start with the do statement and finish with the enddo
statement. We repeat the same procedure we did for the h index, for the k and [ indexes and then we
have do ib=1, nb, so that we include all the atoms in the unit cell.

After the last do statement, what we have done is to define a translation vector 7. In our case the
components have been defined as r(1),r(2),r(3) instead of the usual z,y, z notation. At that point we
have to justify for the way each component has been defined. We will do that for r(1) and the same
argumentation stands for r(2) and r(3). In the code it can be seen that the component has been defined
as r(1)=alat*(dble(h)+basis(1,ib)). What we have actually done is to extend the xz-component of
the position vector of each atom in the basis (unit cell) by the lattice parameter ¢ multiplied by the index
h. This is why we typed basis(1,ib), it means the first column in the basis variable (x component)
and ib will take all the values from one to sixteen. This time he have used the dble function in order
to convert the integer h to a double precision real type. The general form is dble(M) and the argument
M should be integer, real or complex. As mentioned before, the double precision has to do with the
memory storage in the computer (8 bytes) and the number of decimal digits kept ( 15). By doing the
same for r(2),r(3) we can expand the unit cell and get the crystal structure.

Let us now summarize the previous. Up to now we have introduced certain variables in the code,
we have set the position vector for each atom in the unit cell, as well as their chemical symbol and we
have extend the unit cell in all three dimensions to get the crystal structure. Two points have still to be
explained, why we set the total number of atoms (nat) equal to zero and why we introduced the loops
for the h, k,[ indices. These two points will become clear after we explain what follows the definition of
the translation vectors in the code.

After the r(1),7(2),7(3) have been defined, the condition for the construction of nanoparticles should
be introduced. In order to introduce the condition we use the if...then statement. What this statement
does is to give as an output only these results that satisfy the condition introduced immediately after
the if part. In our case the condition is the following (sqrt(dot__product(r,r))<radius), which says
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that we want to keep only atoms that are inside a given radius. The distance of an atom from the
(0,0,0) point is of course given by r = V- 7 and we demand that to be less than the radius set in the
previous part of the code and defined by the variable radius. So now we can see why the loops were
inserted. Since we have to run the code for different radii and the maximum values of the indexes depend
on the radius selected, the code will have to calculate the specific range between the minimum and the
maximum value for each radius. In addition since the indices are inserted in the translation vector 7,
the code has to calculate all the translation vectors for all the values of the h, k, [l indexes and then keep
only the ones that satisfy the condition, that will be the wanted output mentioned before.

The part after the then statement is for the output of the code and it begins with the write statement.
Without entering into details about the parentheses part we mention that we will get an output file in
which the chemical symbol and the position vectors of each atom that fulfills the condition will be
appeared. That can be seen by the fact that after the parentheses is written atbasis(ib),r, that means
that we will get the chemical symbol given in the atbasis variable and a position vector for each of them.
And now we can also justify why set the total number of atoms equal to zero in the beginning. In the
code, it is written also after the write statement nat=nat—+1, in that way the code understands that
the final number of atoms will be the initial number of atoms which is zero plus the atoms that fulfill
the condition, so just the latter atoms. After that there is one more write which is for a different type
of output file. Since we did not use that file for the visualization of the nanoparticles in Jmol software,
we won’t explain that part here.

Finally, the print* statement says the code what to give as an output, which in our case is the number
of atoms that fulfill the condition. In addition, due to the write statement we will also have a file with
their spatial components. We compiled the above code for different radii and we got three different
nanoparticles, each having a different number of atoms. In what follows we will see how the visualization
with Jmol software took place.

3.2 Visualization with Jmol software

The Jmol is an open source JAVA viewer for chemical structures in 3D.
Though it is mainly used in the fields of Chemistry and Biochemistry for
the visualization of proteins, it is also very useful in order for someone
to view the crystal structure of a material and in our case to visualize
the nanoparticles. The program can be downloaded free from http:
//www.jmol.org/.

In order for Jmol to visualize a structure, one has to open with Jmol
the xyz file that describes it. The xyz file is nothing more than a simple
plain text file, where in the very first line there is the total number of
atoms, then there is an empty line and in all the other lines there is the
chemical symbol of an atom and its coordinates. To make the previous
more clear we give the form of the xyz file describing methane molecule.
If the file below is executed with Jmol we get the structure of methane

molecule. Figure 3: The CulnSe; unit
cell.

C  0.000000  0.000000  0.000000
H 0.000000 0.000000  1.089000
H 1.026719  0.000000 -0.363000
H -0.513360 -0.889165 -0.363000
H -0.513360 0.889165 -0.363000
Now is becoming obvious the usefulness of the code described above.
What the code does in practice is to give everything we need for the
xyz file. We have the number of atoms for each structure and the coordinates of the atoms. Due to the
fact that the unit cell has 16 atoms, the shortest radius (5A) structure has 29 atoms and the others even
more, we can’t write down the xyz files for the unit cell and the structures as we did for the methane
molecule. The unit cell and the structures for the three different radii that the code was compiled, which
are 5A, 7.6A, 12A can be seen in figures , , , , respectively. In these figures we have

the nanoparticles made by the code described before. In order to proceed with calculations with the
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Siesta DFT software, one has to hydrogenate the structures. A hydrogenated structure, also referred as
hydrogen-terminated structure lacks unpassivated surface atoms and dangling bonds. The latter form
when there are atoms with unfilled valence shells, so they form covalent bonds with other atoms. When
dangling bonds occur, calculations are often unstable. In nature, dangling bonds are quickly saturated
by forming bonds with nearby atoms or molecules, which can modify some properties of nanoparticles.
In order to avoid dangling bonds in our calculations, the surface atoms are bonded with hydrogen atoms.
That can be done using a different code, but that is outside the scope of this project and we won’t
describe that code in detail. In figures , , we have the hydrogenated structures for the 5A,
7.6Aand 12A respectively. There is one last thing which will become clear in the next subsection. If
someone looks in figure , then it can be seen that there are not only H atoms but also He atoms.
That has to do with the calculations in Siesta, but still we referred to the structures of figure as
hydrogenated nanoparticles.

E

X%

w
LR
>{

OO

(a) Nanoparticle of 5A radius, (b) Nanoparticle of 7.6A radius, (c) Nanoparticle of 12A radius,
containing 29 atoms. containing 87 atoms. containing 293 atoms.

Figure 4: Different radii non-hydrogenated nanoparticles. Which color represents each atom can be seen

in@and @}

(a) Hydrogenated nanoparticle of  (b) Hydrogenated nanoparticle of  (c) Hydrogenated nanoparticle of
5A radius, containing 65 atoms. 7.6A radius, containing163 atoms. 12A radius, containing 465 atoms.

Figure 5: The hydrogenated nanoparticles of figures In |58 one can see which color represents
each atom.

3.3 The SIESTA calculations

Up to now, we have constructed the nanoparticles and we have visualized the structures. What comes
next is to take some insight about their physical properties, especially the electronic structure and the
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energy gap. We remind in this point that our expectation is an increase of the energy gap when there is
a decrease in the radius

As we have seen in the theoretical part, solving equation and getting the electronic structure and
the energy eigenvalues, for such a system, is not possible. Approximations should be applied, but still
the calculations are very complicated, so we have to make use of a code one more time. The code that
will be used this is time is called SIESTA and it is made in order to do calculations about the physical
properties of a system based on DFT.

SIESTA is a computer code, using DFT in order to calculate ground state properties of materials.
Strictly speaking, we can not get any info by SIESTA about the excited states of the system. Moreover,
SIESTA is using pseudopotentials in order to run calculations, that means as we saw in the theory part
that only valence electrons are taken into account and when there are semicore states i.e. the overlap of
the wavefunctions between the core and the valence electrons is non-negligible, they should be explicitly
declared in the input file for STESTA. As we will shortly see, that happened in our case with the Se
atoms and we had to specify these semicore states.

In what follows, we will try to explain the main parts of a SIESTA input file. The reader can find a
detailed description of SIESTA in the SIESTA tutorial [9]. The input file for STESTA has an .fdf suffix
and should be saved in the same directory with the files for the pseudopotentials (5 files in our case)
which are usually in .psf format. The .fdf input file for the 5A structure is the following:

WriteXML no
WriteCoorXmol yes
WriteEigenvalues yes

# System name (every output file will have that name) and system label
SystemName template_nc_5_input
SystemLabel CuInSe_5A

NumberOfSpecies 5
NumberOfAtoms 65

# Atoms present in the system
%block ChemicalSpeciesLabel

1 29 Cu

2 49 In

4 201 H_1.5

5 202 H 0.5

%endblock ChemicalSpeciesLabel

%block PAD.Basis
Se 2 nodes
2P18S0.15

5.0 5.0
%endblock PAO.Basis

# Basis set and parameters for the basis set
PAO.EnergyShift 200 meV

%block PAO.BasisSizes

Cu DZP

In DZP

Se DZP

H_1.5 DZP

H_0.5 DZP

%endblock PAQD.BasisSizes
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# Charge of the pseudohydrogen
%block SyntheticAtoms

4

234

.500 0.000000 0.000000 0.000000

2 34
.500 0.000000 0.000000 0.000000
%endblock SyntheticAtoms

1
1
5
1
0

# kgrid defined for non-periodic systems
kgrid_cutoff 0.0 Ang

# Used functional
xc.functional LDA
xc.authors CA

SpinPolarized .false.

# SCF convergence parameter
MeshCutoff 160. Ry
MaxSCFIterations 500
DM.MixingWeight 0.01
DM.NumberPulay 5
DM.Tolerance 1.d-4

WriteDM .true.

SolutionMethod diagon
ElectronicTemperature 25 meV

# Relaxation parameters
MD.TypeOfRun cg
MD.NumCGsteps 1000
MD.MaxCGDispl 0.01 Ang
MD.MaxForceTol 0.04 eV/Ang

# Structure, in angstroms (Ang)

AtomicCoordinatesFormat Ang

%block AtomicCoordinatesAndAtomicSpecies
0.000000 0.000000 0.000000 1# Cu 1
-2.900000 -2.900000 0.000000 2# In 2
-3.821106 -3.821106 0.929047 4# He 3

0.580171 5.215838 -0.600106 5 # H 65
%endblock AtomicCoordinatesAndAtomicSpecies

Let us now explain what all the above mean. First we mention that lines starting with a "#" in a
SIESTA input file are comments (like lines starting with a "!" in FORTRAN) and won’t be taken under
consideration during the compilation of the code. These lines are there to explain specifically what each

part means.

The first three lines of the input file now have to do with the type and the form of the output file
produced by SIESTA. Though they are not that important for our purpose we will a short explanation
for each. The very first line is WriteXML no and says to the code not to write the output file as an XML
file. The second line should result in one more file containing the coordinates of the atoms of the system
inAAngsmﬁnL since there is the option yes, WriteCoorXmol yes. That file should be read by XMoy,.
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The third line is similar in structure with the previous two, WriteEigenvalues yes and the result will
be the appearance of the Hamiltonian’s eigenvalues for the sampling k points in the output file. The
reason we chose yes is because we specified the Solution Method to be diagonal as we will see shortly,
also we need eigenvalues to determine the size of the energy band gap. Otherwise the option should have
been no.

Now we can proceed to main part of the input file. As the first comment suggests, we should have
a system name and a label for the system also. So after the options SystemName and SystemLabel, we
have defined that we have the template of the input file for the nanoparticle of 5A radius, written as
template_nc_5_input and be the system name and the label CuInSe_5A. Then we have to define the
number of different atoms in the system and the total number of atoms in the system after the options
NumberOfSpecies and NumberOfAtoms respectively. In our case we have 5 different atom species and 65
atoms in total.

After that, we have a block where we have to define, which are the atoms present in the system and
assign them a label. A block in a SIESTA input file starts with "%block" and the name of the block
and ends with "%endblock" and one more time the name of the block. Then we have assigned a number
from 1 to 5 for each element, next to the number there is the atomic number of the element and then
the chemical symbol. Now there are two things that should be specified. First we see that we have two
atomic numbers that are 201 and 202. Atomic numbers greater than 200 declare synthetic elements, in
our case we have two types of pseudohydrogen (H_1.5,H_0.5). The subscripts denote the charge of each
pseudohydrogen, which is (3/2)e and (1/2)e respectively. The reason why those pseudohydrogens are
used is to compensate the lack of charge of the cations and the excess of charge of anions at the surface of
the nanoparticle. If we see the structures shown in figure [§] we will notice that after the hydrogenation
process He atoms are bonded to cations which are Cu and In atoms and H atoms are bonded to anions
which are Se atoms. So the H_1.5 represents the He and the H_0.5 represents the H.

Then we have the block with the pseudo-atomic orbital basis (PAO.Basis). There we have defined
the semicore states for the Se atom. SIESTA demands that we explicitly describe any semicore states,
since the pseudopotentials used take into account only valence electrons as mentioned before. The way
semicore states are defined is as follows. In the beginning we have to write down the chemical symbol
of the atom for which semicore states appear, in our case Se. After that we have to give the number of
the orbitals we use to describe the semicore states, in our case 2.

We have the line: n=4 1 2 P 1 S 0.15. Here we describe the orbital. The principal quantum
number n is 4 and the angular momentum quantum number [, denoted immediately after n is equal
to 1. Then we have the number 2, which is the number of ¢ for the shell and the P denotes a shell of
polarization functions will be constructed from the first zeta orbital of angular momentum ! (STESTA
tutorial [9]). Then the number 1 is the ¢ number for the polarization shell created. Finally the S sets
the split-norm parameter at 0.15, the number which follows S.

Next we have to describe the second orbital. This time the principal quantum number n is again 4,
but this time the quantum number of angular momentum [ is 0. The number of ¢ is again 2 and now
we have to polarization shell, the split-norm parameter is again equal to 0.15. The numbers under the
description of each shell are the radii and due to the fact that we have 2 { we have each number two
times under each shell. So in our case the radii are 5 Bohr.

The next part of the input file that we will describe now is the block PA0.BasisSizes. By size
we mean the number of orbitals per atom. As we can see we have two radial functions per angular
momentum channel double ¢ denoted by DZP. The P at the end means that we can also have polarization
shells. So for each atom we have a DZP.

Then we have to start a block describing the synthetic atoms. In this block block there are the
numbers we have assigned to the synthetic atoms, in our case 4 and 5. Under these numbers there are
the numbers 1,2,3,4, which show the number of valence electrons with given [ = 0,1,2,3 and under the
latter there are the occupancy numbers. So we have one electron with [ = 0 and zero electrons with
1 =1,2,3, for both types of pseudo-hydrogens.

Finally it can be seen that the exchange correlation functional used is LDA with the parametrization
CA (Ceperley-Alder). At this point we have to specify that we have to provide STESTA a file with the
pseudopotential used for each atom. There are certain programs doing that but for the purposes of this
project we had the pseudopotentials already made. We won’t explain in detail the rest of the input file,
but as mentioned before we refer the reader to the SIESTA tutorial [9], where everything is explained.
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4 Results and discussion

After we have seen how the input file looks like, we can proceed and present our results. After the
calculations with SIESTA have been run we get several output files. The most important of them for our
case is the one in which the Fermi energy of the system is written as well as the eigenvalues of energy.
From the latter file we can get the density of states (DOS)E| for each structure, using the eig2dos code,
a FORTRAN code that comes with STESTA.

After compiling the code for the output file showing the energy eigenvalues we get a list showing the
number of states per energy eigenvalue. By plotting the DOS vs the energy and by knowing the Fermi
energy, the energy band gap can be identified and its range can then be calculated. At this point we
have to mark that though the SIESTA calculations are giving us the value of the Fermi energy for each
structure, eig2dos code is shifting the Fermi energy to zero, so the energy band gap should be expected
around zero in a DOS vs energy plot.

Due to the quantum confinement effect explained in the theory part, one should expect to see an
increase in the energy band gap of the nanoparticle, as its radius reduces. From our calculations that was
indeed the case and in the following DOS vs energy plots quantum confinement can be observed. Before
presenting these plots, there is one more crucial point that has to be explained in order for the energy
band gap to be identified. As mentioned before, in order to proceed to calculations with SIESTA the
structures should have been hydrogen terminated first so no dangling bonds appear. These are nothing
more than covalent bonds between atoms with unpaired electrons.

If now hydrogenation has not occurred properly, then there will be free electrons leading to dangling
bonds. Moreover, these free electrons of the surface atoms will account for a state (wave-function) that
has to be taken under consideration in the calculation and which will appear as an impurity in the DOS.
That can result in some states even inside the energy band gap as it was the case in this project. In
what follows we will present the DOS vs energy plots for the bulk material and the 5A, 7.6A and 12A
radius structures. Then we will calculate the range of the energy band gap and finally we discuss how
the impurities in the energy band gap can be eliminated in future calculations.

The DOS vs energy plot for the bulk material can be seen in figure [} where we see that the energy
band gap range is ~ 0.8 eV.

DOS vs energy for bulk material
60—
0
40+

= 0

20—

Figure 6: DOS vs energy for the bulk material. The range of the energy band gap is ~ 0.8 eV.

2We remind here that with the term DOS we refer to the number of states per energy unit, for every energy level, that
are available to be occupied by electrons.
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Because we observe spurious impurity states in all calculations, we take a pragmatic approach to
estimate the band gap. Later we discuss possible ways how to improve these calculations. Here consider
the end of the energy band gap at the point where the DOS starts to have a non-negligible variation
again. Some negligible variations inside the energy band gap are considered as impurities. The previous
can become obvious in the DOS vs energy plots for the 5A (E, = 1.6 eV), 7.6A (E, = 1.4 eV) and 12A
(B4 = 1.2 €V) structures, shown in figures El, and El respectively:

DOS vs energy for the 54 structure
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100 —
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B0 —
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Figure 7: DOS vs energy for the 5A structure. The range of the energy band gap is ~ 1.6 eV.

DOS vs energy for 7.6A structure
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Figure 8: DOS vs energy for the 7.6A structure. The range of the energy band gap is ~ 1.4 ¢V.
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DOS ve energy for 124 structure
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Figure 9: DOS vs energy for the 12A structure. The range of the energy band gap is ~ 1.2 eV.

From the plots presented above, one should notice that quantum confinement effect can indeed be
verified, as the range of the energy band gap increases with the decrease of the radius. That can become
clear from plots and where in the first we see the DOS vs energy for all the structures and in
the latter we have zoomed in the energy band gap region, showing where the energy band gap for each
structure ends.

DOS ve energy for bulk material, SA, 7.64 and 12A nanoparticles
500 —

Bulk

-7 BA
—12A

400 -

300 T

200

Energy band gap area

1580 fiH

Figure 10: In the DOS vs energy plot showing all the structures, one can distinguish the different energy
band gap for each structure and verify the quantum confinement effect.

In Table [1| we present for each structure, the calculated Fermi energy Er as it was given by SIESTA,

18



160 —

120 —

100 —

&in]

60

40 |

a4

DOS ve energy in the band gaps region

Bulk

l 7BA |

124

54

l

Bulk

-7 BA
—12A

Table 1: SIESTA results and calculated energy band gaps (E).
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0.8
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Radius (A) [ Er (eV) | E, (eV)
Bulk -3.28 0.8
12 -4.37 1.2
7.6 -4.73 1.4
5 -2.77 1.6
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Figure 12: By plotting radius vs energy band gap, quantum confinement can be observed.
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Figure 11: Zoomed DOS vs energy plot in the band gap region, showing where is the end of the energy
band gap for each structure.

as well as the calculated energy band gap E,. After that, in figure [I2| we plot the radius vs the energy
band gap in order to graphically verify quantum confinement.
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As mentioned before, quantum confinement can be verified. On the issue of the impurities, it is known
that they are caused by free electrons belonging to surface atoms. This can be justified by the fact that
they barely appear in the DOS vs energy plot of the bulk material (cf. figure @ The contribution of
the electrons of surface atoms for this structure is negligible compared the one of the bulk, so we get
almost no impurities inside the energy band gap. On the other, one can observe many impurities in the
DOS vs energy plot of the 5A structure (cf. figure . We remind the reader that this structure contains
just 29 atoms so the contributions from the electrons of the unpaired surface atoms not only can not be
considered as negligible but might be the dominant ones.

In order for someone to get better results in future calculations, the following might be necessary.
A more accurate code for hydrogenation of the structures so that there are no unpaired surface atoms
causing dangling bonds. Furthermore, based on the current results, one should prepare the SIESTA
input files in such a way that more accurate calculations will take place around the Fermi energy of each
structure, so one could have a better insight regarding the DOS and the energy band gap. The previous
tasks were beyond the scope of the current project, but still from the final results it can be concluded
that quantum confinement effect can make it possible to construct in the future solar cells, the material
of which they are made will have an energy band gap around the frequency with the maximal intensity
of the sun light. That is proposed to have as a result an efficiency much greater than the bulk material.
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