UPPSALA
UNIVERSITET

IT Licentiate theses
2014-007

Advancing Concurrent System

Verification
Type based approach and tools

RAMUNAS GUTKOVAS

UPPSALA UNIVERSITY
Department of Information Technology

Advancing Concurrent System
Verification
Type based approach and tools

Ramiinas Gutkovas

ramunas.gutkovas@it.uu.se

October 2014

Division of Computing Science
Department of Information Technology
Uppsala University
Box 337
SE-751 05 Uppsala
Sweden

http://www.it.uu.se/

Dissertation for the degree of Licentiate of Philosophy in Computer Science

(© Ramiinas Gutkovas 2014
ISSN 1404-5117
Printed by the Department of Information Technology, Uppsala University, Sweden

Abstract

Concurrent systems, i.e. systems of parallel processes, are nearly ubiquitous
and verifying the correctness of such systems is becoming an important subject.
Many formalisms were invented for such purpose, however, new types of
systems are introduced and there is a need for handling larger systems. One
examples is wireless sensor networks that are being deployed in increasing
numbers in various areas; and in particular safety-critical areas, e.g., bush fire
detection. Thus, ensuring their correctness is important.

A process calculus is a formal language for modeling concurrent systems.
The pi-calculus is a prominent example of such a language featuring message-
passing concurrency. Psi-calculi is a parametric framework that extends the
pi-calculus with arbitrary data and logics. Psi-calculi feature a universal the-
ory with its results checked in an automated theorem prover ensuring their
correctness.

In this thesis, we extend psi-calculi expressiveness and modeling precision
by introducing a sort system and generalised pattern matching. We show that
the extended psi-calculi enjoy the same meta-theoretical results.

We have developed the Pwb, a tool for the psi-calculi framework. The tool
provides a high-level interactive symbolic execution and automated behav-
ioral equivalence checking. We exemplify the use of the tool by developing
a high-level executable model of a data collection protocol for wireless sensor
networks.

We are the first to introduce a session types based system for systems with
unreliable communication. Remarkably, we do not need to add specific ex-
tensions to the types to accommodate such systems. We prove the standard
desirable properties for type systems hold also for our type system.

Acknowledgements

First and foremost, I am grateful to my advisors Johannes Borgstrom and Bjorn
Victor for providing support and reading numerous drafts of this thesis and of
course producing papers with me.

I would also like to thank my co-authors Dimitris Kouzapas, Simon J. Gay,
Johannes Aman Pohjola, Ioana Rodhe, and Joachim Parrow as without them
this thesis would not be possible.

The work is supported by the ProFun project. The work on Paper II was
supported by a Short-Term Scientific Mission grant from COST Action IC1201
(Behavioural Types for Reliable Large-Scale Software Systems).

Last but not least, I would like to thank my Mom and especially Mia for
support.

Contents

1 Introduction 4
11 Outline 5

12 IncludedPapers 6

1.3 My Contributions 7

2 Background 8
2.1 Nominal Datatypes 8
22 Pi-calculus 9
221 Basics. 9

222 Reduction Semantics oL 10

2.2.3 Structural Operational Semantics 12

224 Language Variants 14

2.2.5 Behavioral Equivalence 15

226 TypeSystem 17

23 Psicalculi 19
231 Basics. e 20

232 ExamplePsi-calculi. 24

23.3 BisimulationTheory 26

3 Contributions 28
3.1 Psi-Calculi Workbench 28

3.2 Application of Pwb to Wireless Sensor Networks 30
3.3 BroadcastSessionTypes 30
3.4 PatternMatching 0 0L 32
35 DataSorting o 35

4 Related Work 38
41 TypeSystems 38
42 PatternMatching 0 0L 40
43 VerificationTools, 40

5 Future Work 42
51 AlgebraofPsi-calculi 42
5.2 Nominal Algebras for Transition System Specification 43
53 Modelsof Psi-calculi 44
54 Logics for Psi-calculi 45

6 Conclusion 46

Chapter 1

Introduction

Concurrent systems consist of computer programs running in parallel. They are
becoming ubiquitous and consequentially their correctness is becoming a more
pressing issue. It has been evident for some time that the computer processor
vendors can no longer make processors execute programs faster by simply
decreasing the size of their basic building blocks, which has been the standard
for many years. Instead, vendors are simply cramming more processors, a.k.a.
cores, on the same chip. The only way to make programs run faster and
increasingly power efficient is to design them to run concurrently on multiple
cores.

New kinds of concurrent systems are emerging. A wireless sensor network
(WSN) consists of many small gadgets, called nodes, equipped with a processor,
sensor, actuator, and antenna. Nodes sense and control their surrounding
environment. They can be used to transmit their collected data to a central base
station, and also receive commands. WSN’s utility lies in the cheap nodes that
can be distributed in large numbers. For example, WSN can be used to control
temperature and ventilation in a building, monitor wide geographic areas for
natural disasters like bush fires, earthquakes, etc.

Concurrent systems are deployed in increasing numbers and wide areas:
they fly planes, drive cars, monitor power stations, and so on. Needless to say,
their correct behavior is essential.

Developing correctly functioning computer programsis a difficult task. This
is evident, as virtually everyone who has used a computer has experienced
‘hanging’ programs, wrong results or behavior. The heart of the problem is
the complexity of software: the sheer amount of cases a programmer has to
consider mentally might be beyond what is humanly possible.

Concurrency adds another dimension of complexity to an already compli-
cated task. A completely new class of bugs arise in such systems, e.g., deadlock,
livelock, data race, etc. To take an example, a system deadlocks when at least
two parts of it wait mutually for each other’s completion. What is more, the
inherent discreteness and typically large size of such systems destroy any hope
of ensuring the complete correctness by means of testing.

Various concurrent system verification methods have been introduced over

the years to deal with complexity and ensure some form of correctness. It is
by no means a solved problem. New types of systems are being used where
standard methods are not applicable or scale poorly to the sizes of modern
systems.

Process calculi are, typically small, formal languages with their syntax and
semantics defined using mathematics for precise reasoning about concurrent
systems. They have been around since the 1980s; the most notable example is
the pi-calculus introduced by Milner, Parrow and Walker [MPW92a, MPW92b].
The pi-calculus is a foundational language for modeling message-passing con-
currency with small number of primitives, well developed theory, and a number
of tools. It comes with the well-defined notion of the behavioral equivalence
allowing for compositional reasoning. That is, it allows us to tell when two
processes behave the same and thus can be substituted for one another; for
example, we can replace parts of a system with a simpler implementation, that
is behaviorally equivalent, and still be guarantied that it will continue working.

The pi-calculus however powerful is not suitable for real world systems and
there are many extensions of it with data structures and logics for a particular
use case. The psi-calculi framework by Bengtson et al. [BJPV11] is an exten-
sion of the pi-calculus providing arbitrary data structures, and logics allowing
more concise modeling and unifying framework for many disparate process
calculi. Many of the different extensions of the pi-calculus, including the spi-
calculus [AG97], the fusion calculus [WGO05], and the polyadic synchronisation
pi-calculus [CMO02], can be directly represented as a psi-calculus.

This thesis is about extending existing frameworks to be more expressive
and providing tools, which are crucial for modeling. It is laid out in three
papers (listed in Section 1.2 and description of my personal contributions in
Section 1.3).

1.1 Outline

In Chapter 2, we introduce the background theory to the contributions chapter
(Chapter 3). Section 2.1 is a brief section with essential definitions to nominal
techniques for abstract syntax that are used to define psi-calculi syntax and
semantics. We give a brief introduction to the pi-calculus and its variants in
Section 2.2. We also introduce its behavioral equivalences (Section 2.2.5) and
a type system (Section 2.2.6). Readers familiar with the pi-calculus can safely
skip Section 2.2. In Section 2.3, we introduce the psi-calculi framework, an
extension of the pi-calculus. We define its parameters, syntax, semantics and
present the bisimulation theory.

In Chapter 3, we recapitulate the main contributions of this thesis. We de-
veloped a tool, the Psi-calculi Workbench (Section 3.1 and Paper I). The tool
provides symbolic execution and automated behavioral equivalence checking
based on the psi-calculi framework for modeling and verifying concurrent
systems. The tool implements both the usual point-to-point and unreliable
broadcast semantics. To exhibit the use of the tool, we exploit the high-level ab-
straction modeling and symbolic execution to obtain an executable and concise

model of the TAG data collection protocol [MFHHO02] for WSN.

In Section 3.3, we summarise the broadcast session types of Paper II. We are
the first to adapt the elegant idea of session types to the unreliable broadcast
systems. Session types provide a simple and concise language for specification
of wide class of communication protocols and surprisingly the type system is
not more complicated than the standard.

In Section 3.4, we extended the psi-calculi framework with the abstract no-
tion of pattern-matching that increases expressivity of psi-calculi, for example,
it allows us to express the pattern-matching spi-calculus [HJ06] in the frame-
work. In addition in Section 3.5, we introduce a simple and flexible sort system
for psi-calculi; it makes the model more precise by disallowing nonsensical
terms. We show that our extensions are well defined: the meta-theoretical re-
sults hold such as behavioral equivalence is congruence. These two section is
the introduction of Paper III

Finally, we end the thesis with related work Chapter 4, future work Chap-
ter 5, and conclude in Chapter 6.

1.2 Included Papers

This thesis is a compilation of the following list of papers.

Paper I.]J. Borgstrom, R. Gutkovas, I. Rodhe, and B. Victor. A parametric tool for
applied process calculi. Accepted to the special issue of ”Application of
Concurrency to System Design” in the ACM Transactions on Embedded
Computing Systems (TECS) journal. To appear.

An abridged version of the paper is published in J. Carmona, M. T.
Lazarescu, and M. Pietkiewicz-Koutny, editors, Application of Concur-
rency to System Design (ACSD), 2013 13th International Conference,
pages 180-185, Barcelona, Spain, July 2013. IEEE.

Paper II. D. Kouzapas, R. Gutkovas, and S.]J. Gay. Session types for broadcast-
ing. In A. F. Donaldson and V. T. Vasconcelos, editors, Proceedings 7th
Workshop on Programming Language Approaches to Concurrency and
Communication-cEntric Software, Grenoble, France, 12 April 2014, vol-
ume 155 of Electronic Proceedings in Theoretical Computer Science, pages
25-31. Open Publishing Association, 2014.

Paper III. J. Borgstrom, R. Gutkovas, J. Parrow, B. Victor, and J. A. Pohjola. A sorted
semantic framework for applied process calculi. To be submitted.

An extended abstract version of the paper is published in M. Abadiand A.
Lluch Lafuente, editors, Trustworthy Global Computing, Lecture Notes
in Computer Science, volume 8358, pages 103-118. Springer International
Publishing, 2014.

1.3

Paper I.

Paper IL

Paper III.

My Contributions

I am the author of the Psi-calculi Workbench and I did most of the imple-
mentation. Also, I provided text in the paper for the examples and tool
description.

The idea of applying session types to unreliable broadcast systems is mine.
I contributed to the definition of the type systems and the translation. I
invented the reduction semantics for the unicast and broadcast semantics.
I also provided the proofs.

My contributions to Paper III are mainly half of the non-mechanised
proofs found in the appendix of the paper.

Chapter 2

Background

This chapter presents the background material for the contributions chap-
ter (Chapter 3). In Section 2.1, we describe the nominal techniques used to
represent the syntax of the calculi described. We introduce the pi-calculus
(Section 2.2), a language for concurrent systems, its syntax (Section 2.2 and
Section 2.2.4) and semantics. We introduce its behavioral equivalence (Sec-
tion 2.2.5) and a rudimentary type system (Section 2.2.6). We later extend this
introduction to the full psi-calculi framework in the same vein (Section 2.3).

2.1 Nominal Datatypes

Psi-calculi are based on nominal data types. A nominal data type is used
to represent abstract syntax trees with binding constructs. It is similar to a
traditional data type, but can contain binders and identifies alpha-variants of
terms. Formally, the only requirements are related to the treatment of the atomic
symbols called names as explained below. Here, we consider sorted nominal
datatypes, where names and elements of the data type may have different sorts.

A sorted nominal set [GP99, Pit03] is a set equipped with name swapping
functions written (a b), for any sort s and names a,b € N;, i.e. name swappings
must respect sorting. An intuition is that for any member T it holds that (a b)- T
is T with a replaced by b and b replaced by a. The support of a term, written n(T),
is intuitively the set of names affected by name swappings on T. This definition
of support coincides with the usual definition of free names for abstract syntax
trees that may contain binders. We write a # T for a ¢ n(T), and extend this to
tinite sets and tuples. A function f is equivariant if (a b) - (f(T)) = f((a b) - T) for
every a,band T; a relation Ris equivariant if x R y implies that (a b)-x R (a b)-y
holds; and a constant symbol C is equivariant if (2 b)-C = C. A nominal data type
is a nominal set together with some equivariant functions on it, for instance a
substitution function.

2.2 Pi-calculus

The reader familiar with the pi-calculus may skip to Section 2.3.

The pi-calculus is a mathematical formalism for modelling concurrent sys-
tems introduced in the "90s by Milner, Parrow and Walker [MPW92a, MPW92b].
It is extends CCS [Mil89] with mobility. Since then their work on the pi-calculus
garnered numerous citations!. The pi-calculus is the basis for many concur-
rency theories and is typically taken as the point of departure when constructing
new process calculi.

The theory has been reformalised to handle different modes of concurrency:
asynchrony [HT91], broadcast [EMO01], multicast [HYCO08]. And, extended with
more advanced data structures, e.g., [AG97] and [AF01].

Here, we give a brief introduction to the pi-calculus and its theory, and
some of the extensions. For a not so brief introduction, the original papers
are still authoritative [Mil92, MPW92b], the textbook on the pi-calculus by
Sangiorgi and Walker [SWO01] is a comprehensive overview, and also Parrow’s
introduction to the pi-calculus [Par01] contains a gentle introduction to many
variants of the theory.

2.2.1 Basics

In this section we present a sublanguage of the pi-calculus.

Pi-calculus processes represent concurrent agents that can send and receive
messages, synchronously. This notion of concurrency is also referred to as
message passing. The only data structure that the agents communicate is that
of a name. Names represent both channels and variables. Since agents can
transmit channels and create names, the interconnections of a process may
change as the process evolves.

Formally, the pi-calculus agents have the following forms.

Definition 1 (Pi-calculus processes (agents)).

P,Q == a(x).P (Input Prefix)
ab.P (Output Prefix)
0 (Inactive process)

(vx)P (Restriction)

|

|

| P|Q (Parallel)

|

| P (Replication)

In the processes a(x).P and (vx)P are binding structures, that is, the name
x binds into P. The set of processes form a nominal set (Section 2.1) and thus
they are identified up to a-equivalence.

Pi-calculus processes represent some form of behaviour, similarly to the
lambda-calculus for sequential programs.

Intuitively, the behavior, or semantics, of a process a(x).P is that it inputs a
name y on channel 2 which is then substituted for x in P, and continues as P{y/x}.

! According to the Google Scholar service the number of citatations is 4179 for [Mil92] on May
12th, 2014.

Dually, the process ab.P sends the name b over the channel 2 and continues as P.
The inactive process 0 as the name suggests has no behavior. The process P | Q
represent process P and Q behaving concurrently and potentially interacting
(we will see examples of this). The process (vx)P behaves as P, but the scope
of the name x is restricted only to P. Here, x represents a secret name which
other processes cannot use, but they can get the hold of it if P chooses to send
it. Finally, the process !P can spawn an unbounded number of copies of P in
parallel, in other words, replicate.

Having this in mind, we can now give the intuition behind the fundamental
behavior of message passing concurrent system, namely, communication. For
example, in the following the process ab.b(y).0 sends the name b to the process
a(x).xc.0:

a(x).xc.0 | ab.b(y).0 — bc.0|b(y).0,

and in turn B
bcO|b(y)0 — 0]0

by sending c on channel b.

Another aspect of the pi-calculus, is that restricted names can be transmitted
as well. In the following the restricted name b is extruded to both agents by
communication:

a(x).xc.0 | (vb)@b.b(y).0) — (vb)(bc.0 | b(y).0),
where the scope of (vb) follows the name b, and
(vb)(be.0 | b(y).0) — (vb)(0 | 0).

But if were to add b(y).0 in parallel to the source process above, the following
is not a valid transition

b(y).0 | (vb)(bc.0 | b(y).0) — 0] @wb)(0]b(y).0),

because the restricted names are distinct from all other names in an agent. As
you can see, intuitively with vb we can create private channels that are invisible
to the outside processes.

2.2.2 Reduction Semantics

A popular and perhaps the most straightforward way to formalise the behav-
ior discussed in the previous section is to use term rewriting. The resulting
semantics is usually called reduction semantics.

The reductions are defined up to a congruence relation on agents called
structural congruence. A structural congruence is usually kept small and in-
cludes the immediate laws that we require of agents, e.g., that the parallel
composition is commutative.

10

[P1-cOMM-RED

: a(x).P | ab.Q — P{b/x} | Q

P— P P— P
[PI-RES-RED|

IS0 (0P = ()P’

[P1-PAR-RED

P=P ->Q =Q
P—-Q

[P1-CONG-RED]

Figure 2.1: Reduction Semantics for the pi-calculus

Definition 2 (Structural Congruence). Structural congruence = is the least con-
gruence satisfying the following laws:

PIlQ = Q|P (Parallel Commutativity)
(PIQ)IR = P|(QIR) (Parallel Associativity)
P|l0 = P (Parallel Unit)
P = P|!P (Replication)
(vx)0 = 0 (Restriction Intro)
(vx)(vy)P = (vy)(vx)P (Restriction Commute)
vx)(P1Q) = P|(wx)Q ifx#P (Restriction Extrusion)

Definition 3 (Reduction relation). The reduction relation is defined to be the
least relation satisfying the rules in Figure 2.1.

For example, let us compute the reduction of the agent
P = b(x).0 | a(x).xc.0 | (vb)(ab.b(y).0).

First, we use the [p1-conG-RED] rule to compute the following by using the
commutativity and associativity of parallel, and scope extrusion since we have
b # a(x).xc.0

P = P’ = (vb)(a(x).xc.0 | ab.b(y).0) | b(x).0.

By applying first [p1-PAR-RED] and then [P1-RES-RED] we obtain
a(x).xc.0 | ab.b(y).0
to which we can apply [p1-comMm-RED] and derive
a(x).xc.0 | ab.b(y).0 — be.0 | b(y).0.
Finally, we derive
b(x).0 | a(x).xc.0 | (vb)@b.b(y).0) — (vb)(be.0 | b(y).0) | b(x).0.

The reduction relation is perhaps the most intuitive way of giving seman-
tics to a process calculus, however, it is not always adequate. The structural
congruence typically adds another level of induction in proofs. This can be a
drawback when using automated tools such as proof assistants.

11

2.2.3 Structural Operational Semantics

In this section we present semantics for pi-calculus based on Plotkin’s [Plo81]
structured operational semantics. This style of semantics is given by a set of
inductive rules on the structure of the processes. This allows for convenient
inductive arguments to be used when proving properties on semantics. The
rules define a labelled transition system of the form

PSP

where P transitions to P’ with the observable action a.

It is not only the convenient inductive arguments that make this style of
semantics desirable, but also labelled semantics model the notion of an external
observer that observes an action a. In this sense, intuitively we may peek at
what happened within a process. This is useful when defining observational
equivalences (Section 2.2.5).

Also, the observations allow to model an open-ended system. For example,
suppose we are modelling a memory architecture in a computer system and
we are interested in modeling only the memory unit. In this respect, we do
not need to model the CPU sending commands since the external observer
conceptually sends commands by observing various actions emanating from
the model of a memory unit.

In order to define labelled semantics, we first define the possible observa-
tions that one can make on the pi-calculus agents, namely, the actions.

Definition 4 (Actions).

a = T (silent action)
| ab (input action)
| ab (output action)
|

a(vb)b (bound output action)

The name b is bound in the bound output action. We also define bn(a) to be {b}
if &« = a(vb)b and otherwise (.

The silent action 7 denotes internal activity, that is, communication. The
input action ab denotes an input of the name b over the channel a, dually the
output action ab denotes an output of the name b over the channel a. The bound
output action a(vb)b denotes the sending of a restricted name b on channel a.

12

[P1-IN] [P1-Out] ———

a(x).P 2% Ply/x} abp % p
P& p bn(a) # NYo bn(a) # P
[P1-PAR] > @#Q [P1-PARr-S] i o @
PIQ—-P|Q PIQ-P|Q
P p PSP x#a
[P1-OpEN] — [P1-Scork] "
(vx)P —> P’ (vx)P = (vx)P’
PEP Q0% PSP QB(Q
[P1-Com] p [P1-Com-S] p
PIQ-P|Q PIQ->P|Q
p a(vb)b P 0 ab, o P pr 0 a(vb)b o
[P1-CLosE] p [P1-CrosE-S] p —
PlQ— (vh)(P" Q) P1Q— (wb)(P" [Q)
P|PS P
[Pr-Rep] ————
PP

Figure 2.2: Structural Operational Semantics of the pi-calculus.

Definition 5 (Transition Relation). The transition relation — on the pi-calculus
agents P and Q, and an action «a is defined as the least relation satisfying the

rules in Figure 2.2. We write P 5 Qfor (Pa, Q) € —, and say that P transitions
to Q on a.

To give some intuition behind the rules, we derive a transition of the fol-
lowing agent (cf. Section 2.2)

b(x).0 | (a(x).xc.0 | (vb)(ab.b(y).0)).
First, we apply the [P1-Par-S] rule to give us the left hand side of the arrow:
a(x).xc.0 | (vb)(ab.b(y).0).

The above agent looks like it can communicate on 4, but the object of the prefix
of the agent on the right of | is under restriction, thus we we apply the
[P1-CrosE-S] rule here to get the two agents on the left hand side of the arrow:

a(x).xc.0

and

(vb)(@b.b(y).0).

13

To the first one we apply [P1-In] and derive

a(x).xc.0 2, be.0
in anticipation that the agent will receive b. To the second we first apply

[P1-OrEN] to get
ab.b(y).0,

and finally derive by [P1-Ourt]
ab.b(y).0 2 b(y).0.
By filling in the right hand side of the arrows,
b(x).0 | (a(x).xc.0 | (vb)(@b.b(y).0)) — b(x).0 | (vb)(be.0 | b(y).0).

We explicitly write out the above example as a derivation tree as follows:

[P1-Ovut] -
ab.b(1).0 S b(y).0
[P1-IN] — [P1-OpEN] ! (y)f ~)
a(x) %c.0 2% be.0 (vb)@b.b(y).0) =25 b(y).0

[P1-CLoSE-S]

a(x).xc.0 | (vb)(ab.b(y).0) = (vb)(bc.0 | b(y).0)

[P1-PARr-S] . —
b(x).0 | (a(x).xc.0 | (vb)(ab.b(y).0)) — b(x).0 | (vb)(bc.0 | b(y).0)

In contrast to the reduction semantics discussed earlier, the scope extension
law is part of the derivation that uses the bound output label captured by the
rules [P1-Crosg] and [P1-CLosE-S]. The 7 transitions coincide with the reductions
up to structural congruence: P — P’ if and only if P — P = P’.

We defined a structural operational semantics without taking the structural
congruence as a primitive. A way to be convinced that the definition is correct
is to check that the structural congruence laws are derivable.

One of the benefits of this style of semantics is that we don’t need to use
a structural congruence. This gives the ability to use single induction on the
rules to reason about the semantic properties.

2.2.4 Language Variants

The pi-calculus that we described in Section 2.2.1 is quite small. The more
typical presentation of the pi-calculus includes more constructs.

Definition 6 (Pi-calculus Agents with extensions). We extend Definition 1 with
the following forms.

ifa =bthen P (Match)
ifa # b then P (Mismatch)
P+Q (Sum)

14

PSP PSP a+b

[P1-MaTtcH] " [P1-MisMATCH] "
ifa=athenP > P’ ifa#bthenP —> P’
P i} Pl i) ’
[P1-Sum] " [P1-Sum, | %
+Q->r P+Q—(Q

Figure 2.3: Operational semantics of the pi-calculus with extensions. The rules
in this figure are added to Figure 2.2.

The intuition behind (Match) and (Mismatch) is that they behave as P when-
ever the names either match or not. (Sum) implements what could be called
global choice. The agent P+(Q can behave as either P or Q non-deterministically.

Definition 7 (Extended Transition Relation). The transition relation is defined
to be the least relation satisfying the rules in Figure 2.3 and Figure 2.3.

For example, we could implement the more usual if-then-else construct
familiar from programming languages as follows

ifa=bthenPelse Q = ifa=bthenP + ifa# bthen Q.

Having the (Sum) operator is important, since models of systems often
contain fair amounts of non-determinism and the sum is very natural way of
capturing that. Another reason to include (Sum) is to allow for easy encoding
of non-deterministic automata.

2.2.5 Behavioral Equivalence

We have defined what it means to observe a process by observing its actions.
This means that we can formally compare the behavior of processes, and, if
we cannot distinguish them, we can say that they are behaviorally equivalent.
Behavioral equivalence is a powerful way of reasoning about a system: it
gives us the ability to replace processes with processes that are behaviorally
indistinguishable but perhaps less complex.

The standard notion of behavioral equivalence in the pi-calculus is what it
is called strong bisimulation.

Definition 8 ((Strong) Bisimulation). A binary relation R is a bisimulation if it
is symmetric and for every (P, Q) € R, we have

(Va,P') PSP Abn(a)#Q = IQ.Q5 Q' A(P,Q)€eR
At first it is a quite unusual definition due to it circularity, but it is very

natural: one process mimics every actions of another at every step and their
continuations are able to do the same, and vice versa. The freshness condition

15

ensures that a newly opened name by P is different from the names in Q and
that Q’ can only simulate P’ using this name by also opening it.

Definition 9 ((Strong) Bisimilarity). P and Q are bisimilar, written P ~ Q, if and
only if there is a bisimulation relation R such that (P, Q) € R.

So two processes are bisimilar if we can find an appropriate relation. As an
example, let us prove that the following two processes are bisimilar

P=a(x)|bb ~ a(x).bb+ bb.a(x) = Q.
We first propose a candidate relation R:

R = { (a(x)|bb, a(x).bb+bb.a(x)),
(0| bb, bb),
(a(x) 10, a(x))

(010, 0) }U symmetric version of this.

Note that the elements are obtained essentially by following all possible deriva-
tions of Pand Q. Itis then easy to see that all elements transition into the relation,

e.g., theagent0 | bb o, 0 | 0 and its pair bb o, 0 resultin R, thatis, (0 | 0,0) € R.
Thus we proved that P and Q are bisimilar. Q.e.d.

Remark 1. It is easy to see that ~ is an equivalence relation, but it is not a
congruence. For example, let us take the same two processes,

P=a(x)|bb ~ a(x).bb+bb.a(x) = Q,
but
c(a).P+c(a).Q
since we could substitute b for a in both P and Q and then P would have more

behavior, namely, an extra 7 transitions.

However, the characterisation of the largest congruence is quite simple: it
is bisimilarity closed under all substitutions.

Definition 10 (Congruence). Let P ~ Q mean, for all substitutions o, Po ~ Qo.

The relation ~ is a congruence.

The strong bisimulation is sometimes too strong for modeling systems, be-
cause it is a common case that computation is done by internal communication.
Think of a task being spawned to compute a value. What we would like is
to ignore all these internal actions. This leads to the notion of weak bisimula-

. T . Qa
tion. We write —* for reflexive and transitive closure of —. Let us define = as
o4 . .
—">—>"if @ # 7, and as —* otherwise.

Definition 11 (Weak bisimulation). The binary relation R is a weak bisimulation
if it is symmetric and for every (P, Q) € R, we have

(Va,P) PSP Abn@)#Q = AQ.03 Q A(P,Q)eR

16

Definition 12 (Weak Bisimilarity). P and Q are weakly bisimilar, written P = Q,
if and only if there is a weak bisimulation R such that (P, Q) € R.

Weak bisimilarity is not congruence for the same reason, and we can obtain
a congruence in exactly the same way.

Definition 13 (Weak Congruence). Define P ~ Q as for all substitutions o,
Po & Qo. The binary relation ~ is a weak congruence.

Strong and weak bisimulations are well-behaved equivalences: they have
an simple characterisation of a congruence. Also they are quite intuitve. We
use them as a basis for the psi-calculi behvariol equivalences (Section 2.3.3) and
in the Psi-calculi Workbench (Section 3.1).

2.2.6 Type System

Milner [Mil93] introduced the first type system for the pi-calculus he named
it as sort system. He considered an extension of the pi-calculus with polyadic
communication.

Definition 14 (Polyadic pi-calculus agents). The polyadic pi-calculus agents are
the agents in Definition 1 with the input and output prefixes replaced with the
following

a(xy,...,x,).P (Polyadic Input Prefix)

alby, ..., by).P (Polyadic Output Prefix)

where x4, ..., x, are binders and pairwise distinct.

The semantics of communication is an extension of monadic communica-
tion.

Definition 15. The reduction relation for the polyadic pi-calculus is the least
relation satisfying the rules in Figure 2.1 with [p1-comM-RED] replaced with the
following

a(xi, ..., xy).Plalby,...,by,).Q — Plbi/x1---by/x,} | Q.

The communication rule can be only applied when the arities of the prefixes
match. The following cannot be reduced:

a(x).0 | a¢b,c).0 /~ .

However, the prefixes above use the same name for a channel. This means
that we can enforce some sort of interface on the channel name that would tell
the arity of a data that the channel supports.

Milner’s solution is to define and enforce these interfaces by using a sort
system. For this, we parameterise on the set of sorts

S : Set.
We assign a sort S € S to every name a € N, and write

a:$S

17

a:8S Ob(S):<Sl,...,Sn> b1:51,...,bn:5n FP
F @by, .. b))

[T-P-Our]

a:S ob(S) =(51,...,5,) xX1:81,...,%,:S, P

[T-P-In]
Fa(xq,...x,).P
FP FQ
[T-P-PAR] ———— [T-P-Res]

FP|Q F (vx)P
F P

[T-P-Rep] —— [T-P-Nir] —
FIP FO

Figure 2.4: Polyadic pi-calculus sort system rules

to mean that the name a has the sort S. We also parameterise on the sorting of
channels, that is, to some sorts we assign a sequence of sorts and the assignment
is a partial function as follows

ob: S -, S

This function is intuitively an interface of a polyadic channel of sort S. That is,
it says how many names it can receive or send and of what sort.

Definition 16 (Polyadic Sort System). The well sorted predicate + on processes
is defined as the least predicate satisfying the rules in Figure 2.4.

The rules are quite trivial. The rules [T-P-Out] and [T-P-IN] simply ensure
that the polyadicity and the sorts that the channel can carry match. And other
rules propogate the check.

For example, we can recover the monadicity and uni-sortedness of the pi-
calculus by having only one sort * and define:

S = {x}
ob(x) = (%)
a:x for everya e N.

Under this instantiation of the system the agent a(x).0 | a(b, c).0 is not well-
sorted. Howver, + a(x).0 | a(b).0.

The sort system has the pleasant property that well-sorted agents do not get
stuck because of an arity mismatch. This is not hard to prove, the easiest way
is to introduce another agent

wrong,

the reduction rule

a(xy,...,x,).Plaby, ..., by,).Q — wWrong ifn#m

18

that reduces agents to the stuck process wrong, and structural congruence that
equates every agent to wrong that have a subagent wrong. The we can state
where —" is a reflexive and transitive closure of —:

Theorem 1 (Well sorted process don’t go wrong).
FP = P /" wrong

The above property is often called safety. Itis a consequence of the following
result which is a standard result for a sort or type system.

Theorem 2 (Subject reduction).

FPAP—>P =P

2.3 Psi-calculi

The psi-calculi framework is an extension and generalisation of the pi-calculus
with arbitrary data structures, logics and logical assertions. The need for exten-
sion is the realisation that the pi-calculus is not adequate for modeling realistic
systems because they feature more complicated data structures than names,
for example, integers, lists, trees, etc. It is, of course, possible to model large
systems completely in the pi-calculus framework, however, it is neither feasible
nor straightforward.

This need has spawned many pi-calculus extensions over the years: the
applied pi-calculus by Abadi and Fournet [AF01], and spi-calculus by Abadi
and Gordon [AG97] extend the pi-calculus with primitives for security among
many others.

What differentiates psi-calculi from other pi-calculus extensions is that it is
also a generic unifying theory that can capture many of those extensions as
special cases. In this respect, psi-calculi can also be regarded as a framework
of process calculi.

Psi-calculi gives powerful reasoning tools by simply instantiating its pa-
rameters. For example, the congruence obtained from bisimulation satisfies
the natural laws of structural congruence. Typically, the requisites on parame-
ters is trivial to check; it is certainly much easier to establish the requisites than
to conduct an arduous prove that the bisimulation of a custom extensions of
the pi-calculus satisfies structural congruence laws.

What is more, the meta-theory of psi-calculi has been mechanised in the
proof assistant Nominal Isabelle. Thus, the correctness of psi-calculi meta-
theory is guaranteed by the state-of-art theorem proving technology.

This sections is a brief summary of the main definitions and results of psi-
calculi. We invite the reader to read the exposition of psi-calculi by Bengtson
et al. [BJPV11] where the reader will find detailed explanations and ample of
examples of psi-calculi.

19

2.3.1 Basics

Psi-calculi generalises the pi-calculus in quite straightforward ways. What
follows is a comparison between the constructs playing the same role in both
calculi.

Instead of drawing elements from just a name set, psi-calculi draws the
subject and object of both input and output prefix from an arbitrary user defined
set called terms M, N € T.

pi-calculus psi-calculi
a(x).P M(Ax)N.P
ab.P MN.P

The psi-calculi input prefix supports pattern matching where x is a sequence of
pattern names bound in both N and P. For example,

a(Ax)x.P

is an encoding of the pi-calculus input a(x).P.

Psi-calculi also generalise the matching, mismatching and sum in one con-
struct. Condition in psi-calculi is not restricted to just checking name equality;, it
is, as with terms, a condition drawn from arbitrary set called conditions ¢ € C.
In the following, sum is encoded if there is (this is not need to be the case) a
particular condition that is always enabled true € C.

pi-calculus psi-calculi
if a = b then P case ¢ : P
P+Q case true : P[] true: Q

ifa; =by thenP; +---+ifa, =b, thenP, caseqp;:Pi[... [¢,:P,

Furthermore, psi-calculi introduces a novel construct called assertions (or
sometimes environment) W € A. The following is a psi-calculi process that
encloses the assertion W

).

Conditions depend on this environment such as when two channels are
equivalent, or when a condition in a case statement is enabled. This is also
a process whose names can be restricted or substituted. For example, the
condition is-flag-set? is enabled whenever flag-is-set is in the current
environment. Suppose P = P/, then

(flag-is-set) | case is-flag-set?: P 5p,

but the following process does not have any transitions in an empty environ-
ment:
case is-flag-set?: P.

Formally, the parameters are the following.

20

Definition 17 (Psi-calculi Parameters).

T : NomSet (Terms)
C : NomSet (Conditions)
A : NomSet (Assertions)
st : N*'XT*">T—->T (Term Subsitution)
sc : N*XT*—> C—-C (Condition Subsitution)
sa : N*"XT"—> A —> A (Assertion Subsitution)
& 1 TXT-C (Channel (Pre)equivalence)
® : AXA->A (Assertion Composition)
1 : A (Assertion Unit)
F € AXxC (Entailment)

We let 0 range over (N x T)*. For a particular o we also write [x :=]\7[] where
x; € N and M; € T. For ¢ application to a M we write Mot to mean st(o)(M),
and if the parameter is understood, we simply write Mo.

Definition 18 (Static equivalence). Two assertions are statically equivalent if
and only if they entail the same conditions, formally:

def
—

Y~y VpeCQ Vi & Y teo

The requisites on parameters are that channel equivalence is symmetric and
transitive, and also that assertions form an abelian monoid (®, 1) modulo static
equivalence.

Definition 19 (Requisites).

YEM&e N = YENeM (Channel Symmetry)
VEMe NAVYEN L = WEM e L (Channel Transitivity)
VYel=W (Identity)

VW V¥ W (Commutativity)
YoWV) WV =V (W W) (Associativity)

Va2 — VW' =¥ W (Compositionality)

Now we give the syntax of the psi-calculi agents.

Definition 20 (Agents/Processes).

PQ := M(AX)N.P (Input)
| MN.P (Output)
| caseq@i:Pi[l ... [@n:Py (Case)
| (va)P (Restriction)
| P|Q (Parallel)
| P (Replication)
| 0 (Nil)
| (W) (Assertion)

We denote the set of precesses as P.

21

Well-formed agents In the (Input) we require that x € n(N) and elements of
the sequence x are pairwise distinct. Also x bind into N and P. An assertion is
guarded if it is a subterm of (Input) or (Output). In (Replication) there cannot
be unguarded assertions in P and likewise for (Case) in P;.

Definition 21 (Requisites on substitution). The substitutions o1, 0c and o, are
required to satisfy the following for X € {T, C, A}.

(Va € n(X))(¥b € n(T))b € n(X[a := T))

and

(Vb # X,)X[a:=T] = (bDX)[b :=T]

The first requirements prevents substitution from erasing names, and the
second is an a-conversion for substitutions.
We define substitution on agents by structural recursion.

Definition 22 (Substitution).

x#0 = (M(AX)N.P)o = Mot(Ax)Not.(Po)
(MN.P)s % Moy Nor.Po
(case @1 : P1 [l ¢y : Pp)o et case ¢i0c : Pio [| pnoc : Pyo
a#to = ((va)P)o det (va)Po
(P1Qo = Po|Qo
(Po & 1ps
0o % o
(o = (Wou)

The notion of frame captures the current environment of a process. It is
used to define the operational semantics of psi-calculi.

Definition 23 (Frame). A frame is a tuple of names and assertions of the form
(va)¥
Frame composition is defined for b #a, W and 7 # W’ as
VAWV ® (V)W = (vab)(¥ @ W).

We also define addition of a name to a frame as (va)(vg)w = (va,E)W. We can
extract a frame from a process by using the following function

F(P) = (e
FPIQ = 7P)eF(Q)
F(va)P) = (va)F(P)

which, for the other cases, is defined as the empty frame, (ve)l.

22

VM K VrEMe K
[IN] KND] — [OuT] —
W > MAZN.P —2 Py :=1] W s> MNP p

oW > p 2N, p

KN
UpWp>Q—Q VeWpeWotrMe K _
[CoMm] a#Q

WeP|QS (a)P | Q)

Yo®@W > PSP VPSP Wi
[Par] m bn(a) # Q [CasE] —
Ue>P|Q->P|Q V> casep:P— P
¥YoP|IPSP ve>pSp
[Rep] " [ScorE] " b#a WV
VpIP— P’ WV > (vb)P — (vb)P’

wep 2wy
[OreN] ro

Mo b € n(N)
W > (vh)p LUEN, b

Symmetric versions of [Com] and [Par] are elided. In the rule [Com] we assume
that ¥ (P) = (bp)Wp and F(Q) = (bg)W where bp is fresh for all of W, bg, Q, M
and P, and that bg is correspondingly fresh. In the rule [PAr] we assume that

F(Q) = (bg)¥q where bg is fresh for W, P and a. In [OpeN] the expression
vd U {b} means the sequence @ with b inserted anywhere.

Figure 2.5: Operational semantics of psi-calculi.

Definition 24 (Transition relation). The transition relation is defined as the least
relation satisfying the rules in Figure 2.5.

In Figure 2.5 rules, the premises and conclusions are indexed by an envi-
ronment assertion indicated by the > symbol. They express the effect that the
environment has on the agent: enabling conditions in [CasE], giving rise to ac-
tion subjects in [IN] and [OuT] and enabling interactions in [CoMm]. In the rules
[Par] and [Cowm], the parallel agents contribute to each others environment via
their frames. In a derivation tree for a transition, the composition of environ-
ment assertions will therefore increase towards the leafs by application of [Par]
and [Com]. If all environmental assertions are erased and channel equivalence
replaced by identity we get the standard laws of the pi-calculus enriched with
data structures.

23

2.3.2 Example Psi-calculi

The pi-calculus is a psi-calculus. We instantiate the psi-calculi framework
with the following definitions to obtain the full pi-calculus with summation,
matching and mismatching.

The terms are instantiated to be simply the set of names, conditions are
set to equality and disequality between names, and the true condition used to
encode the sum operator. The pi-calculus does not have environments, so the
set of assertions is a singleton set with trivial composition and unit parameters.
To be complete, we give the definition of the substation function.

T = N
c L lu=b:abeN}U
{a#:b:a,be N}U {true}
AT
1 d:ef .
181 € 1
. def
— = =
def
1+true << always
1ra= b def g=b
Traz b &5 420
def .
stToa = b if(a,b)eo
def .
stoa = a otherwise
sc o (a=.b) def sToa=,stob
Ssc o (a #:b) def stroa#.stob
def
spaol = 1

We give a formally translate the pi-calculus to the psi-calculus defined
above.

[[a(ic;.lzj]] ji a(b/\xl))x.[[P]]
N _b[[}%[igﬂ j%i ZasE ‘c]]Iileb:.[[P;]I]true = [O]
[[;fz;b:hzz Pﬂ déf :z:z;bH
[[PI'Q]] ji E[IEII[[Q]]
[[[-[I;ﬂ d;f ;Hl

The two calculi are the same in the sense that the transition relation corre-
spond [BJPV11].

24

It is common to extend the pi-calculus with a free algebra parameterised
over some signature with function symbols X and equational logics Eq over
those symbols (e.g., the applied pi-calculus [AFO01]). This is straightforward in
psi-calculi.

Let X be a signature, T(X, V) a term algebra over the signature X generated
by the set of names N, Eq(Z, N) equations ranged over by ¢, some fixed theory
T Chin Eq(X, N) and finally a provability relation r-y. Then we define

def

c T EEN
M&oN ¥ M=N

def
1+¢@ & Ty)

The assertions are trivial as in the pi-calculus and substitution is defined in
the standard way. The defined psi-calculus is also a framework parameterised
over X and 7. With it we can model some aspects of cryptography, for instance,
let m, k be names:

y & {dec, enc}
g & {dec(enc(m, k), k) = m}.

Suppose P % P/, then the following is a possible trace

aenc(v,k).0 | a(Ax)x.case dec(x,k) =v:P - 0] case dec(enc(v,k),k)=v:P
24

- P

The first transition is allowed because 1 + a <> a holds. We can see this
by expanding the definition to 7~ +x a = a, which holds because of reflexivity.
The second transition depends on 1 + dec(enc(v, k), k) = v being true, we can
easily see this by expanding the definition and using the sole equation in the
equational logic.

We can go even further by allowing local knowledge in form of assertions
being sets of equations as follows

A T (S:8cCum Eq(T,N))
S90S, ¥ s us,
1 % 9

and modifying the entailment relation to
def
St = TUSr o
thus we allow local theories. Returning to the example, we can also do

({enc(v, k) = y,y = x})) | case dec(x, k) =v: P 5 P
because

{enc(v, k) = y, y = x,dec(enc(m, k), k) = m} rx dec(x, k) = v.

25

We easily obtained an advanced calculus which is strictly more expressive
than the pi-calculus. All of these kind of calculi enjoy the usual meta-theoretical
results presented in the next section.

2.3.3 Bisimulation Theory

In this section, we give a brief summary of some of results on psi-calculi meta-
theory. All of them have been checked in the Nominal Isabelle theorem prover.
The results presented here for the bisimilarity are important because they show
that the definition of bisimulation, bisimilarity, congruence are indeed correct.
In the sense, that the definitions conform to natural expectations of a process
calculi.

Strong bisimulation relation is a generalisation of the pi-calculus relation
Definition 8. If we instantiate the psi-calculi framework to obtain a pi-calculus,
the bisimulation relations do coincide. The extra requirements below are due
to the use of assertions.

Definition 25 ((Strong) Bisimulation). Bisimulation is ternary relation R such
that forall W, P, Q that R(W, P, Q) implies all of

1. R(¥,P,Q),

2. Y, P’bn(@) #V,QAY > PSP = AQ¥Y > Q5 Q ARV, P,Q)
3. Y F(P) =V ®F(Q),

4. VW' .RWY ® Y, PQ),

As usual we define bisimilarity P ~y Q to mean that there exists a bisimu-
lation R such that R(W, P, Q). We write ~ for ~;.

Clauses 1 and 2 are the same as in the pi-calculus (see Definition 8). Clause 1
states that the relations is symmetric and Clause 2 state that the Q can simulate
the agent P. Clause 3 asserts that the environments of the agents are equivalent,
that is, they entail exactly the same conditions. Clause 3 states that the agents
are related even by extending the environments arbitrarily.

The following laws hold for bisimilarity. They state that bisimilarity is
almost a congruence. It is exactly the same situation as in the pi-calculus: it
fails to be a congruence for the input prefix (see Remark 1 in Section 2.2.5).

Theorem 3. For all W, 4, P, Q, R, M, N all the following hold

P~y Q = P|R*yQI[R
P~y Q = P ’;\p!Q
Py Q = MN.P <y MN.Q
a#WAP~Ay Q = (va)P ~y (va)Q
ViPi 2y Qi = case: P “y case Q: é
(VL.P[@:=L] ~y Qa:=L]) = MAa)N.P <~y M(A2)N.Q
26

We can use the same ’trick” to obtain a congruence as already seen in the
above result. We close bisimilarity under all substitution sequences to obtain
the following where Po means (((Po1) . ..)o,) for o = (01,...,0,).

Definition 26 ((Strong) Congruence). P ~y Q is defined as for all substitution
sequences o it holds that Po ~y Qo. Also, we write P ~ Q for P ~1 Q.

Theorem 4. ~y is a congruence for all W.

Theorem 5 (Structural Laws).

P ~ PJ|O
PI(QIR) ~ (PIQIR
P1Q ~ QIP
(va) 0 ~ 0
a#P = Pl(wva)Q ~ (va)P|Q)

a# M,N = MN.(va)P ~ (va)M N.P
a#x, M,N = M(AX)N.(va)P ~ (va)M(AX)N.P
a#tp = case: ()P ~ (va)case Q:P
(va)vb)P ~ (vb)(va)P
P ~ P|IP

The above theory can be formulated for the weak version of bisimulation
and congruence, however, due to assertions the theory is quite subtle [JBPV10].

27

Chapter 3

Contributions

In this chapter, we present the contributions of this thesis (Paper I, Paper II,
Paper III). The contributions pertain to verification of concurrent systems. We
have developed a tool, the Psi-Calculu Workbench (Section 3.1), based on the
psi-calculi framework (Section 2.3), which provides symbolic execution and
equivalence checking. We developed a type system based on session types
[HVK98] for systems with unreliable communication in Section 3.3, and fi-
nally we extend the expressiveness of psi-calculi by adding generalised pattern
matching (Section 3.4) and a sort system (Section 3.5).

3.1 Psi-Calculi Workbench

Psi-Calculi Workbench (Pws) is a parametric tool for modelling concurrent
systems. It provides symbolic execution and automated behavioral equivalence
checking. It is based on psi-calculi and effectively it is an implementation of
a subset of it. The tool is a generic tool: it can model many different applied
concurrent systems. And in particular the tool features unreliable synchronous
broadcast communication that can be freely mixed with the usual reliable point-
to-point communication. In Paper I, we demonstrate a use case for wireless
sensor networks among others.

Pws could be thought as a library for writing process calculi implementa-
tions. Itis written in the Standard ML programming language and is organised
using the powerful module system of Standard ML. The Figure 3.1 summarises
the architecture of the tool.

Pws comes with a library for facilitating implementation of the parameters:
nominal data structures, parser combinators, a rudimentary SMT solver, etc.
The Pws is instantiated to a process calculus tool by implementing the psi-
calculi parameters, a constraint solver for the (symbolic) transition constraints,
a constraint solver for (symbolic) bisimulation constraints, and printers and
parsers for command interpreter. The instantiation of these produces a con-
crete tool with transition enumeration, bisimulation checking, and a command
interpreter as user interface.

28

Sirn ine L

nncon

Supp. Lib.

Nominal sets,
Parser Comb.,
Pretty Printers,

Sim Constraint
Solver

(¥,[x:=M))

T T oTSUE
Bisim Constraint
Solver 3

PP & Parser

Command
Interpreter

Derivation Trees

N
Symbolic Oy
Evaluator C

iy
Bisimulation
Generator

~¢ I

Figure 3.1: The Psi-Calculi Workbench architecture

In other words, broadly speaking, Pws is a function of the following kind

For example, the Pws distribution contains an implementation of pi-calculus

Pws(T,C,A,...) = tool.

by instantiating the psi-calculi parameters such that we obtain a tool for it

Pws(T,,Cy, Ay, ...) = tool.

In this sense, we obtain a tool similar to the Mobility Workbench [Vic94].
Moreover, we can obtain tools for more powerful process calculi by implement-
ing parameters with structured data, non-trivial logics, and assertions. Thus
Pws is a tool factory for process calculi which possibly can save quite a bit of

effort of implementing similar tools from scratch.

Pws accepts the following syntax for the agents. The prefixes are of the
polyadic variety. Prefixes are of two kinds: broadcast and point-to-point. The
syntax is parametric: x is a name accepted by the instantiation of parseName

parameter, likewise for terms M, N, conditions phi, and assertions Psi.

Pws transitions are indexed with a process clause environment of the form

A(x,...,x)<=P

29

= 'M<N,...N>P (Polyadic Output)

| M(x,...,x).P (Polyadic Input)

| 'M!'<N,...N>.P (Polyadic Broadcast Output)
| M?(%,...,x).P (Polyadic Broadcast Input)

| casephi:P[]...[]Jphi:P (Case)

| (new x)P (Restriction)

| P|P (Parallel)

| P (Replication)

| (|Psil) (Assertion)

| A<MNM,...M> (Invocation of Process Clause)
| *taux.P (Silent Prefix)

| 0 (Nil)

Processes can invoke the clauses recursively. There can be more than
one clause with the same name. In this case, the clause is chosen non-
deterministically.

We have developed a tool with symbolic executable semantics and auto-
mated behavioral equivalence checking for an advanced process calculi. This
make it more practical to model more complex real-world systems. In ad-
dition, we have implemented and distribute with Pws example instances for
the pi-calculus, calculi with structured data: calculus for modelling aggrega-
tion protocols in wireless sensor networks, alternating bit protocol and others.
We provide a transition constraint solver for each of them and a bisimulation
constraint solver for the pi-calculus instance.

3.2 Application of Pwb to Wireless Sensor Networks

Wireless Sensor Networks are quite challenging to model because of usage
broadcast communication, need for structured messages, and dynamic con-
nectivity. In Paper I we demonstrate applications of Psi-calculi Workbench to
Wireless Sensor Networks (Section 5 and 6).

A wireless sensor network (WSN) consists of a number of nodes with small
computational capacity, sensors and short range wireless communication. The
purpose of such a network is to sense environmental data and to relay it to a
base station.

We model a well-known tree building and data collection protocol TAG
[MFHHO2] for WSN. It uses multi-hop communication pattern to establish a
logical spanning tree of nodes rooted in the base station. The nodes later send
and forward data on the basis of this tree.

Our main contribution is that our model is high level and executable. This
is due to the strength of our modelling tool: we mix in the model point-to-point
and unreliable broadcast communication, and use structured data all in the
same framework.

In addition, we show that our framework is flexible. We extend the model
of the tree building protocol to handle the dynamic connectivity of nodes (Sec-
tion 6). This allows to model the mobility of nodes present in some WSNSs.

We have showed that it is possible to model WSNs in a single framework of
the Psi-Calculi Workbench. It can handle broadcast communication, structured
messages, and dynamic connectivity aspects of a WSN.

3.3 Broadcast Session Types

Session types [HVK98] is quite elegant and powerful type system for pro-
cess calculi, which typically ensures such an important property as deadlock
freedom. However, its standard application is to systems with reliable commu-
nication. We are the first to propose session types for a system with unreliable
communication (Paper II). We consider wireless sensor networks (WSN) as a
motivational example of a system with unreliable communication.

30

In WSNs, the following common pattern arises, for instance, data collection
protocol [MFHHO02]. In the diagram below P, and Qj, ..., Q, represent physical
nodes of a subnetwork in some wireless sensor network.

p

Qs o Qn

The node P first broadcasts a request message (dotted lines) to the neighboring
nodes Qy, ..., Q,, and then waits for a response message from each node (solid
line) in turn. In other words, P scatters a request message, and then iteratively
gathers responses.

Implementing such protocols in this setting is challenging. Due to the
unreliable nature of the communication medium. For example, in WSNs, not
all the neighboring nodes may receive the request message, and, in an extreme
case, none. So it is hopeless for P to wait for all the nodes to respond, even if P
is aware of the number of neighboring nodes.

What is more, the communication medium is not the only source of unre-
liability. Nodes may fail to respond in various ways. For example, the node’s
battery may discharge, or anode might be moved away from the radio coverage
of P’s antenna.

These kinds of unreliability make a system highly non-deterministic. It
means that a correct implementation of the protocol needs to be robust to all
these kinds of failures. Also a desirable implementation property is deadlock-
freedom.

For expressing protocols in such systems, we adopt the view of session
types [HVKO98]. That is, we take a session type as a protocol specification, a
process calculus as an implementation and we use a typing relation to ensure
that that a well-typed process is deadlock free and robust to failures.

Our process calculus features both reliable point-to-point and unreliable
broadcast communication primitives. Its syntax is fairly standard and includes
parallel composition, recursion, restriction, input and output prefix, and nil.
For supporting the mentioned systems, we also include session initialisation
and acceptance, scatter and gather. Syntactically, initialisation and acceptance
are dual as well as scatter and gather in the usual sense, however, semantically
session initialisation and scatter uses unreliable communication, and session
acceptance and gather are iterative processes that non-deterministically waits
for arbitrary number of messages. This models the communication pattern
described above. To handle the exceptions arising from the non-determinism,
we couple every process with a process for recovery

Perhaps surprisingly we were able to use the standard binary session types
by extending the notion of duality. That is, multiple copies of session endpoints
at the same stage are dual to the endpoint of the scatterer.

To ensure session fidelity, that is, that the processes follow the prescribed
session type and do not diverge due to non-determinism, we introduced se-
mantic support for tracking the active sessions. This is achieved by translating

31

the calculus into a ‘runtime’ calculus. As runtime calculus, we use a psi-
calculus where the sessions are tracked using a shared environment in which
the processes count how many prefixes were consumed.

Our system enjoys the usual subject reduction property: a well-typed pro-
cess reduces to a well-typed process. The other result is that a well-typed
process does not reduce to an error process, meaning that a well-typed process
is deadlock-free.

3.4 Pattern Matching

Pattern-matching is an convenient construct used in many formal languages.
By generalising it in psi-calculi (Paper III), we show that psi-calculi becomes
more expressive while retaining the standard meta-theory results.

Formally, in standard psi-calculi (Section 2.3) pattern matching is defined
using the available substitution function on terms to instantiate the pattern
variables, that is, the pattern M matches the term N where x are the pattern

variables if the following holds for some sequence of terms L:
M[x:=1] =N.

To give some intuition behind the definition, consider the example where
terms are defined as tuples! of names and integers. Then the pattern

(x,y,3)

matches
1,2,3)

because we can find a substitution function such that
xyIx=1y:=2]=(1,2,3).

In psi-calculi, pattern matching is defined in terms of substitution. It is a
slight generalisation of the way pattern matching is defined in many functional
programming languages since the term set is arbitrary and not necessarily
inductively defined. This notion of pattern matching is also common in process
calculi.

This, however, is not sufficient to capture quite common patterns found in
programming languages, for example, record patterns found in ML descen-
dants like Standard ML, Haskell, OCaml among others. As a simple example
of this, take the following pattern® which intuitively matches the first element
in a tuple and binds it to x

L#x

I Technically, we are forced to define terms to be finitely branching trees of names and integers
that is T = N U N U T*. This is because terms must be closed under all total substitutions. We
address this issue by relaxing the requirement to only well-sorted substitutions. We explain this in
Section 3.5.

2Formally, we need to extend Tto T=INUN U {1#M : M € } U T*

32

Clearly we cannot in general define a substitution that would satisfy for any
n>0
l#x[x = Ml] = <M1, “e ,Mn>

and in particular
1#x[x :=1]=(1,2,3)

Another issue is that every term is a pattern, and every pattern is a term.
For example, consider psi instance where enc(M, k) is a term which intuitively
denotes encryption of M with the key k. The term can be received and decom-
posed since it is also a patter in a(Am, k)enc(m, k).P revealing both the encrypted
message and the key used to encrypt it. Obviously, this is not the intention of
our cryptographic model.

The pattern variables are allowed to bind into any name in the pattern term.
But if we allowed finer control over the binding, we could remedy the above
example. By disallowing k to be a pattern variable, then the key cannot be
discovered by simply inputing and so the input a(Am)enc(m, k).P can occur
only if the key k is known.

Yet another issue is that the substitution function is required not to erase
names (Definition 21). Perhaps surprisingly, this is a consequence of using
pattern matching on the label in the [IN] rule (Figure 2.5). Without this require-
ment, it is possible to capture non-extruded restricted names (see [BJPV11] for
justification and examples).

This is a drawback. Since it prevents us from defining interesting computa-
tions as part of a substitution function. For instance, symmetric cryptography
can be modeled as a term rewriting system with the following rule

dec(enc(M, k), k) > M

where Mis a term and kis aname. But the substitution dec(x, k)[x := enc(M, k)] =
M violates the name preservation law whenever k # M.

We address the issues by modifying psi-calculi in the following ways. We
introduce a new nominal datatype X (which may or may not overlap with terms
T), ranged over by X, called patterns and two operations on the datatype. The
Matcu(M, x, X) operation matches the term M against the pattern X with the x
being pattern variables. The Vars(X) operation returns a set of sets of names
that are allowed to be bound by ¥ in the pattern X. This operation is used
to ensure that the binders x bind the appropriate names in the input prefix
M(AX)X.P.

Definition 27 (Pattern Matching Psi-calculi Parameters). We extend the param-
eters of the Definition 17 with the following

X : NomSet (Patterns)
sx : N'XT"->X-X (Pattern Substitution)
Marcr : TXN*XX — Pga(T*) (Pattern Matching)
Vars @ X = Puin(Pin(N)) (Names as Pattern Variables)

op is extended with the ox as the base case for patterns in Definition 22.

33

Definition 28. The input agent of Definition 20 is replaced with the following
form where X € X
M(AX)X.P

We also replace the proviso of well-formed input agent (Definition 20) with the
following

If x € Vars(X) and P is well formed, then M(Ax)X.P is well formed.

Definition 29 (Requisites on pattern matching parameters). We extend psi-
calculi requisites Definition 19 with the following

N € Matcu(M, %, X) =
n(N) C n(M) U (n(X) \ x) (Cannot invent names)

N € Marcu(M, %, X) =
(Vy # X) N e Marca(M,y, (xy) - X) (Invariant under a-conversion)

x€VARS(X) A x#0 =
x € VArs(Xo) (Substitution cannot erase pattern names)

By moving pattern matching out of the label in the [IN] rule, we relax the
requirements of term substitution by dropping name preservation. We obtain
the following transition system.

Definition 30. We define operation semantics with matching by replacing [IN]
in Figure 2.5 with the rule [IN-M] in Figure 3.2.

The new rule increases the expressivity of psi-calculi since it allows for
more kinds of behavior. Pattern matching can also be non-deterministic as
exemplified by the encoding lambda calculus with erratic choice in the pattern
language.

Because substitution can erase pattern variables in non pattern matching
psi-calculi, the well-formedness condition x C n(N) of a process M(Ax)N.P may
notbe preserved by the transition relation. But by requiring pattern substitution
to preserve them (Definition 29), we obtain

Theorem 6 (Subject Reduction). If P is well formed and W > P 5 P, then P is
well formed.

The extensions described here are sound in the following sense. The result
has been checked in the automated theorem prover Isabelle.

Theorem 7. Standard meta-theoretical results hold: (weak) bisimilarity is a
(weak) congruence except for input, (weak) bisimilarity closed under substi-
tution sequences is a (weak) congruence, (weak) bisimilarity and congruence
satisfies the structural (weak) congruence laws.

We have shown that generalised pattern-matching adds expressivity to the
psi-calculi framework. What is more, by introducing the generalised pattern-
matching, we do not break the framework, that is, we retain the standard
meta-theoretic properties.

34

WM K LeMarcu(N, Y, X)

[In-M] N =
v > M(/\‘]DX.P — P[L := ﬂ

Figure 3.2: Input Rule with Generic Pattern Matching

3.5 Data Sorting

We extend psi-calculi with a simple type system, which we call sorted psi-
calculi (Paper III). The system allows us to remove non-sensical terms arising
in the original psi-calculi (Section 2.3) and faithfully capture several well-known
processes calculi including polyadic sorted and unsorted pi-calculus [Mil93],
polyadic synchornisation pi-calculus [CM02], and value-passing CCS [Mil89].
The resulting parametric calculi enjoys the same meta-theoretical properties as
the original psi-calculi (see Section 2.3 and [BJPV11]).

One of the motivations to introduce sorted psi-calculi is capture the notion
of well-formedness of a process at the data level. This need arises when con-
sidering more structured data than names. For example, Milner [Mil93] uses a
type system to enforce that channels have the same arities by sorting the names
of the channels, while Abadi and Fournet in their applied pi-calculus [AF01]
sort names into channel names and variables (which also double as variables
in term a algebra).

The other motivation is technical. It is to help the process calculi designer to
capture his or hers intentions more closely when describing the term language
of a psi-calculus. Substitution on the psi-calculi parameters is required to be
total (Definition 17) and the designer might be forced to expand the set of terms
in order to accommodate this requirement.

We already encountered this shortcoming in Section 3.4 when we tried to

. . def
define sequences of names and integers as data terms T; = (N U IN)*, but
we were forced to set it to a somewhat more complicated structure of finitely

branching trees of names and integers T, & ut. N UN U t*. This is because
substitution sp : N* X D* — D — X (for D € {T,C, A}) in Definition 17 is a
total function and so it cannot yield an element outside the data term set. For
example, (4, b) and (c) are both in T; and T, thus, if we define substitution in
the obvious way and apply [a := (c)], we find that T} is too small as follows

@ b)la= 1= (), £ 1!

We could address this issue by defining substitution by sending the above
application of substitution to an error term. But this is not satisfactory either,
since we still would need to expand T; with elements with the sole purpose
of makeing the substitution total. We thus in essence introduce spurious terms
or simply “junk” to the data term language. It is for the same reason why we
cannot directly define polyadic pi-calculus as a psi-calculus.

35

(SIn] FP Sorr(M) o Sort(X) 15-Ou] FP Sort(M) o Sort(N)

F M(Ax)X.P F MN.P
P S, (S P P -
[S-Res] (Sorr(@) [S-REp] — [S-PAR] —Q
+ (va)P FIP FP|Q
Vi.+ P;
[S-NiL] — [S-CasE] —————= [S-Psi]
O - case ¢ : P F (W)

Figure 3.3: Sorting rules

Instead, we sort the names, terms, and patterns, and only consider well-
sorted substitutions. We introduce a set of sorts S as a parameter, and a sort
context Sort that gives the sort of names, terms and patterns. We introduce
compatibility relations on prefixes that govern which data sorts can be sent or
received on particular channel, and a predicate that tells which sort of names can
be restricted in a process. We also introduce a relation that specifies formation
of well-sorted substitutions.

We also fix a family of countably infinite name sets {N;};c; and denote the
their union with N.

Definition 31 (Sorted Psi-Calculi Parameters). We extend the parameters of the
Definition 27 with the following:

S Set (Sort Set)

x €c SxS§ (Can Send)

x ¢ SxS§ (Can Receive)

<~ C 8xS§ (Can Substitute)
S, ¢ S (Can Restrict)

Sortr : N+T+X—>S (SortContext).

We require that the sort context respects the sorting of names, that is,
Sort(a) = siffs € Ni.

Definition 32 (Well Sorted Agent). A well-sorted agent P is a well-formed agent
(Definition 28 and Definition 20) where additionally I P as defined by the rules
in Figure 3.3.

Definition 33 (Subsorting pre-order).

S xt = syt A
def Spoct = syt A
51 <s — (Vte
=22 (S) ftxsy = txs; A
t&S2 - t&sl

Definition 34 (Well sorted substitution).

7 distinct Aa] = N|Aa; <N; = [2:= N]wf. (Well formed substitution)
(VX e(T,CAXNVTeX)

b#T,a = Tla:=N]=(@ab)-T)[b:=N] (a-conversion)
(VM € T) Sort(Mo) < Sort(M) (Subsorting)

(VX eX)x e Vars(X) Ax#0 = Sorr(Xo) < Sorr(X) (Subsorting)

We show that our sorting system enjoys the usual subject reduction property.
This depends on that well-sorted substitutions preserve well-formedness of a
process.

Theorem 8 (Subject Reduction). If P is well-formed, then

1. Po is well-sorted for any well-sorted o.

2. fW > PS5 P then P’ is well-sorted.

Returning to the previous example we can use terms T and restrict substitu-
. . . . def .
tions to only substitute name or integer for names by taking S = {name, int, seq},

& {(name, int), (name, name)}, and Sorrt(a) = name for a € N, Sorr(n) = int for
n € N and Sort({x1,...,x,)) = seq.

Using this sort system, we can directly represent as sorted psi-calculus
both sorted and unsorted pi-calculus, polyadic synchronisation pi-calculus,
and value-passing CCS. That is, all of these calculi have strong operational
correspondence with the respective psi-calculus up to strong bisimulation, and
the syntax is homomorphically translated to psi. In case of polyadic pi-calculus,
the syntax is in bijection with the psi-calculus.

Theorem 9. The standard meta-theoretical results hold: bisimilarity is a con-
gruence except for input, bisimilarity closed under substitution sequences is
a congruence, bisimilarity and congruence satisfies the structural congruence
laws. The same is true for the weak version of bisimilarity and congruence.

For technical reasons, we cannot check the above results in the current
version of Nominal Isabelle [Urb08]. We have instead reduced the proofs to the
trivially sorted case and for strong and weak congruence we have repeated the
proof by hand.

We have introduced a sort system that allows for a more concise model-
ing in the psi-calculi framework. The transition relation preserves the well-
formedness property of the system and the standard meta-theoretical results
hold. We have shown with this kind of system we can express directly advanced
process calculi.

37

Chapter 4

Related Work

4.1 Type Systems

Our work on sorted psi-calculi and session types for broadcast mainly falls
under two kinds of type systems for process calculi: a type systems ensuring
a syntactic well-formedness property and a type system ensuring a correct
behaviour of a process with regard to a type, respectively. The latter kind is
also known under the moniker of behavioural type systems and we concentrate
on a specific class of behavioral types called session types.

Sorts The first type system for the pi-calculus was given as a simple sorting
discipline of names by Milner in [Mil93]. His system ensures that all uses
of a name in a well-sorted process has the same arity. As a consequence of
this a well-sorted process does not result in a communication error due to
mismatched arities of polyadic input and output channels.

Later Pierce and Sangiorgi [PS93] generalised Milners sort system to sub-
typing. Their system allows to restrict the use of a channel to be input or output
only. They achieve this by defining a subsort relation < on sorts marked with a
capability of a channel. For example, a{b) is well-sorted if the sort S; of channel
a is a subsort of sort 57 of channel b, i.e., S; < S7. The marker + denotes that the
name of this sort is used for sending. The way < is defined forces S; to have the
capability of either sending this sort or both sending and receiving. Similarly
for the input a(b) is well sorted if S; < 5.

The sorted psi-calculi can be seen as generalisation of the ideas of sorting
names (Milner) and using subsort relations to restrict the use of channels (Pierce
and Sangiorgi). We generalise the sorting of names to sorting of arbitrary data
structures. We do not stipulate a particular relation on channels, thus any
relation can be used including subsorting.

In [Hiit11], Hiittel defines a generic type system for psi-calculi. His system
is parameterised on a set of types and a set of type judgments rules. The type
judgments may depend on the assertions in the type environment. He also
extends the syntax of psi-calculi to include the type in the restriction operator.

38

Hiittel’s system enjoys the usual subject reduction property, that is, a well-
typed process always transitions into a well typed process, however this only
holds for silent transitions. Like in ours, he also shows that the channels ca-
pabilities are respected in typed psi-calculi as one a general safety property
ensured by his type system. This general system allows for expressing ad-
vanced safety properties, such as, authenticity and secrecy properties that of
typed spi-calculus.

The typed psi-calculi parameters are limited to freely generated algebras
over names, and the substitution functions are required to be homomorphic,
i.e., the distributivity law must hold for every substitution o, f(My, ..., M,)o =
f(Mo,...,M,0) where f is a function symbol and M,; is a term. Whereas we
consider every possible psi-calculi, and in this sense sorted psi-calculi is more
general than typed psi-calculi.

The name set of typed psi-calculi is sorted into two sets: names and variable
names, where only variable names are affected by substitution. Sorted psi-
calculi provides foundation for this kind of sorting where standard bisimulation
results hold such as structural laws are satisfied, bisimulation is a congruence.
In this sense sorted psi-calculi is a precursor of typed psi-calculi.

In [Hiit14], Hiittel gives another powerful parametric type system for psi-
calculi. The type system ensures correct resource use, e.g., channel is used
linearly. This type system subsumes the linear type system for pi-calculus by
Koboyashi et al. [KPT99] among other resource aware process calculi type
systems.

Session Types The line of work on session types was initiated by Honda
in [Hon93] and, together with Vasconcelos and Kubo, in [HVK98]. These
papers introduce the idea that the type describes the interaction of processes
thereby the processes conforming to a type interact in dual fashion, and in the
latter paper, within a session. In such a interaction, every input is matched
by an output and vice versa by each participating process. This ensures that
well-typed processes do not deadlock.

Since these systems allow only two processes to interact, they are commonly
referred to as binary session types. The idea of binary session types has been ex-
tended to multi-party session types [HYC08] where multiple processes interact
within a session using multi-cast communication.

Carbone et al. [CHY08] extend binary session types with exceptions and
exception handlers. They introduce the session type a{fl, which denotes that a
process may throw an exception while following the protocol @ asynchronously
to signal the other party that they both must continue with the protocol g. This
is different from our approach in three ways: first, in our approach processes
do not signal other parties of their exceptions and may choose to recover au-
tonomously; second, recovery processes are typed using shared channels thus
we don’t introduce a recovery session type; and, third, the their processes use
reliable communication.

Capecchi et al. [CGY10] extend the session type system with exceptions to
multiparty. While broadcast can be regarded as a particular case of multicast,
their system does not deal with unreliability.

39

4.2 Pattern Matching

Pattern matching is a feature found in many functional programming languages
like Standard ML, Haskell, Scala, Erlang, among others. It is essential for
proving inductive properties in functional programming languages [Bur69].
Languages like Haskell and Scala use patterns with computation, known as
view patterns [Wad87]. Abel et al. [APTS13] have introduced a dual notion
of the usual structural patterns, called copatterns, to define computation on
infinite data.

In process calculi area, the picT programming language by Pierce and Turner
[PT95] based on the pi-calculus defines pattern-matching function for tuples
and record patterns, for example, the pattern “record f; = p end” matches
value “record f; = vy, f = v, end” if the pattern p matches v;. This kind of
system can be easily defined in our pattern-matching framework.

The pattern-matching spi-calculus of Haack and Jeffrey [H]J06] has a similar
distinction between pattern variables (bound) and names allowing to decrypt
messages without pattern matching unknown keys. Otherwise, their pattern
matching system is standard.

The Kell calculus [SS05] like ours is parameterised on a pattern language
and the pattern matching device. Patterns can contain pattern variables disjoint
from free names. Unlike pattern matching psi-calculi, patterns are required to
preserve user defined structural congruence.

Brown et al. [JLMO05] introduce an extension to the pi-calculus PiDuce.
Their calculus have patterns possibly as either XML schemas or XML markup.
Patterns which can be a sub-schema or sub-markup are matched against XML
markup.

Both Honda [Hon93] and Given-Wilson et al. [GWGJ10] use bidirectional
structured patterns for communication based on unification of prefixes instead
of standard pattern-matching.

4.3 Verification Tools

Tool lineage for process calculi trace back to Concurrency Workbench by Cleave-
land et al. [CPS90] for Milner’s Calculus of Communicating Systems [Mil89].
It includes features such as strong equivalence checking and model checking.

The Mobility Workbench by Victor and Moller [VM94, Vic94] is a tool for the
polyadic pi-calculus that includes open bisimulation equivalence checking of
both kinds weak and strong. Similarly to Pws, Mobility Workbench uses sym-
bolic methods to obtain effective operational semantics. Mobility Workbench
was also extended with model checking capabilities by Beste [Bes98].

There are many tools designed specifically for equivalence checking in pro-
cess caluli, however less general than Pws: Another Bisimulation Chekcer
(ABC) by Briais [BriO5] for the pi-calculus, Symbolic Bismulation Checker
[BB04] by Borgstrom and Briais that checks behavioral equivalences in the
spi-calculus [AG97], and PiET by Meo [Mio06] for the pi-calculus that checks a
plethora of strong behavioral equivalences.

40

Meyer et al. [MKS09] implement a tool called PETrucHIO with which they
model-check finite control pi-calculus agents. They use a translation from the
pi-calulus to Petri nets to exploit model-checking methods from Petri nets.

ProVerif [Blall] is a specialised tool for security protocol verification. Its
accepted language is an extension of the applied pi-calculus of Abadi and
Fournet [AF01]. It is parameterised over a first order signature over which
messages can be built and pattern matched. The data terms are identified up toa
user defined term rewriting system. The main feature of ProVerif is reachability
and secrecy analysis using Horn Clauses to represent protocols. Recently,
ProVerif was extended with behavioral equivalence checking by Cheval and
Blanchet, however the equivalences are quite strong: the processes are required
to have the same structure and they can only differ in messages sent.

Another tool for process calculi extended with datatypesis mCRL2 [CGK*13]
for the Algebra of Communicating Processes, which allows higher order sorted
term algebras and equational logic. mCRL2 features architecture consisting of
many tools interfacing via intermediate languages. Among these tools, mCRL2
includes an equivalence checker, a visual simulator and a model checker.

PAT3 [LSD11] which includes a CSP# [SLDC09] module where actions built
over types like booleans and integers are extended with Cj-like programs.

41

Chapter 5

Future Work

5.1 Algebra of Psi-calculi

A psi-calculus is a structure (Section 2.3)
A= (T/ C/ A/ 9/ ®, 1/ F,St,Sc, SA)

Itis then natural to ask, what are the structure-preserving operations on psi-
calculi? And if we group them, what kind of algebras does psi-calculi form?
Such a theory could have several applications.

Let us illustrate by considering examples of a possible theory. We first can
consider unary operations on psi-calculi

opA

Unary operations could be used as refinements on psi-calculi, i.e. we could
build more advanced calculi out of basic ones. Take for instance op to be an
operation which adds natural numbers and the usual arithmetic operations on
them to the term set, and equations on those expression to the conditions. Thus
we could obtain a pi-calculus with arithmetic by lifting the pi-calculus instance
Pi into op Pi.

We have already met this sort of operation in Paper III. It mapped a sorted
and pattern matching psi-calculus to a trivially sorted psi-calculi. We used the
mapping to lift some bisimulation results for unsorted psi-calculi to the sorted
case. Hence this kind of operations have merit in proof theory.

It is also interesting to consider binary operations on psi-calculi A and 8:

AOB

What could merging two process calculi mean? We can also consider uni-
versal constructions borrowed from universal algebra such as direct products
and co-products.

Such a theory could have uses in tools like the Psi-calculi Workbench if we
consider symbolic psi-calculi structures together with constraint solvers. Then
we could have a modular language for constructing psi-calculi instances with
much less effort than we currently do.

42

5.2 Nominal Algebras for Transition System Speci-
fication

The goal of symbolic semantics for value passing process calculi is to reduce
infinite transition graphs into finite transition graphs. In other words, to make
derivation of transitions computable. This was first proposed by Hennessy and
Lin [HL95] for CCS in order to make bisimulation checking feasible.

This technique has been extended to the pi-calculus by Boreale and Nicola
[BAN96], and to many other calculi: spi-calculus by Borgstrom et al. [BBN04],
by Chen et al. [CHLO5] for a the pi-calculus using a more general notion of
symbolic transition graph, and psi-calculi by Johansson et al. [JVP10, JVP12]
with an amended version by Borgstrom et al. (cf. Paper I) used in the Psi-calculi
workbench.

All the extensions mentioned above are ad-hoc, case by case considerations.
They all share the same idea.

The main source of infinity in the pi-calculus in the early semantics is the
input rule:

a(x).P LIN Ply/x}

Which is of course satisfied by every y € N, that is, y ranges over an infinite
domain. The solution for making this branching finite is to use a single name
to represent all the possible values received, which in the pi-calculus means
using a late semantics, or the following rule

a(x).P 2, P

This is the choice made by Johansson et al. [JVP10], however, for advanced
calculi like psi-calculi this approach does not scale well and it is hard to accom-
modate extensions defined for early style semantics such as pattern-matching
(Section 3.4).

Because a name could represent an uninstantiated value, it is also necessary
to record the conditions which could possible be enabled by a particular instan-
tiation. For example, the symbolic version of the match rule in the pi-calculus
is decorated with the match and the condition is left to be checked after the
derivation is complete.

p <Y pr
[a:b]pw”y

We could formalise this kind of "know-how’ knowledge of lifting structural
operational semantics to symbolic versions thereof. Instead of doing this lifting
case-by-case basis for each SOS, one could have a transition system specification
of a particular calculus and obtain a symbolic transition system which is sound
and complete with regard to the original. There are a number of psi-calculi
extensions (priorities, reliable broadcast, higher order) that we then would be
able to implement in the Psi-calculi Workbench without designing a symbolic
semantics for each case.

43

In summary, following diagram commutes where TSS is a transition system
specification, TS is a transition system, and similarly STSS is symbolic transition
system specification, and STS is symbolic transition system.

TSS = . TS

liftl Tinst

STSS —— STS

geny

To put it differently, one can obtain the same transition system by lifting
the transition system specification to a symbolic one, and then generating sym-
bolic transitions. The obtained symbolic transitions could be initialised to the
required transition system, and vice versa (inst is one-to-one correspondence),
as follows

geny = inst o geny o lift

As shown by Bengtson [Ben10], nominal techniques are perfectly suited for
name-passing calculi and advanced calculi like psi-calculi. We could express
transition system specifications in nominal term algebras [UPG04], and repre-
sent the abstractions of quantified values by using the notion of unknown due
to Dowek et al. [DGM10].

5.3 Models of Psi-calculi

Psi-calculi could be regarded as a meta model of process calculi due to its
powerful theory which captures many calculi. There are other such theories
proposed for modelling of concurrency. It is interesting to explore the connec-
tion between those theories and psi-calculi.

Coalgebra is a uniform way of expressing great variety of dynamic state
based systems among which are transition systems, automata, and process
calculi. It is a dual notion of algebra with many of algebraic notions dualised,
e.g., congruence in algebra is dual to bisimulation equivalence. Rutten has
developed [Rut00] universal coalgebra theory in very same sense as universal
algebra theory with general results, e.g., the existence of a final coalgebra. The
generality of coalgebras allows to transport results between different systems.

Montanari and Pistone [MP98] have introduced an extension of finite-state
automata called history-dependent automata which allowed them to model
the pi-calculus and capture its behavioral equivalence. Ferrari et al. [FMT05]
used coalgebraic techniques to develop verification methods for the pi-calculus
by using the fact that both history dependent automata and pi-calculus are
coalgebras. These results could potentially be reused and extended for the psi-
calculi and the Psi-calculi workbench given if there is a coalgebra of psi-calculi.

Milner has developed the theory of bi-graphs [Mil01] for what he calls
ubiquitous computing. Bi-graphs are combination of multi-graphs and trees
capturing the notion of connected components in a hierarchical system. It
is a more concrete theory than either psi-calculi or coalgebra, and does not
give universal constructions for the bi-graphs themselves. Nevertheless, it

44

is a general theory capturing several well known calculi, e.g., the polyadic pi-
calculus [BS06]. Itis then interesting to see whether the theory of psi-calculi with
the assertion environments could be expressed in bi-graphs. Again transporting
results would be of interest, e.g., inferring labelled transition system from bi-
graphical reductions.

5.4 Logics for Psi-calculi

Models of large systems are usually complex and their correctness is not at
all obvious. In order to reason about their correctness, one is concerned with
establishing so called liveness and safety properties of a model. Examples
of which are absence of livelocks and deadlocks which are of interest in any
concurrent system.

The modal p-calculus is a successful formalism for expressing such proper-
ties. The modal p-calculus is a modal logic with least and greatest fixed-point
operators. Modal logic is a logic which allows reasoning about the future states
of a system, e.g., the formula (2)¢ express the fact in some next state of a system
¢ holds. The fixpoint operators of u-calculus represent the least and greatest
sets of states that satisfy a formula. This allows naturally express liveness and
safety properties.

The p-calculus has been extended to handle the polyadic pi-calculus with
a model-checking algorithm by Dam [Dam96], and Beste has implemented a
model checker in the Mobility Workbench [Bes98].

Psi-calculi allows expressing models of concurrent systems at a more natural
abstraction level in a parametric way. What we propose is to have a family of
modal p-calculi and verification frameworks for psi-calculi. We think that the
application of psi-calculi to real-world systems would be greatly helped by
such a framework. We plan to develop and use a variant of modal p-calculus
for psi-calculi to verify the cache coherence protocol VIPS [RK12].

45

Chapter 6

Conclusion

In this thesis, we have presented the results of three papers. First, we have
developed the tool Psi-calculi Workbench based on the semantic framework of
psi-calculi (Section 2.3), which provides an interactive simulator and automatic
bisimulation checker. Users of the tool need only implement the parameters of
their psi-calculus instances, supported by a core library. We have investigated
the applicability of it to several concurrent systems such as wireless sensor
networks by devising abstract executable models for future analysis.

Second, we have defined a system of session types for a calculus based
on unreliable broadcast communication. This is the first time that session
types have been generalised beyond reliable point-to-point communication.
We defined the operational semantics of our calculus by translation into an
instantiation of broadcast psi-calculi, and proved subject reduction and safety
results. The use of the psi-calculi framework opens the possibility of exploiting
its general theory of bisimulation for reasoning about session-typed unreliable
broadcasting systems.

Third, we present generalised pattern matching and a sort system for psi-
calculi. These two features significantly improve the precision of modelling
in psi-calculi. Generalised pattern matching and substitution, which allow us
to model computations on an arbitrary data term language, and a sort system
which allows us to remove spurious data terms from consideration and to
ensure that channels carry data of the appropriate sort. The well-formedness of
processes is preserved by the transition system. The meta-theoretic results carry
over from the original psi formulations, and many have been machine-checked
in the theorem prover Isabelle.

46

Bibliography

[AFO1]

[AGI7]

[APTS13]

[BBO4]

[BBNO4]

[BANO96]

[Ben10]

[Bes98]

[BJPV11]

Martin Abadi and Cédric Fournet. Mobile values, new names, and
secure communication. In Proceedings of the 28th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL
‘01, pages 104-115, New York, NY, USA, 2001. ACM.

Martin Abadiand Andrew D. Gordon. A calculus for cryptographic
protocols: the spi calculus. In Proceedings of the 4th ACM conference
on Computer and communications security, CCS 97, pages 3647, New
York, NY, USA, 1997. ACM.

Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Set-
zer. Copatterns: Programming infinite structures by observations.
In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL "13, pages 27-38, New
York, NY, USA, 2013. ACM.

Sébastien Briais and Johannes Borgstrom. SBC: Symbolic Bisimu-
lation Checker, 2004.

Johannes Borgstrom, Sébastien Briais, and Uwe Nestmann. Sym-
bolic bisimulation in the spi calculus. In Philippa Gardner and
Nobuko Yoshida, editors, CONCUR 2004 - Concurrency Theory,
volume 3170 of Lecture Notes in Computer Science, pages 161-176.
Springer Berlin Heidelberg, 2004.

Michele Boreale and Rocco de Nicola. A symbolic semantics for the
nt-calculus. Information and Computation, 126(1):34 — 52, 1996.

Jesper Bengtson. Formalising process calculi. PhD thesis, Uppsala
University, Division of Computer Systems, 2010.

Fredrick B. Beste. The model prover - a sequent-calculus based
modal p-calculus model checker tool for finite control m-calculus
agents. Master’s thesis, Department of Computer Systems, Uppsala
University, Sweden, March 1998. Available as report DoCS 98/97.

Jesper Bengtson, Magnus Johansson, Joachim Parrow, and Bjorn
Victor. Psi-calculi: a framework for mobile processes with nominal
data and logic. Logical Methods in Computer Science, 7(1:11), 01 2011.

47

[Bla11]

[Bri05]

[BS06]

[Bur69]

[CGK*13]

[CGY10]

[CHLO5]

[CHYO08]

[CMO02]

[CPS90]

Bruno Blanchet. Using Horn clauses for analyzing security proto-
cols. In Véronique Cortier and Steve Kremer, editors, Formal Models
and Techniques for Analyzing Security Protocols, volume 5 of Cryptol-
ogy and Information Security Series, pages 86-111. IOS Press, March
2011.

Sébastien Briais. Abc: Another bisimulation checker. http://
sbriais. free. fr/tools/abc/, 2005. Retrieved Sep 1, 2014.

Mikkel Bundgaard and Vladimiro Sassone. Typed polyadic pi-
calculus in bigraphs. In Proceedings of the 8th ACM SIGPLAN interna-
tional conference on Principles and practice of declarative programming,
PPDP '06, pages 1-12, New York, NY, USA, 2006. ACM.

Rodney M. Burstall. Proving properties of programs by structural
induction. The Computer Journal, 12(1):41-48, 1969.

Sjoerd Cranen, Jan Friso Groote, Jeroen J. A. Keiren, Frank P. M.
Stappers, Erik P. Vink, Wieger Wesselink, and Tim A. C. Willemse.
An overview of the mCRL2 toolset and its recent advances. In Nir
Piterman and Scott A. Smolka, editors, Tools and Algorithms for the
Construction and Analysis of Systems, volume 7795 of Lecture Notes in
Computer Science, pages 199-213. Springer Berlin Heidelberg, 2013.

Sara Capecchi, Elena Giachino, and Nobuko Yoshida. Global Es-
cape in Multiparty Sessions. In Kamal Lodaya and Meena Mahajan,
editors, IARCS Annual Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science (FSTTCS 2010), volume 8 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 338
351, Dagstuhl, Germany, 2010. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik.

Taolue Chen, Tingting Han, and Jian Lu. A modal logic for -
calculus and model checking algorithm. Electronic Notes in Theoret-
ical Computer Science, 123(0):19 — 33, 2005.

Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured in-
teractional exceptions in session types. In Franck Breugel and Mar-
sha Chechik, editors, CONCUR 2008 - Concurrency Theory, volume
5201 of Lecture Notes in Computer Science, pages 402—417. Springer
Berlin Heidelberg, 2008.

Marco Carbone and Sergio Maffeis. On the expressive power of
polyadic synchronisation in pi-calculus. Electronic Notes in Theoret-
ical Computer Science, 68(2):15 — 32, 2002. EXPRESS’02, 9th Interna-
tional Workshop on Expressiveness in Concurrency.

Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The
concurrency workbench. In Joseph Sifakis, editor, Automatic Verifi-
cation Methods for Finite State Systems, volume 407 of Lecture Notes
in Computer Science, pages 24-37. Springer Berlin Heidelberg, 1990.

48

[Dam96]

[DGM10]

[EMO1]

[FMTO05]

[GP99]

[GWGJ10]

[HJO6]

[HL95]

[Hon93]

[HT91]

[Hiit11]

Mads Dam. Model checking mobile processes. Information and
Computation, 129(1):35 — 51, 1996.

Gilles Dowek, Murdoch J. Gabbay, and Dominic P. Mulligan. Per-
missive nominal terms and their unification: an infinite, co-infinite
approach to nominal techniques. Logic Journal of IGPL, 18(6):769—
822, 2010.

Christian Ene and Traian Muntean. A broadcast-based calculus for
communicating systems. Parallel and Distributed Processing Sympo-
sium, International, 3:30149b, 2001.

Gianluigi Ferrari, Ugo Montanari, and Emilio Tuosto. Coalgebraic
minimization of hd-automata for the m-calculus using polymorphic
types. Theoretical Computer Science, 331(2-3):325 — 365, 2005. Formal
Methods for Components and Objects.

Murdoch Gabbay and Andrew Pitts. A new approach to abstract
syntax involving binders. In Proceedings of the 14th Annual IEEE
Symposium on Logic in Computer Science, LICS 99, Washington, DC,
USA, 1999. IEEE Computer Society.

Thomas Given-Wilson, Daniele Gorla, and Barry Jay. Concurrent
pattern calculus. In CristianS. Calude and Vladimiro Sassone, ed-
itors, Theoretical Computer Science, volume 323 of IFIP Advances in
Information and Communication Technology, pages 244-258. Springer
Berlin Heidelberg, 2010.

Christian Haack and Alan Jeffrey. Pattern-matching spi-calculus.
Information and Computation, 204(8), 2006.

Matthew Hennessy and Huimin Lin. Symbolic bisimulations. The-
oretical Computer Science, 138(2):353 — 389, 1995.

Kohei Honda. Types for dyadic interaction. In Eike Best, editor,
CONCUR '93, 4th International Conference on Concurrency Theory,
Hildesheim, Germany, August 23-26, 1993, Proceedings, volume 715 of
Lecture Notes in Computer Science, pages 509-523. Springer, 1993.

Kohei Honda and Mario Tokoro. An object calculus for asyn-
chronous communication. In Pierre America, editor, ECOOP’91
European Conference on Object-Oriented Programming, volume 512 of
Lecture Notes in Computer Science, pages 133-147. Springer Berlin
Heidelberg, 1991.

Hans Hiittel. Typed psi-calculi. In Joost-Pieter Katoen and Barbara
Konig, editors, CONCUR 2011 — Concurrency Theory, volume 6901
of Lecture Notes in Computer Science, pages 265-279. Springer Verlag,
2011.

49

[Hiit14]

[HVK98]

[HYCO08]

[JBPV10]

[JLMO5]

[JVP10]

[JVP12]

[KPT99]

[LSD11]

[MFHH02]

[Mil89]

Hans Hiittel. Types for resources in psi-calculi. In Martin Abadi
and Alberto Lluch Lafuente, editors, Trustworthy Global Comput-
ing, Lecture Notes in Computer Science, pages 83-102. Springer
International Publishing, 2014.

Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language
primitives and type discipline for structured communication-based
programming. In Chris Hankin, editor, Programming Languages and
Systems, volume 1381 of Lecture Notes in Computer Science, pages
122-138. Springer Berlin Heidelberg, 1998.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty
asynchronous session types. In Proc. of POPL'08, pages 273-284.
ACM Press, 2008.

Magnus Johansson, Jesper Bengtson, Joachim Parrow, and Bjorn
Victor. Weak equivalences in psi-calculi. In Logic in Computer Science
(LICS), 2010 25th Annual IEEE Symposium on, pages 322-331, July
2010.

Allen L. Brown Jr.,, Cosimo Laneve, and L. Gregory Meredith.
PiDuce: A Process Calculus with Native XML Datatypes. In Mario
Bravetti, Leila Kloul, and Gianluigi Zavattaro, editors, Formal Tech-
niques for Computer Systems and Business Processes, volume 3670 of
Lecture Notes in Computer Science, pages 18-34. Springer Berlin Hei-
delberg, 2005.

Magnus Johansson, Bjorn Victor, and Joachim Parrow. A fully
abstract symbolic semantics for psi-calculi. In Proc. 6th Workshop on
Structural Operational Semantics : SOS 2009, number 18 in Electronic
Proceedings in Theoretical Computer Science, pages 17-31, 2010.

Magnus Johansson, Bjérn Victor, and Joachim Parrow. Computing
strong and weak bisimulations for psi-calculi. Journal of Logic and
Algebraic Programming, 81(3):162-180, 4 2012.

Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linear-
ity and the pi-calculus. ACM Trans. Program. Lang. Syst., 21(5):914—
947, September 1999.

Yang Liu, Jun Sun, and Jin Song Dong. PAT 3: An extensible
architecture for building multi-domain model checkers. In Proc. of
ISSRE '11, pages 190-199, Los Alamitos, CA, USA, 2011. IEEE.

Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and
Wei Hong. Tag: a tiny aggregation service for ad-hoc sensor net-
works. SIGOPS Oper. Syst. Rev., 36(5I):131-146, December 2002.

Robin Milner. Communication and Concurrency. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1989.

50

[Mil92]

[Mil93]

[Mil01]

[Mio06]

[MKS09]

[MP98]

[MPW92a]

[MPW92b]

[Par01]

[Pit03]

[Plo81]

[PS93]

[PT95]

Robin Milner. Functions as processes. Mathematical Structures in
Computer Science, 2:119-141, 6 1992.

Robin Milner. The polyadic m-calculus: A tutorial. In Friedrich L.
Bauer, Wilfried Brauer, and Helmut Schwichtenberg, editors, Logic
and Algebra of Specification, volume 94 of Series F. NATO AS]I,
Springer, 1993.

Robin Milner. Bigraphical reactive systems. In KimG. Larsen and
Mogens Nielsen, editors, CONCUR 2001 — Concurrency Theory, vol-
ume 2154 of Lecture Notes in Computer Science, pages 16-35. Springer
Berlin Heidelberg, 2001.

Matteo Mio. Piet: Pi calculus equivalences tester. http://piet.
sourceforge.net, 2006. Retrieved Sep 1, 2014.

Roland Meyer, Victor Khomenko, and Tim Strazny. A practical
approach to verification of mobile systems using net unfoldings.
Fundamenta Informaticae, 94(3):439-471, 01 2009.

Ugo Montanari and Marco Pistore. An introduction to history de-
pendent automata. Electronic Notes in Theoretical Computer Science,
10(0):170 — 188, 1998. HOOTS 1I, Second Workshop on Higher-
Order Operational Techniques in Semantics.

Robin Milner, Joachim Parrow, and David Walker. A calculus of
mobile processes, 1. Inf. Comput., 100(1):1-40, September 1992.

Robin Milner, Joachim Parrow, and David Walker. A calculus of
mobile processes, II. Inf. Comput., 100(1):41-77, September 1992.

Joachim Parrow. An Introduction to the pi-Calculus, volume 19, pages
8-10. Elsevier, 2001.

Andrew M. Pitts. Nominal logic, a first order theory of names
and binding. Information and Computation, 186(2):165 — 193, 2003.
Theoretical Aspects of Computer Software (TACS 2001).

Gordon D. Plotkin. A structural approach to operational semantics.
Technical Report DAIMI FN-19, Computer Science Department,
Aarhus University, Aarhus, Denmark, 1981.

Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for
mobile processes. In Logic in Computer Science, 1993. LICS '93.,
Proceedings of Eighth Annual IEEE Symposium on, pages 376-385,
Jun 1993.

Benjamin C. Pierce and David N. Turner. Concurrent objects in a
process calculus. In Takayasu Ito and Akinori Yonezawa, editors,
Theory and Practice of Parallel Programming, volume 907 of Lecture
Notes in Computer Science, pages 187-215. Springer Berlin Heidel-
berg, 1995.

51

[RK12]

[Rut00]

[SLDCO09]

[SS05]

[SWO01]

[UPGO04]

[Urb08]

[Vic94]

[VM94]

[Wad87]

[WGO05]

Alberto Ros and Stefanos Kaxiras. Complexity-effective multicore
coherence. In Proceedings of the 21st International Conference on Par-
allel Architectures and Compilation Techniques, PACT "12, pages 241-
252, New York, NY, USA, 2012. ACM.

Jan J. M. M. Rutten. Universal coalgebra: a theory of systems.
Theoretical Computer Science, 249(1):3 — 80, 2000.

Jun Sun, Yang Liu, Jin Song Dong, and Chunging Chen. Integrating
specification and programs for system modeling and verification.
In Proc. TASE '09, pages 127-135. IEEE, 2009.

Alan Schmitt and Jean-Bernard Stefani. The kell calculus: A family
of higher-order distributed process calculi. In Corrado Priami and
Paola Quaglia, editors, Global Computing, volume 3267 of Lecture
Notes in Computer Science, pages 146-178. Springer Berlin Heidel-
berg, 2005.

Davide Sangiorgi and David Walker. The m-calculus: a Theory of
Mobile Processes. Cambridge University Press, 2001.

Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay. Nom-
inal unification. Theoretical Computer Science, 323(1-3):473 — 497,
2004.

Christian Urban. Nominal techniques in isabelle/hol. Journal of
Automated Reasoning, 40(4):327-356, 2008.

Bjorn Victor. A Verification Tool for the Polyadic pi-Calculus. Licenti-
ate thesis, Department of Computer Systems, Uppsala University,
Sweden, May 1994. Available as report DoCS 94/50.

Bjorn Victor and Faron Moller. The mobility workbench —a tool for
the 7mt-calculus. In DavidL. Dill, editor, Computer Aided Verification,
volume 818 of Lecture Notes in Computer Science, pages 428-440.
Springer Berlin Heidelberg, 1994.

Philip Wadler. Views: A way for pattern matching to cohabit with
data abstraction. In Proceedings of the 14th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL '87, pages
307-313, New York, NY, USA, 1987. ACM.

Lucian Wischik and Philippa Gardner. Explicit fusions. Theoretical
Computer Science, 304(3):606—-630, 2005.

52

55

99999

Ehe Psi-Calculi Workbench: a Generic Tool for Applied Process
alculi

Submitted to Special Issue on Application of Concurrency to System Design

Johannes Borgstrém, Ramunas Gutkovas, loana Rodhe and Bjérn Victor, Uppsala
University

Psi-calculi is a parametric framework for extensions of the pi-calculus with arbitrary data, and logic. All
instances of the framework inherit machine-checked proofs of the meta-theory such as compositionality and
bisimulation congruence. We present a generic analysis tool for psi-calculus instances, enabling symbolic
execution and (bi)simulation checking for both unicast and broadcast communication. The tool also provides
alibrary for implementing new psi-calculus instances. We provide examples from traditional communication
protocols and wireless sensor networks. We also describe the theoretical foundations of the tool, including
an improved symbolic operational semantics, with additional support for scoped broadcast communication.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols—
Protocol Verification; D.2.2 [Software Engineering]: Design tools and techniques; I.1.4 [Symbolic and
Algebraic Manipulation]: Applications

General Terms: Design, Theory, Verification

Additional Key Words and Phrases: Wireless sensor networks, process calculi, symbolic semantics

ACM Reference Format:

Johannes Borgstrom, Ramunas Gutkovas, Ioana Rodhe and Bjérn Victor, 2014. The Psi-Calculi Workbench:
a Generic Tool for Applied Process Calculi. ACM Trans. Embedd. Comput. Syst. 999, 9999, Article 99999
(Month 2014), 25 pages.

DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

The development of concurrent systems is greatly helped by the use of precise and
formal models of the system. There are many different formalisms for concurrent sys-
tems, often in specialised versions for particular application areas. For each formalism,
tool support is necessary for constructing and reasoning about models of non-trivial
systems. This paper describes such tool support for a generic semantic framework for
process calculi with mobility. Thus, instead of developing a separate tool for each sep-
arate process calculus, we develop one single generic tool for a whole family of process
calculi.

Psi-calculi [Bengtson et al. 2011] is a parametric semantic framework based on the
pi-calculus [Milner et al. 1992a], adding the possibility to tailor the data language and
logic for each application. The framework provides a variety of features, such as lexi-
cally scoped local names for resources, communication channels as data, both unicast

This work has been supported by the ProFun project. Author’s addresses: Uppsala University, Dept. of IT,
Box 337, 751 05 Uppsala, Sweden.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2014 ACM 1539-9087/2014/00-ART99999 $15.00

DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

99999:2 Johannes Borgstrom et al.

and broadcast communication [Borgstréom et al. 2011], and both first- and higher-order
communication [Parrow et al. 2013].

Many of the different extensions of the pi-calculus, including the spi-calculus [Abadi
and Gordon 1997], the fusion calculus [Wischik and Gardner 2005], the concurrent
constraint pi-calculus [Buscemi and Montanari 2007], and the polyadic synchronisa-
tion pi-calculus [Carbone and Maffeis 2003], can be directly represented as instances
of the psi-calculi framework. A major advantage is that all meta-theoretical results,
including algebraic laws and congruence properties of bisimilarity, apply to any valid
instantiation of the framework. Additionally, most of these results have been proved
with certainty, using the Nominal Isabelle theorem prover [Urban and Tasson 2005].
These features of psi-calculi save a lot of effort for anyone using it — psi-calculi is a
reusable framework.

This paper describes the Psi-Calculi Workbench (PWB), a generic tool for imple-
menting psi-calculus instances, and for analysing processes in the resulting instances.
While there are several other tools, specialised for particular process calculi and par-
ticular application areas, our tool is generic and reusable. It has a wider scope than
previous works, and also allows experimentation with new process calculi with a rel-
atively low effort. Like psi-calculi, our tool is parametric: it provides functionality for
bisimulation equivalence checking and symbolic simulation (or execution) of processes
in any psi instance, and a base library for implementing new psi-calculi instances.
PwB thus has two types of users: the user analysing systems in an existing instance
of the framework, and the instance implementor.

We illustrate both uses of the tool in three steps: In Section 2 we introduce the frame-
work of psi-calculi semiformally, relating an instance corresponding to the pi-calculus
and showing symbolic simulation of agents. After describing the design of PWB and
how to implement an instance in Section 3, we show how to add data and computation
in Section 4 by modelling the traditional alternating bit protocol for reliable communi-
cation. In Section 5 we model a data aggregation protocol for wireless sensor networks,
incorporating specialised data structures and logics, and both unicast and broadcast
communication. Section 6 extends the previous example with a dynamic topology.

In Section 7 we describe the symbolic semantics implemented in PWB. The sym-
bolic operational semantics of Section 7.1 simplifies previous symbolic semantics for
psi-calculi [Johansson et al. 2012], and adds rules for wireless (synchronous and unre-
liable) broadcast [Borgstrom et al. 2011]. To our knowledge, this is the first symbolic
semantics for lexically scoped broadcast communication.

In Section 8 we discuss related work. An abridged version of this article was pub-
lished as [Borgstrom et al. 2013].

2. INTRODUCING PSI-CALCULI

In this section we introduce the psi-calculi parametric semantic framework semi-
formally, and defer some precise definitions and the operational semantics to Section 7.
For a more extensive treatment of psi-calculi, including motivations of the requisites
and examples of other instances see [Bengtson et al. 2011; Borgstréom et al. 2011; Jo-
hansson et al. 2012; Johansson et al. 2010]. We show more complex examples in Sec-
tions 4, 5 and 6.

A psi-calculus instance is specified by three data types: the (data) terms T, ranged
over by M, N, the conditions C, ranged over by ¢, and the assertions A, ranged over
by ¥. The terms, conditions and assertions can be any sets where the elements may
contain names (from the set N of names) and name permutations are admitted (so-
called nominal sets [Pitts 2003]). In particular, every element X has a finite set of free
names n(X) C N, and we write a#X for a ¢ n(X).

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

The Psi-Calculi Workbench 99999:3

Terms are used both as communication channels, and for the data sent and received
in communication. They can be structured, and so permit standard constructs as lists
and sets, numbers and booleans, as well as more advanced structures. Assertions are
used to model “facts” about terms and relations between them, for instance by giv-
ing values to variables or by constraining their values. The minimal assertion is the
unit, written 1, and assertions are composed by the ® operator. Conditions are used to
perform tests on terms. Their outcome depends on the current assertion environment,
through an entailment relation (¥ entails ¢, written ¥ +) which is also part of the
psi instance specification.

In the Pi instance, corresponding to the polyadic pi-calculus, terms are simply names
a,b,c... and the conditions are equality tests on names. (Name equality is used in
the match construct [a = b]P, which behaves as P if a = b holds.) In the pi-calculus
there are no assertions, but the psi-calculi framework requires at least the trivial unit
assertion. Later examples will show how assertions can be exploited for modelling
advanced features.

Given the psi-calculus parameters T, C, A, the agents, ranged over by P, Q, .. ., are of
the following forms:

MN.P Output prefix

M(%).P Input prefix

MIN.P Broadcast output prefix
M?(%).P Broadcast input prefix
case p1: P [| -+ [¢n: P, Case

(va)P Restriction

PlQ Parallel

'P Replication

(&) Assertion

A(M) Invocation

We write M for the tuple M,... M,. The output and input prefixes denote polyadic
(unicast) output and input, while the broadcast prefixes denote (synchronous) broad-
cast output and input, which is unreliable (as in wireless systems) in the sense that
transmissions might not be received. The case construct can act as any P; such that
the corresponding condition ¢; is true; the other cases are discarded. Restriction binds
a in P and input prefixes bind Z in the suffix; we identify alpha-equivalent agents. The
Invocation form invokes a process A, defined by the form A(g§)<P; the behaviour is
that of P{M/g}.

In the Pi instance, the output and input prefixes are the usual az. P and a(Z) . P;
the match construct [a = b]P corresponds to case a =b: P. If we have a condition
true which is always true, we can model nondeterministic choice (traditionally written
P+ Q) as case true : P || true : Q.

The semantics for psi-calculi is defined by a labelled transition relation written

¥ > P % P/, meaning that in environment ¥ agent P can do an action o to be-
come P’. In the pi-calculus instance, the environment ¥ is always the trivial 1, but in
general it represents the assertions of the environment, including parallel agents.

The semantics is defined only for well-formed agents. An occurrence of a subterm in
an agent is guarded if it is a proper subterm of a prefix form. An agent is well-formed
if in M(Z).P and M? (Z).P it holds that 7 is a sequence without duplicates, that in
case o1 : Py [| -+ [| ¢n : P, the agents P; have no unguarded assertions, and that in a
replication !P the agent P has no unguarded assertions or broadcast input prefixes.
For process definitions a similar requirement as for replication applies.

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

99999:4 Johannes Borgstrom et al.

The actions are input M (%) denoting the reception of data bound to Z over the chan-
nel denoted by M, output M (vZ)N denoting the sending of N over M and additionally
opening the scopes of the names z, the corresponding broadcast actions M?(%) and
M! (vi)N, and the silent action 7 which is the result of communication between an
input and an output. When 7 is empty, we often omit (v7) and (Z).

The connectivity predicates used for communication are also defined by the instanti-
ation. The conditions include the channel equivalence predicate M <+ N which is used
to define which terms denote the same unicast channel, and the broadcast connectiv-
ity predicates M < K and K = M for sending and receiving on broadcast channels: a
term M can be used to send a broadcast message on the channel K only if M < K in
the current assertion environment, and similar for broadcast reception (see Section 5
for an example).

As an example, the Pi agent

be.Q | b(a).case a=1b:a(z).R

has transitions labelled be, b (x) for all names x, and 7. The input prefix can generate
infinitely many input actions (here one for each x). To avoid this infinite branching, we
use a symbolic semantics in the tool (see Section 7.1), where the actual values are ab-
stracted by variables. Instead each transition has a transition constraint, which must
be satisfied for the corresponding non-symbolic transitions to be possible. Formally

these transitions are written P % P’ where C is a transition constraint.

The input transitions of the agent above can be represented by a single transition in
the symbolic semantics. For simplicity we show the first two transitions of the input
prefix subagent:

w (a)

P=5p(a).case a=b:a(z). R ———— casea=1">:a(2).R v)
{1Fb>wip {1Fa<svfA{1ta=b]}

R

where w and v are fresh (see Section 7 for the formal semantics). The constraint of the
first transition intuitively says that the channel w is equivalent to b (there may not
always be such a w!); for the second transition a similar constraint appears in addition
to the condition of the case construct.

We can use the PWB to simulate the transitions of P. The tool uses an ASCII repre-
sentation of agents, where non-alphanumeric terms and conditions must be in double
quotes, v is written new, output objects are written between angular brackets and the
overline in outputs is written by a preceding single quote. For example, b {(a, ¢) . (vz)Q
is written *b<f(a,c)”>.(new x)Q.

The first transition of the agent P above:

——|gna(a)|——>

Source:
b(a). case ”a = b” : a(x). R
Constraint:
{l b = gna” |}
Solution:
([gna := bl, 1)
Derivative:
case "a = b” : a(x). R

When printing the constraint, the trivial 1 F is elided. The “gna” here represents a
fresh name, corresponding to w above: the subject of the symbolic input action.

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

The Psi-Calculi Workbench 99999:5

The derivative case ”a =b” : a(x).R does not have a non-symbolic transition since a is
not the same name as b, but the symbolic semantics does have a transition under the
constraint that a=b.

——|gnb (x)|——>

Source:

case "a = b” : a(x). R
Constraint:

{I 7a = gnb” [} A {] 7a =Db" |}
Solution:

([b := a, gnb := al, 1)
Derivative:

R

The constraint {| a =b” |} can be solved by substituting a for b, as stated by the
Solution line above. The solution is generated by a constraint solver module in the
PwB, which for the pi-calculus instance performs name unification (see Section 3.2),
similar to earlier tools for pi-related calculi (e.g. MWB). After applying the solution to
the agent, there is a corresponding non-symbolic transition.

In addition to symbolic execution, the PWB also includes a symbolic checker that
computes a minimal sufficient constraint for one agent to be (bi)similar to another,
plus a witnessing relation. The two agents are non-symbolically related after applying
a solution to the constraint (if there is one).

3. IMPLEMENTATION

The Psi-Calculi Workbench (PWB) is implemented in the Standard ML programming
language and compiles under the Poly/ML compiler [PolyML 2013] version 5.4. PWB is
open source and freely available online from [Gutkovas and Borgstréom 2013].

PWB is a modular implementation of psi-calculi, and can be viewed both as a mod-
elling tool and as a library for building tools for particular instances of psi-calculi.
Used as a modelling tool, the user interacts with a command interpreter that provides
commands for process definitions (manually or from files), manipulation of the process
environment, stepping through symbolic (strong and weak) transitions of a process,
and symbolic bisimilarity checking (strong and weak). Examples of such use are given
in sections 4 and 5. Below we describe the implementation of PWB and the modules
which need to be provided when creating an instance of psi-calculi.

3.1. Psi-Calculus instantiation

PwB implements a number of helper libraries for the instance implementor. We show
the architecture of PWB in Figure 1. In this figure, dependencies between components
go from right to left: each component may depend only on components that are above
it or to its left. All components build on the supporting library that provides the ba-
sic data structures and core algorithms for psi-calculi. The instance implementor pro-
vides definitions for the parameters of an instance, constraint solvers, and parsing and
pretty-printing code. These user-implemented components are then called by the dif-
ferent algorithms implemented by the tool and by the command interpreter. Not all
components are required to be implemented: for instance, the bisimulation constraint
solver is only needed for bisimilarity checking.

The parameters of an instance consist of the types name, term, condition and assertion,
and three classes of functions: those defining the logics, the substitutions, and the
connectivity. As an example of the types, here are the declarations for the pi-calculus
instance mentioned in Section 2. All SML code presented is written by the instance
implementor.

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

99999:6 Johannes Borgstrom et al.

1 4 A
f T G A H Sien £

nnc on

TCA ! Sim Constraint PP & Parser
Supp. Lib. < ': 1 : Solver l-;mmumnmuu.i
AL)
Nominal sets, Solver J
Parser Comb., Hel Command
Pretty Printers, N Interpreter
Symbollc 0! Bisimulation

Evaluator Generator C

Derivation Trees
Core \P

Fig. 1: Psi-Calculi Workbench Architecture

type term = name
datatype condition = Eq of term * term | T
datatype assertion = Unit

We need three functions to define the logic of the instance: entailment (entails, or
) that describes which conditions are true given an assertion, a composition operator
(compose, or ®) that composes two assertions, and a unit assertion (unit, or 1). We
require that assertion composition forms a commutative monoid (modulo entailment),
and that all functions are equivariant, meaning that they treat all names equally. The
bisimulation algorithm and the weak symbolic semantics also require weakening to
hold, meaning that ¥ + ¢ implies ¥ @ ¥’ + ¢ for all ¥’.

val entails : assertion x condition —> bool
val compose : assertion * assertion —> assertion
val unit : assertion

We also need equivariant substitution functions, substituting terms for names in
each of term, condition and assertion.

type subst = (name * term) list

val substT : subst —> term —> term

val substC : subst —> condition —> condition
val substA : subst —> assertion —> assertion

Finally, we have three equivariant functions that describe the connectivity of
the calculus: chaneq (for unicast connectivity), brTransmit and brReceive (for broad-
cast). Typically, these functions are simple injections into the conditions type (e.g.,
fun chaneq (M,N) = ChanEq (M,N) where ChanEq is a data constructor of condition) leav-
ing the definition of connectivity to either the entailment relation or the constraint
solver.

Channel equivalence chaneq is required to be commutative and transitive (for ev-
ery ¥). brTransmit is broadcast output connectivity < and brReceive is broadcast input
connectivity >; these functions are exemplified in Section 5. If ¥ entails M < K or ¥
entails K =~ M, then we require all names that occur in K to also occur in M.

val chaneq : term x term —> condition
val brTransmit : term * term —> condition
val brReceive : term x term —> condition

All of the functions above are further required to commute with substitution, in the
sense that f(Xo) = f(X)o.

The user also needs to implement parsers for each of the data types, that are called
by the parser for process terms.

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

The Psi-Calculi Workbench 99999:7

3.2. Symbolic execution

PWB provides symbolic execution of processes by the sstep command. This is a useful
tool to explore the properties of a process, or indeed the model itself. Here values input
by the process are represented by variables, and constraints are collected along the
derivation of a transition. The constraints show under which conditions transitions are
possible, deferring instantiation of variables as long as possible. Both strong and weak
(ignoring 7-transitions) symbolic semantics are available (presented in Section 7).

In psi-calculi, parallel contexts that contain an assertion, such as (x = 3)), can en-
able additional transitions. Therefore, a solution (o,%) to a constraint consists of a
substitution o (representing earlier inputs) and an assertion ¥ (representing the par-
allel context). Intuitively, every solution (o, ¥) solves true, there is no solution to false,
every solution to both C and C’ is a solution to CA C’, and the solutions to (va){¥’ - ¢}
are the pairs (o,¥) where ¥ ® ¥/o |- po and the names in a do not occur in ¥, o.

The instance implementor may provide a constraint solver for the transition con-
straints. The solver should return either a string describing the unsatisfiability of a
constraint, or a solution consisting of a substitution and assertion. Since transition
constraints are simply a conjunction of atomic constraints, a simple unification-based
solver often suffices. The type of the solver is the following:

val solve : constraint —> (string, (name x term) list x assertion) either

As an example, the solver for the pi-calculus instance of Section 2 performs unifica-
tion, implemented by the transition relation below. The nodes in the transition system
are either a pair (C, o), or the failed state .

wa){1+- TFAC,0 — C,o
wa){ilra=a}fNC,o0 — C,o
wa{lFa=bAC,0 - & ifatbA(acaVbea)
wa){1ra=0b} NC,o — Clb:=al,o[b:=a] otherwise

3.3. Symbolic (bi)simulation

PWB can also be used to check simulation relations on processes. As an example, the
command P~ Q attempts to construct a bisimulation relation relating agents P and
Q. To this end, we implement a symbolic bisimulation algorithm based on [Johansson
et al. 2012] (with some corrections and optimisations). This algorithm takes two pro-
cesses and yields a constraint in an extended constraint language; the two processes
are bisimilar under all solutions to the constraint. A simple variation of the algorithm
is used for simulation checking.

The language for bisimulation constraints additionally includes conjunction, dis-
junction and implication, as well as constraints for term equality {M = N}, freshness
{a# X} (with the intuition “a is not free in X”), and static implication. In order to
simplify the development of a constraint solver for this richer language, PWB contains
an SMT solver library with suitable helper functions. Unless the assertion language
is trivial (only the unit assertion), most of the additional effort in extending a solver
for transition constraints to one for bisimulation constraints lies in properly treating
static implication constraints.

4. THE ALTERNATING BIT PROTOCOL

In this section, we describe the modelling in PWB of the classical Alternating Bit Pro-
tocol. We demonstrate that the PWB allows to define a tailor-made process calculus for
a particular problem or problem domain. We also give an example of symbolic weak
transition generation in PWB.

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

99999:8 Johannes Borgstrom et al.

ResponseChan

Fig. 2: Alternating Bit Protocol scheme

4.1. Introduction to the Alternating Bit Protocol

The Alternating Bit Protocol (ABP) [Bartlett et al. 1969] is a simple network protocol
for reliable data transmission through lossy channels. Reliable here means that all
data fragments are received exactly once and in the right order at the receiver. Con-
sider a sender Sender, a receiver Receiver and two communication channels between
them: DataChan, over which data fragments are sent, and ResponseChan, over which
acknowledgements are sent. We show this situation in Figure 2: the arrows denote the
direction of the data being transmitted. ABP assumes reliable error detection, but no
error correction.

To ensure that Receiver receives every fragment despite lossy communication chan-
nels, Sender repeatedly sends the same fragment until it receives a corresponding ac-
knowledgment, at which point the sender starts transmitting the next fragment. Since
the receiver should not accept the same fragment twice, a protocol is needed for dis-
tinguishing between packets. In ABP, each data packet has a one-bit flag attached to
it. The flag 0 is attached to the first packet sent; the acknowledgment of the receiver
for this packet will also have flag bit 0. When Sender receives an acknowledgment with
flag 0, it knows that Receiver has correctly received the fragment, and Sender will then
start sending the next packet with flag bit 1, and so on. Thus, sequences of sent or
received packages resp. acknowledgments with the same flag bit all refer to the same
data fragment.

4.2. A Psi-calculus Instance for ABP

To define a psi-calculus instance where ABP can be expressed, we start with the data
terms. Since the behaviour of the protocol does not depend on the data being transmit-
ted, we simply represent each fragment as a name. However, the protocol itself needs
some data values and structures.

In the set of terms we include the channels DataChan and ResponseChan, and the
value ERR to signify that an error has been detected. We also have 0 and 1 bits and a
negation operation ~- on them with the expected equalities ~0 = 1 and ~1 = 0.

Our account of ABP is untyped, so these term constructors yield terms which are not
intended to be part of the model, such as ~ERR. Such spurious terms yield the invalid
value L. In summary, we define the data terms T as follows:

Notation SML Pws
A
Val R {ERR, 0,1} datatype term M = ERR|O0|1] |-
T £ ValU{L}UN = Error|Zero |One|Bottom | Name | ™M
U {~M:MeT} | Name of name|Neg of term

Here and in subsequent displays, the column Notation is the mathematical notation,
SML is the code written by the instance implementor, and PWB is the ASCII syntax
used in the tool by the user of the instance.

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

The Psi-Calculi Workbench 99999:9

Next we define the conditions. In the protocol, we need to compare the sender’s or
receiver’s bit with a transmitted bit, and to see whether an error occurred while trans-
mitting data. To do this, we use equality = on values.

We add a condition True which always holds, and a False condition that never holds.
Lastly, we include a channel equivalence condition for unicast communication (ABP
does not use broadcast, so we let the broadcast connectivity predicates yield False).

Notation SML Pws
C % {True, False} datatype condition ¢ = True | False
U {M=N:MNeT} 7 Qe | CFalse - | M=M
U Mo N:MNeTy | Eaual of term » term | M<->M

| ChEq of term x term

We do not need assertions to model the ABP, so we let A = {Unit} as in Section 2.

As the last step we define the substitution functions on terms and conditions. They
are standard capture avoiding substitutions, followed by normalisation with respect
to a term rewriting system given below. We use rewriting after substitutions in order
to accurately detect loops of 7-transitions when computing weak transitions. This also
significantly simplifies the constraint solver, since the normal forms are simpler to
handle than arbitrary terms.

Below, we give the rewrite system for terms for reduction context R := [J|~R. It
evaluates the ~- operator, cancels out double negation of variables, and identifies the
spurious terms. In particular, the term ~~ERR is spurious, and is rewritten to L.
NEEE:i ::(1):(1) ~~x = v ifz e N

The following is the term rewriting system for the conditions. Equalities involving
spurious terms | are rewritten to False. Note that we only consider equality conditions
where the constituent terms are already in normal form; this suffices since the substi-
tution function on conditions is defined in terms of substitution function on terms.

~NE =~y S T =Yy M=N — True if M = Nand {M,N} C ValUN
~x =1z — False M =N — False if M # N and {M,N} C Vul
x =~z — False M =N — False if L € {M,N}

Finally, we need to define entailment. For conditions in normal form we define
Unitka < biffa =10 Unit- M =Niff M =N Unit - True,

and otherwise we let Unit - ¢ iff ¢ =T ¢ 4 and Unit - ¢’

4.3. Constraint Solver for ABP Transition Constraints

The ABP constraint solver is a standard unification algorithm defined as a transition
system. The design is greatly simplified by the fact that the conditions in the con-
straints are in normal form.

The following is the unification transition system. The first two rules are trivial.
The rules concerning the channel equivalence <+ condition are the classic unification
on names as seen in the pi-calculus solver. The last rules concern the equality condition
=. Because the terms are in the normal form, we know that one of the sides is a name,
and thus we do elimination, or swapping in order to allow elimination. Below, a#X

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

99999:10 Johannes Borgstrom et al.

denotes that names a don’t occur freely in X; we omit 1 I in front of every condition.

(va){Truef ANC,o — C,0o
va){False}f ANC,o0 — &
(Va){]aﬁb AC,U%C,U ifa:banda,be,/\/'
(va){a <> b ANC,o — Clb:=a],ob:=q] if a#ta,b and a # b
va){a <> b} ANC,o0 — @ otherwise
(va)Ja= M} ANC,0 — Cla:= M],ola = M] ifa#a, M and a € N
(va){M =N} ANC,0 — (va){N = M} AC,o otherwise

4.4. The ABP as a Process

Here we present the process modelling the ABP in the ABP psi-calculus instance de-
fined above. We give the definition in PWB syntax, which is used by the user of the psi
instance.

We model the components Sender and Receiver of ABP shown in Figure 2 as psi-
calculus processes. The behaviour of components DataChan and ResponseChan are cap-
tured implicitly in our model. For composing the system, components have input and
output channels inp and out, respectively. The Receiver and Sender each have one addi-
tional channel for output o resp. input i to the application that uses the protocol.

The sender is modelled as follows: first it inputs data on input channel i and then
recursively outputs the data together with the current bit b on the channel out. Then
the sender receives the acknowledgment bit on input channel inp: if it matches b, the
sender flips b and returns to waiting for data, otherwise (if the bit did not match or
an error occurred) the sender attempts to send the data and b until it receives an
acknowledgment with flag b.

Sender (i ,inp,out,b) <= i(data).SenderSend<i,inp,out,data,b>;

SenderSend(i,inp,out,data,b) <= ’out<data, b>. inp(ackBit).
case "b = ackBit” : Sender<i ,inp,out,” b”>
[1 b = "ackBit” : SenderSend<i,inp,out,data,b>
[1 ERR = ackBit” : SenderSend<i,inp,out,data,b> ;

The receiver works in a dual fashion.

Receiver(o, inp, out, b) <= inp(data, bit).

case b = bit” : ’o<data >.’out.Receiver<o,inp,out,” b”>
[1 b = "bit” : ’out<”"bit”> . Receiver<o,inp,out,b>
[T "ERR = bit” : ’out<””b”> . Receiver<o,inp,out,b> ;

An error might occur at any time on each of the channels. This kind of unreliable
process is modelled implicitly by treating names (representing bits) as variables. Since
transmitted names are variables the constraint solver may enable any case clause in
either Sender or Receiver by finding a suitable term to substitute them for.

Hiding the internal channels, the ABP system can be described as follows:

ABP(i,o0,sb,rb) <= (new RcSn, SnRc) (
Sender<i ,ReSn, SnRe,sb> | Receiver<o,SnRc,RcSn,rb >);

4.5. A Sample Weak Transition

When studying the ABP, it is interesting to see when the protocol communicates with
the outside system, ignoring 7-transitions. We here show such a “weak” transition,
where the sender receives data and transmits it to the receiver via the data channel.
We use the wsstep command on ABP<i,0,sb,rb> to obtain the following transition, among
others.

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

90 Uk WN

I el el e e N e e
© w0 A WNH O ©

The Psi-Calculi Workbench 99999:11

==|gen2(datal)|==>

Source:
ABP<i, o, sb, rb>
Constraint:
(new RcSn, SnRe){| ”i <— gen2” |} A
(new RcSn, SnRe){| ”SnRc <—> SnRc” |} A
(new ReSn, SnRe){| "ReSn <—> ReSn” |} A
(new ReSn, SnRe){| ”rb = “sb” [}
Solution:
([rb := ”7"sb”, gen2 := i], 1)
Derivative:
(new SnRc, ReSn)(
(case

False : Sender<i, RcSn, SnRc, ”7sb”> []
True : SenderSend<i, RcSn, SnRc, datal, sb> []
False : SenderSend<i, RcSn, SnRc, datal, sb>
) |
(Receiver<o, SnRe, ReSn, rb>)
)

After the transition, the sender (lines 13-16) is in a state where it has received an
acknowledgment bit which does not match its own bit (constraint on line 8) reducing
the condition b = “ackBit” (at this state it is ”sb = "rb”) of SenderSend to true (on line 15).

This transition is among the seven transitions produced by PWB. Since there is al-
ways a possibility that both sender and receiver will detect an error ERR, there are
infinitely many weak transitions following a cycle between them. The occurrence of
such cycles are detected (modulo alpha-equivalence) by the wsstep command. Since the
terms occurring in agents are in normal form, wsstep terminates on ABP.

We have shown the development of a tailor-made psi-calculus instance in PWB. (The
full code listing is available online [Gutkovas and Borgstréom 2013].) Doing so, we have
expressed bits and bit operations directly, and we have shown that it is possible and
useful to use computation in the substitution functions, which departs from traditional
calculi. We have also shown the symbolic simulation of a weak transition, which is
useful for applications.

5. DATA COLLECTION IN A WIRELESS SENSOR NETWORK

In this example we study a data collection protocol for wireless sensor networks
(WSNs) by modelling it in a custom psi-calculus that we implement in PWB.

A wireless sensor network consists of numerous sensor nodes that sense environ-
mental data. A special node, called the sink, is used to collect data from the network.
Collection often uses multi-hop communication, building a routing tree rooted at the
sink [Madden et al. 2002]. As wireless communication is unreliable, different trees
may be built in each protocol run.

We present a simple algorithm to build a routing tree: the sink starts the tree build-
ing by broadcasting a special init message containing its identifier Sink. When a node
n first receives an init message, it sets its parent parent,, to the sender of the message,
and broadcasts a new init message containing its own identifier to continue building
the next level of the tree. After the building of a tree is complete, each node sends a
data message containing its data to its parent. Moreover, each node forwards received
data messages to its parent, ensuring that it eventually reaches the sink.

5.1. Psi-calculus instance for WSN data collection

We first define and implement a custom Psi-calculus instance suitable for modelling
the tree building and data collection protocol described above. We use structured chan-

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

99999:12 Johannes Borgstrom et al.

(2) (b) ()

Fig. 3: A simple topology with a sink and two sensor nodes where (a) shows the con-
nectivity and (b)-(c) show some possible routing trees.

nels, of two kinds: broadcast channels init(}/) and unicast channels data(M). The
broadcast connectivity between nodes is given by an undirected topology graph. We
first assume a static topology top; the topology in Figure 3(a) would be represented by
top = {(0, 1), (0,2), (1,2)} where the sink has id 0. The corresponding psi-calculi param-
eters are defined as follows.

Notation SML PwB
N datatype term o
T = ({init(M),data(N) = Init of term|Data of term M = init(M) | data(M)
:M,NeT}UNUN | Name of name|Int of int | Name| N
C 2 {M < N, M - N, datatype condition = M<M | M>M
M< N:MNe T} = OutputConn of termsxterm | M<->M
N T | InputConn of termsterm
A = {top} | ChEq of termsxterm =1
1 2 top datatype assertion = Unit N == [0-—9]*"

val unit = Unit

Since we consider a static topology, we implement assertions as a unit type. A broad-
cast output prefix with subject init(i) can broadcast on the broadcast channel init(7),
while an input prefix with the same subject can receive from any connected broad-
cast channel as given by the topology. Two unicast prefixes may communicate iff their
subjects are the same name. Thus, we define I- as follows.

¥k init(M) < init(N) iff M =N €N
¥ init(M) > init(N) iff M, N € N and either (M,N) e W or (N,M) € ¥
U I data(a) <> data(b) iff a=be N

5.2. Constraint Solver for Symbolic Transitions

We describe the implementation of the transition constraint solver. We write & for
no solution. Transition constraints are conjunctions of conditions. The constraints are
solved in two phases, corresponding to the unicast connectivity constraints and the
broadcast connectivity constraints, respectively. To simplify the solver, we treat all free
names in the processes as distinct (cf. distinctions [Milner et al. 1992b]). For unicast
constraints, the solver thus fails (returning @) if the constraint is not satisfied.

(va){data(a) <> data(b)f AC — C ifa=0b
(va){data(a) <> data(b)} AC — @ otherwise

The constraint solver then checks for broadcast connectivity in the given topology.
Let O be the output constraints {init(n) < af} and I the input constraints {a > init(n)]}.
We distinguish four different cases:

(1) if I = 0 and O = {{init(n) < a|}}, then the solution is [a := init(n)].

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

The Psi-Calculi Workbench 99999:13

(2) if I # 0 and O = {{init(n) < af}}, and we have (n,m) € top for every constraint
{a = init(m)}} in I, then the solution is [a := init(n)]. Otherwise the constraint is
unsatisfiable, i.e. &.

3)if I # ® and O = 0, then the constraint solver finds n such that for every
{a = init(m)]} € I we have (n,m) € top. For each such n, [a := init(n)] is a possi-
ble solution.

(4) if I = ¢ and O = (, then the broadcast part of the constraint is trivially true.

5.3. Tree building model

Once the instance is implemented, we can define processes modelling the tree building
algorithm in PWB syntax. The sink broadcasts its own channel and then goes into data
collection mode, that is, it listens on its unicast channel repeatedly.

Sink (nodeld, bsChan) <=
’”init (nodeld)”!<bsChan> .
! ”data(bsChan)”(x) ;

A node listens on its broadcast channel for a channel of a parent to which it will
send data to. Then, similarly to the sink, it broadcasts its own unicast channel on
which it expects data to receive in order to forward it to the parent. After completing
the broadcast, it sends its data to the parent and goes into mode of forwarding data.

Node(nodeld, nodeChan, datum) <=
”init (nodeld)” ?(pChan)
’”init (nodeld)”!<nodeChan> .
’?data (pChan) ”<datum> .
NodeForwardData<nodeChan, pChan> ;

NodeForwardData(nodeChan, pChan) <=
! ”data(nodeChan)”(x). ’”data(pChan)”’<x> ;

5.4. Example Strong Transitions

We here study the (symbolic) transition system generated by a small WSN with a sink
and two sensor nodes. Each node has a unique channel for response messages.

System3(d1,d2) <=
(new chanS) Sink<0,chanS> |
(new chanl) Node<1, chanl, d1> |
(new chan2) Node<2, chan2, d2>

We will show a possible transition sequence in PWB, using the topology shown in Fig-
ure 3a. Below, we only consider transitions labelled with broadcast output and unicast
communication actions.

The following initial transition is obtained by executing the symbolic simulator of
PWB on System3<d1,d2>. The resulting system is in configuration where both sensor
nodes have obtained the parent’s channel, in this case the sink’s. The nodes would
then be able to communicate their data to the sink. The unicast channel connectivity
corresponds to the routing tree shown in Figure 3b. It is one of seven possible initial
transitions produced by PWB, of which three represent broadcast reception from the
environment, and the other three situations where not all nodes receive the broadcast
message. The transition label gna!(new bsChan)bsChan, represents the channel with a
fresh name gna. The generated constraint requires {init(0) < gnal} A {gna = init(1)} A
{gna > init(2)[}, meaning node 0 is output connected to some channel gna which is input
connected to nodes 1 and 2. The constraint solver finds a solution to the constraint,
which substitutes init(0) for gna.

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

99999:14 Johannes Borgstrom et al.

——|gna!(new bsChan)bsChan|——>
Source:
System3<dl, d2>
Constraint:
(new chanl, chan2, chanS){| "init(0)<gna” |} A
(new chanS, chan2, chanl){| ”gna>init(1)” |} A
(new chanS, chanl, chan2){| ”gna>init(2)” |}
Solution:
([gna := ”init(0)”]1, 1)
Derivative:
(!(”data(chanS)”(x))) |
(((new chanl)(
>7init (1) ”!<chanl>.
>”?data(chanS)”<d1>.
NodeForwardData<chanl, chanS>
) |

((new chan2)(
’?init (2)”!<chan2>.
’”data (chanS)”<d2>.
NodeForwardData<chan2, chanS>
)))

In the derivative the Sink successfully communicated its unicast channel chanS to both
nodes.

From this point the system can evolve in two symmetrical ways: either of the nodes
broadcasts an init message, but since no node in the (closed) system is listening on a
broadcast channel, the message is not received. The following transition is for node 1.

——|gna!(new chanl)chanl|——>
Source:
The same as the above derivative
Constraint:
(new chan2, chanl){| ”init(1)<gna” |}
Solution:
([gna := ”init(1)”]1, 1)
Derivative:
(!(”data(chanS)”(x))) |
((’”data(chanS)”<d1>.
NodeForwardData<chanl, chanS>) |
((new chan2)(
’”init (2)”!<chan2>.
>?data (chanS)”<d2>.
NodeForwardData<chan2, chanS>
)))

The system is now in the state where node 1 can send data to the sink. By following
the analogous transition for node 2, we get the system where both nodes are ready to
communicate the data.

——|gna!(new chan2)chan2|——>
Source:

The same as the above derivative
Constraint:

(new chan2){| ”init(2)<gna” |}
Solution:

([gna := ”init(2)”]1, 1)
Derivative:

(!(”data(chanS)”(x))) |

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

The Psi-Calculi Workbench 99999:15

((’”data(chanS)”<d1>.
NodeForwardData<chanl, chanS>) |
(’”?data(chanS)”<d2>.

NodeForwardData<chan2, chanS>))

We have demonstrated the use of advanced features in PWB such as the use of struc-
tured channels with different modes of communication (point-to point vs broadcast).
The broadcast connectivity graph (topology) was formalised as an assertion; this allows
us to potentially extend the model, for instance to dynamic or localised connectivity.
We used the symbolic execution to simulate strong symbolic transitions of the system.
All of this shows the versatility and utility of PWB for use in modelling and studying
WSN algorithms.

6. DYNAMIC TOPOLOGY IN WIRELESS SENSOR NETWORK

We here extend the example of Section 5 with dynamic topology. We first allow adding
edges to the connectivity graph, and then add the dual operation of removing edges.

Let the parameters be as in the example in Section 5 except for the assertions, which
is now a finite set of tuples representing edges in a topology.

Notation SML Pws
A = P, (T xT) datatype assertion U — €
= Top of (termxterm)list %
120 val unit = Top [] | (M,N)(, (M,N))

The entailment relation is left unchanged, and the constraint solver for the unicast
constraints is the same. To enable broadcast connectivity, if the necessary edge is not
present, the solver simply attempts to add it to the solution (as is common in process
calculi models for WSNs [Ghassemi et al. 2008; Godskesen 2010]). For example, the
solution of the constraint of the first transition in Section 5.4 with an empty topology
is ([gna := ”init(0)”], ” (0,2),(0,1) ”).

In the following we add the ability for agents to also remove edges from the environ-
ment. In the assertions we model edges as binary toggles, so if the same edge occurs
twice this is equivalent to it not appearing at all (i.e., {(M, N)} ® {(M,N)} ~ 1). The
parameters are extended by adding conditions corresponding to whether an edge is
present or not, and the assertions are finite multisets.

Notation SML Pws
cC £ ..U {conn(M, N)a datatype condition = ...
disconn(M, N) | Conn of termsterm P o= | conn(M,N)
:M,N €T} | Disconn of termxterm | disconn(M,N)
N ’ datatype assertion U = ¢
A = T xT—aN = Top of (termxterm)list | (M,N)(, (M,N))*
1 2 9 val unit = Top [] ’ B

An odd number of edge tuples in the environment denote that the edge is present;
an even number denotes absence. Thus adding a tuple to the environment might add
or remove an edge. We capture this with the following entailment definition

¥+ conn(M, N) iff M,N e Nand |¢(M,N)|+ |[&(N,M)|is odd
¥ = disconn(M, N) iff M, N € Nand ¥ I/ conn(M, N)
¥ Finit(M) > init(N) iff conn(M, N)

For the protocol in Section 5 we may reuse the same constraint solver, keeping in
mind that it does not handle the case where a disconn condition guards a broadcast
input. We can also express the alteration of the topology with the following two agents:

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

99999:16 Johannes Borgstrom et al.

Connect(a,b) <= Disconnect(a,b) <=
case “conn(a,b)” xtaux.0 case “conn(a,b)” xtaux.(|”(a,b)”|)
[1 ”disconn(a,b)”:xtaux.(|”(a,b)”|) ; [1 ”disconn(a,b)”:xtaux.0 ;

The agent Disconnect<1, 2> | (]°(1,2)”|) has two transitions: first (]”(1,2)” D|(| ”(1,2)”|)
with trivially solvable constraint {|”(1,2)” |- "conn(1,2)”|}, and second 0 | (|”(1,2)”])
with the solution ([1, ”(1,2)”). In both transitions, the environment was extended with
an extra tuple (1,2), effectively removing an edge from the topology. Intuitively, the
agents Connect and Disconnect allow to set and unset bits in a global table.

7. SYMBOLIC SEMANTICS

In this section we describe a symbolic operational semantics for broadcast psi-calculi,
that is sound (Theorem 7.11) and complete (Theorem 7.12) with respect to the concrete
broadcast semantics [Borgstrom et al. 2011; Borgstréom et al. 2013]. This semantics is
the one that is implemented in the PWB, and it extends, simplifies, and corrects the
original symbolic semantics [Johansson et al. 2012].

7.1. Symbolic Operational Semantics

As we have seen, transitions in the symbolic operational semantics are of the form
P % Q, where C is a constraint that needs to be satisfied for the transition to

be enabled. Each PWB instance implements a solver, that computes solutions for the
transition constraints of that instance.

Definition 7.1 (Constraints and Solutions). A solution is a pair (o,¥) where o is a
substitution sequence of terms for names, and ¥ is an assertion. The transition con-
straints, ranged over by C, C;, and their corresponding solutions sol(C) are defined by:

Constraint Solutions

C,C = true {(0,¥) : ois asubst. sequence A ¥ € A}
| false 0
| (va)C {(o,¥) : b#o,W,C A (0,¥) €s0l((ad)-C)}
| @'+ {(0,¥) : VoVl po}
| Jz.C {(0,¥) : y#o,¥,C A ([y :==M]o,¥) € sol((z y)-C)}
} aen(M) {(o,¥): aen(Mo)}

CAC sol(C)Nsol(CY)

Above, (a b) - C stands for the simultaneous replacement of « for and b for a in C
(“swapping”). In (va)C, a is binding into C; and in Jz.C, z is binding into C. We write
3%2.C for (vb)3x.(b € n(z) A C); the only uses of 3 and - € n(-) will be in this restricted
form (which is itself only used in rule SBRCLOSE in Table I). We adopt the notation
(0,¥) = C to say that (o,¥) € sol(C), and write C <> D to say that sol(C') = sol(D).

A transition constraint C' defines a set of solutions sol(C), namely those where the
formula becomes true by applying the substitution and adding the assertion. For ex-
ample, the transition constraint {1 - « = 3]} has solutions ([z := 3],1) and (], =z = 3),
where [] is the identity substitution.

Restriction distributes over logical conjunction, and logical conjunction has true as
unit and is associative. We thus consider constraints modulo the equations below.

LEMMA 7.2. (I/a)(Cl A 02) — (V&)Cl A (I/CL)CQ and Ci; A (02 A 03) — (Cl A CQ) A Cs
and C A true < C.

The concept of frame of an agent F(P) is used in the semantics: intuitively it is the
top-level assertions of an agent, including the top-level binders. Frames are of the form

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

The Psi-Calculi Workbench 99999:17

F ::= " | (va)¥ where a is bound in (v a)¥. The frame of a process denotes its contri-

bution to parallel agents. For example, the frame F((va)((¥1)) | M N . (%3] | (¥=)) is
(va)(¥; ® Ps). Note that W5 is not included in the frame, since it occurs under a prefix.
In order to define the symbolic operational semantics, we need a way to add the frame
of a parallel process to the current transition constraint.

Definition 7.3 (Adding frames to constraints). We define F' @ C' as follows:

F® (va)C = (va)(F ®C) where a# F
Va)P {¥' o} = Wa){¥ W'+ ¢ where a#¥’, ¢
Va)¥ @ Jo.C = (va)Jz.(¥ @ C) where a#C and z#a, ¥
Fe(CAD) = (FeC)A(F®D)
FeC =C otherwise.

For the symbolic semantics to be able to pick out the original channel to be used
to send a message, we require partial injectivity of channel connectivity in its left
argument: we require that for all names a, the function z — (x <> a) is injective.

A process P is said to be assertion guarded if every occurrence of a (¥ in P is a
subterm of an input or an output. We require that processes are well-formed: P is well-

formed if in every subterm of P of the form case ¢ : Q every Q); is assertion guarded,
and in every subterm of P of the form !QQ we have that Q is assertion guarded.
We let the subject (or channel) of an action « be subj(z?(y)) = subj(z(y)) =

subj(z! (va)N) = subj(Z (va)N) = z and subj(r) = 0. We also define the bound names
(i.e., the private names) of a label as bn(z?(7)) = bn(z(7)) = 7 and bn(z! (va)N) =
bn(z (va)N) = a and bn(r) = (.

The structured symbolic operational semantics preserves well-formedness, and is
defined in Tables I, IT and III. We first describe the broadcast rules in Table I. First

consider the SBROUT rule: M N.P i N
J1FM Zy]

straint are those that enable the subject M of the output prefix to broadcast on the
fresh channel variable y. Similarly, in SBRIN we can receive a broadcast from any
channel x that the subject M of the input prefix can listen to. In SBRMERGE, two in-
puts with the same labels are merged into one. In SBRCOM, a broadcast of P is received
by Q, substituting the message N for the input variables y. The names @ are restricted
in P, so they must be fresh for Q. In both SBRMERGE and SBRCOM, each transition
constraint is extended with the frame of the other process. In SBROPEN, the scope of
the new name b that occurs in the message N is opened; we remember in the transition
constraint that b is fresh. In SBRCLOSE, a broadcast that has reached its lexical scope
turns into an internal T action. The scoping of the new names « is reestablished.

The other symbolic rules in Tables II and III are similar to the broadcast rules, with
two exceptions. In the SCASE rule in Table III we add the constraint that p; must
hold to the transition constraint. In the SCOM rule in Table II we partially deconstruct
the transition constraints of the input and the output transition, picking out the first
conjunct. We then recombine the remainder of the transition constraints, adding the
constraint that their channels are equivalent (i.e., ¥; @ ¥, - M, <> Ms), yielding Ceom.
Here the partial injectivity of <+ is used to guarantee that M; is the channel that
originated the transition.

P. The solutions to its transition con-

7.2. Comparison with the Original Symbolic Operational Semantics

The symbolic semantics used in this paper differs from the original semantics [Johans-
son et al. 2012] in four significant ways:

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

99999:18 Johannes Borgstrom et al.

Table I: Symbolic transition rules for broadcast communication. A symmetric version
of SBRCOM is elided. In SBROPEN the expression va U {b} means the sequence @ with
b inserted anywhere.

w,M,N,P TP, M, 7
SBROUT f# - sBrIN L VHLAME oy
1-M<x 1kax>-M
P ﬁgy) P Q z?c@ o
SBRMERGE T 2
‘ £~(U) P/ | Q/
(F(Q)®C1)A(F(P)®Cs2)
p = (va)N P Q 22(7) o' N _
SBRCOM < @2 @#5 [N
! (va)N P
P P =N
e (F(QRCA(F(P)RC2) W]
7! (va)N .
P Ll P/ ~ z! (va)N
SBROPEN - N ZZZEJ(N) SBRCLOSE il st
! (vauq{b a, T P
(whyp TCAUDN -y DAY WP —— (wb)(va)P'
(vb)C Ibg.C

Table II: Revised symbolic transition rules for binary communication. The symmetric
version of SCOM is elided. In SCOM, we assume that ¢; #y, ¢2, o, Mo and ca#2z, ¥y, My
and let Ceom = (V1)W1 @ Wo b My <5 Ma]) A (((vé2)W2) @ C1) A ((vé1)Ph) ® Cs). In
SOPEN the expression va U {b} means the sequence a with b inserted anywhere.

M,N,P M,P,%
SOUT y#M, Ak SIN y#M, (’j’;
MN.p —*"N ., p MGE.P —22 4 p
1Myl {1-M eyl
?(’/E)N p’
(ver){¥1+-M1 & y[ACy 7 AN
2(Z) , p YWY, pr -
(vEz){Wa Mo &>z ACS |z] = |]V\ SOPEN ¢ — b GNn(N)
sCom = —— = 7 au{phN =, b#fa,y
P|Q - (va)(P'|Q'[F:=N)) a#Q)P =22 P

(1) support for broadcast communication (Table I);

(2) support for polyadic communication (sending of multiple message terms at once);
(3) no dependence on an external assertion environment (¥ > below); and

(4) a new SCOM rule, for reasons explained below.

The original version of the communication rule was as follows (omitting its freshness
side conditions). Below, the assertion environment “... ¥ > ” collects the assertions of

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

The Psi-Calculi Workbench 99999:19

Table III: Revised symbolic transition rules common to broadcast and binary commu-
nication. A symmetric version of SPAR is elided.

o

P, = P PP % P
SCASE ¢ subj(a)#pi sREp ——<
case3: P ——~ P’ Ry
CA{1te;} C
p % p P % P
SPAR c bn(a)#Q N SSCOPE = b#a
PlQ —% p'|Q a=TVsubj(a)#Q (wb)P —2— (vb)P'
F@Q&C wh)C

Pz := M] =y P’ A(#) < P
AQT) 2 P |z = |M]

the context of the current process, and can be ignored.

7 (va)N

P — P/
(vbp){ 1M, SyAC) N
(VBQ) Wk M2 €3 2p AC F(P) = (vbp)®

OLD-sCoM

PIQ = 0a)(P' Q=N g, T e

In order to derive a transition with OLD-SCOM, we need to compute the frames of P
and @, equate the bound names in the frames with the ones appearing in the transition
constraints such that 7(P) = (vbp)¥p and F(Q) = (vbg)¥%,, and then check that ¥; =
Uy =¥ @ ¥p ® Y. However, these equalities fail in certain situations where we would
expect them to hold.

Example 7.4. This example shows issues related to restrictions under process con-
structors case and replication (!). We use replication as an example; the issue when
using case is analogous. Consider the process P = !(vb)cb.QQ in the pi-calculus in-
stance. In the original semantics, the symbolic output transition of P has the con-
straint (v0){1t+ ¢ <> z]} since the frame of (v)cbd.QQ (which is (vb)1) is used in the
derivation. When attempting to derive a communication between P and the process
¢(z).R, the side condition F(P) = (vbp)¥p of OLD-SCOM is impossible to satisfy:
F(P) = (ve)l while the transition constraint of P is (vb){1}F ¢ <+ z[}, and the num-
ber of bound names thus differ.

A similar issue, related to the ordering of restrictions in the frame, applies when an
inactive parallel process has top-level restrictions.

Example 7.5. Let P = (vb)cb.Q | (va)e(z).R. In the original semantics, the
symbolic output transition of P has the constraint (va)(vb){1F ¢ <+ z|} but F(P) =
(vb)(v a)l where the order of the bound names is different.

Both these issues could be avoided if the binders of frames were so-called set+
binders [Huffman and Urban 2010] where order does not matter and redundant
binders are ignored. However, such a notion of binders is not available in the ver-
sion of Nominal Isabelle [Urban and Tasson 2005] that is used for the formalization of
psi-calculi [Bengtson and Parrow 2009].

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

99999:20 Johannes Borgstrom et al.

Table IV: General requirements on substitution

X[z:=2] = X
zlx:=M] = M
Xz:=M] = X if a#X
X[z := L[y == M] = X[y = M][z:= L] if a#y, M and y#L
X[z:=T] = (g2)-X)g:=T] ifg#X,z

Table V: Requirements for specific data types

n(Mo) 2 n(M)\n(o)

D)
i:= 1IN O n(f - URL oy W
n(M[a:= L]) D n(L) when n(M) D a W®®W’ Zx Y o
(M < N)o = Mo < No B © (s & Bs) m (01 BT ® T
(N> M)o = No > Mo ; :
M < No = Mo <s N (TRW¥o ~n YoRVWo
(are 1)2 - 1 7R YRV ~yv ¥R W when ¥ >~ Yo

Example 7.6. This example show issues related to situations where assertion com-
position is non-commutative. Let the assertions be tuples @ of names, composed using
concatenation a;b. Consider the premises of OLD-SCOM: in the original semantics ¥;
will have a prefix ¥,; ¥ and ¥, will have a prefix ¥p;¥. Since concatenation is non-
commutative, the side condition ¥; = ¥y, = ¥ ® ¥p ® ¥, of OLD-COM cannot hold if
Up and ¥, are non-empty and n(¥p) # n(¥%). This makes it impossible for the two
processes (|a|) | ¢ and (b)) | ¢ to communicate using OLD-SCOM.

These examples show that the OLD-SCOM rule makes too strong assumptions on the
syntactic form of the constraints of the transitions in its premise. The original symbolic
semantics still corresponds to the concrete semantics [Bengtson et al. 2011] in certain
instances, such as when communicating processes do not contain restrictions and as-
sertion composition satisfies the commutative monoid laws (not only modulo assertion
equivalence). In contrast to OLD-SCOM, rule SCOM in Table II does not make any as-
sumptions about the number of bound names nor on the structure of the assertion,
and the corresponding broadcast rules SBRCOM and SBRMERGE in Table I do not
make any assumptions at all about the form of their constraints.

7.3. Correctness of the Symbolic Operational Semantics

The proofs for the soundness and completeness of the symbolic semantics with respect
to the concrete broadcast semantics [Borgstrom et al. 2011] mainly follow [Johans-
son et al. 2012]. The main exception is that their counterpart of Lemma 7.10, which
describes the shape of transition constraints, does not hold in all cases, as seen in Ex-
amples 7.4, 7.5 and 7.6. We here instead prove a weaker result by considering asser-
tions and frames modulo redundant restrictions (cf. Example 7.4), restriction ordering
(cf. Example 7.5) and commutative monoid laws for assertion composition (cf. Exam-
ple 7.6).

As to technical preliminaries, we assume the general properties of substitution in
Table IV, and the homomorphism and name preservation laws in Table V. As an ex-
ample, the standard notion of substitution in (nominal) term algebras satisfies all of
these properties. We write ¥ ~, ¥’ iff n(¥) = n(¥’) and for all ¢ it holds that ¥ - o iff
¥’ - . We then assume the equivalences in Table V. As an example, they are satisfied
when assertions are finite sets of equations on terms, with standard substitution.

The main difference to the original proofs is the introduction of an auxiliary rela-
tion on frames (Definition 7.7) in order to accurately describe the shape of transition
constraints (Lemma 7.10) such that they can always be decomposed in the SCOM rule,
unlike the case for OLD-SCOM.

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

The Psi-Calculi Workbench 99999:21

Definition 7.7 (AC-equivalence). Associative/Commutative equivalence (AC-
equivalence) of assertions is the smallest equivalence relation such that

(1) 1V =Ac ¥; and

(2) ¥ @ ¥y =pc Yo ® ¥p; and

(3) Wl ® (WQ X W3) =AC (LTll %) Wg) ® Wg, and
(4) Spl =AC LDQ — LD®EP1 =AC W@!pg

Frames (va)¥; and (v¢)¥, are AC-equivalent, written (va)¥; =ac (vC)¥s, if U1 =ac P
and {5} n Il(ll/l) = {E} n n(!pg).
LEMMA 7.8. AC-equivalence is an equivalence relation on frames, and whenever
Fy =ac Fo we also have n(Fy) = n(Fy) and (va)Fy =ac (va)Fz and G @ F) =a¢ G ® Fo.
PROOF. Straightforward from the definitions, using the laws in Table V. O

As an example, guarded processes have frames that are AC-equivalent to the unit
frame 1.

LEMMA 7.9. If P is assertion guarded, then F(P) =ac 1.
PROOF. By induction on P. O

The following lemma characterises the shape of the constraints of point-to-point in-
put and output transitions. The first conjunct in the constraint is always a channel
equivalence constraint (between the object M of the original prefix and the transition
object variable y) that must hold under a frame (v¢)¥ that is AC-equivalent to that of
the original process P. The lemma is used in the proof of Theorem 7.12 to show that
the precondition on the shape of the transitions in the SCOM rule always holds.

LEMMA 7.10 (FORM OF CONSTRAINT). Let o = 5 (va)N or o = y(7). If P = P

and y#P then there exist ¢,¥, M and D such that F(P) =ac (vo)¥ and y#¢, ¥, M, D
and C = (ve){¥ + M < y} A D.

PRrROOF. By induction on the derivation of P % P'. A base case is as follows.
SOUT. In this case the transition is derived by

sOuT ~ y#K,N, P

Here ¢=¢, ¥ =1, M = K, and D = true, where (K N . P) = 1.
The cases that require the use of AC-equivalence are the following.

SCASE. In this case the transition is derived by

P % P
SCASE e — bn(a)#¢:
casep: P —~——— P
CA kel

By induction we get M, D’ ¥, ¢ such that C = (ve){¥ - M < y} A D’ with y# D’ and
F(P;) =ac (vO)¥.Let D = D' A{1F @;}; since y#case ¢ : P we also have that y#D.
By well-formedness, P; is guarded, so by Lemma 7.9 F(P;) =ac 1. By transitivity
]:(P) =1 =AC (VE)LD

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

99999:22 Johannes Borgstrom et al.

SPAR. In this case the transition is derived by

o o
P F) P bn(a)#Q
SPAR = _ :
PlQ P/|Qa—TVSHbJ(a)#Q
F(Q)®C

By induction there are M, D', W, ¢ such that C = (ve){¥ + M < y[} A D’ with y#D’
and F(P) =ac (ve)¥. Let D = F(Q) ® D’; since y#P|Q we also have that y#D. By
Lemma 7.8 F(P | Q) =ac (#0)¥) @ F(Q) =ac F(Q) ® (ve)¥.

SSCOPE. In this case the transition is derived by

P p
C

p)p —=2 b)P’
(vb) W(V)

SSCOPE

b#a

By induction there exist ¢, ¥, M and D’ such that C = (vé)(W + M < y) A D’ with
y#M,D and F(P) =pc (vc)¥. Let D = (vb)D’; a fortiori y#(vb)D. By Lemma 7.8
F((vb)P) =pc (vb)(vo)w.

SOPEN. As SSCOPE.

SREP. In this case the transition is derived by

PP % P
sREp ——— <
P = P
C

By induction there exist ¢,¥, M and D such that C = (ve)(¥ - M < y) A D
with y#M, D and F(P|!P) =ac (v¢)¥. By well-formedness, P is guarded, so by
Lemma 7.9 F(P|!P) =4c 1. By transitivity F(I1P) =1 =xc (v0)¥. O

We prove soundness and completeness of the symbolic semantics of this pa-
per with respect to a polyadic version of the concrete semantics of broadcast psi-
calculi [Borgstrom et al. 2011], which we show in Table VI.

The soundness theorem and its proof follow [Johansson et al. 2012], apart from the
weaker preconditions of the SCOM rule (compared to OLD-SCOM), and the new cases
for broadcast actions.

THEOREM 7.11 (SOUNDNESS OF SYMBOLIC TRANSITIONS).
IfP % P’ and (0,¥) |= C and bn(a)#0 then ¥ > Po =% Plo.

PROOF. By induction on the inference of P % P. O

The proof of the completeness theorem follows [Johansson et al. 2012], apart from
new cases for the broadcast rules. In the CCOM case of the proof, Lemma 7.10 is used
to show that the symbolic transitions obtained from the induction hypothesis are of
the right form to apply rule SCoM.

THEOREM 7.12 (COMPLETENESS OF SYMBOLIC TRANSITIONS).
—If¥ > Po = P then3C,Q. P % Q, Qo = P’ and (0,¥) |= C.

—If¥ > Po % P, a# 71, y#P,bn(), o, and bn(a)#o, P then 3C, o, Q. P %/> Q,
Qo = P, subj(c/) =y, d’o’ = o, and (¢, ¥) = C where ¢’ = o[y := subj(a)].

PROOF. By induction on the inference of ¥ > Po %+ P'o. O

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

The Psi-Calculi Workbench 99999:23

Table VI: Concrete semantics. Symmetric versions of CBRCoM, CCOM and CPAR are
elided. In rules CBRCOM and CBRMERGE and cCOM we assume that F(P) = (vbp)¥p
and F(Q) = (VEQ)LDQ where bp is fresh for P, '5@ Q and ¥, and that EQ is fresh for
Q,bp, P and V. In the rule CPAR we assume that F(Q) = (vbg)¥q where by is fresh

for ¥, P and «. In COPEN and CBROPEN the expression a U {b} means the sequence a
with b inserted anywhere.

UEMXK PFK>M |7 =|N|
cBROUT — =R CBRIN o —
v MN.P 2N p > M?3). P EL, plF.= N
K? N, / K? N /
Yo Q¥ > P =— P Up QU > Q =—— Q
CBRMERGE T3
v P|Q EN pqQ
cBrCoy 2B > P BN, pr pew s> Q LN @ Jaio#K
v P|Q Kl (va)N, pr Q' a#Q
o> P K! (va)N P’ ~ U P K! (va)N, P
CBROPEN e %#G’W}VK CBRCLOSE beb”g()
¥ > (vb)p KLwAHN, pr b€ n(N) v > WP T wh)wa)P O
UEM& K UM< Ko |@]=|N|
cOuT — cIN — -
veMN.P XY p v > M@E).PEY pF =N
cCoy VOB OY - M & K U @w > p MEAN, pr wp®w>Qﬂ>Q’x%Pij‘;
= Q
v P|lQD (va) (P Q) a#Q
v p MEAN, pr s g 0 VP S P Wy,
COPEN) CCASE

M (vau{bPN, pr b€ n(N)

U > (vh)p —2U V> case5: P % P

vp>P|IP % P W%Wew>P % P

CREP CPAR bn(a)#Q
velPp % P > P|lQ S PQ
. ! =M % P AE P
CSCOPE v>P % P bia ¥ CINV v > Pz - M] % P ~(gc) < |
V> (Ub)P 2 (vb)P' v AT 2 P 2= [M]

8. RELATED WORK

Our previous work [Borgstrom et al. 2011] presented the broadcast extension of psi-
calculi, and a model of a routing protocol for ad-hoc networks. In the present paper we
have given a corresponding symbolic semantics, and several new example models.
The precursors of the PWB are the Concurrency Workbench [Cleaveland et al. 1993]
for CCS, and the Mobility Workbench [Victor and Moller 1994] for pi-calculus. The tool
mCRL2 [Cranen et al. 2013] for ACP allows higher order sorted free algebras and equa-
tional logics. PAT3 [Liu et al. 2011] includes a CSP{ [Sun et al. 2009] module where
actions built over types like booleans, integers are extended with C# like programs.
ProVerif [Blanchet 2011] is a verification tool for the applied pi-calculus [Abadi and
Fournet 2001], an extension of the pi-calculus that is specialised for security protocol
verification. The tool is parametric in a term language equipped with equations and
unidirectional rewrite rules, but works in a fixed logic (predicate logic with equality).
ProVerif does not include a symbolic simulator or a general bisimulation checker.

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

99999:24 Johannes Borgstrom et al.

Our symbolic semantics and bisimulation generation algorithm (slight variations of
our previous work [Johansson et al. 2012]) are to a large extent based on the pioneer-
ing work by Hennessy and Lin [Hennessy and Lin 1995] for value-passing CCS, later
specialised for the pi-calculus by Boreale and De Nicola [Boreale and De Nicola 1996]
and independently by Lin [Lin 1996; Lin 2000].

9. FUTURE WORK

It would be interesting to investigate other notions of bisimulation for wireless com-
munication [Merro 2007], including machine-checked proofs of their meta-theoretical
properties. We have performed initial work [Aman Pohjola et al. 2013] on modelling
discrete time, and are considering extensions to other quantitative aspects of wireless
networks, including probabilities, distance, and energy.

ACKNOWLEDGMENTS

We thank the anonymous referees of ACSD 2013 for their comments on an earlier version of this paper.

REFERENCES

Martin Abadi and Cédric Fournet. 2001. Mobile Values, New Names, and Secure Communication. In Proc.
of POPL ’01. ACM Press, New York, NY, USA, 104-115. DOI:http://dx.doi.org/10.1145/373243.360213

Martin Abadi and Andrew D. Gordon. 1997. A Calculus for Cryptographic Protocols: The Spi Calcu-
lus. In Fourth ACM Conference on Computer and Communications Security. ACM Press, 36-47.
DOI:http:/dx.doi.org/10.1145/266420.266432

Johannes Aman Pohjola, Johannes Borgstrom, Joachim Parrow, Palle Raabjerg, and Ioana Rodhe. 2013. Neg-
ative Premises in Applied Process Calculi. Technical Report 2013-014. Dept of Information Technology,
Uppsala University.

K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. 1969. A Note on Reliable Full-
Duplex Transmission over Half-Duplex links. Commun. ACM 12, 5 (May 1969), 260-261.
DOI:http:/dx.doi.org/10.1145/362946.362970

Jesper Bengtson, Magnus Johansson, Joachim Parrow, and Bjorn Victor. 2011. Psi-calculi: A framework for
mobile processes with nominal data and logic. Logical Methods in Computer Science 7, 1, Article 11
(2011), 44 pages. DOI : http://dx.doi.org/10.2168/LMCS-7(1:11)2011

Jesper Bengtson and Joachim Parrow. 2009. Psi-calculi in Isabelle. In Proc. of TPHOLs 2009 (LNCS).
Springer, 99-114. DOI : http://dx.doi.org/10.1007/978-3-642-03359-9_9

Bruno Blanchet. 2011. Using Horn Clauses for Analyzing Security Protocols. In Formal Models and Tech-
niques for Analyzing Security Protocols, Véronique Cortier and Steve Kremer (Eds.). Vol. 5. IOS Press,
86-111. DOI:http://dx.doi.org/10.3233/978-1-60750-714-7-86

Michele Boreale and Rocco De Nicola. 1996. A Symbolic Semantics for the w-Calculus. Information and
Computation 126, 1 (1996), 34—52. DOI : http://dx.doi.org/10.1006/inc0.1996.0032

Johannes Borgstrom, Ramtnas Gutkovas, Ioana Rodhe, and Bjorn Victor. 2013. A Parametric Tool
for Applied Process Calculi. In Proc. of ACSD’13. IEEE, Los Alamitos, CA, USA, 187-192.
DOI:http://dx.doi.org/10.1109/ACSD.2013.22

Johannes Borgstrom, Shugin Huang, Magnus Johansson, Palle Raabjerg, Bjérn Victor, Johannes Aman Po-
hjola, and Joachim Parrow. 2011. Broadcast Psi-calculi with an Application to Wireless Protocols. In
Proc. of SEFM ’11 (LNCS). Springer, 74—89. DOI : http://dx.doi.org/10.1007/978-3-642-24690-6_7

Johannes Borgstrom, Shugin Huang, Magnus Johansson, Palle Raabjerg, Bjérn Victor, Johannes Aman Po-
hjola, and Joachim Parrow. 2013. Broadcast Psi-calculi with an Application to Wireless Protocols. Soft-
ware and Systems Modeling (2013). In press.

Maria Grazia Buscemi and Ugo Montanari. 2007. CC-Pi: A Constraint-Based Language for Specifying Ser-
vice Level Agreements. In Proceedings of ESOP 2007 (LNCS), Rocco De Nicola (Ed.), Vol. 4421. Springer,
18-32.

Marco Carbone and Sergio Maffeis. 2003. On the Expressive Power of Polyadic Synchronisation in =-
calculus. Nordic Journal of Computing 10, 2 (2003), 70-98.

Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. 1993. The Concurrency Workbench: a Semantics-
Based Tool for the Verification of Concurrent Systems. ACM Trans. Program. Lang. Syst. 15, 1 (1993),
36—72. DOI: http://dx.doi.org/10.1145/151646.151648

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

The Psi-Calculi Workbench 99999:25

Sjoerd Cranen, Jan Friso Groote, Jeroen J A Keiren, Frank P M Stappers, Erik P Vink, Wieger Wesselink,
and Tim A C Willemse. 2013. An Overview of the mCRL2 Toolset and Its Recent Advances. In Proc. of
TACAS ’13 (LNCS), Vol. 7795. Springer, 199—-213. DOI : http://dx.doi.org/10.1007/978-3-642-36742-7_15

F. Ghassemi, W. Fokkink, and A. Movaghar. 2008. Restricted Broadcast Process Theory. In Software En-
gineering and Formal Methods, 2008. SEFM ’08. Sixth IEEE International Conference on. 345-354.
DOI:http:/dx.doi.org/10.1109/SEFM.2008.25

Jens Chr. Godskesen. 2010. Observables for Mobile and Wireless Broadcasting Systems. In Coordina-
tion Models and Languages, Dave Clarke and Gul Agha (Eds.). LNCS, Vol. 6116. Springer, 1-15.
DOI:http:/dx.doi.org/10.1007/978-3-642-13414-2_1

Ramtnas Gutkovas and Johannes Borgstrom. 2013. The Psi-Calculi Workbench web page. (2013). http:
/lwww.it.uu.se/research/group/mobility/applied/psiworkbench

Matthew Hennessy and Huimin Lin. 1995. Symbolic Bisimulations. Theoretical Computer Science 138, 2
(1995), 353—-389. DOI : http://dx.doi.org/10.1016/0304-3975(94)00172-F

Brian Huffman and Christian Urban. 2010. A New Foundation for Nominal Isabelle. In Proc. of ITP’10.
Springer, 35-50. DOI : http:/dx.doi.org/10.1007/978-3-642-14052-5_5

Magnus Johansson, Jesper Bengtson, Joachim Parrow, and Bjorn Victor. 2010. Weak Equivalences in Psi-
calculi. In Proc. of LICS 2010. IEEE, 322-331. DOI: http://dx.doi.org/10.1109/LICS.2010.30

Magnus Johansson, Bjorn Victor, and Joachim Parrow. 2012. Computing strong and weak bisim-
ulations for psi-calculi. Journal of Logic and Algebraic Programming 81, 3 (2012), 162-180.
DOI:http:/dx.doi.org/10.1016/j.jlap.2012.01.001

Huimin Lin. 1996. Symbolic Transition Graph with Assignment. In Proc. of CONCUR *96 (LNCS), Vol. 1119.
Springer, 50-65. DOI : http:/dx.doi.org/10.1007/3-540-61604-7_47

Huimin Lin. 2000. Computing Bisimulations for Finite-Control pi-Calculus. Journal of Computer Science
and Technology 15, 1 (2000), 1-9. DOI : http://dx.doi.org/10.1007/BF02951922

Yang Liu, Jun Sun, and Jin Song Dong. 2011. PAT 3: An Extensible Architecture for Building
Multi-domain Model Checkers. In Proc. of ISSRE ’11. IEEE, Los Alamitos, CA, USA, 190-199.
DOI:http:/dx.doi.org/10.1109/ISSRE.2011.19

Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. 2002. TAG: a Tiny AGgre-
gation Service for Ad-hoc Sensor Networks. SIGOPS Oper. Syst. Rev. 36, SI (Dec. 2002), 131-146.
DOI:http:/dx.doi.org/10.1145/844128.844142

Massimo Merro. 2007. An Observational Theory for Mobile Ad Hoc Networks. Electronical Notes in Theoret-
ical Computer Science 173 (April 2007), 275-293. DOI : http://dx.doi.org/10.1016/j.entcs.2007.02.039

Robin Milner, Joachim Parrow, and David Walker. 1992a. A Calculus of Mobile Processes, 1. Inf. Comput.
100, 1 (1992), 1-40. DOI : http://dx.doi.org/10.1016/0890-5401(92)90008-4

Robin Milner, Joachim Parrow, and David Walker. 1992b. A Calculus of Mobile Processes, II. Inf Comput.
100, 1 (1992), 41-77. DOI : http://dx.doi.org/10.1016/0890-5401(92)90009-5

Joachim Parrow, Johannes Borgstrom, Palle Raabjerg, and Johannes Aman Pohjola. 2013. Higher-
order psi-calculi. Mathematical Structures in Computer Science FirstView (June 2013), 1-37.
DOI:http:/dx.doi.org/10.1017/S0960129513000170

Andrew M. Pitts. 2003. Nominal logic, a first order theory of names and binding. Inf. Comput. 186, 2 (2003),
165-193. DOI : http://dx.doi.org/10.1016/S0890-5401(03)00138-X

PolyML 2013. Poly/ML. (2013). http://www.polyml.org A full implementation of Standard ML.

Jun Sun, Yang Liu, Jin Song Dong, and Chunging Chen. 2009. Integrating Specification
and Programs for System Modeling and Verification. In Proc. TASE °09. IEEE, 127-135.
DOI:http://dx.doi.org/10.1109/TASE.2009.32

Christian Urban and Christine Tasson. 2005. Nominal Techniques in Isabelle/HOL.. In CADE (LNCS),
Robert Nieuwenhuis (Ed.), Vol. 3632. Springer, 38-53. DOI : http:/dx.doi.org/10.1007/11532231 4

Bjorn Victor and Faron Moller. 1994. The Mobility Workbench — A Tool for the «-
Calculus. In Proc. of CAV 94 (LNCS), David Dill (Ed.), Vol. 818. Springer, 428-440.
DOI:http:/dx.doi.org/10.1007/3-540-58179-0_73

Lucian Wischik and Philippa Gardner. 2005. Explicit fusions. Theoretical Computer Science 304, 3 (2005),
606—630. DOI : http://dx.doi.org/10.1016/j.tcs.2005.03.017

Received November 2013; revised ; accepted

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

Online Appendix to:
'(I;he Psi-Calculi Workbench: a Generic Tool for Applied Process
alculi

Submitted to Special Issue on Application of Concurrency to System Design

Johannes Borgstrém, Ramunas Gutkovas, loana Rodhe and Bjérn Victor, Uppsala
University

A. CORRECTNESS PROOFS FOR THE SYMBOLIC SEMANTICS
A.1. Correctness Proofs for the Symbolic Operational Semantics

The proofs for the soundness and completeness of the symbolic semantics with respect
to the concrete broadcast semantics [Borgstréom et al. 2011] mainly follow [Johansson
et al. 2012].

We begin by enumerating the additional axioms for substitution.
AXIOM 1. n(Mo) D n(M)\ n(o).
AXIOM 2. n((P®V¥')o)=n(Po Vo).
AXIOM 3. (YQV¥')o ~V¥o@¥'o.
AXIOM 4. 1lo0=1.
We then present a number of lemmas used in the proofs.
LEMMA A.1 (WEAKENING). (o,¥9)=EC =WW': (0,0 @¥')EC
PROOF. By induction over the structure of C.

true Trivial since all solutions satisfies true.
false Trivial since false has no solutions.
{¢" I ¢} We have that (0,%) = {&"F ¢}, so V"0 @ ¥ F po. Let ¥’ be any assertion. By
weakening V"o @ ¥ @ ¥’ I ¢o, or in other words (o, ¥ x ¥') = {¥" I ¢}}.
M = N Trivial.
a#X Trivial.
a € n(M) Trivial.

Jx.C Here there exists y#o, ¥ such that (o[y := M],¥) E (¢ y).C. By induction (o[y :=
M], ¥ @ V') = (z y).C. By equivariance of - we may assume that b4#¥’, so by defini-
tion (o, ¥ @ ¥') E Jz.C.

(va)C We have that (0,¥) = (va)C. By Definition 7.1 this means that 3b.b#0, ¥, C such
that (o,¥) = (a b)C. By equivariance of - we may assume that b4#¥’. By induction
(0, @) = (a b)C, so by definition (0,¥ x ¥') = (va)C.

C A C' By induction (0,7 @ V') = C and (0,¥ @ V') = C’, thus (6, ¥ @V¥') = C A C".

C' v C'By induction (0, @ ¥') = Cor (0,9 @ ¥') = C’, thus (0, Q¥) =CV (.

C = C’'We have that (0,¥) £ C = (', i.e. VW' . (0,7 @ V") = C implies (o, ¥ @ V") &= C".

We must check that (0,7 @ ¥') = C = (', i.e. YO (0,¥ @ ¥' @ ") = C implies
(0, W' @¥"") |= C’, which holds since V¥".(c, # @¥") = C implies (o, ¥ V") |= C’,
and in particular it holds for any ¥ =¥’ @ ¥ O

LEMMA A.2 (OPENING). Ifa#o,V¥ then (o,¥) = (va)C iff (o,¥) E C.

© 2014 ACM 1539-9087/2014/00-ART99999 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

App—2 Johannes Borgstrom et al.

PROOF. Immediate from the definition of solutions for (va)C. O

LEMMA A.3 (CHANNEL SUBSTITUTION). When (0,¥) = (vb){¥'+ M <+ N} A C
and y#o,9,b, ', M, N, C and b#o,¥ then (o - [y := Mc|,¥) = (wb){¥' F N <y} AC.

PROOF. By expanding the definitions involved, using the freshness assumptions
and the partial invertibility of <». O

AXIOM 5. ¥ =pc V' = n(¥) = n(¥).
LEMMA A4, U =pc V¥ = VYo ~V'ocandn(Wo)=n'o).
PROOF. By induction on the derivation of ¥ =,¢ ¥’, using the symmetry, transitiv-

ity and reflexivity of ~ at the symmetry, transitivity and reflexivity cases, Axiom 3 at
the base cases and the induction case, and Axiom 4 at the unit case. O

LEMMA A5. IfWo ~W'oand n(¥o) =n(¥'o), then (o,¥) = Ciff (o,¥') E C.
PROOF. Straightforward from the definition of . O
LEMMA A.6. Ifc#o then

(I) F(P)= (ve)¥ = ' .F(Po)= vc)¥' and ¥’ ~¥o and n(¥’) = n(¥o).
(2) F(Po)= (vo)¥/ = W .F(P)= we)¥and ¥ ~Voand n(¥’) =n(Po).

PROOF. By induction on the derivation of F(P) (resp F(Po)), using Axiom 3 at the
parallel induction case and Axiom 4 at the trivial base cases. O

LEMMA A.7. Ifa#C, 0,0 then (0,¥') = (va)¥) @ C iff (0,7 ® o) |= C.

PROOF. By induction on C. The interesting case is C = (v¢){¥" F ¢[where (o,¥’) =
(va)PV) @ C <= V' QUoV'oct po < (0,¥' @ ¥o) E C using Axiom 3. O

LEMMA A8. IfF =ac Gand (0,¥) = F ® C then (0,¥) = G ® C.

PROOF. By Lemma A.4 and Lemma A.7. O

The following key lemma characterises the shape of the constraints of point-to-point
input and output transitions. The first conjunct in the constraint is always a channel
equivalence constraint (between the object M of the original prefix and the transition
object variable y) that must hold under a frame (v¢)?¥ that is AC-equivalent to that
of the original process P. The lemma is used in the proof of Theorem 7.11, to show
that the frames of the transition constrints correspond to the frames of the originating
processes, in the SCOM case. It is also used in the proof of Theorem 7.12, to show that
the precondition on the shape of the transitions in the SCOM rule always holds.

LEMMA A.9 (LEMMA 7.10). Let o = § (va)N or o = y(¥). If P % P’ and y#P
then there exist ¢,¥, M and D such that F(P) =xac (vO)¥ and y#¢,¥,M,D and C =
(e){w = M <y} AD.

PRrROOF. By induction on the derivation of P % P

Case SIN. In this case the transition is derived like

SIN @ y#K, P,z
K@@).Pp —22 . p
{1FK &yl

Herec=¢,¥ =1, M = K, and D = true, where 7(K(z).P) = 1.

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

The Psi-Calculi Workbench App-3

Case SOUT. In this case the transition is derived like
sOUT — y#M,N, P

MN.p —*N . p
{1FM Sy}

Here ¢=¢, ¥ =1, M = M, and D = true, where F(M N .P) = 1.
Case SCASE. In this case the transition is derived like
P P

C

SCASE —— ” bn(a)#p;
casep: P ——— P
CA kel

By induction we get M, D', ¥, ¢ such that C = (vo){¥ + M < y[} A D’ with y#D’ and
F(P;) =ac (vo)¥. Let D = D' A{1}F ¢;]}; since y#case ¢ : P we also have that y#D.
By well-formedness, P; is guarded, so by Lemma 7.9 F(P;) =ac 1. By transitivity
.F(P) =1 =AC (VE)LD

Case SPAR. In this case the transition is derived like

@ /
P ?} P bn(a)#Q
SPAR - _ :
PlQ P/|Qa—TVsubJ(a)#Q
F(Q)eC

By induction there are M, D', ¥, ¢ such that C = (ve){¥ + M < y} A D’ with y#D’
and F(P) =a¢ (vo)¥. Let D = F(Q) ® D’; since y# P|Q we also have that y#D. By
Lemma 7.8 F(P | Q) =ac ((10)¥) @ F(Q) =ac F(Q) @ (vo)V.
Case SSCOPE. In this case the transition is derived like
PP
SSCOPE ¢ b#a

hp —=2 b) P’
(vb) W(V)

By induction there exist ¢, ¥, M and D’ such that C = (v¢)(¥ + M « y) A D’ with
y#M,D and F(P) =ac (vc)¥. Let D = (vb)D’; a fortiori y#(vb)D. By Lemma 7.8
F((B)P) =ac (Vh) ().

Case SOPEN. As SSCOPE.

Case SREP. In this case the transition is derived like

PP & P
sREp ——— <
P = P
C

By induction there exist ¢,¥, M and D such that C = (ve)(¥ - M < y) A D
with y#M,D and F(P|!P) =ac (v¢)¥. By well-formedness, P is guarded, so by
Lemma 7.9 F(P|!P) =a¢ 1. By transitivity F(!P) =1 =xc (vO)¥. O

LEMMA A.10 (CHANGE SUBJECT). Let B be any finite set of names. If « =7y (va)N
(resp. o = y(7))

and P ———* 5 P’ then 3z such that z#W.,b, P, B,C and P ~a—l> ad
(VBT M Sy AC (WB) WM 2 AC

with o/ =% (Va)N (resp. o/ = ().

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

App—4 Johannes Borgstrom et al.

PROOF. By induction on the derivation of the transition. The set of names B is
necessary to be able to use the induction hypothesis in some of the induction cases. 0O

LEMMA A.11. IfP % P’ and a#P,bn(w) then a#P’.

PRrROOF. The proofis by induction on the derivation of the transition.

Case SIN. In this case the transition is derived like

sIN 5 y#W, M, P&
M@E).P —=2 4 P
{1-M Syl

We know that a#M (7). P, z. Then also a#P.
Case SOUT. In this case the transition is derived like

sOuUT —— — y#W,M,N, P
MN.p —* . p

J1-M Syl

We know that a#M N . P. Then also a#P.
Case SCASE. In this case the transition is derived like

P p
C

SCASE — bn(a)#p;
case 5: P - P

—
CM1kesl

We know that a#case ¢ :]5, bn(a). Then also a# P;. By induction we get that a#P’.
Case SCOM. In this case the transition is derived like

p Yy (va)N P 0 2(T) Q' 340
Cp CQ ’
sCom ~— y#z

PlQ = (va)(P'| Q'[z = N])

We know that a#P | Q. Let p C @ x (p - a) be a permutation such that a#p - a. By

a-conversion we write the transition from P as P M
p-Cp
we get that a#p- P'. Let ¢ C {Z} x (¢- {Z}) be a permutation such that a,p-a#q- 7.

By a-conversion we write the transition from Q as % q-@Q'. By induction we
q-CQ

p - P'. By induction

get that a#q-Q’ and that p-a#q-Q’. Since a# P, p-a we also have that a#p- N. This
means that a#(q¢- Q)¢ -T:=p- N | by one of the requirements on substitution. All
together we get that a#(vp-a)(p-P' | (¢-Q)[¢- T :=p- N]) By the substitution law
for a-conversion we get that a#(vp-a)(p- P’ | Q'[7 := p-N]). Finally, by a-converting
we get that a#(va)(P' | Q'[Z := N]).

Case SPAR. In this case the transition is derived like

o o
rat bn(@)#Q
SPAR - _ :
P|Q P/|Qa—TVsubJ(a)#Q
F(Q)eC

We know that a# P | Q,bn(a). By induction we get that a#P’. Then also a# P’ | Q.

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

The Psi-Calculi Workbench App-5

Case SSCOPE. In this case the transition is derived like
P % P
SSCOPE b#a, ¥

We know that a#(vb) P,bn(«). Let p = (b ¢) such that a#c,p - P, p - bn(a). By equiv-
ariance the premise is rewrittentop- [p- P p'—g& p- P'|. By induction we get that
-
a#tp - P'. Then also a#(vp - b)(p - P’). By a-equivalence we get that a#(vb)P’.
Case SOPEN. In this case the transition is derived like
p TWON, N
ben(N)
Y (va N b ~7 Ep’
(whyp LUV gy #a, ¥,y
(vb)C
We know that a#(vb) P, a, b. This gives us that a# P. By induction we get that a# P’.
Case SREP. In this case the transition is derived like

PP & P
C

SOPEN

SREP —(———
P = P
c
We know that a#!P,bn(«). This gives us that a#P | |P. By induction we get that
a#P'.
Case SBROUT. Here the transition is derived by

x#M,N, P
SBROUT —
MN.p X

’ 1FM <z

We know that a#P.
Case SBRIN. Here the transition is derived by

T, y#V, M, P z#y
2?(Y)
M(G). P P

1z M

We know that a#M (y) . P,y. This gives us that a#P.
Case SBRMERGE. Here the transition is derived by

SBRIN

P z?(Y) P/ Q z?(Y) Ql
P Cq
SBRMERGE v
| 1(1/) P/ | Q/
(F(Q)®CP)NF(P)RCq)
By induction a#P’,Q’, so a#P' | Q'.
Case SBRCOM. Here the transition is derived by
p z (va)N P) z2(7) Q'
Cp CQ ~
SBRCOM - a#Q
P L P | Q[j:=N
e (FIQ)®CPIAN(F(P)®Cq) Q']

By induction a#F’, Q'. Here n(N) C n(P)u{a}, so since a#P, @ we have a#N. Thus
a#P' | Q'ly := N|.

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

App—6 Johannes Borgstrom et al.

Case SBRCLOSE. Here the transition is derived by

z! (va)N P

P

SBRCLOSE = —
(vb)P e (vb)(va) P’

Assume that a#b. By induction a#P’, so a#(vb)(va)P’'. O
LEMMA A.12.
F((va)P) = Wbya)p)¥wayp = 3bp,¥p such that
F(P) = (vbp)¥p
A b(ua)P = abP
A l*p(ua)P = LPP
PROOF. Just use the definitions involved. O

LEMMA A.13.
]:(P | Q) = (VZP | Q)Wp |Q EESS EZP,EQ7WPLWQ such that
F(P) = (vbp)¥p
A F(Q) = (vbg)¥o
A bp Q= bpbg
AN Yo=Y
PROOF. Just use the definitions involved. O

LEMMA A.14 (CHANGE FRAME).
Ifo >P = P,¥~V¥ and n(¥) =), then¥' > P = P
PROOF. By induction on the derivation of the transition. O

LEMMA A.15 (NAMES ARE FRESH IN THE CONSTRAINT).
If p % P" with o = y(Z) or a = y?(Z), and T, 2# P,y then T, z#C.

PRrROOF. By induction on the derivation of the transition.

Case SIN. In this case the transition is derived like
SIN y#M, P, %
M@).P —>—— P
{1-M &Syl
We know that Z, z#y, M(Z). P, so T, z#{1 + M < y}}.
Case SCASE. In this case the transition is derived like
ey 4
SCASE — ¢
case p: P

A—__> /
CA {1k
By induction we get that Z, 2#C. From Z, z#y; we get that T, z#{1 F ¢;]}.
Case SPAR. In this case the transition is derived like
P % P
? THQ
P > . p y#Q
Qo=
By induction Z, z#C, and since Z, z#Q we also have 7, z#F(Q). By equivariance of
® we get T, z4#F(Q) ® C.

SPAR

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

The Psi-Calculi Workbench App-7

Case SSCOPE. In this case the transition is derived like

PP
C

a /

SSCOPE b#a, ¥

We may assume that b#z. By induction we get that z, z#C, so a fortiori z, z#(vb)C.
Case SREP. In this case the transition is derived like

PP % P
Rep O
P = P
c

The desired result follows directly from induction.
Case SBRIN. Here the transition is derived by
T,y#¥Y, M, P y#x
y?(T)
1-y>=M

We know that 7, z#y, M (Z) . P, so z, z#{1 -y = M|.
Case SBRMERGE. Here the transition is derived by

SBRIN

M(3).P P

y?(Z) y(%)
g P/ g
Cp @ Co
y?(@)

(FROCPINF(P)@CQ)

By induction z, z#Cp, Cg. By assumption 7, z#P, Q, so Z, z#F(P), F(Q). By equiv-
ariance of ® and A we then get 7, z#F(Q) Cp NF(P)®Cq. O

P Q'

SBRMERGE

PlQ P

LEMMA A.16 (CONGRUENCE OF CONSTRAINT EQUIVALENCE).
IfYo,¥.(0,¥) = C & (0,¥) = D then Vo,¥.(0,?) = (va)C < (0,9) = (va)D.

PROOF. Adding a restriction of ¢ to a constraint amounts to removing the solutions
involving a from the set of all solutions. In this case we remove the same solutions
from both C' and D, so the resulting sets of all substitutions will still be equal. O

LEMMA A17. Vo,¥.(0,¥) E (va)(vh)C < (0,¥) | (vb)(va)C
PROOF. Both (va)(vb) and (vb)(ra) remove the same set of solutions from C. O

A.2. Proof of Soundness Theorem
We prove soundness and completeness of the symbolic semantics of this paper with
respect to the concrete semantics of broadcast psi-calculi [Borgstrém et al. 2011] (Ta-
ble VI). The soundness theorem and its proof follow [Johansson et al. 2012], apart from
the weaker preconditions of the SCOM rule (compared to OLD-COM), and the new cases
for broadcast actions.

THEOREM A.18 (THEOREM 7.11).

Ifp % P'and (0,¥) = C and bn(a)#0 then ¥ > Po <% Plo.

PRrROOF. By induction on the inference of P %) P

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

App-8 Johannes Borgstrom et al.

Case SIN. In this case the inference looks like

sIN e y#M, P, 7
ME.p ———— P
11-M Syl

Since 2#0 we have that (M (z).P)o = Mo(z).Po and that (y(z))o = yo(r). We then
do the following derivation:

Uk Mo+ yo
¥ > Mo(z).Po 229 po
Case SOUT. In this case the inference looks like
sOuT y#M,N, P

MNp —* . p
{1-M Syl

CcIN

We then have a concrete transition

UF Mo yo
v > (MN.P)o N7, ps
Case SCASE. In this case the inference looks like
P; % i

SCASE —
case ¢ : P

cOour

Y
CA {1k

Take (0, %) such that (0,%) = C A {1} ¢;[} and bn(a)#0. We must find a transition
¥ 1> (case 3 : P)o 2% Plo.

We then have that ¥ - ¢;0 and that (o, %) is also a solution to C. By induction we
get that ¥ > Pic 2% P’c. We can now do the following derivation:

U > Po 2% Po UF o

CCASE —
v > (case p: P)o =% Po
Case SCOM. In this case the inference looks like

7 (Va)N ’ 2(Z) ’
PSP Q2% Q 20

sCoM - _ovHE
PlQ & wa)(P'| QT = NI) y 24bp, Pbg,Q,N,a

where Cp = (vep){¥p F Mp <5y A Cp, Cp = (veQ){¥g = Mg «» 2t A Cq and C' =
(VEPEQ){IWP ® WQ FMp MQl} VAN ((I/EQ)W& X Cp) AN ((Z/EQ)EI’I/; (29 CQ)

We assume that y, z#0, %', Cp, Cp. If that is not the case we can use Lemma A.10
to find subjects for which it is true. We further assume that @, z#oc (bound names
are fresh). Let F(P) = (vbp)¥ and F(Q) = (VEQ)WQ. We assume that that
bp,bo#(0,¥), P,Q, .

By Lemma 7.10]:(P) =AC (VZP)W;; and .F(Q) =AC (VgQ)W/Q

We know that (0,%) | (vep)(veQ){¥p @ Yo = Mp <> Mgl A (veq)¥g ® Cp, so by
Lemma A.17 and Lemma A.2 (0,¥) | (vep){¥p @ ¥, = Mp <> Mgl A g ® Cp.

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

The Psi-Calculi Workbench App-9

By Lemma A.8 (0,¥) = ¥ ® ((vep){¥p - Mp <+ Mgl A Cp). so by Lemma A.7
(0,¥ ®@¥po) = (vep){¥p F Mp <» Mqg| A Cp. By substitutivity (o - [y := Mqo],¥ ®
Yyo) = Cp, so by induction ¥ @ ¥po > Po W WaN)e, pro/, By Lemma A.6 we get
that 7(Qo) = (vbq)¥%, such that ¥, ~ ¥yo and n(¥%,) = n(¥%o). By Lemma A.14
U ® Uy, > Po TN oy,

Similarly (¢ - [z := Mpo],¥ ® ¥po) |= Cl, so by induction ¥ ® ¥po > Qo EZ,
Q'c’. By Lemma A.6 we get that F(Po) = (Vgp)ng such that ¥p, ~ ¥po and

n(¥,) = n(¥po). By Lemma A.14 ¥ @ Up, > Qo D7, g/,

Applying Lemma A.2 to (0,¥) = Y@ ((vcp){¥p - Mp <> Mg[) we get that (0,¥) |=
Yo @{¥p F Mp <+ Mgl, By Lemma A.7 we have (0,¥ ® ¥go) = {¥p - Mp <> Mol
so by Lemma A.8 we get (0,¥ @ Ypo) = {¥ - Mp <> Mg[. Thus ¥ @ ¥po ® Yo +
Mpo < MQU’, so V¥ ® Up, ®WQU F Mpo <> MQO’.

We then have the following derivation (remember that y and z are fresh for basi-
cally everything but themselves):

VU, > Po M WONo, p,

U@ Up, > Qo 222Dy Qg W@ Wp, ® Yy - Mpo <> Mgo

cCoM = a#Qo
V> Po|Qo — (va)(P'o|Q'o[x:= No])

Since @, 7#0c we have that (va)(P'o | Q'o[% := No]) = (va)(P' | Q[:= N])o.
Case SPAR. In this case the inference looks like
W@WQDP?P ()40

P|Q [P/lQa:TVSubj(a)#Q
F(Q)®C

SPAR

We can assume that subj(a)#P (if not, use Lemma A.10 to find another subject).
Assume that @#07 PlQ.

Let F(Q) = (vbg)¥ with EQ#a, C,¥,0. By Lemma A.7 (0,¥ ® ¥y0) = C. By induc-
tion we then get that P % P’ has a matching transition ¥ ® Ypo > Po =% Plo.
By Lemma A.6 we get that F(Qo) = (VEQ)WQU such that ¥%,, ~ Yo and n(¥%,) =

n(%o). By Lemma A.14 ¥ ¥, > Po <% P’c, so we can do the following concrete
inference:

U @YU, > Po 2%, Pl
U Po|lQo =% Po|Qo
Case SSCOPE. In this case the inference looks like

P % p
C
va)P —2— (va)P’
P)

CPAR

bn(ao)#Qo

SSCOPE

aFa, ¥

We assume that subj(a)#(va)P, T (if not, use Lemma A.10 to find a new subject).
We also assume a#0, ¥ (bound names are fresh). By Lemma A.2 we then have that
(0,¥) E C.

By induction we get that P % P’ has a corresponding transition ¥ > Poc =% Po.

We can then do the following concrete inference:

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

App—-10 Johannes Borgstrom et al.

V> Po 2% Po
CSCOPE a#ao, ¥

VU > (va)(Po) =% (va)(P'o)

Since a#0 we have that (va)(Po) = ((va)P)o and (va)(P'o) = ((va)P’)o.
Case SOPEN. In this case the inference looks like

P 7 (va)N P B
SOPEN _ a € n(N)
(va)P 7 (vau{a})N P afta,y

(va)C

We can assume that y#P,a,a (if not, use Lemma A.10 to find another subject).
Since (0, %) | (va)C we also have that (o,¥) | C.
¥ (va)N

By induction we get that P P’ has a corresponding transition ¥ >

Py DN pr
We assume that a#c (bound names are fresh). By Axiom 1 a € n(No), so we have
the following concrete inference.

v > Po —>(y (va)N)o ~P'O ac n(]\Nfa)
¥ > (va)Po @ waAa)N)o, pr, affa,Vo,yo
Case SREP. In this case the inference looks like
PP % P

C

COPEN

SREP =
P P’

By induction ¥ > (P | !P)oc =% P’o, so we can do the following derivation.
¥ > Po|!Po =% Plo
vrPo 2% Plo

Case SBROUT. Here the transition is derived by
a4, M,N, P

CREP

SBROUT

MN.p 2N, p
1M <z

We then have the corresponding concrete transition
U Mo < xo
v > (MN.P)o V% p,
Case SBRIN. Here the transition is derived by
T, YHY, M, P xH#y
227
M@G).P P P

Since y#o we have that (M (y). P)o = Mo(y) . Po and that (2?(y))o = zo?(y). We
then do the following derivation:

CcBROUT

SBRIN

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

The Psi-Calculi Workbench App-11

Ut xo>- Mo
¥ > Mo(j).Po 229D, pg

Case SBRMERGE. Here the transition is derived by

CBRIN

p z?(Y) P 0 2?(Y) Q'
Cp Co
SBRMERGE =) / /
PlQ P Q

(FQ)®CPINF(P)RCQ)

By induction ¥ > Po 229, Pl and ¥ > Qo 229, ('c. By CBRMERGE

¥ > Po|Qo 207@), Po|Qo.
Case SBRCOM. Here the transition is derived by

P z (ZE)N p' 0 z;(ii) Q'
SBRCOM - =y 2 a#Q
P|Q R P Q'ly=N]

(F(QBCPINF(P)®Cq)

By induction ¥ > Po ZewaNe, pigand ¥ > Qo 229, (Q'c. By cBRCOM

U > Po|Qo 7 WiNo, pry | Q'[y := Nlo.
Case SBRCLOSE. Here the transition is derived by

z! (va)N P

P
SBRCLOSE

(vb)P ﬁ (vb)(va) P’

By assumption there is K such that b € n(K) and (o[z := K|, ¥) = C. We assume
that b#o. Since 2#P,d we have z#P', N, so by induction ¥ > Po Kva)No, pr.
We then have the following derivation.
v > Po —W Po
CBRCLOSE ben(K)
v > (vb)P 5 (vb)(va)P'o O

A.3. Proof of Completeness Theorem

The proof of the completeness theorem follows [Johansson et al. 2012], apart from the
new cases for the broadcast rules, and the updated SCOM rule.

THEOREM A.19 (THEOREM 7.12).

—IfY > Po =5 P then3C,Q. P % Q, Qo = P’ and (0,¥) = C.

’
«

—If¥ > Po % P, a# 71, y#P,bn(a), o, and bn(a)#o, P then 3C, o/, Q. P = Q,
Qo = P/, subj(e/) =y, &/0’ = o, and (o', ¥) |= C where o' = oly := subj(a)].

PROOF. By induction on the inference of ¥ > Po %+ P'o.

Case CIN. In this case the inference looks like
U-Moss M

v > (M (7).P)oc 2D, po

cIN

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

App—12 Johannes Borgstrom et al.

We know that y#M'(Z) . P, z, o and that #0, M'(Z) . P.
We let Q = P, and do the following derivation:
SIN e y#M', P&
M(F).P —— 5 P
J1FM7 Sy

Since ¥ - M'c <> M we have that (o[y := M],¥) = {1+ M’ & y]}.
Case COUT. In this case the inference looks like

UHMoe& M

Y MNo

v > (M'N.P)o X% pg

cour

We know that y#M’, N, P. We must find a constraint C such that M'N . P % P
and (o[y := M],¥) = C. Welet Q = P, K = N, and derive such a transition with

SOUT —— — y#M' N, P
MN.p "N . p
{1- M’ Syl
Since ¥ + M'c <> M we have that (o[y := M],¥) = {1+ M’ < y]}.
Case CCASE. In this case the inference looks like

¥ > Po 2% P Ut po
¥ > (case 5: P)o % P’

CCASE

a = 7. By induction we know that ¥ > P,c —— P’ has a matching transition
P, % Q such that (0,¥) = C and Qo = P’. We also have that (o0,¥) =
{1+ ;| Together this gives us that (o,%) = C A {1 F ¢

o # 7. Since y#case ¢ :P we have in particular that y#¢;, P;. By induction
we know that ¥ > P,c %+ P’ has a matching transition P; %,> Q@ such that

(¢/,¥) = C and Qo = P'. Since ¥ + p;0 we have that (0,%) = {1+ ¢;}}, and
since y#y; we also have that (¢/,¥) = {1F ¢;]}. Together this gives us that
(0, 9) = C AMLF il

We can then do the following derivation:

P =5 Q
SCASE — ¢ S
case ¢ : P :

CAN {1}

Case CCOM. The interesting case is the CCOM case, where the inference looks like

W®WPJ®WQUFM<;>K

U QU, > Po MdNo, pr U QWp, > K@),
cCoMm © % i g ® Qo Q a#Qo

V> (P|Qo T (wa)(P'|Q[F:=N))o

Here F(Po) = (vbpo)¥p, and F(Qo) = (vbo,)¥,. We know that
bpa#LU Po,Qo, bQ(7 and an#W Po, Qo, pr,P We assume that a#P, an,a and
x#bp,, Let y,z# By Lemma A.11 we also have that bQU#P’o By Lemma A.6
we get]:(P) = (VbPU)Wp with &DpU ~ !ppg and]:(Q) = (l/ng)LDQ with LDQO' ~ WQU.

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

The Psi-Calculi Workbench App-13

By induction, P M P’ such that N = N'o and (ofy := M],¥ ® Up,) Cp.

By Lemma 7.10 Cp = ((ucp)(u?’ F Mp < y) A Cp with (vep)¥p =ac (vbp)Wp.
In the same way, by induction @ == Q' such that (¢[z := K|,¥ @ ¥p,) = Co.

By Lemma 7.10 Cq = ((v2q) (¥}, F MQ & 2) A Ch with (v8Q) W) =ac (vbq) Y.
We can then do the following inference:
¥ (va)N’ P (@) /

P
sCont (VEP){]&T'IQFAIpéy[}/\CE, _ (ufq)ﬂWéFMQmﬂA% a#O
PlQ = (va)(P'| Q'[z := N'])

where C' = (vcpcQ){¥p @ ¥, F Mp <> Mgl A (veQ)¥h @ Cp) A ((vep)¥p @ Cg). It
remains to show that (o, %) = C. We consider each conjunct in turn.

By Lemma A.8 (o0]z := K|, ¥ @ ¥p, = (VEQ)(LPQ F Mg ¢ z) and (oly := M],¥ ®
WQU> ': (Vgp)(Wp FMp <> y) Thus ¥ ® ¥p, ® WQO’ = MQO' < K and ¥ ®WQU R Wpo F
Mpo <+ M. By AC of entailment of <+ and ® modulo ~ ¥ ® ¥po ® Yo - Mpo <
Mgo. By Lemma A4 ¥ @W¥Lo@¥n0 = Mpo <> Mgo, so (0,¥) | VpoRWg, = Mpo <
Mgo. By Lemma A.2 (0,¥) |= ((vcpcq)¥p @ ¥, = Mp <> Mg), which is the first
conjunct.

By Lemma A.6 (o]y := M],¥ @ ¥yo) = Cp so by Lemma A.7 (oy := M|, ¥) =
F(Q) ® Cp. Since y#Q, Cp we have (0,¥) = F(Q) ® Cp. By Lemma A8 (0,¥)
(VeQ)W) & Cip.

In the same way, by Lemma A.6 (c[z := K|,¥ ® ¥po) = Cq so by Lemma A.7
(o[z == K|,¥) E F(P) ® Cp, Since 24P, C, we have (0,¥) = F(P) ® Cg. By
Lemma A.8 (0,¥) = ((vcp)¥p) ® Cg.

Case CPAR. In this case the inference looks like
V¥, > Po = Po
> (P|Qo = (P'|Q)o

CPAR bn(a)#Qo
where F(Qo) = (VZQU)![/Q,, with ’EQU#J/ VYo, Po,a,y. By Lemma A6 F(Q) =
(VbQU)WQ such that ¥, ~ ¥;0 and n(WQU) =n(%o).

By Lemma A.11 we also have that ng#P’ o. Since y#bQU, Q, 0 we get that y#¥o.
Together with y#o this gives us that y#;.

By induction we know that ¥ ® ¥, > Po -+ P’c has a matching transition
P %) P’ such that (o', ¥ ® ¥,) E C.
We can then do the following symbolic inference:

o /
P ? P 4O
SPAR 7
PlQ —=— pQ "¢
F(Q)®C

Lemma A.6 yields that (¢/,¥ ® ¥yo) |= C, so by Lemma A.7 (¢/,¥) = F(Q) ® C.
Case CSCOPE. In this case the transition is

v > ((va)P)o - ((va)P')o

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

App-14 Johannes Borgstrom et al.

Let b be a sufficiently fresh name, and let p = (a b). By applying the substitution
and using a-conversion to avoid capture, this transition is equivalent to

7 > (b)(p- P)o) < (wh)((p- P')o)
This transition is inferred like
CSCOPE Ve (Pl — (p-Po b#a, ¥
¥ > (wb)((p- P)a) = (vb)((p- P')o)
We know that y#(va)P. Since y#(vb)(p - P) and b#y we have that y#p - P.
By induction we have that ¥ > (p- P)o -+ (p- P’)o has a matching transition
p-P :—C> p- P’ such that (¢/,7) = C.

We pick b#0, a, so b#a’ by Axiom 1.
We then do the following symbolic inference:

p-P N p- P
SSCOPE pe b#a
Wh)(p- P) —=— (vb)(p- P')
(vb)p-C
Since (¢/,¥) = C and b#0, ¥, y,subj(a) we also have that (¢/,¥) = (vb)p- C.
By a-converting the final transition we get that

va)(P) —og (va)(P")

Case COPEN. In this case the transition looks like
(va)Po M (vau{a})No Plo

Let b be a sufficiently fresh name, and let p = (a b). By applying the substitution
and using a-conversion to avoid capture, this transition is equivalent to

wb)((p- P)o) M (vau{b}) (p-N)a, (p-P)o
This transition is inferred like
M (va)(p-N)o ~
U (p-Po % ~(p -Po ben((p-N)o)
v () ((p- P)o) M (vau{b})(p-N)o (p- P)o b#a, Yo, M

We know that y#(va)P, z, x#0, (va)P. Since y#(vb)(p - P) and b#y we have that
y#p - P, and similarly we get that x#p - P

COPEN

By induction we have that ¥ > (p - P)o M@)o, (p - P')o has a matching

7 W) N)

transition p - P p - P’ such that (o]y := M],¥) =p-C.

We then infer:
P v (v N b P
SOPEN : _ b eb%(az} ~yN)
y (vau{b})p-N / ’
b(p-P) L P
) (p-P) LTI,

Since b#o,¥, M,y and we have that (¢/,¥) E p- C we also have that (¢/,¥)
(vb)p- C.

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

The Psi-Calculi Workbench App-15

By a-converting the final transition we get:

(va)P g (vau{a})N /
(va)C
Case CREP. In this case the inference looks like
PWDPUHPU -~ Plo
UplPo % Plo
If o # 7. We have that y#!P, bn(«), which gives us that y# P, | P, bn(«).
By induction we get that P | |P %/> P’ and that (¢o/,¥) = C.

We do the following derivation

CRE

plp % p
SREP ,C
P X P
c
Case CBRIN. Here the transition is derived by
UK~ Mo I#¥, Mo, Po
v > Mo(F). Po £, pg

We know that y#M (Z) . P, T, o and assume that T#o, M.
We let Q = P, and do the following derivation:

CBRIN

T, y#M, P y#z

ues
M(E).p L2
1y M

Since ¥ - K = Mo we get (o[y := K|,¥) =1+ y = M.
Case CBROUT. Here the transition is derived by

Uk Mo=<K

W > Mo No.Po 5N pg

SBRIN
P

cBrROUT

We know that y#ﬁﬁ .P,0. Welet Q = P, and do the following derivation:

x#M,N, P
SBROUT

MN.p 2N . p
1EFM<x

Case CBRMERGE. Here the transition is derived by

VU, > Po 9 P weup, > Qo H9
CBRMERGE ©¥% 7 7 ~® r Qo @
U > Po|Qo B, pr | Q'
Here F(Po) = (vbpe)¥p, and F(Qo) = (vbge)Wo. We know that

bpe#V¥, Po, Qo, boo and bo,#¥, Po, Qo, bp,, P. We assume that z#bp,.
By induction P % P and Q % Q" such that (o[z := K], ¥ ® ¥,) = Cp and
P

@
(olz :=K],? ®¥p,) |E Cqg and P’ = P"c and Q' = Q0.

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

App-16 Johannes Borgstrom et al.

We then have the following derivation.

p z?(y) p Q z?(y) Q//
SBRMERGE cr Ca
z?(y) 1 Z
P|Q P Q

(F(Q®CPINF(P)®Cq)

By Lemma A.6 we get F(P) = (vbp,)¥p with Ypo ~ ¥p, and F(Q) = (vbg,)%
with Yyo ~ ¥,,. By Lemma A.7 (o[z := K]|,¥) = F(Q) ® Cp and (o[z

F(P)® Cq.

Case CBRCOM. Here the transition is derived by

V@Y, > Po LN, p

V@ Up, > Qo ED, o

cBrCoMm N a#Qo
¥ > Po|Qo LYON, P Q'ly = N]
Here F(Po) = (vbpe)¥p, and F(Qo) = (vbos)Wo. We know that
bpoe#¥, Po,Qo,bgs and bo,#V¥, Po,Qo, bp,, P. We assume that T#P, bp,,.
By induction P ?(;ﬂ> P’ and Q %(i Q" such that (o[y .= K|,¥ @ ¥,) = Cp
P Q

and (ofy := K|, ¥ @ ¥p,) = Cg and P’ = P"¢ and Mo =N and Q' = Q"o.
We then have the following derivation.

p TOM 0 y2(@) Q"
SBRCOM - — a a#Q
P ‘ Q y (va)N P// | Q//[gzzN}

(F(RIQCPINF(P)&CQ)

By Lemma A.6 we get F(P) = (vbp,)¥p with Upo ~ Up, and F(Q) = (VEQU)LPQ
with Yo ~ ¥,. By Lemma A.7 (ofy := K|, ?) = F(Q) ® Cp and (ofy := K|, ¥) =
F(P)® Cq.
Case CBRCLOSE. Here the transition is derived by

v > pe KN, pr

CBRCLOSE ben(K)
v > (vb)Po — (vb)(va)P’

By induction P % P" such that Mo = N and P"o = P’ and (o[y := K], ¥) |=

C. We then do

P ! (va)M P

SBRCLOSE

(vb)P ﬁ) (vb)(va) P’

where (0,¥) = F2.C. O

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.

97

Session Types for Broadcasting

Dimitrios Kouzapas Ramiunas Gutkovas Simon J. Gay
University of Glasgow Uppsala University University of Glasgow
dimitrios.kouzapas@glasgow.ac.uk ramunas.gutkovas@it.uu.se simon.gay@glasgow.ac.uk

Up to now session types have been used under the assumptions of point to point communication,
to ensure the linearity of session endpoints, and reliable communication, to ensure send/receive du-
ality. In this paper we define a session type theory for broadcast communication semantics that by
definition do not assume point to point and reliable communication. Our session framework lies
on top of the parametric framework of broadcasting y-calculi, giving insights on developing session
types within a parametric framework. Our session type theory enjoys the properties of soundness and
safety. We further believe that the solutions proposed will eventually provide a deeper understanding
of how session types principles should be applied in the general case of communication semantics.

1 Introduction

Session types [5, 7, 6] allow communication protocols to be specified as types and verified by type-
checking. Up to now, session type systems have assumed reliable, point to point message passing com-
munication. Reliability is important to maintain send/receive duality, and point to point communication
is required to ensure session endpoint linearity.

In this paper we propose a session type system for unreliable broadcast communication. Developing
such a system was challenging for two reasons: (i) we needed to extend binary session types to handle
unreliability as well as extending the notion of session endpoint linearity, and (ii) the reactive control
flow of a broadcasting system drove us to consider typing patterns of communication interaction rather
than communication prefixes. The key ideas are (i) to break the symmetry between the s™ and s~ end-
points of channel s, allowing s (uniquely owned) to broadcast and gather, and s~ to be shared; (ii) to
implement (and type) the gather operation as an iterated receive. We retain the standard binary session
type constructors.

We use y-calculi [1] as the underlying process framework, and specifically we use the extension
of the y-calculi family with broadcast semantics [2]. y-calculi provide a parametric process calculus
framework for extending the semantics of the 7m-calculus with arbitrary data structures and logical as-
sertions. Expressing our work in the y-calculi framework allows us to avoid defining a new operational
semantics, instead defining the semantics of our broadcast session calculus by translation into a broadcast
y-calculus. Establishing a link between session types and y-calculi is therefore another contribution of
our work.

Intuition through Demonstration. We demonstrate the overall intuition by means of an example.
For the purpose of the demonstration we imply a set of semantics, which we believe are self explanatory.
Assume types S =!T;?T;end, S =?T;!T;end for some data type T, and typings st : S, s~ : S, a: (S),
v: T. The session type prefix !T means broadcast when used by s*, and single destination send when
used by s~. Dually, ?T means gather when used by s*, and single origin receive when used by s~ .

Session Initiation through broadcast, creating an arbitrary number of receiving endpoints:

as—.Py|ax.P | ax.P, | ax.Py — Py | Pi{s™ /x} | P{s~ /x} | ax.P;

Submitted to:

2 Session Types for Broadcasting

Due to unreliability, ax.P; did not initiate the session. We denote the initiating and accepting session
endpoint as s and s~ respectively.

Session Broadcast from the s* endpoint results in multiple s~ endpoints receiving:
sTHV Py | s™2(x); P | s~ 2(x)s Py | s~ 2(x)s Py — Po | PL{v/x} | Py{v/x} | s~ 2(x); Ps
Due to unreliability, a process (in the above reduction, process s~ ?(x); P;) might not receive a message.

In this case the session endpoint that belongs to process s~ ?(x); P; is considered broken, and later we
will introduce a recovery mechanism.

Gather: The next challenge is to achieve the sending of values from the s~ endpoints to the s™
endpoint. The gather prefix s*?(x); Py is translated (in Section 4) into a process that iteratively receives
messages from the s~ endpoints, non-deterministically stopping at some point and passing control to F.

S+?(x);P0 | Si!<vl>;P1 | S7!<V2>;P2 | S7!<V3>;P3 —* Pé |P1 ‘ S7!<V2>;P2 ‘ P
with Po{{V],V3}/x} — P(;.
After two reductions the messages from processes s~ !(v1); P; and s~ !{v3); P; had been received by the s™
endpoint. On the third reduction the st endpoint decided not to wait for more messages and proceeded
with its session non-deterministically, resulting in a broken sending endpoint (s~ !(v,); P»), which is pre-
dicted by the unreliability of the broadcast semantics. The received messages, v; and v,, were delivered
to P as a set.

Prefix Enumeration: The above semantics, although capturing broadcast session initiation and in-

teraction, still violate session type principles due to the unreliability of communication:

STV st 02); 0 s72(x);8~ 2(3);0 | s~ 2(x); s 2(y);0 —

STUV2)0 [s72();0] s72(x)is72(3):0 — 0[0]572(y);0

The first reduction produced a broken endpoint, s~ ?(x);s~ ?(y);0, while the second reduction reduces
the broken endpoint. This situation is not predicted by session type principles. To solve this problem we
introduce an enumeration on session prefixes:

(55 DM (57, 2) 1 va)s0 | (s7,1)2(x0)3 (s7,2)2(0):0 | (57, 1)2(x)3 (57,2)?(1): 0 —

(s5,2) w2): 0 (s7,2)2(3);:0 | (s7,1)2(x); (s7,2)2(3):0 — 0] 0| (s7,1)2(x); (s,2)?(»): 0
The intuitive semantics described in this example are encoded in the y-calculi framework. From this it
follows that all the operational semantics, typing system and theorems are stated using the y-calculus
framework.

Contributions. This paper is the first to propose session types as a type meta-theory for the y-
calculi. Applying session semantics in such a framework meets the ambition that session types can
effectively describe general communication semantics. A step further is the development of a session
type framework for broadcast communication semantics. It is the first time that session types escape
the assumptions of point to point communication and communication reliability. We also consider as
a contribution the fact that we use enumerated session prefixes in order to maintain consistency of the
session communication. We believe that this technique will be applied in future session type systems
that deal with unreliable and/or unpredictable communication semantics.

Related Work. Carbone er al. [4] extended binary session types with exceptions, allowing both
parties in a session to collaboratively handle a deviation from the standard protocol. Capecchi et al.
[3] generalized a similar approach to multi-party sessions. In contrast, our recovery processes allow a
broadcast sender or receiver to autonomously handle a failure of communication. Although it might be
possible to represent broadcasting in multi-party session type systems, by explicitly specifying separate
messages from a single source to a number of receivers, all such systems assume reliable communication
for every message.

D. Kouzapas, R. Gutkovas & S. J. Gay 3

2 Broadcast Session Calculus

We define an intuitive syntax for our calculus. The syntax below will be encoded in the y-calculi
framework so that it will inherit the operational semantics.
PR = as.P | ax.P | st)P | sTIvP | sT2x);P | sT2(x);P
| steLP | s&{;:P} | P<xiR | 0 | uX.P | X | P|P | (vn)P
Processes as™.P, ax.P are prefixed with session initiation operators that interact following the broad-
cast semantics. Processes s !(v); P, s~ !(v); P define two different sending patterns. For the s* endpoint
we have a broadcast send. For the s~ endpoint we have a unicast send. Processes st?(x); P, s~ 2(x); P
assume gather (i.e. the converse of broadcast send) and unicast receive, respectively. We allow selec-
tion and branching s™ & [; P, s~ &{/; : P;} only for broadcast semantics from the s* to the s~ endpoint.
Each process can carry a recovery process R with the operator P >t R. The process can proceed non-
deterministically to recovery if the session endpoint is broken due to the unreliability of the communica-
tion. Process R is carried along as process P reduces its prefixes. The rest of the processes are standard
7-calculus processes.
Structural congruence is defined over the abelian monoid defined by the parallel operator (|) and
the inactive process (0) and additionally satisfies the rules:
(vn)0=0 P|(vn)O=(vn)(P|Q)ifn¢ fn(P)

3 Broadcast y-Calculi

Here we define the parametric framework of y-calculi for broadcast. For a detailed description of y-
calculi we refer the reader to [1].

We fix a countably infinite set of names .4 ranged over by a,b,x. y-calculi are parameterised over
three nominal sets: terms (T ranged over by M,N, L), conditions (C ranged over by ¢), and assertions
(A ranged over by ¥); and operators: channel equivalence, broadcast output and input connectivity
<, =<, =:TxT — C, assertion composition ® : A x A — A, unit 1 € A, entailment relation - A x C, and
a substitution function substituting terms for names for each set. The channel equivalence is required to
be symmetric and transitive, and assertion composition forms abelian monoid with 1 as the unit element.

We do not require output and input connectivity be symmetric, i.e., ¥ = M < N is not equivalent to
Y |- N = M, however for technical reasons require that the names of L should be included in N and M
whenever ¥ = N < Lor W+ L = M. The agents are defined as follows

P,Q = M(AGN.P | MN.P | case@ :P[|...[@.:P, | (W) | (va)P | P|Q | 'P

where a bind into N and P. The assertions in the case and replicated agents are required to be guarded.
We abbreviate the case agent as case ¢ : P; we write 0 for (1), we also write a#X to intuitively mean that
name a does not occur freely in X.

We give a brief intuition behind the communication parameters: Agents unicast whenever their sub-
ject of their prefixes are channel equivalent, to give an example, ML.P and N(Aa)K.Q communicate
whenever ¥ - M <+ N. In contrast, broadcast communication is mediated by a broadcast channel, for
example, the agents MN.P and M;(Aa;)N;.P; (for i > 0) communicate if they can broadcast and receive
from the same channel ¥ - M < K and ¥ + K >~ M;.

In addition to the standard structural congruence laws of pi-calculus we define the following, with
the assumption that a # ¢, M, N, X and 7 is permutation of a sequence.

(va)case : P =y case : (Va)P case: P =y casem- (¢ : P)

MN.(va)P =y (va)MN.P M(AZ)N.(va)P =y (va)M(AZ)N.P

4 Session Types for Broadcasting

The following is a reduction context with two types of numbered holes (condition hole ﬂ and process
hole []) such that no two holes of the same type have the same number.

C = (case[];:C[@:P)|C | Tholli

The filling of the holes is defined in the following way: filling a process (resp. condition) hole with
a assertion guarded process (resp. condition) taken from the number position of a given sequence. We
denote filling of holes as C[(;)icr; (P;) jes; (Qk)kex] where the first component is for filling the condition
holes and the other two are for filling process holes.

We require that / is equal to the numbering set of condition holes and furthermore J and K are disjoint
and their union is equal to the numbering set of context for the process holes. We also require that every
J numbered hole is either in parallel with any of the K holes or is parallel to case where recursively a K
numbered hole can be found. When the numbering is understood we simply write C[Q; P; Q]

In the following we define reduction semantics of y-calculi, in addition to the standard labelled
transition semantics [1]. The two rules describe unicast and broadcast semantics. We identify agents up
to structural congruence, that is, we also assume the rule such that two agents reduce if thgir congruent
versions reduce. In the broadcast rule, if for some a € a, a € n(K), then b = a, otherwise b = a '\ n(N).
To simplify the presentation we abbreviate [](¥) as (]‘i‘[) and ®;¥; as ¥. We prove that reductions
correspond to silent and broadcast transitions.

N' =N[x:=L] and ¥ - M <> M and Vi. ¥ - ¢;
(va)(C[; R MARN.P,M'N'.Q] | (¥)) — (va)(P[x:=L] | Q| TIR| (¥))
WM< KandVi¥ - K = M/ and N![%; :=L;] = N and V. ¥ I ¢;
(va) (Cl@: R: MN.P.(MQDIN'.Q) | (¥)) — (vB)(P| L Q% :=L] | TIR| (¥)

Theorem 3.1. Let « be either a silent or broadcast output action. Then, 1> P &P iffP— P

Proof Sketch. The complicated direction is == . One needs to prove similar results for the other actions,
and then demonstrate that they in parallel have the right form. 0

4 Translation of Broadcast Calculus to Broadcast y-Calculus

The semantics for the broadcast session calculus are given as an instance of the y-calculi with broadcast
[2]. To achieve this effect we define a translation between the syntax of § 2 and a particular instance of
the y-calculi. Operational semantics are then inherited by the y-calculi framework.

We fix the set of labels .’ and ranged over by /,1;,/5 The following are the nominal sets

T = ANU{PU{(n" k), (n?i),(n? k,u),(n’,Lk),n-k | nke TANieNAle LApe{+,—}}
C = {nsnn -.<l2,t1 1 | 71,1, € T}U {true}
A = T—N

We define the ® operator (here defined as multiset union) and the |- relation:

Eng +g(n) 1£n € ;lomg; Ndom(g)
f(n if n € dom
(fog)n) = g(n) if n € dom(g)
undefined otherwise

(sP1,k, u) <> (s, j,u) iff ¥(k) = ¥P())
(€0 et

(sT,0) = (s7,k) iff W(k) =i

t

I_
',
l,
F true ‘Pl—a<—>a€</1/

e

D. Kouzapas, R. Gutkovas & S. J. Gay 5

It can be easily checked that the definition is indeed a broadcast y-calculus. We write Xjc/P as a short-
hand for case true : P, and P+ Q for case true: P [| true: Q

The translation is parameterised by p, which tracks the enumeration of session prefixes, represented
by multisets of asserted names (k). The replication in s*?(x,u’); P implements the iterative broadcast re-
ceive. We annotated the prefixes s*?(x,u');” P and uX”.P < R with b € {0, 1} to capture their translation
as a two step (0 and 1) iterative process. The recovery process can be chosen in a non-deterministic way
instead of a s~ prefix. Otherwise it is pushed in the continuation of the translation.

[as™.P>R]p = (vk)(@s™.[P o R] pugst i) lax.P < R]p = (Vk)(a(Ax)x.[P > R] pugs1y)
[s*1v); P R] putany = (S+7k)v~([[PNRﬂpu{s+;k} | (k)
[s~!(v); PNR]]pu{c &y = (7w ([P R pugs—ay | (kD) + [R]pugs—ay
[sT2(x,u); P|><1R]]pu{y+ o= (va)(uo [(n(Ax)x.((s*,k u)(Ay)y7(x-y).0)
+T-([[PNRﬂpu{s+:k} | (kD))
[s72(x,u)s' PRl pugeray = (v) (s, K, u) (Ay)y.na(u-y).0) + ©.([P > R] pigsr oy [=] | (k)
| 1(n(Ax)x.((s7,k,u)(Ay)y.a(x- y).0) + ([P R] puety | (K))))
[s~2(x); PRy ay = (7,) (Ax)x (IIPNR]][)U{A x| (&) + [R]pugs—ay
[[er 69Z;PIX]R]]pU{s*:k} = (S+7lvk) ([[PNR]]pU{ﬁ.k} ‘ q D [[(]kl)ﬂpu{sf':k} = qkl)
[s~&{li : Pitict > R pugs—ay = Zier (s~ Lis k) (A) % ([P > R] pugsy | (KD) + [R] pugs— 4y
[uX®.P<aR]p = (v n)(!(n(A) * [P R] puixny) | 7 .0)
[ux'.P>aR]p = (v n)([P>< R pupxeny | (n(2) % [P R]pugxny)
Xlpuixmy =7%.0 [0]p =0 [0<R], =0 [P[Ql,=[Plp[[Qlp [(vn)P]p=(vn)[P]p

The encoding respects the following desirable properties.

Lemma 4.1 (Encoding Properties). Let P be a session broadcast process.
L. [Plx:=v]] =[P][x:=V]
2. [P] — Q implies that for a session broadcast process P, Q =y [P'].

5 Broadcast Session Types

Broadcast session types syntax is identical to classic binary session type syntax (cf. [7]), with the excep-
tion that we do not allow session channel delegation. We assume the duality relation as defined in [7].
Note that we do not need to carry the session prefix enumeration in the session type system or semantics.
Session prefix enumeration is used operationaly only to avoid communication missmatch.

S u= WS | WS | e{li:Sitier | &{li:Si}tier | end | X | uX.SS
u == (8| [U]

Typing judgements are: ' P read as P is typed under environment I, with
A= 0] A-sP:S ' == 0 | T'a:(S) | T-s?:§5 | '"X:A

A environments map only session names to session types, while I' maps shared names to shared types,
session names to session types and process variables to A mappings.

The rules below define the broadcast session type system:

HP sP¢fn(P) Weak] s¢dom(I) TI['FR sP¢dom()

[-n:Utn:U [Name]
I's”:endF-P 't 0 [Inact] I'-0<R

[Recov]

6 Session Types for Broadcasting

I'a:(S) Fj—s*:S F}_P[Blnit} I'ka:(S) T-x:SEP
s :Skas™.pP I'-ax.P

I-sT:SEPx<R Thv:(S) s :SEPx<R Thv:(S) s ¢dom()

Cost:1(8);SFst(v); PR C-s™:1S);SEs71{(v); PR

Fost:Sx:(SYFP<R Thu:[(S)] s :Sx:(SYFP<R s ¢dom(T)

[BAcc]

[BSend] [USend]

/ b [URcv] — n — [BRev]
L-s7:2(8");S 57 2(x,u);” PraR Tos™ :2S):S ks 2x); PR
C-st:Sy PR kel s :S;FP<R s ¢dom(l
sT S P € [Sel] L sTiSFP 7s ¢ dom(I'") (Bra]
F'SJr:@{li:Si}iEI}_5+@lk§Pl><1R s :&{li:Si}ieﬂ—s &{liIPl'},'e[leR
P IbEPR st ¢ dom(T) Ndom(T Cost:S{s :SVig-P S=S;
1FP TP s ¢ dom(I') Ndom(I) (Pa] sT:8-{s™ : Si}ier S—=5 SRes|
LU P Py Lk (vs)P
Fa:(S)FP TUA-X:AFP sP¢dom(l
La:)P ghRes) Sb¢ () (Rec] TUA-X:AFX [RVar]
' (va)P FT'UAF ux®.p

Rule [Recov] types the recovery process. We expect no free session names in a recover process. Rules
[BInit], [BAcc], [BSend], [Usend], [BRcv], [BRcv], [Sel] and [Bra] type prefixes in the standard way, i.e. check
for object and the subject type match. Rule [URcv] types both binary instances of the unicast receive
prefix with the same type. We require that the recovery process is carried and typed inductively in the
structure of a process. A recovery process must not (re)use any session endpoints ([Recov]). Also we
require the s~ to be the only one in I". Multiple s~ endpoints are collected using the [Par] rule. The [Par]
rule expects that there is no duplicate s™ endpoint present inside a process. When restricting a session
name we check endpoint s and the set of endpoints s~ to have dual types. The rest of the rules are
standard.

5.1 Soundness and Safety

We use the standard notion of a context 4" on session types S with a single hole denoted as []. We
write €'[S] for filling a hole in C with the type S. We define the set of non-live sessions in a context as
dl)={s:S | st:8 e€Tand S=CI[S] with C # [|} and live [(T') =T\ d(T"). We say that I is well
typed iff Vs : S € [(T') then {s~ : S;}ie; C I(T) with S = S; or S =?U;S;.

Theorem 5.1 (Subject Congruence). If ' P with T" well typed and P = P/ then '+ P'.

Theorem 5.2 (Subject Reduction). If I' = P with I well typed, dom(p) C dom(I") and [P], — Q, then
there is P’ such that [P'], =¢ Q, I" = P’ and I well typed with either I" = d(I") UI(I") or I" =d (") \ {s™ :
SHUIT)or IV =d(T)U{s™ : STUL(T).

Definition 5.1 (Error Process). Let s-prefix processes to have the following form:

LsTHv); P 2.stoLpP 3. 5T2(x); P 4. [ier s 2(x): Py | T1jes Cils™2(x); Pj]

5. Tiers™ i) Py | Tlkek Pe | Tjes Cils™2(x); P)]

where [Tic; P; | [Tkek Pi | [1jes Cjls™?(x); P;] forms an s-redex.

6. [Ticr s~ &{lk : Pitkek; | Tljes Cjls™ &Ll : Pitrex]
with C;][] being a context that contains s~ prefixes.

A valid s-redex is a parallel composition of either s-prefixes 1 and 4, s-prefixes 2 and 6, or s-prefixes

3 and 5. Every other combination of s-prefixes is invalid. An error process is a process of the form
P = (vii)(R|Q) where R is an invalid s-redex and Q does not contain any other s-prefixes.

Theorem 5.3 (Type Safety). A well typed process will never reduce into an error process.

D. Kouzapas, R. Gutkovas & S. J. Gay 7

Proof. The proof is a direct consequence of the Subject Reduction Theorem (5.2) since error process are
not well typed. 0

6 Conclusion

We have defined a system of session types for a calculus based on unreliable broadcast communication.
This is the first time that session types have been generalised beyond reliable point-to-point communica-
tion. We defined the operational semantics of our calculus by translation into an instantiation of broadcast
y-calculi, and proved subject reduction and safety results. The use of the y-calculi framework means
that we can try to use its general theory of bisimulation for future work on reasoning about session-typed
broadcasting systems. The definition of a session typing system is also a new direction for the y-calculi
framework.

Acknowledgements Kouzapas and Gay are supported by the UK EPSRC project “From Data Types to
Session Types: A Basis for Concurrency and Distribution” (EP/K034413/1). This research was supported
by a Short-Term Scientific Mission grant from COST Action IC1201 (Behavioural Types for Reliable
Large-Scale Software Systems).

References

[1] Jesper Bengtson, Magnus Johansson, Joachim Parrow & Bjorn Victor (2009): Psi-calculi: Mobile Processes,
Nominal Data, and Logic. In: LICS, pp. 39-48, doi:10.1109/LICS.2009.20.

[2] Johannes Borgstrém, Shugin Huang, Magnus Johansson, Palle Raabjerg, Bjorn Victor, Johannes Aman Po-
hjola & Joachim Parrow (2011): Broadcast Psi-calculi with an Application to Wireless Protocols. In Gilles
Barthe, Alberto Pardo & Gerardo Schneider, editors: SEFM, Lecture Notes in Computer Science 7041,
Springer, pp. 74—89, doi:10.1007/978-3-642-24690-6_7.

[3] Sara Capecchi, Elena Giachino & Nobuko Yoshida (2014): Global Escape in Multiparty Sessions. Mathemat-
ical Structures in Computer Science. To appear.

[4] Marco Carbone, Kohei Honda & Nobuko Yoshida (2008): Structured Interactional Exceptions in Session
Types. In: CONCUR, LNCS 5201, Springer, pp. 402417, doi:10.1007/978-3-540-85361-9_32.

[5] Kohei Honda, Vasco T. Vasconcelos & Makoto Kubo (1998): Language Primitives and Type Disciplines
for Structured Communication-based Programming. In: ESOP’98, LNCS 1381, Springer, pp. 22-138,
doi:10.1007/BFb0053567.

[6] Kohei Honda, Nobuko Yoshida & Marco Carbone (2008): Multiparty Asynchronous Session Types. In:
POPL’08, ACM, pp. 273-284, doi:10.1145/1328897.1328472.

[7] Nobuko Yoshida & Vasco Thudichum Vasconcelos (2007): Language Primitives and Type Discipline for

Structured Communication-Based Programming Revisited: Two Systems for Higher-Order Session Communi-
cation. Electr. Notes Theor. Comput. Sci. 171(4), pp. 73-93, doi:10.1016/j.entcs.2007.02.056.

Paper 111

105

A SORTED SEMANTIC FRAMEWORK
FOR APPLIED PROCESS CALCULI

JOHANNES BORGSTROM, RAMUNAS GUTKOVAS, JOACHIM PARROW, BJORN VICTOR,
AND JOHANNES AMAN POHJOLA

ABSTRACT. Applied process calculi include advanced programming constructs such as
type systems, communication with pattern matching, encryption primitives, concurrent
constraints, nondeterminism, process creation, and dynamic connection topologies. Several
such formalisms, e.g. the applied pi calculus, are extensions of the the pi-calculus; a growing
number is geared towards particular applications or computational paradigms.

Our goal is a unified framework to represent different process calculi and notions of
computation. To this end, we extend our previous work on psi-calculi with novel abstract
patterns and pattern matching, and add sorts to the data term language, giving sufficient
criteria for subject reduction to hold. Our framework can accommodate several existing
process calculi; the resulting transition systems are isomorphic to the originals up to
strong bisimulation. We also demonstrate different notions of computation on data terms,
including cryptographic primitives and a lambda-calculus with erratic choice. Finally, we
prove standard congruence and structural properties of bisimulation; substantial parts of
the proof have been machine-checked using Nominal Isabelle.

1. INTRODUCTION

There is today a growing number of high-level constructs in the area of concurrency. Ex-
amples include type systems, communication with pattern matching, encryption primitives,
concurrent constraints, nondeterminism, and dynamic connection topologies. Combinations
of such constructs are included in a variety of application oriented process calculi. For each
such calculus its internal consistency, in terms of congruence results and algebraic laws,
must be established independently. Our aim is a framework where many such calculi fit
and where such results are derived once and for all, eliminating the need for individual
proofs about each calculus.

Our effort in this direction is the framework of psi-calculi [BJPV11], which provides
machine-checked proofs that important meta-theoretical properties, such as compositional-
ity of bisimulation, hold in all instances of the framework. We claim that the theoretical
development is more robust than that of other calculi of comparable complexity, since we
use a structural operational semantics given by a single inductive definition, and since we
have checked most results in the theorem prover Nominal Isabelle [Urb08].

LOGICAL METHODS @© J Borgstrém, R Gutkovas, J Parrow, B Victor, and J Aman Pohjola
IN COMPUTER SCIENCE DOI:10.2168/LMCS-??? Creative Commons

2 J BORGSTROM, R GUTKOVAS, J PARROW, B VICTOR, AND J AMAN POHJOLA

In this paper we introduce a novel generalization of pattern matching, decoupled from
the definition of substitution, and introduce sorts for data terms and names. The gener-
alized pattern matching is a new contribution that holds general interest; here it allows
us to directly capture computation on data in advanced process calculi, without elaborate
encodings. We evaluate our framework by providing instances that correspond to standard
calculi, and use several different notions of computation. We define strong criteria for a
psi-calculus to represent another process calculus, meaning that they are for all practical
purposes one and the same. Representation is stronger than the standard encoding cor-
respondences e.g. by Gorla[Gorl0], which define criteria for one language to encode the
behaviour of another. The representations that we provide of other calculi advance our
previous work, where we had to resort to nontrivial encodings with unclear formal corre-
spondence to the standard calculi.

1.1. Background: Psi-calculi. In the following we assume the reader to be acquainted
with the basic ideas of process algebras based on the pi-calculus, and explain psi-calculi
by a few simple examples. Full definitions can be found in the references above, and for a
reader not acquainted with our work we recommend the first few sections of [BJPV11] for
an introduction.

A psi-calculus has a notion of data terms, ranged over by K, L, M, N, and we write
M N .P to represent an agent sending the term N along the channel M (which is also a
data term), continuing as the agent P. We write K(A\Z)X .(Q to represent an agent that
can input along the channel K, receiving some object matching the pattern X, where z
are the variables bound by the prefix. These two agents can interact under two conditions.
First, the two channels must be channel equivalent, as defined by the channel equivalence
predicate M <> K. Second, N must match the pattern X.

Formally, a transition is of kind ¥ > P % P’, meaning that in an environ-
ment represented by the assertion ¥ the agent P can do an action o to become P’
An assertion embodies a collection of facts used to infer conditions such as the chan-
nel equivalence predicate <». To continue the example, if N = X[z := L] we will have

Ui>MN.P|KM\)X.Q = P|Q[#:= L] when additionally ¥ M ¢ K, i.e. when
the assertion ¥ entails that M and K represent the same channel. In this way we may
introduce a parametrised equational theory over a data structure for channels. Conditions,

ranged over by ¢, can be tested in the if construct: we have that ¥ > if ¢ then P %5 P’

when ¥ - p and ¥ > P -%» P’. In order to represent concurrent constraints and local
knowledge, assertions can be used as agents: (¥) stands for an agent that asserts ¥ to
its environment. Assertions may contain names and these can be scoped; for example, in
P | (va)((?) | Q) the agent @ uses all entailments provided by ¥, while P only uses those
that do not contain the name a.

Assertions and conditions can, in general, form any logical theory. Also the data terms
can be drawn from an arbitrary set. One of our major contributions has been to pinpoint the
precise requirements on the data terms and logic for a calculus to be useful in the sense that
the natural formulation of bisimulation satisfies the expected algebraic laws (see Section 2).
It turns out that it is necessary to view the terms and logics as nominal [Pit03]. This means
that there is a distinguished set of names, and for each term a well defined notion of support,
intuitively corresponding to the names occurring in the term. Functions and relations
must be equivariant, meaning that they treat all names equally. In addition, we impose

A SORTED SEMANTIC FRAMEWORK FOR APPLIED PROCESS CALCULI 3

straight-forward requirements on the combination of assertions, on channel equivalence,
and on substitution. Our requirements are quite general, and therefore our framework
accommodates a wide variety of applied process calculi.

1.2. Extension: Generalized pattern matching. In our original definition of psi-calculi
([BJPV11], called “the original psi-calculi” below), patterns are just terms and pattern
matching is defined by substitution in the “usual way: the output object N matches the
pattern X with binders z iff N = X[z := L]. In order to increase the generality we now
introduce a function MATCH which takes a term IV, a sequence ~0f names = and a pattern X,
returning a set of sequences of terms; the intuition is that if L is in MATCH(N, Z, X) then
N matches the pattern X by instantiating = to L. The receiving agent K (Az)X .Q then
continues as Q[:= L].

As an example we consider a term algebra with two function symbols: enc of arity
three and dec of arity two. Here enc(N,n,k) means encrypting N with the key k and
a random nonce n and and dec(N, k) represents symmetric key decryption, discarding
the nonce. Suppose an agent sends an encryption, as in M enc(N,n,k).P. If we allow
all terms to act as patterns, a receiving agent can use enc(z,y,z) as a pattern, as in
c(Ax,y, z)enc(x,y, z) . Q, and in this way decompose the encryption and extract the message
and key. Using the encryption function as a destructor in this way is clearly not the intention
of a cryptographic model. With the new general form of pattern matching, we can simply
limit the patterns to not bind names in terms at key position. Together with the separation
between patterns and terms, this allows to directly represent dialects of the spi-calculus as
in Examples 7?7 and ?7 in Section 5.

Moreover, the generalization makes it possible to safely use rewrite rules such as
dec(enc(M,N,K),K) — M. In the psi-calculi framework such evaluation is not a primi-
tive concept, but it can be part of the substitution function, with the idea that with each
substitution all data terms are normalized according to rewrite rules. Such evaluating sub-
stitutions are dangerous for two reasons. First, in the original psi-calculi they can introduce
ill-formed input prefixes. The input prefix M (A\z)N is well-formed when Z C n(N), i.e. the
names must all occur in N; a rewrite of the well-formed M (A\y)dec(enc(N,y,k),k).P
to M(A\y)N . P yields an ill-formed agent when y does not appear in N. Such ill-formed
agents could also arise from input transitions in some original psi-calculi; with the current
generalization preservation of well-formedness is guaranteed.

Second, in the original psi-calculi there is a requirement that a substitution of L forZ in
M must yield a term containing all names in L whenever & C n(M). The reason is explained
at length in [BJPV11]; briefly put, without this requirement the scope extension law is
unsound. If rewrites such as dec(enc(M, N, K), K) — M are performed by substitutions
this requirement is not fulfilled, since a substitution may then erase the names in N and
K. However, a closer examination reveals that this requirement is only necessary for some
uses of substitution. In the transition

MOF)N.p ENE=L pra . I
the non-erasing criterion is important for the substitution above the arrow (N[z := E])
but unimportant for the substitution after the arrow (P[z := L]). In the present paper,

we replace the former of these uses by the MATCH function, where a similar non-erasing

4 J BORGSTROM, R GUTKOVAS, J PARROW, B VICTOR, AND J AMAN POHJOLA

criterion applies. All other substitutions may safely use arbitrary rewrites, even erasing
ones.

In this paper, we address these three issues by introducing explicit notions of patterns,
pattern variables and matching. This allows us to control precisely which parts of mes-
sages can be bound by pattern-matching and how messages can be deconstructed. It also
ensures that well-formedness is preserved by transitions and admits computations such as
dec(enc(M, N, K), K) — M in substitutions.

1.3. Extension: Sorting. Applied process calculi often make use of a sort system. The
applied pi-calculus [AF01] has a name sort and a data sort; terms of name sort must not
appear as subterms of terms of data sort. It also makes a distinction between input-bound
variables (which may be substituted) and restriction-bound names (which may not). The
pattern-matching spi-calculus [HJ06] uses a sort of patterns and a sort of implementable
terms; every implementable term can also be used as a pattern.

To represent such calculi, we admit a user-defined sort system on names, terms and
patterns. Substitutions are only well-defined if they conform to the sorting discipline. To
specify which terms can be used as channels, and which values can be received on them, we
use compatibility predicates on the sorts of the subject and the object in input and output
prefixes. The conditions for preservation of sorting by transitions (subject reduction) are
very weak, allowing for great flexibility when defining instances.

The restriction to well-sorted substitution also allows to avoid “junk”: terms that exist
solely to make substitutions total. A prime example is representing the polyadic pi-calculus
as a psi-calculus. The terms that can be transmitted between agents are tuples of names.
Since a tuple is a term it can be substituted for a name, even if that name is already part
of a tuple. The result is that the terms must admit nested tuples of names, which do not
occur in the original calculus. Such anomalies disappear when introducing an appropriate
sort system; cf. Section 4.1.

1.4. Related work. Pattern-matching is in common use in functional programming lan-
guages. Scala admits pattern-matching of objects [EOWO07] using a method unapply that
turns the receiving object into a matchable value (e.g. a tuple). F# admits the definition
of pattern cases independently of the type that they should match [SNMO07], facilitating
interaction with third-party and foreign-language code. Turning to message-passing sys-
tems, LINDA [Gel85] uses pattern-matching when receiving from a tuple space. Similarly,
in Erlang, message reception from a mailbox is guarded by a pattern.

These notions of patterns, with or without computation, are easily supported by the
MATCH construct. However, the standard first-match policy needs to be accomodated by
extending the pattern language, as is usual for core calculi [Kri09].

Pattern matching in process calculi. The pattern-matching spi-calculus [HJ06] limits which
variables may be binding in a pattern in order to match encrypted messages without bind-
ing unknown keys (cf. Example ??7). The Kell calculus [SS05] also uses pattern languages
equipped with a match function. However, in the Kell calculus the channels are single names
and appear as part of the pattern in the input prefix, patterns may match multiple commu-
nications simultaneously (& la join calculus), and first-order pattern variables only match
names (not composite messages) making forwarding and partial decomposition impossible.

A SORTED SEMANTIC FRAMEWORK FOR APPLIED PROCESS CALCULI 5

The applied pi-calculus [AF01] models deterministic computation by using for data
language a term algebra modulo an equational logic. ProVerif [Blall] is a specialised tool
for security protocol verification in an extension of applied pi, including a pattern matching
construct. Its implementation allows pattern matching of tagged tuples modulo a user-
defined rewrite system; this is strictly less general than the psi-calculus pattern matching
described in this paper (cf. Section 5.1).

Other tools for process calculi extended with datatypes include mCRL2 [CGK'13] for
ACP, which allows higher order sorted term algebras and equational logic, and PAT3 [LSD11]
which includes a CSP# [SLDC09] module where actions built over types like booleans and
integers are extended with Cf-like programs. In all these cases, the pattern matching is
defined by substitution in the usual way.

A comparison of expressiveness to calculi with non-binary (e.g., join-calculus [FG96])
or bidirectional (e.g., dyadic interaction terms [Hon93] or the concurrent pattern calcu-
lus [GWGJ10]) communication primitives would be interesting. We here inherit positive
results from the pi calculus, such as the encoding of the join-calculus.

Sort systems for mobile processes. Sorts for the pi-calculus were first described by Mil-
ner [Mil93], and were developed in order to remove nonsensical processes using polyadic
communication, similar to the motivation for the present work.

In contrast, Hiittel’s dependently typed psi-calculi [Hiit11] is intended for a more fine-
grained control of the behaviour of processes. Typed psi-calculi are capable of capturing a
wide range of earlier sort systems for pi-like calculi formulated as instances of psi-calculi.
However, we focus on an earlier step: the creation of a calculus that is as close to the
modeller’s intent as possible. Indeed, sorted psi-calculi can be seen as a foundation for
typed psi-calculi: we give a formal account of the separation between variables and names
used in typed psi-calculi, and substantiate that Hiittel’s claim that “the set of well-[sorted]
terms is closed under well-[sorted] substitutions, which suffices” does not cause problems for
the meta-theory of the language. Typed psi-caluli are also less general than sorted psi-calculi
in some ways: the term language of typed psi-calculi is required to be a free term algebra
(without name binders); it uses only the standard notions of substitution and matching, and
does not admit any computation on terms. Furthermore, we prove meta-theoretical results
including congruence results and structural equivalence laws for well-sorted bisimulation,
and the preservation of well-sortedness under structural equivalence; no such results exist
for typed psi-calculi.

The state-of-the art report [HV13] of WG1 of the BETTY project (EU COST Action
IC1201) is a comprehensive guide to behavioural types for process calculi.

Fournet et al. [FGMO05] add type-checking for a general authentication logic to a process
calculus with destructor matching; there the authentication logic is only used to specify
program correctness, and does not influence the operational semantics in any way.

1.5. Results and outline. In Section 2 we define psi-calculi with the above extensions and
prove preservation of well-formedness. In Section 3 we prove the usual algebraic properties
of bisimilarity. The proof is in two steps: a machine-checked proof for single-sorted calculi,
followed by a manual proof based on the translation of a multi-sorted psi calculus instance
to a corresponding single-sorted instance. We demonstrate the expressiveness of our gener-
alization in Section 4 where we directly represent standard calculi, and in Section 5 where

6 J BORGSTROM, R GUTKOVAS, J PARROW, B VICTOR, AND J AMAN POHJOLA

we give examples of calculi with advanced data structures and computations on them, even
nondeterministic reductions.

2. DEFINITIONS

Psi-calculi are based on nominal data types. A nominal data type is similar to a
traditional data type, but can also contain binders and identify alpha-variants of terms.
Formally, the only requirements are related to the treatment of the atomic symbols called
names as explained below. In this paper, we consider sorted nominal datatypes, where
names and elements of the data type may have different sorts.

We assume a set of sorts S. Given a countable set of sorts for names Sy C S, we
assume countably infinite pair-wise disjoint sets of atomic names N, where s € Syr. The
set of all names, N' = U N, is ranged over by a,b,...,z,y,2. We write 7 for a tuple of
names Ii,...,ZT, and similarly for other tuples, and Z also stands for the set of names
{z1,...,z,} if used where a set is expected. We let 7 range over permutations of tuples of
names: 7 - T is a tuple of names of the same length as T, containing the same names with
the same multiplicities.

A sorted nominal set [Pit03, GP01] is a set equipped with name swapping functions
written (a b), for any sort s and names a, b € N, i.e. name swappings must respect sorting.
An intuition is that for any member T it holds that (a b) - T is T' with a replaced by b and b
replaced by a. The support of a term, written n(7"), is intuitively the set of names affected
by name swappings on T. This definition of support coincides with the usual definition of
free names for abstract syntax trees that may contain binders. We write a#71 for a & n(T),
and extend this to finite sets and tuples by conjunction. A function f is equivariant if
(ab)-(f(T)) = f((ad)-T) always holds; a relation R is equivariant if x R y implies that
(ab)-x R (ab)-y holds; and a constant symbol C' is equivariant if (a b)-C = C. A nominal
data type is a nominal set together with some equivariant functions on it, for instance a
substitution function.

2.1. Original Psi-calculi Parameters. Sorted psi-calculi is an extension of the original
psi-calculi framework [BJPV11], which are given by three nominal datatypes (data terms,
conditions and assertions) as discussed in the introduction.

Definition 2.1 (Original psi-calculus parameters). The psi-calculus parameters from the
original psi-calculus are the following nominal data types: (data) terms M, N € T, condi-
tions ¢ € C, and assertions ¥ € A; equipped with the following four equivariant operators:
channel equivalence <> : T x T — C, assertion composition ® : A x A — A, the unit
assertion 1 € A, and the entailment relation - C A x C.

The binary functions <» and ® and the relation - above will be used in infix form.
Two assertions are said to be equivalent, written ¥ ~ ¥’ if they entail the same conditions,
i.e. for all ¢ we have that ¥ F ¢ < W' I .

We impose certain requisites on the sets and operators. In brief, channel equivalence
must be symmetric and transitive modulo entailment, the assertions with (®,1) must form
an abelian monoid modulo ~, and ® must be compositional w.r.t. ~ (i.e. ¥; ~ ¥y —
U W ~ ¥ ®W¥). For details see [BJPV11].

A SORTED SEMANTIC FRAMEWORK FOR APPLIED PROCESS CALCULI 7

2.2. New parameters for generalized pattern-matching. To the parameters of the
original psi-calculi we add patterns X, Y, that are used in input prefixes; a function VARS
which yields the possible combinations of binding names in the pattern, and a pattern-
matching function MATCH, which is used when the input takes place. Intuitively, an input
pattern (AZ)X matches a message N if there are L € MATCH(N, Z, X); the receiving agent
then continues after substituting L for Z. If MATCH(N,Z, X) = 0 then (A\Z)X does not
match N; if [MATCH(N,z, X)| > 1 then one of the matches will be non-deterministically
chosen. Below, we use “variable” for names that can be bound in a pattern.

Definition 2.2 (Psi-calculus parameters for pattern-matching). The psi-calculus parame-
ters for pattern-matching include the nominal data type X of (input) patterns, ranged over
by X,Y, and the two equivariant operators

MATCH : T X N*x X — Pg,(T*) Pattern matching
VARS : X = Phn(Pan(N)) Pattern variables

The VARS operator gives the possible (finite) sets of names in a pattern which are bound
by an input prefix. For example, an input prefix with a pairing pattern (z,y) may bind
both = and y, only one of them, or none, so VARS((z,y)) = {{z,y},{z}, {y},{}}. This
way, we can let the input prefix c¢(Ax)(z,y) only match pairs where the second argument is
the name y. To model a calculus where input patterns cannot be selective in this way, we
may instead define VARS({x,y)) = {{x,y}}. This ensures that input prefixes that use the
pattern (x,y) must be of the form M (\z,y)(x,y), where both x and y are bound. Another
use for VARS is to exclude the binding of terms in certain positions, such as the keys of
cryptographic messages (cf. Example 77).

Requisites on VARS and MATCH are given below in Definition 2.5. Note that the four
data types T, C, A and X are not required to be disjoint. In most of the examples in this
paper the patterns X is a subset of the terms T.

2.3. New parameters for sorting. To the parameters defined above we add a sorting
function and four sort compatibility predicates.

Definition 2.3 (Psi-calculus parameters for sorting). The psi-calculus parameters for sort-
ing include the sorting function SORT : NWTWX — S, and the four compatibility predicates

x C SxS§ can be used to receive,
x C &§xS§ can be used to send,
<~ C S§xS8 can be substituted by,
S, C S can be bound by name restriction.

The SORT operator gives the sort of a name, term or pattern; on names we require that
SORT(a) = s iff a € Ns. The sort compatibility predicates are used to restrict where terms
and names of certain sorts may appear in processes. Terms of sort s can be used to send
values of sort t if s & t. Dually, a term of sort s can be used to receive with a pattern of sort ¢
if s o< t. A name a can be used in a restriction (va) if SORT(a) € S,. If SORT(a) < SORT(M)
we can substitute the term M for the name a. In most of our examples, < is a subset of
the equality relation. These predicates can be chosen freely, although the set of well-formed
substitutions depends on <, as detailed in Definition 2.4 below.

8 J BORGSTROM, R GUTKOVAS, J PARROW, B VICTOR, AND J AMAN POHJOLA

2.4. Substitution and Matching. We require that each datatype is equipped with an
equivariant substitution function, which intuitively substitutes terms for names. The req-
uisites on substitution differ from the original psi-calculi as indicated in the Introduction.
Substitutions must preserve or refine sorts, and bound pattern variables must not be re-
moved by substitutions.

We define a subsorting preorder < on S as s; < so if s can be used as a channel or
message whenever sy can be: formally s; < s9 iff Vi € S.(so xt = s1 X t)A(s2 Xt = s1 X
t)A(t x s9 =t xs1)A(t X sy =txX s1). This relation compares the sorts of terms, and
so does not have any formal relationship to < (which relates the sort of a name to the sort
of a term).

Definition 2.4 (Requisites on substitution). If @ is a sequence of distinct names and N
is an equally long sequence of terms such that SORT(a;) < SORT(N;) for all i, we say that
[a = N | is a substitution. Substitutions are ranged over by o.

For each data type among T, A, C we define substitution on elements T' of that data
type as follows: we require that T'o is an element of the same data type, and that if (a b) is
a (bijective) name swapping such that b#7,d then T[a := N] = ((@ b) - T)[b := N] (alpha-
renaming of substituted variables). For terms we additionally require that SORT(Mo) <
SORT(M).

For substitution on patterns X € X, we require that Xo € X, and if 7 € VARS(X)
and T#o then SORT(X o) < SORT(X) and Z € VARS(X o) and alpha-renaming of substituted
variables (as above) holds for o and X.

Intuitively, the requirements on substitutions on patterns ensure that a substitution
on a pattern with binders ((A\Z)X)o with € VARS(X) and Z#oc yields a pattern (AZ)Y
with € VARS(Y'). As an example, consider the pair patterns discussed above with X =
{{z,y) : = # y} and VARS((z,y)) = {{z,y}}. We can let (z,y)o = (x,y) when z,y#o.
Since VARS((z,y)) = {{z,y}} the pattern (x,y) in a well-formed agent will always occur
directly under the binder (Az,y), i.e. in (Az,y)(x,y), and here a substitution for x or y will
have no effect. It therefore does not matter what e.g. (x,y)[x := M] is, since it will never
occur in derivations of transitions of well-formed agents. We could think of substitutions as
partial functions which are undefined in such cases; formally, since substitutions are total,
the result of this substitution can be assigned an arbitrary value.

In the original psi-calculi there is no requirement that substitutions on terms preserve
names used as pattern variables (i.e., n(No) 2O n(N) \ n(0)). For this reason, the origi-
nal psi semantics does not always preserve the well-formedness of agents (an input prefix
M(Az)N . P is well-formed when C n(NV)), although this is assumed by the operational se-
mantics [BJPV11]. In pattern-matching psi-calculi, the operational semantics does preserve
well-formedness, as shown below in Theorem 2.11.)

Matching must be invariant under renaming of pattern variables, and the substitution
resulting from a match must not contain any names that are not from the matched term or
the pattern:

Definition 2.5 (Requisites on pattern matching). For the function MATCH we require that
if z € vARs(X) are distinct and N € MATCH(M, Z, X) then it must hold that [z := N] is a

substitution, that n(N) C n(M) U (n(X) \ z), and that for all name swappings (z y) with
y#X we have N € MATCH(M,y, (T y) - X) (alpha-renaming of matching).

A SORTED SEMANTIC FRAMEWORK FOR APPLIED PROCESS CALCULI 9

In many process calculi, and also in the symbolic semantics of psi [JVP12], the input
construct binds a single variable. This is a trivial instance of pattern matching where the
pattern is a single bound variable, matching any term.

Example 2.6. Given values for the other requisites, we can take X = A with VARS(a) =
{a}, meaning that the pattern variable must always occur bound, and MATCH(M, a,a) =
{M?} if SORT(a) < SORT(M). On patterns we define substitution as ac = a when a#o.

When all substitutions on terms preserve names, we can recover the pattern matching
of the original psi-calculi. Such psi-calculi also enjoy well-formedness preservation (Theo-
rem 2.11).

Theorem 2.7. Suppose (T,C,A) is an original psi-calculus [BJPV11] where n(No) 2D
n(N)\ n(o) for all N, 0. Let X = T and VARS(X) = P(n(X)) and MATCH(M,Z, X) =
{(L:M=X[Z:=L]} andS =Sy =8, = {s} and x = x = < = {(s,5)} and SORT :
NUTWX — {s}; then (T,X,C,A) is a sorted psi-calculus.

Proof. Straightforward; this result has been checked in Isabelle. L]
2.5. Agents.
Definition 2.8 (Agents). The agents, ranged over by P, @, ..., are of the following forms.
M N.P Output
M(\z)X.P Input
case p1: P1 [-+ [pn: P, Case
(va)P Restriction
P|lQ Parallel
P Replication
() Assertion

In the Input all names in Z bind their occurrences in both X and P, and in the
Restriction a binds in P. Substitution on agents is defined inductively on their structure,
using the substitution function of each datatype based on syntactic position, avoiding name
capture.

The output prefix M N.P sends N on a channel that is equivalent to M. Dually,
M (A7) X.P receives a message matching the pattern X from a channel equivalent to M. A
non-deterministic case statement case p1: Py [| -+« [] ¢n : P, executes one of the branches
P; where the corresponding condition ¢; holds, discarding the other branches. Restriction
(va) P scopes the name a in P; the scope of a may be extruded if P communicates a data
term containing a. A parallel composition P | @) denotes P and () running in parallel;
they may proceed independently or communicate. A replication !P models an unbounded
number of copies of the process P. The assertion (%) contributes ¥ to its environment. We
often write if ¢ then P for case ¢ : P, and nothing or 0 for the empty case statement
case.

In comparison to [BJPV11] we additionally restrict the syntax of well-formed agents by
imposing requirements on sorts: the subjects and objects of prefixes must have compatible
sorts, and restrictions may only bind names of a sort in S,.

10 J BORGSTROM, R GUTKOVAS, J PARROW, B VICTOR, AND J AMAN POHJOLA

Definition 2.9. An assertion is guarded if it is a subterm of an Input or Output. An agent
is well-formed if, for all its subterms,

(1) in a replication !P there are no unguarded assertions in P; and
() in case 1 : Py [| -+ [] ¢n : P, there is no unguarded assertion in any P;; and
(3) in an Output M N.P we require that SORT(M) X SORT(N); and
(4) in an Input M (A7) X.P we require that
(a) T € VARS(X) is a tuple of distinct names and
(b) SORT(M) x SORT(X); and
(5) in a Restriction (va)P we require that SORT(a) € S,.

Requirements 3, 4b and 5 are new for sorted psi-calculi.

2.6. Frames and transitions. Each agent affects other agents that are in parallel with
it via its frame, which may be thought of as the collection of all top-level assertions of the
agent. A frame F is an assertion with local names, written (Vb)LU where b is a sequence of
names that bind into the assertion ¥. We use F, G to range over frames, and identify alpha-
equivalent frames. We overload ® to frame composition defined by (vb1)¥1®(vbe)¥s =
(I/blbg)(W1®!p2) where b:#gé,WQ and vice versa. We write Y®F to mean (re)¥®F, and
(ve)((vb)W) for (vch)W.

Intuitively a condition is entailed by a frame if it is entailed by the assertion and does
not contain any names bound by the frame, and two frames are equivalent if they entail
the same conditions. Formally, we define F' - ¢ to mean that there exists an alpha variant
(vb)¥ of F such that b#¢ and ¥ F p. We also define F' ~ G to mean that for all ¢ it holds
that FF - if GF .

Definition 2.10 (Frames and Transitions). The frame F(P) of an agent P is defined
inductively as follows:

F((¥) = (ve)w F(P|Q) = F(P)oF(Q) _ F(wh)P) = (vb)F(P)
FM(MZ)N.P)=F(M N.P)=F(caseg: P)=F(!P)=1

The actions ranged over by «, 3 are of the following three kinds: Output M (va) N
where a C n(N), Input M N, and Silent 7. Here we refer to M as the subject and N as the
object. We define bn(M (va) N) = @, and bn(a) = 0 if o is an input or 7. We also define
n(7) = 0 and n(a) = n(M) Un(N) for the input and output actions. We write M (N) for
M (ve) N.

A transition is written ¥ > P -3 P’ meaning that in the environment ¥ the well-
formed agent P can do an « to become P’. The transitions are defined inductively in

Table 1. We write P -2 P’ without an assertion to mean 1 > P -2 P’

The operational semantics, defined in Table 1, is the same as for the original psi-calculi,
except for the use of MATCH in rule IN. We identify alpha-equivalent agents and transitions
(see [BJPV11] for details). In a transition the names in bn(a) bind into both the action
object and the derivative, therefore bn(a) is in the support of a but not in the support of
the transition. This means that the bound names can be chosen fresh, substituting each
occurrence in both the action and the derivative.

As shown in the introduction, well-formedness is not preserved by transitions in the
original psi-calculi. However, in sorted psi-calculi the usual well-formedness preservation
result holds.

A SORTED SEMANTIC FRAMEWORK FOR APPLIED PROCESS CALCULI 11

WIEM e K L € MATCH(N, 7, X) o UEMSK
N — UT — —
v > MOPX.P EY ply=1I) v MNP 5N p
VoW > P LCON, pyoow s @ BN o wewpevgF M o K
CoM a#@

v PlQ — (va)(P'Q)

VoW > P 5 P e A I N A
PAR bn(a)#Q CASE —
> PlQ 5 PQ ¥ >casep: P = P
> PP P VP -5 P
REP SCOPE b#Ha, ¥
ve'Pp % P v > (vb)P = (vb)P'
o v p MLON, p b#a, W, M
PEN M (vau{b}) N ; ben(N)

v (vh)p ———*>— P

Symmetric versions of COM and PAR are elided. In the rule COM we assume that
F(P) = (vbp)¥p and F(Q) = (vbg)¥q where bp is fresh for all of ¥,bg,Q, M and P, and
that by is correspondingly fresh. In the rule PAR we assume that F(Q) = (vbg)¥o where

bq is fresh for ¥, P and a. In OPEN the expression rva U {b} means the sequence a with b
inserted anywhere.

Table 1: Operational semantics.

Theorem 2.11 (Preservation of well-formedness). If P is well-formed, then
(1) Po is well-formed; and
(2) if ¥ > P % P’ then P’ is well-formed.

Proof. The first part is by induction on P. The output prefix case uses the sort preserva-
tion property of substitution on terms (Definition 2.4). The interesting case is input prefix
M(A\T)X.Q: assume that @ is well-formed, that € VARS(X), that SORT(M) x SORT(X)
and that z#o0. By induction Qo is well-formed. By sort preservation we get SORT(Mo) <
SORT(M), so SORT(M o) x SORT(X). By preservation of patterns by non-capturing substi-
tutions we have that # € VARS(X) and SORT(X ¢) < SORT(X), so SORT(M o) x SORT(X o).

The second part is by induction on the transition rules, using part 1 in the IN rule. []

3. META-THEORY

As usual, the labelled operational semantics gives rise to notions of labelled bisimilarity.
Similarly to the applied pi-calculus [AF01], the standard definition of bisimilarity needs to be
adapted to take assertions into account. In this section, we show that both strong and weak
bisimilarity satisfy the expected structural congruence laws and the standard congruence
properties of name-passing process calculi. We first prove these results for calculi with a
single sort (Theorem 3.12) supported by Nominal Isabelle, and then extend the result to all

12 J BORGSTROM, R GUTKOVAS, J PARROW, B VICTOR, AND J AMAN POHJOLA

sorted psi-caluli (Theorem 3.16) by a manual proof. We start by recollecting the required
definitions, beginning with the definition of strong labelled bisimulation on well-formed
agents by Bengtson et al. [BJPV11], to which we refer for examples and more intuitions.

Definition 3.1 (Strong bisimulation). A strong bisimulation R is a ternary relation on
assertions and pairs of agents such that R(¥, P, Q) implies the following four statements.

(1) Static equivalence: Y@F(P) ~ VRF(Q).

(2) Symmetry: R(¥,Q, P).

(3) Extension with arbitrary assertion: for all ¥’ it holds that R(¥®@V¥’, P, Q).

(4) Simulation: for all a, P’ such that bn(a)#¥,Q and ¥ > P = P/,

there exists Q' such that ¥ > Q % Q' and R(¥, P',Q").

We define bisimilarity P ~y @ to mean that there is a bisimulation R such that R(¥, P, @),
and write ~ for ~q.

Above, (1) corresponds to the capability of a parallel observer to test the truth of a
condition using case, while (3) models an observer taking a step and adding a new assertion
¥’ to the current environment.

We close strong bisimulation under substitutions to obtain a congruence in the usual
way:

Definition 3.2 (Strong bisimulation congruence). P ~y () means that for all sequences &
of substitutions it holds that Po ~y Qo. We write P ~ @ for P ~q1 Q.

To illustrate the definitions of bisimulation and bisimulation congruence, we here prove
a result about the case statement, to be used in Section 4.

Lemma 3.3 (Flatten Case). Suppose that there exists a condition T € C such that W+ To
for all ¥ and substitution sequences o. Let R = case T : (case ¢ : P) [| ¢ : Q and
R’ = case ¢ : Pﬂd) Q; then R~ R'.

Proof. We let I :=Jy p{(¥, P, P)} be the identity relation, and

S = U {(¥, case o7 : (case $: P) | ¢: Q,case o1 :case 3: P ¢: Q) :
U.P.0,5.5 e € CAVW € AU+ o1}

We prove that 7 := S US~! UZ is a bisimulation, where S~! := {(¥, Q, P) : (¥, P,Q) € S}.
Then, 7(1,Ro, R') for all o, so R ~ R’ by the definition of ~. The proof that T is a
bisimulation is straightforward:

Static equivalence: The frame of a case agent is always 1, hence static equivalence
follows by reflexivity of ~.

Symmetry: Follows by definition of 7.

Extension with arbitrary assertion: Trivial by the choice of candidate relation,
since the ¥ in § and 7 are universally quantified.

Simulation: Trivially, any process P simulates itself. Fix (,R,R') € S, such that
R = case @1 : (case ¢ : P)|]¢ Q and R’ = case § : Pﬂqﬁ Q. Here
W I o7 follows by definition of S. Since T includes both S and S~!, we must follow
transitions from both R and R’.

A SORTED SEMANTIC FRAMEWORK FOR APPLIED PROCESS CALCULI 13

e A transition from R via P; can be derived as follows:

v>P - P Uk

CASE —
Ui>casep: P - P Ukor

CASE —
¥ > case p7: (case p: P) [¢:Q = P!

Then R’ can simulate this with the following derivation:
v P 5 P Uk
Ui>casep:Pop:Q % P

By reflexivity of ~y, we get that P/ ~y P.
e A transition from R’ via Q; can be derived as follows:

Ve QS QL W
WDcase@:ﬁﬂgg:@ X Q!
The process R can simulate this with the following derivation:
> Q- Q) Uk
W > case o7 : (case 3: P) [6:Q - Q)

By reflexivity of ~y we get Q) ~y Q.
e Symmetrically, R’ can simulate transitions derived from R via Q;, and R can
simulate transitions derived from R’ via P;. O

CASE

CASE

CASE

Psi-calculi are also equipped with a notion of weak bisimilarity (=) where 7-transitions
cannot be observed, introduced by Bengtson et al. [JBPV10]. We here restate its definition,
but refer to the original publication for examples and more motivation.

The definition of weak transitions is standard.

Definition 3.4 (Weak transitions). ¥ > P = P’ means that either P = P’ or there
exists P” such that ¥ > P — P” and ¥ > P = P,

For weak bisimulation we use static implication (rather than static equivalence) to
compare the frames of the process pair under consideration.

Definition 3.5 (Static implication). P statically implies @ in the environmental assertion
¥, written P <y @, if
Vo. PQF(P)F o = URQF(Q)F ¢

Definition 3.6 (Weak bisimulation). A weak bisimulation R is a ternary relation between
assertions and pairs of agents such that R(¥, P, Q) implies all of

(1) Weak static implication: for all ¥’ there exist @', Q" such that

U Q = Q AN VW' > Q = Q" N P<yQ AN RV, PQ")

(2) Symmetry: R(¥,Q, P)

(3) Extension of arbitrary assertion: for all ¥’ it holds that R(Z®¥’, P, Q)

(4) Weak simulation: for all P/,

(a) if ¥ > P 5 P'then 3Q". ¥ > Q = Q' AR(¥,P,Q’); and

14 J BORGSTROM, R GUTKOVAS, J PARROW, B VICTOR, AND J AMAN POHJOLA

(b) for all ¥/, o # 7 such that bn(a)#Y, @, there exist Q’, Q”, Q" such that

V> Q = Q N VB>Q 5 Q A UV >Q = Q"
AN P<y@ AN R@eP' P Q")

We define P =~ @ to mean that there exists a weak bisimulation R such that R(1, P, Q)
and we write P 2y () when there exists a weak bisimulation R such that R(¥, P, Q).

Above, (1) allows @ to take T-transitions before and after enabling at least those con-
ditions that hold in the frame of P, as per Definition 3.5. Moreover, when testing these
conditions, the observer may also add an assertion ¥’ to the environment. In (4b), the
observer may test the validity of conditions when matching a visible transition, and may
also add an assertion as above.

To obtain a congruence from weak bisimulation, we must require that every 7-transition
are simulated by a weak transition containing at least one 7-transition.

Definition 3.7. A weak T-bisimulation R is a ternary relation between assertions and pairs
of agents such that R(¥, P, Q) implies all conditions of a weak bisimulation (Definition 3.6)
with 4a replaced by

(4a') if o > P 5 P then 3Q",Q". ¥ > Q > QAU > Q = Q"ARW,P,Q").
We then let P =~y @ mean that for all sequences o of substitutions there is a weak 7-
bisimulation R such that R(¥, P, Qc). We write P = Q for P =7 Q.

Lemma 3.8 (Comparing bisimulations). For all relations R C A x P x P,
e if R is a strong bisimulation then R is a weak T-bisimulation.
e if R is a weak T-bisimulation then R is a weak bisimulation.

Corollary 3.9 (Comparing congruences). If P ~y Q then P ~y Q.

We seek to establish the following standard congruence and structural properties prop-
erties of strong and weak bisimulation:

Definition 3.10 (Congruence relation). A relation R C A x P x P, where (¥, P,Q) € R
is written P Ry @, is a congruence iff for all ¥, Ry is an equivalence relation, and the
following hold:

CPar PRy @ = (P|R)Rw (Q|R)

CRES a#V NP Ry Q = (va)P Ry (va)Q

CBANG PRypQ = I!PRy!Q

CCASE Vi.Pi Ry Qi —> case[]3:P Rycase] 5:Q
COvuT PRyQ = MN.PRyMN.Q

CIN PRy Q = MOMI)X.PRyMONT)X.Q

A relation that satisfies all of the above implications except CIN is called an open
congruence if it also satisfies the following:

CIN-2 (VL. P[#:=L| Ry QF :=L]) = MO\D)X.P Ry M(AD)X.Q

A relation that does not satisfy rule CCASE but is otherwise an open congruence is
called a weak open congruence.

A SORTED SEMANTIC FRAMEWORK FOR APPLIED PROCESS CALCULI 15

Definition 3.11 (Structural congruence). Structural congruence, denoted = € P x P, is
the smallest relation such that {(1,P,Q) : P = Q} is a congruence relation, and that
satisfies the following clauses whenever a#Q,z, M, N, X, ¢:

case [| ¢: (?a\)jj = (va)case[: P P = P|'P
MOAD)X . (va)P = (va)M(A\T)X.P PI(Q|R) = (P|Q)|R
M N .(va)P = (va)M N.P PlQ = Q|P
Q| (va)P = (va)(@|P) P = Plo
(vb)(va)P = (va)(vb)P (va)0 = 0

A relation R C P x P is complete with respect to structual congruence if = C R.

Our goal is to establish that for all ¥ the relations ~y, ~g, ~g and ~y are complete
with respect to structural congruence; that ~ is an open congruence; that ~ is a congruence;
that ~ is a weak open congruence; and that ~ is a congruence.

3.1. Trivially sorted calculi. A trivially sorted psi calculus is one where < = x = X =
S xS and S, =S8, i.e., the sorts do not affect how terms are used in communications and
substitutions. For technical reasons we here first establish the expected algebraic properties
of bisimilarity and its induced congruence in trivially sorted psi-calculi, and then investigate
how these results are lifted to arbitrary sorted calculi.

Theorem 3.12. For trivially sorted psi-calculi, ~g, ~g, ~g and ~g are complete wrt.
structural congruence for all ¥, ~ is an open congruence, ~ is a congruence, =~ is a weak
open congruence, and /= iS a COngruence.

These results have all been machine-checked in Isabelle [AP14]. The proof scripts are
adapted from Bengtson’s formalisation of psi calculi [Benl0]. They constitute 30579 lines
of Isabelle code; Bengtson’s code is 28414 lines. The same technical lemmas hold and the
proof scripts are essentially identical, save for the input cases of inductive proofs and a more
detailed treatment of structural congruence. This represents no more than three days of
work, with the bulk of the effort going towards proving a crucial technical lemma stating
that transitions do not invent new names with the new matching construct. As indicated
these proof scripts apply only to trivially sorted calculi, meaning that the only extension
to our previous formulation is in the input rule which now uses MATCH. We have also
machine-checked Theorem 2.11 (preservation of well-formedness) in this setting.

The restriction to trivially sorted calculi is a consequence of technicalities in Nominal
Isabelle: it requires every name sort to be declared individually, and there are no facilities
to reason parametrically over the set of name sorts. There is also a discrepancy in that our
definitions in Section 2 considers only well-sorted alpha-renamings, while the mechanisation
works with a single sort of names and thus allows for ill-sorted alpha-renamings. This is only
a technicality, since every use of alpha-renaming in the formal proofs is to ensure that the
bound names in patterns and substitutions avoid other bound names—thus, whenever we
may work with an ill-sorted renaming, there would be a well-sorted renaming that suffices
for the task.

16 J BORGSTROM, R GUTKOVAS, J PARROW, B VICTOR, AND J AMAN POHJOLA

3.2. Arbitrary sorted psi-calculi. We here extend the results of Theorem 3.12 to ar-
bitrary sorted psi-calculi. The idea is to introduce an explicit error element 1, resulting
from application of ill-sorted substitutions. For technical reasons we must also include one
extra condition fail (in order to ensure the compositionality of ®) and in the patterns we
need different error elements with different support (in order to ensure the preservation of
pattern variables under substitution).

Let I = (T7,X1,Cr,Ayq,...) be a sorted psi-calculus. We construct a trivially sorted
psi-calculus U(I) with one extra sort, error, and constant symbols L and fail, with empty
support of sort error, where 1 is not a channel, never entailed, matches nothing and entails
nothing but fail.

The parameters of U(I) are defined by U(I) = (T; U {L},X; U{(L,S) : S Cgsn N},
CrU{Ll, fail}, A;U{L}). Wedefine¥® 1 = L@W¥ = | for all ¥, and otherwise ® is as in I.
MATCH is the same in U(I) as in I, plus MATCH(M, Z, (L, S)) = (). Channel equivalence <>
isthesamein U(I)asinI,plus M <> L =1 M=1<1=1.For¥ # Lwelet¥F ¢
inU(I)if U F ¢in I, and we let L - ¢ iff ¢ = fail. Substitution is then defined in U([)
as follows:

Tla:= N]|; if SORT(a;) <1 SORT(NV;) and
_ N; # 1 for all i, and T # (L, S)
Tla:= Ny = (L,S\a) if T'=(L1,95) is a pattern
(L,Uvars(T)) otherwise, if T is a pattern
1 otherwise

Lemma 3.13. U(I) as defined above is a sorted psi-calculus, and any well-formed process
P in I is well-formed in U(I).

Proof. A straight-forward application of the definitions. []

Processes in I have the same transitions in U(I).

Lemma 3.14. If P is well-formed in I and ¥ # 1, then ¥ > P % P’ in U(I) iff
vr>P 2 Pinl.

Proof. By induction on the derivation of the transitions. The cases IN, OuT, CASE and
CoM use the fact that MATCH, - and <+ are the same in [and U(I), and that substitutions
in I have the same effect when considered as substitutions in U(T). O

Bisimulation in U(I) coincides with bisimulation in I for processes in 1.

Lemma 3.15. Assume that P and Q are well-formed processes in I. Then P ~g Q in I
iff Py Q inU(I), and P 2~y Q in I iff P~y Q in U(I).

Proof. We show only the proof for the strong case; the weak case is similar. Let R be
a bisimulation in U(I). Then {(¥,P',Q') € R : ¥ # L A P',Q" well-formed in I} is a
bisimulation in I: the proof is by coinduction, using Lemma 3.14 and Theorem 2.11 in the
simulation case.

Symmetrically, let R’ be a bisimulation in I, and let R/, = {(L,P,Q) : I¥.(¥,P,Q) €
R'}. Then R'UR/ is a bisimulation in U(I): simulation steps from R’ lead back to R’
by Lemma 3.14. From R’ there are no transitions, since L entails no channel equivalence
clauses. The other parts of Definition 3.1 are straightforward; when applying clause 3 with
W' = L the resulting triple is in R/, .]

A SORTED SEMANTIC FRAMEWORK FOR APPLIED PROCESS CALCULI 17

With Lemma 3.15, we can lift the congruence and the structural congruence results for
trivially sorted psi-calculi to arbitrary sorted calculi:

Theorem 3.16. All clauses of Theorem 3.12 are valid in all sorted psi-calculi.

Proof. Fix a sorted psi-calculus I. For strong and weak bisimilarity, we show only the proofs
for commutativity and congruence of the parallel operator. The other cases are analogous.

For commutativity of parallel composition, let P and @) be well-formed in [and ¥ # 1.
By Theorem 3.12, P | Q ~y Q| P holds in U(I). By Definition 3.1, (P | Q)c ~¢ (Q | P)o
in U(I) for all . By Theorem 2.11, when ¢ is well-sorted then (P | Q)c and (Q | P)o are
well-formed. By Lemma 3.15, (P|Q)o ~¢ (Q|P)o in I for all well-formed 6. P|Q ~y Q|P
follows by definition. P | Q ~¢ Q | P follows by Corollary 3.9.

For congruence of parallel composition for bisimulation, assume P ~y () holds in I.
By Lemma 3.15, P <~y @ holds in U(I). Theorem 3.12 thus yields P | R ~y Q | R in U({),
and Lemma 3.15 yields the same in I. The same argument shows that P =~y @ implies
P|R~y Q|Rin I

This approach does not work for proving congruence properties for ~ or ~, since the
closure of bisimilarity under well-sorted substitutions does not imply its closure under ill-
sorted substitutions: consider a sorted psi-calculus I such that 0 ~ (1). This equation does
not hold in U(I): if o is ill-sorted then 1o = L, but 0 ~ (L) does not hold since only L
entails fail. Instead, we have performed direct proofs: they are identical, line by line, to
the proofs in the trivially sorted case (cf. [Benl0]).

L]

4. REPRESENTING STANDARD PROCESS CALCULI

We here consider psi-calculi corresponding to some variants of popular process calculi.
One main point of our work is that we can represent other calculi directly as psi-calculi,
without elaborate coding schemes. In the original psi-calculi we could in this way directly
represent the monadic pi-calculus, but for the other calculi presented below a corresponding
unsorted psi-calculus would contain terms with no counterpart in the represented calculus,
as explained in Section 1.3. We establish that our formulations enjoy a strong operational
correspondence with the original calculus, under trivial mappings that merely specialise the
original concrete syntax (e.g., the pi-calculus prefix a(x) maps to a(Az)x in psi).

Because of the simplicity of the mapping and the strength of the correspondence we
say that psi-calculi represent other process calculi, in contrast to encoding them. A repre-
sentation is significantly stronger than standard correspondences, such as the approach to
encodability proposed by Gorla [Gorl0]. Gorla’s criteria aim to capture the property that
one language can encode the behaviour of another using some (possibly elaborate) proto-
col, while our criteria aim to capture the property that two languages are for all practical
purposes one and the same.

Definition 4.1. A psi-calculus is a representation of a process calculus with processes
P € P and labelled transition system — C P x A x P, if there exist an equivariant map [-]
from P to psi-calculus processes and an equivariant relation &= between A and psi-calculus
actions that preserves the kind (input, output, tau) and subject of actions, such that

(1) [] is a simple homomorphism, i.e., for each process constructor f of P there is an
equivariant psi-calculus context C' such that [f(P1,..., P,)] = C[[Pi],- .-, [P.]]-

18 J BORGSTROM, R GUTKOVAS, J PARROW, B VICTOR, AND J AMAN POHJOLA

(2) [] is a strong operational correspondence (modulo structural equivalence), i.e.,
(a) whenever P L5 Q then [P] = P’ such that [Q] = P’ and 3 = a; and
(b) whenever [P] -2 P’ then P -2 @ such that [Q] = P’ and 8 = .
A representation is complete if it additionally satisfies

(3) [] is surjective modulo strong bisimulation congruence, i.e., for each psi process P
there is @ € P such that P ~ [Q].

Briefly, the differences to Gorla’s criteria are as follows:

e In Gorla’s approach, the contexts that process constructors are translated to may
fix certain names, or translate one name into several names, in accordance with a
renaming policy. Our approach admits no such special treatment of names.

e Gorla requires the translation function to be name invariant up-to the renaming
policy. We require equivariance, which corresponds to name invariance up-to the
policy of renaming every name to itself.

e Gorla uses three criteria for semantic correspondence: weak operational correspon-
dence modulo some equivalence for silent transitions, that the translation does not
introduce divergence, and that reducibility to a success process in the source and
target processes coincides. Clearly strong operational correspondence modulo struc-
tural equivalence implies all of these criteria.

e Our surjectivity requirement implies that the target language cannot express more
behaviours than the source language, something that is not considered in Gorla’s
approach.

Our use of structural equivalence in the operational correspondence allows to admit
representations of calculi that use a structural congruence rule to define a labelled semantics
(cf. Section 4.4).

Below, for simplicity we let the assertions be the singleton {1} in all examples, with
1+ Tand 11 L. We use the standard notion of simultaneous substitution, and let
MATCH(M, Z, X) = () where not otherwise defined. Proofs of lemmas and theorems can be
found in Appendix A.

4.1. Unsorted Polyadic pi-calculus. In the polyadic pi-calculus [Mil93] the only values
that can be transmitted between agents are tuples of names. Tuples cannot be nested. The
processes are defined as follows

PQ == 0| z(y).P | Z(y.P | [a=bP | veP | P | P|Q | P+Q

An input binds a tuple of distinct names and can only communicate with an output of equal
length, resulting in a simultaneous substitution of all names. In the unsorted polyadic pi-
calculus there are no further requirements on agents, in particular a(x).P | a(y, z).Q is
a valid agent. This agent has no communication action since the lengths of the tuples
mismatch.

A SORTED SEMANTIC FRAMEWORK FOR APPLIED PROCESS CALCULI 19

We now present the psi-calculus PPI, which we will show represents the polyadic pi-
calculus.

PPI
T =NU{(a):a Cs, N} S = {chan, tup}
C={Ttuf{a=0b|abeN} Sy = {chan}
X = {(a) : a Can N A @ distinct} SORT(a) = chan
<> = identity on names SORT(({a)) = tup
lFa=a S, = {chan}
VARS((a)) = {a} ~< = {(chan, chan)}
MATCH((a),z,(y)) = {m-a} if |a| = |yl and T =7y X = x = {(chan, tup)}

This being our first substantial example, we give a detailed explanation of the new instance
parameters. Patterns X are finite vectors of distinct names. The sorts S are chan for
channels and tup for tuples (of names); the only sort of names Sy is channels, as is the
sort of restricted names. The only sort of substitutions (<) are channels for channels; the
only sort of sending (X) and receiving () is tuples over channels. In an input prefix all
names in the tuple must be bound (VARS) and a vector of names a matches a pattern y if
the lengths match and all names in the pattern are bound (in some arbitrary order).

As an example the agent a(Az,y){(x,y).a (y) .0 is well-formed, since chan x tup and
chan X tup, with VARS((z,y)) = {{z,y}}. This demonstrates that PPI disallows anomalies
such as nested tuples but does not enforce a sorting discipline to guarantee that names
communicate tuples of the same length.

To prove that PPT is a psi-calculus, we need to check the requisites on the parameters
(data types and operations) defined above. Clearly the parameters are all equivariant, since
no names appear free in their definitions. For the original psi-calculus parameters (Defini-
tion 2.1), the requisites are symmetry and transitivity of channel equivalence, which hold
because of the same properties of (entailment of) name equality, and abelian monoid laws
and compositionality for assertion composition, which trivially hold since A = {1}. The
standard notion of simultaneous substitution of names for names preserves sorts, and also
satisfies the other requirements of Definition 2.4. To check the requisites on pattern match-
ing (Definition 2.5), it is easy to see that MATCH generates only well-sorted substitutions
(of names for names), and that n(b) = n((a)) whenever b € MATCH((a), %, (7)) Finally, for
all name swappings (z y) we have MATCH((a), z, (2)) = MATCH((a), ¥, (Z ¥) - (2)).

PPI is a direct representation of the polyadic pi-calculus as presented by Sangiorgi [San93]
(with replication instead of process constants).

Definition 4.2 (Polyadic Pi-Calculus to PPI).
Let -] be the function that maps the polyadic pi-calculus to PPI processes as follows. The
function [-] is homomorphic for 0, restriction, replication and parallel composition, and is
otherwise defined as follows:

[P+Q] = caseT:[P][T:[Q]

[[x =y|P] = casex=y:[P]

[2(9).P] = z(\y){).[P]

[z(g).P] = z(@).[F]
Similarly, we also translate the actions of polyadic pi-calculus. Here each action corresponds
to a set of psi actions, since in a pi-calculus output label “the order of the bound names is

20 J BORGSTROM, R GUTKOVAS, J PARROW, B VICTOR, AND J AMAN POHJOLA

immaterial” [SWO01, p. 129], which is not the case in psi-calculi.

[vpz2)] = {ZWwy) () : ¥ ==y}
[z(2)] = {z (2)}
[l = {7}
Although the binders in bound output actions are ordered in psi-calculi, they can be
arbitrarily reordered.

Lemma 4.3. If ¥ > P m Q then ¥ > P M Q

Proof. By induction on the derivation of the transition. The base case is trivial. In the
OPEN rule, we use the induction hypothesis to reorder the bound names in the premise as
desired; we can then add the opened name at any position in the action in the conclusion
of the rule. The other induction cases are trivial.]

We can now show that [-] is a strong operational correspondence.
Theorem 4.4. If P and Q are polyadic pi-calculus processes, then:
(1) If P 25 P then for all o € [B] we have [P] 2+ [P]
(2) If [P] = P" then P Ly P such that o € [8] and [P'] = P"
Proof. By induction on the length of derivation of the transitions, using Lemma 4.3 in the

OPEN case of (1). L]

We have now shown that the polyadic pi-calculus can be embedded in PPI, with an
embedding [-] that is a strong operational correspondence.

In order to investigate surjectivity properties of the embedding [-], we also define a
translation P in the other direction.

Definition 4.5 (PPi to Polyadic Pi-Calculus). The translation - is homomorphic for 0,
restriction, replication and parallel composition, and is otherwise defined as follows:

1 = o

case o1 : P[] ...[on: Pn <plzﬁ+'-~+<pn:Pn
SEP = #(5)P

TGP =).

where condition-guarded processes are translated as

~

x=y:P = [z=y]P
T:P = P.
Above, note that the order of the binders in input prefixes is ignored. To show that

the reverse translation is an inverse of [-] modulo bisimilarity, we need to prove that their
order does not matter.

Lemma 4.6. In PPI, z(\y)(2).P ~ z(\2)(Z).P.

Proof. Straightforward from the definitions of MATCH and substitution on patterns. []
We now show that the embeddings - and [-] are inverses, modulo bisimilarity.

Theorem 4.7. If P is a PPI process, then P ~ [P].

Proof. By structural induction on P. The input case uses Lemma 4.6. For case agents, we
use an inner induction on the number of branches, with Lemma 3.3 applied in the induction
case. L]

A SORTED SEMANTIC FRAMEWORK FOR APPLIED PROCESS CALCULI 21

Let the relation ~¢ be an early congruence of polyadic pi-calculus agents as defined in
[San93]. Then we have

Corollary 4.8. If P is a polyadic pi-calculus process, then P ~¢ [P].
We also have

Corollary 4.9. If P and Q are polyadic pi-calculus process, then P ~¢ Q (i.e., P and Q
are early labelled congruent) iff [P] ~ [Q].

Proof. Follows from the strong operational correspondence of Theorem 4.4, and [-] com-
muting with substitutions. L]

This shows that every PPI process corresponds to a polyadic pi-calculus process,
modulo strong bisimulation congruence, since - is surjective on the bisimulation classes
of polyadic pi-calculus, and the inverse of [-]. In other words, PPI is a representation.

Theorem 4.10. PPI is a complete representation of the polyadic pi-calculus.

Proof. We let g = « iff a € [f].
(1) [] is a simple homomorphism by definition.
(2) [] is a strong operational correspondence by Theorem 4.4.
(3) [-] is surjective modulo strong bisimulation congruence by Theorem 4.7. O

4.2. LINDA [Gel85]. A process calculus with LINDA-like pattern matching can easily be
obtained from the PPI calculus, by modifying the possible binding names in patterns.

LINDA
Everything as in PPI except:

X = {(a) : a Can N}
VARS((a)) = P(a)
MATCH((a), Z, () = {¢: (a) = (y)[7 :=]}

Here, any subset of the names occurring in a pattern may be bound in the input prefix;
this allows to only receive messages with particular values at certain positions (sometimes
called “structured names” [Gel85]) We also do not require patterns to be linear, i.e., the
same variable may occur more than once in a pattern, and the pattern only matches a tuple
if each occurrence of the variable corresponds to the same name in the tuple.

As an example, a(\z)(z,z,2).P | @(c,c,2).Q — Plr := ¢] | Q while the agent
a(Ax)(x,x,2).P | alc,d, z).Q has no 7 transition.

To prove that LINDA is a psi-calculus, the interesting case is the preservation of
variables of substitution on patterns in Definition 2.4, i.e., that & € VARS((y)) and T#o
implies # € VARS((y)o). This holds because standard substitution preserves names and
structure: if x € y and x#o0, then there is 2z such that (y)o = (Z) and = € Z.

22 J BORGSTROM, R GUTKOVAS, J PARROW, B VICTOR, AND J AMAN POHJOLA

4.3. Sorted polyadic pi-calculus. Milner’s classic sorting [Mil93] regime for the polyadic
pi-calculus ensures that pattern matching in inputs always succeeds, by enforcing that the
length of the pattern is the same as the length of the received tuple. This is achieved as
follows. Milner assumes a countable set of subject sorts S ascribed to names, and a partial
function ob : S — S*, assigning a sequence of object sorts to each sort in its domain. The
intuition is that if ¢ has sort s then any communication along a must be a tuple of sort
ob(s). An agent is well-sorted if for any input prefix a(by,...b,) it holds that a has some

sort s where ob(s) is the sequence of sorts of by,...,b, and similarly for output prefixes.
SORTEDPPI
Everything as in PPI except:
Sy=8,=85 S§=95"
<~={(s,s):s €8S} X =x = {(s,0b(s)) : s € S}
SORT({ai,...,an)) = SORT(ay),...,SORT(ay,)
MATCH((a), Z, (y)) = {m-a} if T = -y and SORT({a)) = SORT((y))

We need to show that MATCH always generates well-sorted substitutions: this holds since
whenever ¢ € MATCH((a), Z, (y)) we have that [:=¢] = [r -y := 7 - a] and SORT(y;) =
SORT(a;) for all 4.

As an example, let SORT(a) = s with ob(s) = t1,ty and SORT(z) = t; with ob(t1) = t2
and SORT(y) = ty then the agent a(A\x,y)(x,y).T y.0 is well-formed, since s x ¢,y and
t1 X to, with VARS(z,y) = {{z,y}}.

A formal comparison with the system in [Mil93] is complicated by the fact that Milner
uses so called concretions and abstractions as agents. Restricting attention to agents in
the normal sense we have the following result, where [-] is the function from the previous
example.

Theorem 4.11. P is well-sorted iff [P] is well-formed.

Proof. A trivial induction over the structure of P, observing that the requirements are
identical.]

Theorem 4.12. SORTEDPPI is a complete representation of the sorted polyadic pi-
calculus.

Proof. The operational correspondence in Theorem 4.4 still holds when restricted to well-
formed agents. The inverse translation - maps well-formed agents to well-sorted processes,
so the surjectivity result in Theorem 4.7 still applies. []

4.4. Polyadic synchronisation pi-calculus. Carbone and Maffeis [CMO03] explore the
so called pi-calculus with polyadic synchronisation, “wr, which can be thought of as a dual
to the polyadic pi-calculus. Here action subjects are tuples of names, while the objects
transmitted are just single names. It is demonstrated that this allows a gradual enabling of
communication by opening the scope of names in a subject, results in simple representations
of localities and cryptography, and gives a strictly greater expressiveness than standard pi-
calculus. The processes of ¢7 is defined as follows.

P,Q = 0 | Ziai.Pi | P|Q | (I/a)P | P
a == a(x) | a(b)

A SORTED SEMANTIC FRAMEWORK FOR APPLIED PROCESS CALCULI 23

In order to represent €7, only minor modifications to the representation of the polyadic
pi-calculus in Section 4.1 are necessary. To allow tuples in subject position but not in object
position, we invert the relations & and «. Moreover, °T does not have name matching
conditions a = b, since they can be encoded (see [CMO03]).

PSPI
Everything as in PPI except:
C={T,1} G bis Tifa=b, and L otherwise
X=N VARS(z) = {{z}}
X = x = {(tup, chan)} MATCH(a, z,z) = {a}

For convenience we will consider a dialect of ®r without the 7 prefix. This has no cost
in terms of expressiveness since the 7 prefix can be encoded using a communication over a
restricted fresh name. The ®m calculus also uses an operational semantics with late input,

unlike psi-calculi. In order to yield a representation, we consider an early version —¢ of
the semantics, obtained by turning bound input actions into free input actions at top-level.

P i(y); P/ P #{c) P/ P Z{ve) P/ P ; P/
EIN - our ———— BOurT —M8M8 TAU ——
p Zze P'{z/y} P #{c) e P! P Z(ve) e p! p Tye p!

Definition 4.13 (Polyadic synchronisation pi-calculus to PSPI). [-] is homomorphic for 0,
restriction, replication and parallel composition, and is otherwise defined as follows:
[Yiai.P;] = case T;: [a;.F]
[z(y).-P] = (@) (A\y)y.[P]

[Z(y).P] = (@) y.[P]

We translate bound and free output, free input, and tau actions in the following way.

[#{ve)] = () (ve)c
5] = (@)
[Zy] = @)y
[l = 7
The transition system in ®7 is given up to structural congruence, i.e., for all a we have
4 = (=%=).

T
z

Definition 4.14. = is the least congruence satisfying alpha conversion, the commutative
monoidal laws with respect to both (|,0) and (+,0) and the following axioms®:

(vz)P | Q= (vx)(P | Q) if z#Q (va)P = P if x#P

The proofs of operational correspondence are similar to the polyadic pi-calculus case.
We have the following initial results for late input actions.

Lemma 4.15.
(1) If P W), P’ then for all z, [P] D2 pr where P = [Py := z].
(2) If [P] D2 prthen for all y#P, P W), P where [P'{z/y}] = P".
IThe original definition of = [CM03] includes an additional axiom [z = z]P = P allowing to contract

successful matches, but this axiom is omitted here since the “7 calculus does not include the match construct.
Unusually, the definition of = does not admit commuting restrictions, i.e., (va)(vy)P # (vy)(vx)P.

24 J BORGSTROM, R GUTKOVAS, J PARROW, B VICTOR, AND J AMAN POHJOLA

Proof. By induction on the derivation of the transitions. L]

This in turn yields the desired operational correpondence.

Theorem 4.16.
(1) If P -25¢ P" and o # Z(y), then [P] Iol, prr where P = [P'].
(2) If [P] LN P", then P -*+¢ P" where [a] = o/ and [P'] = P".
Proof. By induction on the derivation of the transitions. L]

Again, these results lead us to say that the polyadic synchronization pi-calculus can be
represented as a psi-calculus.

Theorem 4.17. PSPI is a representation of the polyadic synchronization pi-calculus.

Proof. We let g = a iff a = [S].
(1) [] is a simple homomorphism by definition.
(2) [-] is a strong operational correspondence by Theorem 4.4. O

To investigate the surjectivity properties of [-], we need to consider the fact that
polyadic synchronization pi has only mixed (i.e., prefix-guarded) choice.

Definition 4.18 (Case-guarded). A PSPI process is case-guarded if in all its subterms of
the form case w1 : P1 [| -+ [| pn : Pp, foralli € {1,...,n}, p; = T implies P, = M N.Q or
Py = M(\7)X.Q.

We define the translation R from case-guarded PSPI processes to ®m as the translation
with the same name from PPI, except that |-guarded branches of case statements are
discarded.

Theorem 4.19. For all case-guarded PSPI processes R we have R ~ [R].

Proof. By structural induction on R. For case agents, we use an inner induction on the
number of branches, with Lemma 3.3 applied in the induction case.]

Corollary 4.20. If P is a polyadic synchronization pi-calculus process, then P ~ m

Corollary 4.21. For all °w processes P, Q, P ~ @Q (i.e., P and Q are early labelled
congruent) iff [P] ~ [Q].

Proof. By strong operational correspondence 4.16, and [-] commuting with substitutions. []

We thus have that the case-guarded PSPI processes correspond to polyadic synchro-
nization pi, modulo flattening and structural congruence.

4.5. Value-passing CCS. Value-passing CCS [Mil89] is an extension of pure CCS to admit
arbitrary data from some set V to be sent along channels; there is no dynamic connectivity
so channel names cannot be transmitted. When a value is received in a communication
it replaces the input variable everywhere, and where this results in a closed expression it
is evaluated, so for example a(x).¢(x + 3) can receive 2 along a and become ¢ 5. There
are conditional if constructs that can test if a boolean expression evaluates to true, as
in a(x).if x > 3 then P. Formally, the value-passing CCS processes are defined by the

A SORTED SEMANTIC FRAMEWORK FOR APPLIED PROCESS CALCULI 25

following grammar with z,y ranging over names, v over values, b over boolean expressions,
and L over set of names.

P.Q u:= z(y).P | T(w).P | ;P | ifbthenP | P\L | P|Q | P | O

To represent this as a psi-calculus we assume an arbitrary set of expressions e € E
including at least the values V. A subset of E is the boolean expressions b € Eg. Names
are either used as channels (and then have the sort chan) or expression variables (of sort
exp); only the latter can appear in expressions and be substituted by values. An expression
is closed if it has no name of sort exp in its support, otherwise it is open. The values v € V
are closed and have sort value; all other expressions have sort exp. The boolean values are
Ve :=VNEg ={T,1l},and 1+ T but =(1 + L). We let E be an evaluation function
on expressions, that takes each closed expression to a value and leaves open expressions
unchanged. We write e{V'/z} for the result of syntactically replacing all simultaneously by
V in the (boolean) expression e, and assume that the result is a valid (boolean) expression.
For example (z + 3){2/x} = 243, and E(2 + 3) = 5. We define substitution on expressions
to use evaluation, i.e. e[:= V] = E(e{V/Z}). As an example, (z + 3)[z := 2] = E((x +
3){2/z}) = E(2+ 3) = 5. We use the single-variable patterns of Example 2.6.

VPCCS
T=NUE Sy = {chan, exp}
C=Egp S = Sy U {value}
A ={1} v € V = SORT(v) = value
X =N e € E\V = SORT(e) = exp
e a=T eEE:e[f:zM]IE(e{M/f})
e <» ¢/ = L otherwise < = {(exp,value)}
MATCH(v,a,a) = {v}ifv €V S, = {chan}
VARS(a) = {a} X = x = {(chan, exp), (chan, value)}

Closed value-passing CCS processes correspond to VPCCS agents P where all free
names are of sort chan. To prove that VPCCS is a psi-calculus, the interesting case
is when the sort of a term is changed by substitution: let e be an open term, and o a
substitution such that n(e) C dom(c). Here SORT(e) = exp and SORT(ec) = value; this
satisfies Definition 2.4 since value < exp in the subsorting preorder (here exp < value also
holds, but is immaterial since there are no names of sort value).

We show that VPCCS represents value-passing CCS as defined by Milner [Mil89], with
the following modifications:

e We use replication instead of process constants.

e We consider only finite sums. Milner allows for infinite sums without specifying
exactly what infinite sets are allowed and how they are represented, making a fully
formal comparison difficult. Introducing infinite sums naively in psi-calculi means
that agents might exhibit cofinite support and exhaust the set of names, rendering
crucial operations such as a-converting all bound names to fresh names impossible.

e We do not consider the relabelling construct P[f] of CCS at all. Relabelling has
fallen out of fashion since the same effect can be obtained by abstracting over chan-
nels, and it is not included in the psi-calculi framework.

26 J BORGSTROM, R GUTKOVAS, J PARROW, B VICTOR, AND J AMAN POHJOLA

e We only allow finite sets L in restrictions P \ L. With finite sums, this results in
no loss of expressivity since agents have finite support.

Milner’s restrictions are of sets of names, which we represent as a sequence of v-binders.
To create a unique such sequence from L, we assume an injective and support-preserving

function = : Pen(Nenhan) — (Nehan)®. For instance, L may be defined as sorting the
names in L according to some total order on Ngphan, which is always available since Nepan is
countable.

The mapping [-] from value-passing CCS into VPCCS is defined homomorphically on
parallel composition, output and 0, and otherwise as follows.

[2(y).P] = z(Ay)y.[P]
[Yi] = case T:[P][---[T:[F]
[if b then P] = case b:[P]
[P\L] = (vL)[P]
We translate the value-passing CCS actions as follows
[+(0)] = zv
[z(v)] = 7w
[r] = 7
As an example, in a version of VPCCS where the expressions E include natural num-
bers and operations on those,
a(Ay)z.case z > 3 :¢(x + 3)

a4 (case z > 3 :¢(x + 3))[x := 4]

= case E((z > 3){:}) : ¢«(E((z + 3){)x}))
= case F(4>3):¢(E(4+3))
= case | :¢7
5o
In our psi semantics, expressions in processes are evaluated when they are closed by

reception of variables (e.g. in the first transition above), while Milner simply identifies closed
expressions with their values [Mil89, p55f].

Lemma 4.22. If P is a closed VPCCS process and P - P, then P’ is closed.

Theorem 4.23. If P and Q are closed value-passing CCS processes, then
1) if P % P' then [P] L2 [P]; and
(2) if [P] o P then P %5 P’ where [o] = and [P'] = P".
Proof. By induction on the derivations of P’ and P”, respectively. The full proof is given

in Appendix A.3. L]

As before, this yields a representation theorem.

Theorem 4.24. VPCCS is a representation of the closed agents of value-passing CCS
(modulo the modifications described above).
Proof. We let g = « iff « = [f].

(1) [] is a simple homomorphism by definition.
(2) [] is a strong operational correspondence by Theorem 4.23. [

A SORTED SEMANTIC FRAMEWORK FOR APPLIED PROCESS CALCULI 27

To investigate the surjectivity of the encoding, we let P = {P : sorT(n(P)) C {chan}}
be the VPCCS processes where all fre names are of channel sort.

Lemma 4.25. If P € P, then there is a CCS process Q such that P ~ [Q].

Proof. As before, we define an inverse translation -, that is homomorphic except for
case b : Py [| -+ [| bi : P, = (if by then Py) + - -- + (if b; then ;)

Using Lemma 3.3, we get P ~ [P].]

Example 4.26 (Value-passing pi-calculus). To demonstrate the modularity of psi-calculi,
assume that we wish a variant of the pi-calculus enriched with values in the same way as
value-passing CCS. This is achieved with only a minor change to VPCCS:

VPPI
Everything as in VPCCS except:
MATCH(z, a,a) = {z} if z € VUMN,
~< = {(exp, value), (chan, chan)}
X = x = {(chan, exp), (chan, value), (chan, chan)}

Here also channel names can be substituted for other channel names, and they can be sent
and received along channel names.

5. ADVANCED DATA STRUCTURES

We here demonstrate that we can accommodate a variety of term structures for data
and communication channels; in general these can be any kind of data, and substitution
can include any kind of computation on these structures. This indicates that the word
“substitution” may be a misnomer — a better word may be “effect” — though we keep it
to conform with our earlier work. We focus on our new contribution in the patterns and
sorts, and therefore make the following definitions that are common to all the examples
(unless explicitly otherwise defined).

A ={1} 1®1=1

C={T, 1} F={1,T)}
M<M=T M<«<sN=1ifM#N
MATCH(M,Z, X) =0 <~={(s,8) : s€S8}
x=xX=8xS8 S, =Sy =38

If t and u are from some term algebra, we write ¢ < u when ¢ is a (non-strict) subterm of w.

5.1. Convergent rewrite systems on terms. In Example 4.26, the value language con-
sisted of closed terms, with an opaque notion of evaluation. We can instead work with
terms containing names and consider deterministic computations specified by a convergent
rewrite system. The interesting difference is in which terms are admissible as patterns,
and which choices of VARS(X) are valid. We first give a general definition and then give a
concrete instance in Example 5.1.

Let X be a sorted signature with sorts S, and - || be normalization with respect to a
convergent sort-preserving rewrite system on the nominal term algebra over A generated
by the signature 2. We let terms M range over the range of |, i.e., the normal forms. We

28 J BORGSTROM, R GUTKOVAS, J PARROW, B VICTOR, AND J AMAN POHJOLA

write p for sort-preserving capture-avoiding simultaneous substitutions {*4} where every
M; is in normal form; here n(p) = n(M,a). A term M is stable if for all p, Mpll = Mp.
The patterns are all instances of stable terms, i.e., X = Mp where M is stable. Such a
pattern X can bind any combination of names occurring in M but not in p. As an example,
any term M is a pattern (since any name z is stable and M = x{*,}) that can be used to
match the term M itself (since @ C n(x) \ n(M,z) = 0).

REWRITE(|)
T=X irange(l}) MATCH(M,Z, X) = {E M= X{E/E}}

My := L] = M{%;}} VARS(X) = {P(n(M) \ n(p)) : M stable A X = Mp}

We need to show that the patterns are closed under substitution, including preservation of
VARS (cf. Definition 2.4), and that matching satisfies the criteria of Definition 2.5. Since
any term is a pattern, the patterns are closed under substitution. Since term substitution
{/.} and normalization |} are both sort-preserving, term and pattern substitution [- := -] is
also sort-preserving.

To show preservation of pattern variables, assume that © € VARS(X) is a tuple of
distinct names. By definition there are M and p such that X = Mp with M stable and
T C n(M) \ n(p). Assume that T#o0; then Xo = (Mp)o = M(o o p) with z#o o p, so
T € VARS(X0).

For the criteria of Definition 2.5, additionally assume that L€ MATCH(N, z, X) and
let o = [% := L]. Since {{;} is well-sorted, so is [:= L]. We also immediately have

n(L) =n(N)U (n(X)\ z), and alpha-renaming of matching follows from the same property
for term substitution.

Example 5.1 (Peano arithmetic). As a simple instance of REWRITE({}), we may con-
sider Peano arithmetic. The rewrite rules for addition (below) induce a convergent rewrite
system |72 where the stable terms are those that do not contain any occurrence of plus.

PEANO

Everything as in REWRITE(|) except:

S = {nat, chan}

Y = {zero : nat, succ : nat — nat plus : nat X nat — nat}
plus(K,zero) - K plus(K,succ(M)) — plus(succ(K), M)
VARS(succ™(a)) = {0,{a}} VARS(M) = {0} otherwise

Writing 4 for succ’(zero), the agent (va)(@ 2 | a(\y)succ(y).¢ plus(3,y)) of
REWRITE(UPG&HO) has one visible transition, with the label ¢ 4. In particular, the object
of the label is plus(3,y)[y := 1] = plus(3, y){l/y}UPeano =4.

5.2. Symmetric cryptography. We can also consider variants of REWRITE(|}), such
as a simple Dolev-Yao style [DY83] cryptographic message algebra for symmetric cryptog-
raphy, where we ensure that the encryption keys of received encryptions can not be bound
in input patterns, in agreement with cryptographic intuition.

A SORTED SEMANTIC FRAMEWORK FOR APPLIED PROCESS CALCULI 29

The rewrite rule describing decryption dec(enc(M, K), K) — M induces a convergent
rewrite system "¢, where the terms not containing dec are stable. The construction of
REWRITE(|) yields that z € VARS(X) if C n(X) are pair-wise different and no z;
occurs as a subterm of a dec in X. This construction would still permit to bind the keys of
an encrypted message upon reception, e.g. a(Am, k)enc(m, k) . P would be allowed although
it does not make cryptographic sense. Therefore we further restrict VARS(X) to those sets
not containing names that occur in key position in X, thus disallowing the binding of &
above. Below we give the formal definition (recall that < is the subterm preorder).

SYMSPI

Everything as in REWRITE({°"¢) except:

S = {message, key}

Y = {enc : message X key —> message, dec :message X key — message}
dec(enc(M,K),K) - M

VARS(X) =P(n(X)\ {a:a < dec(Y7,Y2) 2 XV (a XYs Aenc(Y1,Y2) = X)})

The proof of the conditions of Definition 2.4 and Definition 2.5 for patterns is the same as
for REWRITE(:) in Section 5.1 above.
As an example, the agent

(va, k)(a enc(enc(M,1), k) | a(Ay)enc(y, k) .¢ dec(y, 1))
has a visible transition with label ¢ M: the subagent
a(Ay)enc(y, k) .¢ dec(y, 1) 2 enc(enc(MD:k), & dec(y,l)[y := enc(M,1)]
since enc(M, 1) € MATCH(enc(enc(M,1), k), y,enc(y, k)). The resulting process is

¢ dec(y, l)[y := enc(M,1)] = ¢ dec(y, [){***MY).} | = ¢ dec(enc(M,1),1) | =¢ M.

5.3. Asymmetric cryptography. A more advanced version of Section 5.2 is the treatment
of data in the pattern-matching spi-calculus [HJ06], to which we refer for more examples
and motivations of the definitions below. The calculus uses asymmetric encryption, and
includes a non-homomorphic definition of substitution that does not preserve sorts, and a
sophisticated way of computing permitted pattern variables. This example highlights the
flexibility of sorted psi-calculi in that such specialized modelling features can be presented
in a form that is very close to the original.
We start from the term algebra T’s; over the unsorted signature

Y= {()a ('7 ')a eKey(')v dKQY(')a enc(~,) enc_l(-,)}

The eKey(M) and dKey(M) constructions represent the encryption and decryption parts
of the key pair M, respectively. The operation enc™!(M, N) is encryption of M with the
inverse of the decryption key N, which is not an implementable operation but only permitted
to occur in patterns. We add a sort system on T’y with sorts S = {impl,pat, L}, where
impl denotes implementable terms not containing enc™', and pat those that may only be
used in patterns. The sort L denotes ill-formed terms, which do not occur in well-formed
processes. Names stand for implementable terms, so we let Sy = {impl}. Substitution is
defined homomorphically on the term algebra, except to avoid unimplementable subterms
on the form enc™!(M, dKey(NV)).

30 J BORGSTROM, R GUTKOVAS, J PARROW, B VICTOR, AND J AMAN POHJOLA

In order to define VARS(X), we write M IF N if all N; € N can be deduced from M
in the Dolev-Yao message algebra (i.e., using cryptographic operations such as encryption
and decryption). For the precise definition, see [HJ06]. The definition of VARS(X) below
allows to bind a set S of names only if all names in S can be deduced from the message
term X using the other names occurring in X. This excludes binding an unknown key, like
in Example ?7.

PMSPI
T=X=Tx S = {impl,pat, L} Sy = {impl}
<~ =& = {(impl, impl)} x = {(impl, impl), (impl, pat)}

SORT(M) = impl if VN7, No. enc™}(Ny, No) £ M
SORT(M) = L if ANy, Ny. enc™}(Ny, dKey(N2)) < M
SORT(M) = pat otherwise

MATCH(M, %, X) ={L : M = X[z := L]}

VARS(X) ={S Cn(X) : (n(X)\S)U{X})IFS}

:B[y:L]:L ify, =x
x[y == L] =z otherwise. N
1(M1, Mg)[y = L] enc(M[y := L} eKey(N)) when My := L] = dKey(N)
f(Ml, M) =L) = f(Mi[y := L], ..., M,[j := L)) otherwise.

As an example, consider the following transitions in PMSPI:
(va, k,1)(@ enc(dKey(l), eKey(k)).a enc(M, eKey(l))
| a(Ay)enc(y, eKey(k)).a(Az)enc 1 (2,9).¢ 2)
5 (va, k,1)(@ enc(M, eKey(l)) | a(A\z)enc(z, eKey(l)).C 2)

s (va,k,1)e M.

Note that o = [y := dKey(l)] resulting from the first input changed the sort of the second
input pattern: SORT(enc™!(z,y)) = pat, but SORT(enc~!(z,y)0) = SORT(enc(z, eKey(l))) =
impl. However, this is permitted by Definition 2.4 (Substitution), since impl < pat (im-
plementable terms can be used as channels or messages whenever patterns can be).

Terms (and patterns) are trivially closed under substitution. All terms in the domain
of a well-sorted substitution have sort impl, so well-sorted substitutions cannot introduce
subterms of the forms enc™!(Ny, No) or enc™!(Ny,dKey(N2)) where none existed; thus
SORT(M o) < SORT(M) as required by Definition 2.4.

To show preservation of pattern variables, we have that ((n(X)\Z)U{X}) IF z implies
that (n(Xo)\ Z) U{Xo}) IF T whenever z#0, by induction on IF. Add definition, of I+,
give IH? The requisites on matching (Definition 2.5) follow from those on substitution.

5.4. Nondeterministic computation. The previous examples considered total determin-
istic notions of computation on the term language. Here we consider a data term language
equipped with partial non-deterministic evaluation: a lambda calculus extended with the
erratic choice operator - || - and the reduction rule M; || My — M; if i € {1,2}. Due to
non-determinism and partiality, evaluation cannot be part of the substitution function. In-
stead, we define the MATCH function to collect all evaluations of the received term, which
are non-deterministically selected from by the IN rule. This example also highlights the use
of object languages with binders, a common application of nominal logic.

A SORTED SEMANTIC FRAMEWORK FOR APPLIED PROCESS CALCULI 31

We let substitution on terms be the usual capture-avoiding syntactic replacement, and
define reduction contexts R =[] | R M | (Az.M) R (we here use the boldface A\ rather
than the A used in input prefixes). Reduction — is the smallest pre-congruence for reduction
contexts that contain the rules for S-reduction (Axz.M N — M|z := N]|) and -[- (see above).
We use the single-name patterns of Example 2.6, but include evaluation in matching.

NDLAM

S = {s} X=N
M:=a|MM|Xe. M| MM where x binds into M in Az.M
MATCH(M,z,z) ={N : M —-* N 4}

As an example, the agent P i) (va)(a(y).cy.0|a ((Az.x x) | (Az.x)).0) has the following
transitions:
C Az.xT

P 5 (va)(@ Az.xxz.0 | 0) 2555 0

CAzr.x

P 5 (va)(@ Az.x.0] 0) 225 0.

6. CONCLUSIONS AND FURTHER WORK

We have described two features that taken together significantly improve the precision
of applied process calculi: generalised pattern matching and substitution, which allow us to
model computations on an arbitrary data term language, and a sort system which allows
us to remove spurious data terms from consideration and to ensure that channels carry
data of the appropriate sort. The well-formedness of processes is thereby guaranteed to be
preserved by transitions. Using these features we have provided representations of other
process calculi, ranging from the simple polyadic pi-calculus to the spi-calculus and non-
deterministic computations, in the psi-calculi framework. The critera for representation
(rather than encoding) are stronger than standard correspondences e.g. by Gorla, and mean
that the psi-calculus and the calculus represented by it are for all practical purposes one
and the same.

The meta-theoretic results carry over from the original psi formulations, and many
have been machine-checked in Isabelle. We have also developed a tool for sorted psi-calculi
[BGRV13], the Psi-calculi Workbench (PwB), which provides an interactive simulator and
automatic bisimulation checker. Users of the tool need only implement the parameters of
their psi-calculus instances, supported by a core library.

Future work includes developing a symbolic semantics with pattern matching. For this,
a reformulation of the operational semantics in the late style, where input objects are not
instantiated until communication takes place, is necessary. We also aim to extend the use
of sorts and generalized pattern matching to other variants of psi-calculi, including higher-
order psi calculi [PBRAP13] and reliable broadcast psi-calculi [APBP*13]. As mentioned in
Section 3.1, further developments in Nominal Isabelle are needed for mechanizing theories
with arbitrary but fixed sortings.

REFERENCES
[AFO01] Martin Abadi and Cédric Fournet. Mobile values, new names, and secure communication. In
Proceedings of POPL ’01, pages 104—115. ACM, January 2001.
[AP14] Johannes Aman Pohjola. Isabelle proof scripts for sorted psi-calculi. Available at http://www.

it.uu.se/research/group/mobility/theorem/sortedPsi.tar.gz, 2014.

32

[APBP*13]

[Benl10]
[BGRV13]
[BIJPV11]

[Blal1]

[CGKT13]

[CMO3]
[DY83]

[EOW07]

[FG96]

[FGMO5]

[Gel85]
[Gor10]
[GPO1]

[GWGJ10]

[HJO6]

[Hon93]

[Hiit11]
[HV13]
[JBPV10]
[JVP12]

[Kri09]

J BORGSTROM, R GUTKOVAS, J PARROW, B VICTOR, AND J AMAN POHJOLA

Johannes Aman Pohjola, Johannes Borgstrém, Joachim Parrow, Palle Raabjerg, and Ioana
Rodhe. Negative premises in applied process calculi. Technical Report 2013-014, Department of
Information Tecnology, Uppsala University, 2013.

Jesper Bengtson. Formalising process calculi. PhD thesis, Uppsala University, 2010.

Johannes Borgstrom, Ramiinas Gutkovas, Ioana Rodhe, and Bjorn Victor. A parametric tool for
applied process calculi. In Proc. 13th International Conference on Application of Concurrency
to System Design (ACSD’13). IEEE, 2013.

Jesper Bengtson, Magnus Johansson, Joachim Parrow, and Bjorn Victor. Psi-calculi: a frame-
work for mobile processes with nominal data and logic. LMCS, 7(1:11), 2011.

Bruno Blanchet. Using Horn clauses for analyzing security protocols. In Véronique Cortier
and Steve Kremer, editors, Formal Models and Techniques for Analyzing Security Protocols,
volume 5 of Cryptology and Information Security Series, pages 86—111. IOS Press, March 2011.
Sjoerd Cranen, Jan Friso Groote, Jeroen J. A. Keiren, Frank P. M. Stappers, Erik P. de Vink,
Wieger Wesselink, and Tim A. C. Willemse. An overview of the mCRL2 toolset and its recent
advances. In Nir Piterman and Scott A. Smolka, editors, TACAS, volume 7795 of Lecture Notes
in Computer Science, pages 199-213. Springer, 2013.

Marco Carbone and Sergio Maffeis. On the expressive power of polyadic synchronisation in
m-calculus. Nordic Journal of Computing, 10(2):70-98, 2003.

Danny Dolev and Andrew C. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(2):198-208, 1983.

Burak Emir, Martin Odersky, and John Williams. Matching objects with patterns. In Pro-
ceedings of the 21st FEuropean Conference on Object-Oriented Programming, ECOOP’07, pages
273-298, Berlin, Heidelberg, 2007. Springer-Verlag.

Cédric Fournet and Georges Gonthier. The reflexive CHAM and the join-calculus. In Proc.
POPL, pages 372-385, 1996.

Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis. A type discipline for authorization
policies. In Mooly Sagiv, editor, Proc. of ESOP 2005, volume 3444 of LNCS, pages 141-156.
Springer, 2005.

David Gelernter. Generative communication in Linda. ACM TOPLAS, 7(1):80-112, January
1985.

Daniele Gorla. Towards a unified approach to encodability and separation results for process
calculi. Information and Computation, 208(9):1031-1053, 2010.

Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax with variable
binding. Formal Aspects of Computing, 13:341-363, 2001.

Thomas Given-Wilson, Daniele Gorla, and Barry Jay. Concurrent pattern calculus. In Cristian
Calude and Vladimiro Sassone, editors, Theoretical Computer Science, volume 323 of [FIP
Advances in Information and Communication Technology, pages 244-258. Springer, 2010.
Christian Haack and Alan Jeffrey. Pattern-matching spi-calculus. Information and Computation,
204(8):1195-1263, 2006.

Kohei Honda. Types for dyadic interaction. In Eike Best, editor, CONCUR ’93, 4th Interna-
tional Conference on Concurrency Theory, Hildesheim, Germany, August 23-26, 1993, Proceed-
ings, volume 715 of Lecture Notes in Computer Science, pages 509-523. Springer, 1993.

Hans Hiittel. Typed psi-calculi. In Joost-Pieter Katoen and Barbara Koénig, editors, CONCUR
2011 — Concurrency Theory, volume 6901 of LNCS, pages 265-279. Springer, 2011.

Hans Hiittel and Vasco T Vasconcelos. The foundations of behavioural types. State-of-the art
report of WG1 of the BETTY project (EU COST Action 1C1201). To appear, 2013.

Magnus Johansson, Jesper Bengtson, Joachim Parrow, and Bjérn Victor. Weak equivalences in
psi-calculi. In Proc. of LICS 2010, pages 322—-331. IEEE, 2010.

Magnus Johansson, Bjorn Victor, and Joachim Parrow. Computing strong and weak bisimula-
tions for psi-calculi. Journal of Logic and Algebraic Programming, 81(3):162-180, 2012.
Neelakantan R. Krishnaswami. Focusing on pattern matching. In Proceedings of the 36th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’09,
pages 366-378, New York, NY, USA, 2009. ACM.

[LSD11]

[Mil89)]
[Mil93]

[PBRAP13]
[Pit03]

[San93|

[SLDC09]

[SNMO7]

[SS05]

[SWO1]

[Urbog]

A SORTED SEMANTIC FRAMEWORK FOR APPLIED PROCESS CALCULI 33

Yang Liu, Jun Sun, and Jin Song Dong. PAT 3: An extensible architecture for building multi-
domain model checkers. In Tadashi Dohi and Bojan Cukic, editors, ISSRE ’11, pages 190-199.
IEEE, 2011.

Robin Milner. Communication and Concurrency. Prentice-Hall, Inc., 1989.

Robin Milner. The polyadic w-calculus: A tutorial. In Friedrich L. Bauer, Wilfried Brauer,
and Helmut Schwichtenberg, editors, Logic and Algebra of Specification, volume 94 of Series F.
NATO ASI, Springer, 1993.

Joachim Parrow, Johannes Borgstrom, Palle Raabjerg, and Johannes Aman Pohjola. Higher-
order psi-calculi. Mathematical Structures in Computer Science, FirstView, June 2013.
Andrew M. Pitts. Nominal logic, a first order theory of names and binding. Information and
Computation, 186:165-193, 2003.

Davide Sangiorgi. Fxpressing Mobility in Process Algebras: First-Order and Higher-Order Para-
digms. PhD thesis, University of Edinburgh, 1993. CST-99-93 (also published as ECS-LFCS-
93-266).

Jun Sun, Yang Liu, Jin Song Dong, and Chunging Chen. Integrating specification and programs
for system modeling and verification. In TASE ’09, pages 127-135. IEEE Computer Society,
2009.

Don Syme, Gregory Neverov, and James Margetson. Extensible pattern matching via a light-
weight language extension. In Proceedings of the 12th ACM SIGPLAN International Conference
on Functional Programming, ICFP 07, pages 29-40, New York, NY, USA, 2007. ACM.

Alan Schmitt and Jean-Bernard Stefani. The Kell calculus: A family of higher-order distributed
process calculi. In Corrado Priami and Paola Quaglia, editors, Global Computing, volume 3267
of LNCS, pages 146-178. Springer Berlin Heidelberg, 2005.

Davide Sangiorgi and David Walker. The m-calculus: a Theory of Mobile Processes. Cambridge
University Press, 2001.

Christian Urban. Nominal techniques in Isabelle/HOL. Journal of Automated Reasoning,
40(4):327-356, May 2008.

34 J BORGSTROM, R GUTKOVAS, J PARROW, B VICTOR, AND J AMAN POHJOLA

APPENDIX A. FULL PROOFS FOR SECTION 4

The following is full proofs of Section 4; we present them here, in a seperate section,
due to their length.

We will assume that the reader is acquainted with the relevant psi-calculi presented in
Section 4, as well as the definitions, notation and terminology of Sangiorgi [San93], Carbone
and Maffeis [CMO03], and Milner [Mil89], respectively. We will use their notation except as
concerns the treatment of bound names, where we will adopt our notation, e.g. we will

write bn(a)#Q instead of bn(a) N (Q) = 0.

A.1. Polyadic Pi-Calculus. We follow the exposition of Polyadic Pi-Calculus given by
Sangiorgi in [San93] with only departure being that we use replication in the labelled oper-
ational semantics instead of process constant invocation.

For convenience, we give an explicit definition of the encoding function given in Exam-
ple 4.1.

Definition A.1 (Polyadic Pi-Calculus to PP1i).

Agents:
[P+Q] = caseT:[P][T:[Q]
[lx =y]P] = casex=y:[P]
[=(5)-P] = z(\y){©).[P]
[z(g).P] = =().[P]
[o] = 0
[Plel = [P1IQ]
[veP] = (va)[P]
el = '[P]
Actions: ~
[vy)z(m)] = =z@y) W)
[z(2)] = z(2)
[r] = 7
In output action g;’ do not bind into z.
Definition A.2 (PPi to Polyadic Pi-Calculus).
Process:
1 = o
O=case = 0
casep1 P [|...[len:Pn = o1:Pi+-+¢n: P,
P = IP
(vx)P = vaP
PIQ = P|Q_
QOGP = ()P
Z(y).P Z(y).P
Case clause: .
F=yiP = lo=ylP
T:P P

We prove that substitution function distributes over the encoding function. We use this
auxiliary result in some of the following theorems.

A SORTED SEMANTIC FRAMEWORK FOR APPLIED PROCESS CALCULI 35

Lemma A.3. [P][y:=z] = [P{z/3}]

Proof. By induction on P. We consider only the agents where bn(P) N fn(P){z/g} =0 as
in Definition 2.1.1 in [San93] on page 21. We show the interesting cases of the substitution
application as others are just homomorphic.

e case P =P +Q.

[P +Qlli=2 = case T[j=2: [P]lj =20 Tl =2 [QllF = 7]
= case T:[P]lg:=2][] T:[Q]y:= 2]
= case T:[P{z/g}] [T : [Q{z/5}] (TH)
= [P{Z/5} + Q{z/}]
= [P+ Q){z/7}]

e case P = [z =y|Q

[[z =9lQ]lg = 2] = casex[y:= 2] =y[y:=2]:[Q][y:= 7]
= casex[j:=Z =y[y:=Z]: [Q{Z/y}] (IH)

= [{3/3} = w(E/IQU/)]
= [(lz = 9@ /3]
e case P =a(2).Q

[a(2).Q][y :=2] = alg:=z](A\2)(@).[Q][g := 2] (From assumption Z#]y := Z])
= aly = 2](A0)(2).[Q{z/y}] (IH)
= o{z/yg}(2).[Q{z/9}]
= [(a(2)-Q){%/7}]

U

The following is proof of the strong operational correspondence. The labeled semantics
of polyadic pi-calculus can be found on page 30 of [San93].
Proof of Theorem 4.4.

(1) By induction on the length of the derivation of P’. We have the following cases to
check by considering the last rule applied to derive P’.

ALP:

Trivial since in Psi-calculi agents are identified up to alpha equivalence.
OUT:

Assume Z(y).P 20, poand o € {Z ()} = [=(y)]. Since 1 I— x < x and

[z (7).P] =z (3).[P] and « = T (§), we can derive T (§).[P] =Y [P].
INP:

Assume z(g).P =), P{z/y} with Z: g and a € [f] = {z (2£)}. We compute
that [z(9).P] = z(A\y)(®).[P] and Z € MATCH ((2),9,(y)). Using this and
1+ z <> 2 we can derive z(\y)(9).[P] =25 [P][y := z] with the IN rule. By
applying Lemma A.3 completes the proof
SUM:

Assume P + Q By Pand o € [8], and also P £, P'. From induction
hypothesis we have that for every a € [8], [P] - [P']. Thus we can derive
case T: [P] [T:[Q] = [P'] with the CAsE rule for every a € [A].

J BORGSTROM, R GUTKOVAS, J PARROW, B VICTOR, AND J AMAN POHJOLA

PAR:
Assume P | Q Ly p | @ and o € [B]. We also assume P Ly P with
bn(B) N fn(Q) = 0. From induction hypothesis, we get that for every a € [3],
[P] = [P']. From assumption follows that bn(a)#[Q] for any o € [3].

By applying the PAR rule, we obtain the required transition [P] | [Q] -
[P111el
COM:

Assume P | Q@ — vy (P | Q) with § N fn(Q) = 0. We also assume
p W@, proang Q LUN @'. From induction hypothesis, we have that
for every o’ € [(vy)(H)] and o’ € [x(@)], [P] <> [P'] and [Q] > [Q]
Moreover, we note that 1+ z <> x and §'#[Q]. Finally, we choose o/ and "
and choose alpha-variants of the frames of [P] and [Q] which are sufficiently

fresh to allow the derivation [P] | [Q] = (v¢/)([P'] | [Q']) with the Com
rule.

MATCH:
Assume [z = z|P Ly Panda e [8]. We also assume P L, P From

induction hypothesis we acquire that [P] -~ [P’]. Since 1 F 2 = x and
case v = z : [P] = [[x = z]P], we derive case x = z : [P] = [P’'] with the
CASE rule.

REP:
Assume P 25 P and o € [8]. Moreover, assume P | |P Ly P and
hence from induction hypothesis [P | !P] =+ [P']. We compute [P] | ![P] =
[P | !P] and apply the REP rule to obtain ![P] -*+ [P'].

RES:

Assume vaP 25 vzP’ where z ¢ n(f) and a € [B]. We also assume

P -5 P’ to acquire from induction hypothesis [P] = [P']. Now by

obtaining x#a from assumption and computing [vzP] = (vx)[P], we derive
(vz)[P] = (vz)[P'] with the SCOPE rule.

OPEN:

Let f = (vx,y')z(y). Assume vaP By P and 2 # z,x € §—y and
ae[Bfl={zwy") (@) : §" = 2,9} From induction hypothesis, we get
that for every o € [(v7)z(9)] = {z (vy") (§) : ¢’ = 7-y'} we can derive
[P] LN [P]. We choose o/ = Z (vy') y and by having [vzP] = (vz)[P]
derive, (vx)[P] Zley) O, [P'] with the OPEN rule. The side conditions of
OPEN, z#7, 2z and x € n(g), follow from assumptions.

From the assumption « € [3], it follows that, for any permutation 7, « is of
the form Z (vm - z,9’) (g). By applying Lemma 4.3, we get the required « and

transition (vz)[P] - [P’]. And this concludes this proof case.

A SORTED SEMANTIC FRAMEWORK FOR APPLIED PROCESS CALCULI 37

(2) We now show that if [P] -+ P” then P L, P’ where a € [8] and [P'] = P".
We proceed by by induction on the length of the derivation of P”. We only write
down the interesting cases:

Case:
Assume [P] %5 P”. Because P" is derived with the CASE rule, [P] is of
the form case ¢ : P. Since Py = case 3 : P is in the range of [-], either
Po=T:[P][|T:[Q], Pc=T:[Q][T:[P]orPo=casex=y:[P]. We
proceed by case analysis:
(a) When Po =T : [P] [T : [Q], we note that [P + Q] = Pc and imitate
the derivation of P” from Pg with the derivation P 4+ Q By p , using
the SUM rule and the fact obtained from induction hypothesis o € [53].
(b) The case when Po = T : [Q] [| T : [P] is symmetric to the previous case.
(¢) When P = case z = y : [P], since 1+ x = y by the induction hypothe-
sis, z = y. We note that [[x = z]P] = P¢ and imitate the derivation of
P" from P with the derivation [z = x]P L, P, using the MATCH
rule and the fact obtained from induction hypothesis a € [J].

Open:
Assume [P] Z@ide) @)y pr Because P is derived with the OPEN rule,
[P] is of the form (va)R. Since (vz)R is in the range of [-], P = vaR’

where R = [R']. From induction hypothesis, we have that R Ewi) @, pn

and z (v§) (7) € [f] and B 25 P’ and lastly [P'] = P”. Thus we use
B = (vy)z(y') as it gives us z (vy) (§') € [B'] to derive using the rule OPEN,
vaR 0D, pr Clearly z (vy U {z}) (¥) € [(vx,9)Z(7")] for every inser-
tion of z.

From the strong operational correspondence, we obtain full abstraction. We use San-

giorgi’s the definition of bisimulation and congruence of polyadic pi-calculus which can be
found in [San93] on page 42.

Theorem A.4. For polyadic-pi calculus agents P and QQ we have P ~¢ Q iff [P] ~ [Q]

Proof. Direction <. Assume [P] ~ [Q]. We claim that the relation R = {(P,Q) : [P] ~
[Q]} is an early congruence in the polyadic pi-calculus.

For simulation, assume P B, P'. We need to show that for some Q' s.t. Q R Q'
and (P',Q") € R. By Theorem 4.4 (1), we get [P] - [P'] for any a € [8]. By
Theorem 4.4 (2) and using the assumption «a € [3] as well as the fact [P] ~ [Q], we derive
[Q] = [Q']- From simulation clause and that [P] and [Q] are congruent follows that
[P] ~ [Q] and hence (P/,Q") € R. Symmetry case follows from the symmetry of ~.
Hence R is an early bisimulation. Since R is closed under all substitutions by Lemma A.3,
it is an early congruence.

We prove direction =, assume P ~¢ Q. We claim the the relation {(1, [P], [Q]) : P ~¢
@} is a congruence in PPI. The static equivalence and extension of arbitrary assertion cases
are trivial since there is unit assertion only. Symmetry follows from symmetry of ~¢, and
simulation follows by Theorem 4.4 and the fact that ~¢ is an early congruence.

U

38 J BORGSTROM, R GUTKOVAS, J PARROW, B VICTOR, AND J AMAN POHJOLA

Proof of Theorem 4.7. By structural induction on P. We only consider the case of case
agent as other cases are trivial.

case case 1 : Py [| ... [on : Pyt o
We get an induction hypothesis for every i € {1..n}, IH;: P; ~ [B].
We proceed by induction on n.

base case n = 0:
[case] = [0] = 0. By reflexivity of ~, 0 ~ 0.

induction step n + 1:
The IH for this case is
[case o1 : P[] ... [pn: Py ~case pr: P [... on: Pn=PF
We need to show that Q ~ [Q] for Q =case o1 : Py [| ... [¢n : P [| ¢nt1:

Py
We compute

II@]] = [[sol:P1+"'+(Pn:Pn+<Pn+15Pn+1]]
= case T:[p1:PiJ[|... T :[en:Pu] | T:[en+1: Poti]
~ (by Lemma 3.3)
case T:(case T : o1 : P[] ... [0 T :len:Pu]) T :[pnt1: Poti]
~ (by IH)
case T:(case o1 : P[] ... [on:Pn) | T:[ent1: Pnti]
= case T : P'[[T:[pnt1: Puti]
-
We distinguish the cases of @p41:

case ppy1 = I:

Q = case T: P [[T:[T: Py
= case T : P'[| T:[Pu+1]
~ (by [Hpp1)
case T:P'[| T: Py
~ (by Lemma 3.3)
case 1 P[] ...[lon: P T: P11 =@Q
We conclude this case.

case ppy1 =T =Y

Q = case T: P [|[T:[x=y: Pyi1]

= case T: P'[| T:(casex =y : [Pyt1])

~ (by IHp41)
case T: P'[| T :(casex =y : P,i1)

~ (by Lemma 3.3)
case 1 P[] ...[lon: P[] T:(casex=y: Ppi1)

~ (by Lemma 3.3)
casep1 P [|...[len:Polle=y: P11 =Q

By concluding this case, we conclude the proof. L]

A SORTED SEMANTIC FRAMEWORK FOR APPLIED PROCESS CALCULI 39

Lemma A.5. [-] is injective, that is, for all P,Q, if [P] = [Q] then P = Q.
Proof. By induction on P and () while inspecting all the possible cases. []
Lemma A.6. [-] is surjective up to ~, that is, for every P there is a Q such that [Q] ~ P.

Proof. By structural induction on the well formed agent P.

case z(\y)(y).P'":
IH tells us that, for some Q’, [Q'] ~ P’. Let Q = z(9).Q’". Then, [Q] = [z(7).Q'] =
z(AY)(@).[Q'] ~ z(A\y)(y).P’. This is what we needed to derive.
case 7(y).P’":
By IH, we have for some @', [Q'] ~ P'. Let Q = Z(9).Q". Now [Q] = Z(9).[Q] ~
Z(y).P’, which is what we wanted to derive.
case P | P':
By IH, we have that for some @', Q", [Q'] ~ P and [Q"] ~ P’. Thenlet Q = Q'|Q",
thus [Q] = [QT[[Q"] ~ P | P
case (vz)P:
By IH, for some Q’, [Q'] ~ P. Let Q = vz@’. Then [Q] = (vx)[Q'] ~ (vx)P.
case |P:
By IH, for some @', [Q'] ~ P. Let Q =!Q’. Then [Q] =![Q'] ~ ! P.
case (1):
Let @ = 0. Then [Q] =0 ~ (1).
case case @ : P
For induction hypothesis IHcase, we have for every i there is @/ such that [Q] ~ P/.
The proof goes by induction on the length of @.

base case:
Let @ = 0, then [Q] = 0 ~ case.

induction step:
At this step, we get the following IH

[Q"] ~case 1 : P [...[on: Pn
We need to show that there is some [Q] such that
[Q] ~case 1 : P [...[| on: Pnl] ¢nt1: Pot1

First, we note that IHcage holds for every ¢ and in particular ¢ = n + 1, thus
we get [@Q),,1] ~ Puy1. Second, we note that ¢,1 has two forms, thus we
proceed by case analysis on 1.

40 J BORGSTROM, R GUTKOVAS, J PARROW, B VICTOR, AND J AMAN POHJOLA

case ppy1 = I
Let Q = Q" +@Q,,;. Then

[Q) = case T:[Q]]T: [@i]
~ case T :(casepr: P []...[] pn:Ppn)
07 :[Qn]
~ case T :(casepr: P [|...[] pn:Ppn)
U T: Pn+1
~ (by Lemma 3.3)
case p1 P [... [pn: Py
D T: Pn+1
This case is concluded.

case Y1 =T =y
Let Q = Q" + [z = y]Q/,,;. Then
[= caseT:[Q"][T:[lx=y]Q]
~ case T :(casep;: P [... on: Pn)
0T:(casex=y:[Q])
~ case T :(casep;: P [... on: Pn)
[T:(casex=y:Pyt1)
~ (by Lemma 3.3)
case o1 : P[] ... [on: Py
[T:(casex=1y: Pyt1)
~ (by permuting and applying Lemma 3.3)
casep1: P[] ...[len:Pollz=9y:Poi1
This is the last part we needed to check, we conclude the proof. L]

Theorem A.7. [] is an isomorphism up to ~.

Proof. Directly follows from Lemma A.5 and Lemma A.6. L]

A.2. Polyadic Synchronisation Pi-Calculus. We follow the exposition of Polyadic Syn-
chronisation Pi-Calculus, ¢m, of Carbone and Maffeis [CMO03].
We give an explicit definition of encoding function defined in Example 4.4.

Definition A.8 (Polyadic synchronisation pi-calculus to PSPi).

Agents:
[Z(y).P] = (2)(Ay)y.[P]
[Z(y).P] = (z)y.[P]
[P1Q] = [P]II]
[(vz)P] = (va)[P]
['P] = '[P

|
o -

[0]
[Yie;.P] = caseT;: [a;.P]

A SORTED SEMANTIC FRAMEWORK FOR APPLIED PROCESS CALCULI 41

Actions:
[Z(ve)] = (@) (ve)e
[E(c)] = (2)c
[r] = 7

[Z(y)] = undefined

Because in [CMO03] Carbone and Maffeis defines late style laballed semantics for “7 the
input action has no translation.

Definition A.9 (PSPi to Polyadic synchronisation pi-calculus).

) = o
0 =0
P = P
(vz)P = (vz)P
PIQ - PIQ
(a)y.r = aly).P
Z(Ay)y.P = T(y).P
T. = T1.P
case | : ;. = X,o4. P

Lemma A.10. If P = Q then [P] ~ [Q]

Proof. The relation R = {(P, Q) : [P] ~ [Q]} satisfies all the axioms defining = and is also
a process congruence. Since = is the least such congruence, = C R. L]

We give proof for the strong operational correspondence.

Proof of Theorem 4.16.
(1) By induction on the derivation of P’, avoiding z.

Prefix:)
Here X;2;(y;).P; Zilya), P;. We have that

[[Ezfz(yl)Pl]] = case [: <i‘>(}\y1)ylﬂpl]] I:I

0T (@) O [P]

Since MATCH(z, (y;),vi) = {2}, we can use the CASE and IN rules to derive the
transition

case T : (1))y [P [+ [T+ (@) Oy [B] <25 [Py = 2]
Finally, we have P"” = [P;]J[y; := 2] and use reflexivity of ~.

Bang:
Here P | 1P 2%, P’ and by induction, [P] | [[P] Z% P” with P" ~
[P']ly := z]. By rule REP, we also have that ![P] @z pr,

Par:
Here P W, P, y#@Q and by induction, [P] Dz proyith P~ [Py :=
z]. Using the PAR rule we derive [P] | [Q] Dz pr | [@]. Since ~ is closed
under |, P* [[Q] ~ [P'][y := 2] | [Q]. Finally, since y#Q, [P'][y := 2] | [Q] =
[P] Qlly := 2]

42 J BORGSTROM, R GUTKOVAS, J PARROW, B VICTOR, AND J AMAN POHJOLA

Struct:)
Here P = Q, Q &), @' and Q' = P’. By induction we obtain Q" such
that [Q] D2 Q" where Q" ~ [QTly := z]. By Lemma A.10, [P] ~ [@]
and [Q'] ~ [P'], and by definition of ~, [Q'][y := z] ~ [P']ly := z]. Since
[P] ~ [Q] and [Q] &2 Q" there exists P” such that [P] &z proand
Q" ~ P". By transitivity of ~, P" ~ [P'][y := z].

Res:
Here P 2% P/ a # y, a # = a#d, and by induction, [P] 2% 7
with P” ~ [P'][y := z]. This gives us sufficient freshness conditions to de-

rive (va)[P] RCEN (va)P”. Since ~ is closed under restriction, (va)P” ~
(va)([P']ly := z]). Finally, a is sufficiently fresh to so that (va)([P']ly =
z]) = (va) [Py := 2]

(2) By induction on the derivation of P’. The cases not shown here are similar to the
previous clause of this theorem, where P does an input.

Comm: _) _
Here P 2% P’ and Q EION Q@’'. By induction, [P] @y, pr where

P" ~ [P'] and by the previous clause of this theorem, [Q] @)y, Q" such that
[Q1]z :=y] ~ Q". The Com rule lets us derive the transition

[PI1Q) — P"[Q"
To complete the induction case, we note that (vy)(P” | Q") ~ [(vy)(P' | Q{y/z})]
Close: B
Here P 2%y P/ and Q LIEIN Q'. We assume y#@Q; if not, y can be a-
converted so that this holds. By induction, [P] DY, pryhere P~ 1P']

and by the previous clause of this theorem, [Q] B Y, Q" such that [Qy :=
y] = [Q'] ~ Q". The CoM rule lets us derive the transition

[P Q] — (wy)(P"|Q")

To complete the induction case, we note that (vy)(P” | Q") ~ [(vy)(P' | Q)]

Open: B o
Here P 2 P/ with y # x, and by induction, [P] @y pr where
P" ~ [P']. By OPEN, we derive (vy)[P] &y, pn,

(3) By induction on the derivation of P”, avoiding y.

Par:
Here [P] 28, pr y#P, Q, and by induction P 2% P’ where [P {z/y}] =
P”. By PAR using y#Q, we derive P | Q W), pr | Q. Finally, we note that
since y#Q, [(P" | Q){z/y}] = P" | [Q].

Case:
Here Po 2% P", where Po = case {: Q is in the range of [-] - hence
Pc must be the encoding of some prefix-guarded sum, ie Po = [X;«;.P;] =
case T : Jai].[Pi] [l --- [T : [eu].[F5]- By transition inversion we can deduce

A SORTED SEMANTIC FRAMEWORK FOR APPLIED PROCESS CALCULI 43

that for some j, a; = Z(y) and [P;]ly := 2] = P”. By the PREFIX rule,
;P 29y p
Out:
A special case of CASE.
Rep:
Here [P] | ![P] 2E, prand by induction P | |P W), P’ where [P{z/y}] =

z

P". By BANG we derive |P 2W, pr.

Scope:
Here [P] EON P", y#P,Q, a#Z,y,z and by induction P W, pr
where [P'{z/y}] = P”. Since a#%,y, z, the RES rule admits the derivation
(va)P), (va)P', and [((va)P){z/y}] = (va)P"
(4) By induction on the derivation of P”. The cases not shown are similar to the previous
clause of this theorem.

Com:
Here [P] &)y, pr Q] D, " and y'#Q. Either y/ = € or i = y; we
proceed by case analysis.
(a) If i/ = €, we have P W), P’ where [P'] = P” by induction and, by the
previous clause of this theorem, @ EION Q' where [Q'{y/z}] = Q". The
ComM rule then lets us derive P | Q — P’ | Q'{y/z}.
(b) If y =y, we have P 208, P where [P'] = P” by induction and, by the
previous clause of this theorem, Q 2, Q' where [Q'{y/y}] = [Q'] =
Q". The CLOSE rule then lets us derive P | Q — (vy)(P'| Q).

Open: o
Here [P] Dy, pn with y # z. By induction, P W), P’ where [P'] = P".
By rule OPEN, (vy)P vy, pr O

We give the full abstraction result for this calculus. The definition of congruence for
polyadic synchronisation pi-calculus can be found in [CMO03] on page 6.

Theorem A.11. For all °w processes P and Q, P ~ Q iff [P] ~ [Q]

Proof. R = {(P,Q) : [P] ~ [Q]} is an early congruence in the polyadic synchronisation
pi-calculus; if PR @ then
(1) 1P W, P and [P] ~ [Q], since R is equivariant, we can assume that y#P, Q
without loss of generality. Fix z. By Theorem 4.16 (1), [P] 22 P” where P" ~
[P'Nly := 2] = [P'{z/y}]. Hence, since [P] ~ [Q], [Q] D2 0" where P ~ Q"
Hence, by Theorem 4.16.3 using y#Q, @ &), Q' where [Q'{z/y}] = Q". By
transitivity, [P'{z/y}] ~ [Q'{z/y}].
(2) If P =5 P’'and [P] ~ [Q], since R is equivariant, we can assume that bn(a)#P, Q
without loss of generality. By Theorem 4.16.2, we have that [P] Iol, pr with P ~
[P']. Hence, since [P] ~ [Q] and bn(a)#Q, there is a Q" such that [Q] Iol, g

44 J BORGSTROM, R GUTKOVAS, J PARROW, B VICTOR, AND J AMAN POHJOLA

and Q" ~ P". By Theorem 4.16.4, there is Q' such that Q =+ Q' and [Q'] = Q".
By transitivity, [P'] ~ [Q'].
Symmetrically, we show that R = {(1, [P], [Q]) : P ~ Q} is a congruence in PSPI:

Static equivalence:
Trivial since there is only a unit assertion.
Symmetry:
By symmetry of ~
Simulation:)
Here [P] %+ P"” and P ~ Q. We proceed by case analysis on o':

(1) If o/ = (Z) z, then by Theorem 4.16 (3) and a sufficiently fresh y, P 2w, pr

where [P'{z/y}] = P"”. Since P ~ @, there exists @' such that Q &), Q'

and P'{z/y} ~ Q'{z/y}. Hence, by Theorem 4.16 (1), [Q] D2 Q" where
Q" ~[Q1ly = 2] = [Q'{z/y}]. We have that P" = [P'{=/y}] R [Q'{z/y}] ~
Q", which suffices.

(2) If & is not an input, since R is equivariant, we can assume that bn(a/)#P, Q

without loss of generality. Since [P] o pr, by Theorem 4.16 (4) we have
that P %+ P’ where [a] = o' and [P'] = P”. Since P ~ Q, there is Q'
such that @ -+ @’ and P’ ~ Q'. By Theorem 4.16 (2), [Q] o, Q", where
Q" ~ [Q']. Hence P”" = [P'] R [Q'] ~ Q", which suffices.
Extension of arbitrary assertion:
Trivial since there is only a unit assertion. []

Lemma A.12. [-] is surjective up to ~ on the set of case-guarded processes, that is, for
every case-quarded P there is a Q such that [Q] ~ P.

Proof. By induction on a well formed agent P.

case (z)(\y)y.P'":

It is valid to consider only this form, since {y} € VARs(y). The IH is for some @',

[QT ~ P'. Let Q = Z(y).Q". Then [Q] = (z)(\y)y.[Q'] ~ (Z)(Ay)y.F".

case (T) y.P'": o
From IH, we get for some @', [Q'] ~ P'. Let Q = z(y).Q". Then [Q] = (Z) y.[Q"] ~
(z) y.P'.
case P'| P":
From IH, for some Q’,Q", we have [Q'] ~ P’ and [Q"] ~ P". Let Q = Q' | Q".
Then [Q] = [QTI[Q"] ~ P"[P".
case (vx)P':
Let Q = vz@', then by induction hypothesis [Q] = (vz)[Q'] ~ (vz)P'.
case |P'":
Let Q =!Q’ (Q' from TH). [Q] = ![Q'] ~ | P".
case 0:
Then [0] =0 ~ 0.

A SORTED SEMANTIC FRAMEWORK FOR APPLIED PROCESS CALCULI 45

case (1):
Then [0] =0 ~ (1).

case case @ : P
For induction hypothesis IHcase, we have for every ¢ there is @} such that [Q}] ~ P;.
The proof goes by induction on the length of .

base case:
Let @ = 0, then [Q] = 0 ~ case.

induction step:
At this step, we get the following IH

[Q"] ~casepr: P [...[l on: Py
We need to show that there is some [Q] such that

[[Q]]NC&SEQDlipl|:|--~|:|(,0n:Pn|:|§0n+1:Pn+1:P

First, we note that IHcage holds for every ¢ and in particular ¢ = n + 1, thus
we get [@Q), 1] ~ Puy1. Second, we note that ¢,1 has two forms, thus we
proceed by case analysis on 1.

case ppy1 = L:
Let Q = Q". Then
[Q] = [Q]
~ casepr: P []...[] pn: Py
~ casepr P [l...[]en: Py L: Pop1
This case is concluded.

case pp11 = 1:
From the assumption, we know that P,1; is of form «.P) 41 and that
[Q, 1] ~ P . By investigating the construction of @ ; we can
conclude that @), | = a.Q), | where [Q): ;] ~ P, ;. The agent from IH
Q" is either 0, or prefixed agent, or a mixed sum.
In case Q" =0, let Q = @Q;,,, then [Q] = [Q;, 1] ~ P.
In case Q" is prefixed agent, let Q = Q" +Q;, ;. Since Q" and @, are
prefixed, @ is well formed. Then [Q] = case T : [Q"] | T : [@41] ~
case o1 Pi[|...[lon:Pul] T: Pog1.
In case Q" is a sum, let Q = Q" + @Q;,,;. Since @, is guarded, Q is
well formed. Then
[Q] = caseT:[Q"][T:[Qni]
~ case T :(case i : Pi[...[] pn: Pn)
0T [[Q;H-l]]
~ (by Lemma 3.3)
case o1 : Pi[|...[on: Py
07 :[Qni]
~ casepr: P ...[] on: Py
I1T: P
This concludes the proof.]

46 J BORGSTROM, R GUTKOVAS, J PARROW, B VICTOR, AND J AMAN POHJOLA

Lemma A.13. [] is injective, that is, for all P,Q, if [P] = [Q] then P = Q.
Proof. By induction on P and () while inspecting all the possible cases. []

Theorem A.14. [-] is an isomorphism up to ~ between °w and the case-guarded processes
in PSPI.

Proof. Directly follows from Lemma A.13 and Lemma A.12. []

A.3. Value-passing CCS.

Lemma A.15. If P is a VPCCS process such that P MEDN, Pl then 7 = e

Proof. By induction on the derivation of P’. Obvious in all cases except OPEN, where
we derive a contradiction since only values can be transmitted yet only channels can be
restricted - hence the name a is both a name and a value. []

We assume a reverse translation ™ from VPCCS to value-passing CCS. We prove strong
operational correspondence.
Proof of Theorem 4.23.
(1) By induction on the derivation of P’.
Act:
We have that a.P %5 P. Since a.P is in the range of 7, there must be z and
v such that either « = Z(v) (for if @ was an input, a.P would be outside the

A~

range of). The OUT rule then admits the derivation T v.[P] =% [P]

Sum:
There are two cases to consider: either X; P; is the encoding of an input, or a
summation. .
(a) If X3P, = Yyx(v).P{v/y} = z(y).P we have that a = x(v). Then for

each v, we can derive z(A\y)y.[P] £% [P{v/y] using the IN rule.
(b) Otherwise, we have that P; — P’ and by induction,
[P 2 1P
The CASE rule lets us derive
case T:[P][--- [T:P, L [p]
This suffices since [X; P =case T : [P] [--- [T : P
Coml:
Here P % P’ and by induction, [P] 1CIN [P']. The PAR rule admits

derivation of the transition [P] | [@] CIN [P'] | [Q], using Lemma A.15 to
discharge the freshness side condition.

Com?2:
Symmetric to Com1.

A SORTED SEMANTIC FRAMEWORK FOR APPLIED PROCESS CALCULI 47

Com3: B
Here P % P/, Q % @Q'. Since « is in the range of =, there are z and v
such that @ = x(v) and @ = Z(v) (or vice versa, in which case read the next

sentence symmetrically). By the induction hypotheses, [P] +% [P'] and
[Q =% [Q1T - hence [P] | [Q] - [P]|[Q1] by the Com rule, using
Lemma A.15 to discharge the freshness side condition.

Res:
Here P % P’ with L#a - hence o(L)#a. By induction, [P] 1CIN [P].
Then we use the RES rule |L| times to derive (vo(L))[P] 1CIN (vo(L))[P'].

Rep:
Here P |!P %5 P'. By induction, [P] | ![P] CIN [P'], and by the REP rule,
[P] =5 [P]

(2) By induction on the derivation of P’.

In: o
Here z(A\y)y.[P] 2% [P{v/y}]. We match this by deriving z(y).P LION
P{v/y} using the AcT and SuM rules.

Out:
Here 7 v.[P] =% [P]. We match this by deriving Z(v).P 0, p using the
Acrt rule.

Com:

Here [P] LGN P" [Q] &% Q". By Lemma A.15, §j = ¢, and by induction,
P 2% prand Q 2 Q'where [P'] = P" and [Q'] = Q". Using the Com3
rule we derive P | Q — P'| Q'

Par:
Easy.

Case:
Our case statement can either be the encoding of either a summation or an if
statement. We proceed by case analysis:

(a) Here [P;] o, pr. By induction, P; —+ P’ where [a] = /. By Sum,
P, % P
(b) Here [P] < P"and 1k b, By induction, P %+ P’ where [o] = o
and [P'] = P”. Since b evaluates to true, if bthen P = P - hence
if bthen P = P
Rep:
Easy.
Scope:
Here [P] < P’ with rfo/ and by induction, P %+ P’ where o/ = [a] and
P" = [P']. Hence we can derive P\ {z} - P’\ {x} by the RES rule.

48

J BORGSTROM, R GUTKOVAS, J PARROW, B VICTOR, AND J AMAN POHJOLA

Open:
Opening is not possible.

Recent licentiate theses from the Department of Information Technology

2014-006

2014-005

2014-004

2014-003

2014-002
2014-001
2013-007

2013-006

2013-005
2013-004

2013-003
2013-002

Per Mattsson: Pulse-modulated Feedback in Mathematical Modeling and Es-
timation of Endocrine Systems

Thomas Lind: Change and Resistance to Change in Health Care: Inertia in
Sociotechnical Systems

Anne-Kathrin Peters: The Role of Students’ Identity Development in Higher
Education in Computing

Liang Dai: On Several Sparsity Related Problems and the Randomized Kacz-
marz Algorithm

Johannes Nygren: Output Feedback Control - Some Methods and Applications
Daniel Jansson: Mathematical Modeling of the Human Smooth Pursuit System

Hjalmar Wennerstrom: Meteorological Impact and Transmission Errors in
Outdoor Wireless Sensor Networks

Kristoffer Virta: Difference Methods with Boundary and Interface Treatment
Jfor Wave Equations

Emil Kieri: Numerical Quantum Dynamics

Johannes Aman Pohjola: Bells and Whistles: Advanced Language Features in
Psi-Calculi

Daniel Elfverson: On Discontinuous Galerkin Multiscale Methods

Marcus Holm: Scientific Computing on Hybrid Architectures

UPPSALA
UNIVERSITET

Department of Information Technology, Uppsala University, Sweden

