Examensarbete

Matematisk problemlösning
En studie av problemtyper, lösningsstrategier och samarbetsformer vid problemlösning i årskurs 4-6

Författare: Stefan Kullberg
Handledare: Gunilla Nilsson
Examinator: Håkan Sollervall
Datum: 2014-01-16
Kurskod: GO7483
Ämne: Matematikdidaktik
Nivå: Grundnivå

Institutionen för matematikdidaktik
Matematisk problemlösning
En studie av olika problemtyper, lösningsstrategier och samarbetsformer vid problemlösning i årskurs 4-6.

Abstrakt
Syftet med uppsatsen var att studera de olika problemtyper, lösningsstrategier och samarbetsformer som användes i grundskolans årskurs 4-6 vid arbete med problemlösning i matematik. För att genomföra studien observerades tre olika klasser; en årskurs 4, en årskurs 5 och en årskurs 6. Lärarna i respektive klass intervjuades för att undersöka tankarna bakom den undervisning de bedrev.

De sorters problem eleverna arbetade med varierade och det gjorde även strategierna som de använde. De strategier som var mest frekvent förekommande var emellertid att rita bilder, gissa och pröva samt att välja en eller flera operationer att arbeta med.

Eleverna arbetade både enskilt, i mindre grupper och i helklass när de arbetade med problemlösning. Helst skulle alla dessa tre delar tillgodoses, ansåg flera av de intervjuade lärarna.

Nyckelord
Problemlösning, självreglerat lärande, self-regulated learning, samarbetsformer, lösningsstrategier, problemtyper
Mathematical problem solving
A study of different types of problems, strategies for solving and forms of cooperation when solving problems in Swedish elementary school grades 4-6.

Abstract

The purpose of this thesis was to study the different types or problems, strategies for solving and forms of cooperation used in Swedish elementary school grades 4-6 when working with problem solving in mathematics. Three different grades were studied in this thesis; one 4th grade, one 5th grade and one 6th grade. The teachers in each class were interviewed to study the ideas behind the teaching methods they were using.

The types of problems students worked with varied and so did the strategies that they used. The most frequent strategies, however, was to draw pictures, guess and try and select one or several operations to work with.

The students worked individually, in small groups and everyone in the class together, when they solved problems. Several of the interviewed teachers wanted all of these three forms of learning to be part of their teaching.

Keywords

Problem solving, self-regulated learning, forms of cooperation, strategies for solving, types of problems
Innehåll

1. Inledning ... 6

2. Syfte och frågeställningar ... 7
 2.1 Definition av begrepp .. 7

3. Teoretisk bakgrund ... 8
 3.1 Varför problemlösning? ... 8
 3.2 Program för problemlösning ... 9
 3.2.1 Lämpligt innehåll .. 9
 3.2.2 Undervisningsstrategier .. 10
 3.2.3 Riktlinjer för genomförande ... 10
 3.3 Arbetsgång vid problemlösning .. 10
 3.4 Self-regulated learning .. 11
 3.4.1 Forethought, planning and activation ... 12
 3.4.2 Monitoring .. 12
 3.4.3 Control .. 12
 3.4.4 Reaction and reflection ... 13
 3.5 Olika typer av matematiska problem ... 13

4. Metod .. 14
 4.1 Urval .. 14
 4.2 Datainsamlingsmetoder ... 14
 4.3 Genomförande ... 15
 4.4 Bearbetning av data .. 16
 4.5 Validitet och reliabilitet ... 16
 4.6 Etiska aspekter ... 17

5. Resultat .. 18
 5.1 Klass A ... 18
 5.1.1 Observationer .. 18
 5.1.2 Intervju .. 19
 5.2 Klass B ... 20
 5.2.1 Observationer .. 20
 5.2.2 Intervju .. 21
 5.3 Klass C ... 22
 5.3.1 Observationer .. 22
 5.3.2 Intervju .. 23
 5.4 Sammanfattning av resultat ... 24

6. Analys .. 25
 6.1 Olika typer av problem ... 25
6.2 Elevernas strategier för att lösa problem ...25
6.3 Samarbetsformer vid problemlösning ...27

7. Diskussion och slutsatser ..29
7.1 Metoddiskussion ..29
7.2 Resultatdiskussion ..29
7.2.1 Olika typer av problem ...30
7.2.2 Elevernas strategier för att lösa problem ...31
7.2.3 Samarbetsformer vid problemlösning ..32
7.3 Slutsatser ...32
7.4 Förslag till vidare forskning ..33

Referenser ..34

Bilagor
Bilaga 1: Observationsmanual
Bilaga 2: Exempel på problem som användes i undervisningen
Bilaga 3: Information till undersökningsdeltagare
Bilaga 4: Intervju med lärare
1. Inledning

På höstterminen 2011 trädde den nya läroplanen, Lgr 11, i kraft och det verkar som att svårtolkade begrepp, exempelvis problemlösning, ofta blir tolkade på ett sätt som överensstämmer med hur lärare redan undervisar (Boesen m.fl. 2014). Det är alltså inte säkert att det som står i läroplanen tolkas på samma sätt på olika skolor. Av denna anledning kan läroplanen vara problematisk och det är därför intressant att undersöka hur olika lärare låter elever arbeta med problemlösning. Enligt en granskning från Skolinspektionen är matematikundervisningen inte tillräckligt varierad till följd av att lärare har otillräcklig kunskap om läroplanen och kursplanen i matematik. Det medför att eleverna endast får undervisning i delar av matematikämnet och att de bland annat inte ges förutsättningar att utveckla en problemlösningsförmåga (Skolinspektionen 2009).

I gällande kursplan för matematik finns det fem förmågor som matematikundervisningen sammanfattningsvis ska ge alla elever förutsättningar att utveckla. En av dessa förmågor är att kunna ”formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder” (Skolverket 2011 s. 63). En relativt stor del av grundskolans matematikundervisning bör alltså vara inriktad mot att låta elever arbeta med att både formulera problem och att lösa problem. Dessutom ska de få möjlighet att lära sig värdera sina strategier och metoder, det vill säga att eleverna ska lära sig att vara reflekterande och självkritiska.

Mitt intresse för olika matematiska förmågor grundar sig delvis i den bild media producerar av svenska elevers resultat i internationella undersökningar, som antyder att svenska elevers matematikkunskaper blir sämre och sämre. Varför jag valde att avgränsa studien till just problemlösningsförmåga beror på att problemlösning tycks vara relativt ovanligt enligt min erfarenhet. Majoriteten av matematikundervisningen verkar ägnas åt färdighetssträning och räkning i läroböcker. Frågan är om det finns något att vinna med att arbeta utifrån problembaserade uppgifter i matematik.
2. Syfte och frågeställningar

Syftet med detta examensarbete är att undersöka vilka olika typer av matematiska problem elever i grundskolans årskurs 4-6 arbetar med. Utöver det är syftet att undersöka hur eleverna går tillväga när de ska lösa ett problem. Intentionen är dessutom att undersöka vilka olika samarbetsformer som används vid problemlösning i dessa årskurser. Utifrån detta syfte har följande frågeställningar formulerats:

- Vilka typer av problem arbetar eleverna med vid problemlösning?
- Vilka strategier använder eleverna för att lösa problem?
- Vilka samarbetsformer används vid arbete med problemlösning?

2.1 Definition av begrepp

3. Teoretisk bakgrund

Nedanstående citat beskriver inte bara matematik generellt sett utan även riktlinjer som kan appliceras vid problemlösning. Att söka, utforska och egenhändigt formulera hypoteser framhålls som särskilt viktigt.

Mathematics is a living subject which seeks to understand patterns that permeate both the world around us and the mind within us. Although the language of mathematics is based on rules that must be learned, it is important for motivation that students move beyond rules to be able to express things in the language of mathematics. This transformation suggests changes both in curricular content and instructional style. It involves renewed effort to focus on:

- Seeking solutions, not just memorizing procedures;
- Exploring patterns, not just memorizing formulas;
- Formulating conjectures, not just doing exercises (Schoenfeld 1992 s. 4).

3.1 Varför problemlösning?

3.2 Program för problemlösning
En som har forskat kring problemlösning är Lester (1996). Utifrån sin forskning har han formulerat följande grundläggande principer för problemlösning:

1. Elever måste lösa många problem för att förbättra sin problemlösningsförmåga.
2. Problemlösningsförmåga utvecklas långsamt under en lång period.
3. Elever måste tro på att deras lärare tycker problemlösning är betydelsefullt för att de ska ta till sig undervisning.
4. De flesta elever tjänar på systematisk undervisning i problemlösning (Lester 1996 s. 87).

Vidare menar Lester att problemlösning är ett komplext ämne och framhåller vissa aspekter som nödvändiga för att arbete med problemlösning ska vara framgångsrikt. Han kallar det för ett problemlösningsprogram, vilket består av lämpligt innehåll, undervisningsstrategier och riktlinjer för genomförande.

3.2.1 Lämpligt innehåll

- välja en eller flera operationer att arbeta med
- rita en bild
- göra en lista
- skriva upp en ekvation
- dramatisera situationen
- göra en tabell eller ett diagram
- gissa och pröva
- arbeta baklänges
- lösa ett enklare problem
- använda laborativa material eller modeller (Lester 1996 s. 88).

utan hellre ett återkommande inslag som genomsyrar hela matematikundervisningen (Lester 1996).

3.2.2 Undervisningsstrategier

3.2.3 Riktlinjer för genomförande

3.3 Arbetsgång vid problemlösning
För att lösa ett problem har Pólya (1990) formulerat fyra olika faser som kan användas för att lösa olika typer av problem. De fyra faserna är som följer:

1. att förstå problemet
2. att göra upp en plan för att lösa problemet
3. att genomföra planen
4. att se tillbaka på lösningen

Till en viss gräns kan läraren kontrollera att eleverna har förstått det givna problemet. De bör kunna återge problemet muntligt och framhålla de huvudsakliga delarna av problemet. De huvudsakliga delarna behandlar vad som är okänt, vilken information som finns och vilka villkor som gäller för problemet. För att kontrollera elevernas förståelse av problemet bör lärarens frågor till eleverna därför kretsas kring dessa tre delar (Pólya 1975).

allteftersom informationen om problemet bearbetas eller som en plötslig idé. En sådan plötslig idé kan uppstå efter ett flertal mindre framgångsrika försök att lösa problemet.

När problemet är löst är processen inte helt färdig. De allra flesta, även många duktiga elever, vill, efter att de löst problemet, stänga sin bok och arbeta vidare med något annat. Om de gör det går de miste om en viktig del i problemlösningsprocessen, nämligen att se tillbaka på lösningen. Genom att se tillbaka på lösningen och undersöka den får de möjligheten att befästa de kunskaper de nyligen använt sig av. På så sätt förbättras deras problemlösningsförmåga genom att de nästa gång de löser ett problem har en bredare kunskapsbas om olika problem och hur de kan lösas, vilket är en viktig del när en plan ska formuleras (Pólya 1990).

3.4 Self-regulated learning

TABLE 1
Conceptual Framework for Studying Self-Regulation

<table>
<thead>
<tr>
<th>Phases of Self-Regulation</th>
<th>Areas for Self-Regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forethought, planning, activation</td>
<td>Cognition</td>
</tr>
<tr>
<td>Monitoring</td>
<td>Motivation</td>
</tr>
<tr>
<td>Control</td>
<td>Behavior</td>
</tr>
<tr>
<td>Reaction, reflection</td>
<td>Context</td>
</tr>
</tbody>
</table>

Figur 1 Begreppsmässigt ramverk för att studera självreglering (Schunk 2005 s. 86).
3.4.1 Forethought, planning and activation
In den första fasen, förtänksamhet, planering och aktivering berörs följande kognitiva processer som kan påverkas av självreglering: förkunskaper och metakognitiv kunskap. Aktivering av relevanta kunskaper kan ske omedvetet, men en person som styr sitt lärande med hjälp av SRL kan aktivera dessa kunskaper genom att ställa relevanta frågor till sig själv. Ett exempel på en sådan fråga skulle kunna vara ”Vad vet jag redan om det här?” Även metakognitiv kunskap kan aktiveras omedvetet eller genom ett aktivt val. Inlärningsstrategier som exempelvis repetition och att skriva ner anteckningar, hur dessa strategier ska användas, samt när och varför de olika strategierna bör användas är delar av den metakognitiva aspekten av den första fasen (Schunk 2005).

Beteenden som kan regleras i den första fasen kan vara sådant som berör planering av tid och ansträngningsnivå. Att skapa ett schema och avsätta tid till olika aktiviteter kan vara ett sätt att reglera detta område. Kontextuella faktorer som ingår i den första fasen av SRL är elevens uppfattning av situationen, vilket material som finns tillgängligt för att bidra till en förbättrad inlärning och hur klassrumsklimatet är, det vill säga exempelvis hur hjälpsam läraren och övriga elever i klassen är, spelar också roll (Schunk 2005).

3.4.2 Monitoring
Den andra fasen, övervakning, handlar om att övervaka och vara medveten om sina egna handlingar och vilket resultat de bidrar till. Den kognitiva delen av denna fas ingår exempelvis att övervaka vad vi tror oss veta och vad vi inte förstår. Inom området motivation i fas två berörs bland annat att vara medveten om hur effektivt man arbetar, hur intresserad man är av arbetsområdet och om man är orolig över något som arbetsområdet berör. Att övervaka beteenden handlar om att anpassa den tid och ansträngning som läggs ned på arbetet som utförs. År uppgiften svår kan eleven behöva arbeta dubbelt så hårt som han brukar göra, för att kunna lösa uppgiften. Övervakning av kontexten handlar om att se över om förutsättningarna för att lösa uppgiften på något sätt förändras och i så fall anpassa sig efter de nya förutsättningarna. (Schunk 2005).

3.4.3 Control
arbeta vidare. De kontextuella områden som omfattas av denna fas är bland annat att eleven försöker kontrollera och minimera störningsmoment runt omkring sig. Att försöka förhandla villkoren för vilka uppgifter som ska utföras om arbetsbördan anses vara hög är också en del av den kontextuella delen för den tredje fasen (Schunk 2005).

3.4.4 Reaction and reflection
Den fjärde och sista fasen kallas för reaktion och reflektion. I denna fas genomför eleven en bedömning och utvärdering av det arbete som utförts. Under området motivation kan eleven reflektera över sin arbetsinsats och om han är missnöjd kan han intala sig själv att det inte berott på att han inte har förmågan att lösa de uppgifter som skulle lösas, utan snarare att de ansträngningar han gjort inte varit tillräckliga. Beteendemässig reaktion och reflektion handlar om att eleven gör sig själv medveten om huruvida han har gjort tillräckliga ansträngningar och använt tiden effektivt. Kontextuell reaktion och reflektion avser utvärdering av vad uppgifterna krävt av eleven samt vilka kontextuella faktorer som kunnat påverka detta. För att SRL ska vara effektivt krävs det att eleven bedömer om han har möjlighet att utföra en given uppgift, om lärmiljön främjar lärande och vad som krävs för att eleven ska ha större möjligheter att lära sig (Schunk 2005).

3.5 Olika typer av matematiska problem
Möllehed (2001) beskriver fyra olika typer av matematiska problem som ursprungligen presenterats av Pólya. Följande typer av problem har formulrats:

1. One rule under your nose. För att lösa ett problem av denna typ tillämpas en regel utan vidare tanke kring vad som egentligen sker matematiskt. Regeln som tillämpas ska ha blivit presenterad och diskuterad i samband med att problemet presenterats.

Utöver dessa problemtyper som ursprungligen kommer från Pólya beskriver Möllehed (2001) ytterligare en problemtyp som är av intresse för denna studie:

4. Metod

4.1 Urval

Omfattningen av ett examensarbete på grundnivå begränsar möjligheterna till en longitudinell studie med ett stort urval som senare skulle kunna visa sig vara generaliserbart för större delar av populationen. De som medverkade i denna studie var lärare och elever i en årskurs 4, en årskurs 5 och en årskurs 6. Studierna i årskurs 4 och 5 genomfördes på en och samma skola och studien i årskurs 6 genomfördes på en annan skola. Tanken bakom detta urval var att få ett bredare resultat som skulle kunna tänkas spegla en bild av hur arbete med problemlösning utförs i årskurs 4-6 och inte enbart i en given årskurs.

4.2 Datainsamlingsmetoder

Studien som genomfördes var av kvalitativ art, vilket innebär att ambitionen var att få fram djupa och nyansade svar hellre än att undersöka en stor mängd klasser. Således genomfördes någon kvantitativ studie inte, utan fokus låg snarare på att observera matematikundervisningen i tre klasser i årskurs 4-6 och att intervjua lärarna i de olika klasserna.

Det första steget i datainsamlingen var att observera hur lärare och elever arbetade med problemlösning i de olika klasserna. Under observationerna fördes anteckningar utifrån en observationsmanual. Tanken med utformningen av denna var att det skulle finnas möjlighet att pricka av en del saker samtidigt som det fanns utrymme att föra anteckningar under vissa frågor. Användandet av manualen var ett sätt att minimera fokus på att skriva och på så sätt ägna mer tid åt att observera. Observationsmanualen återfinns i sin helhet i bilaga 1 i uppsatsens sista del.

En observation är enligt Johansson och Svedner (2010) väl lämpad för en studie som syftar till att undersöka hur undervisning genomförs: "Observationsmetoden har ofta betraktats som

4.3 Genomförande

Intervjuerna var relativt styrda av de frågor som finns presenterade i bilaga 3, men då det var nödvändigt följdes svar upp med följdfrågor och lärarna gavs ett tolkningsutrymme av frågorna. Det innebär att läraren inte avbröts i ett svar för att det inte var vad jag hade tänkt att en fråga skulle söka svar på. Då användes istället följdfrågor för att förtydliga frågan eller för att det som läraren svarat på var minst lika intressant och relevant som det som var tänkt att frågan ursprungligen skulle ge svar på. De olika problemtyperna som finns beskrivna i den teoretiska bakgrunden presenterades dessutom för lärarna under intervjuerna.
Intervjufrågorna kan, i en semistrukturerad intervju, komma i en förutbestämd följd men det är inte nödvändigt (Patel & Davidsson 2011). I de intervjuer som genomfördes för studien följde ordningen på frågorna till stor del den ordning som står i bilaga 3, men i vissa fall berördes någon fråga medan det fördes ett samtal kring en annan och därmed försommades vissa frågor.

4.4 Bearbetning av data
Det material som inhämtades under observationerna antecknades till stor del i observationsmanualen och till viss del i ett anteckningsblock som fungerade som komplement till den information som skrevs i observationsmanualen. Anledningen till varför vissa saker skrevs ned som kompletterande anteckningar kan exempelvis ha varit att det var svårt att placera in informationen under en lämplig rubrik i observationsmanualen. Alla anteckningar bearbetades genom att de granskades av mig så att de överensstämde med vad som skedde under observationen. Detta gjordes för att undvika att jag antecknade något som sedan visat sig inte stämma när lektionen fortlöpt. Det skulle exempelvis kunna vara så att jag skrev i anteckningarna att ingen elev ritar sina lösningar. Sedan kanske det visade sig, längre in på lektionen, att någon elev faktiskt gjorde det.

När resultatet skrevs i uppsatsen användes observationsmanualen med tillhörande anteckningar och de transkriberade intervjuerna för att skriva ned all relevant data för varje observerad klass. I kapitlet för resultat är de data som presenteras således inte bearbetade mer än att de är kategoriserade utifrån om resultatet framkommit under en observation eller under en intervju. I kapitlet för analys bearbetades sedan materialet ytterligare genom att det ställdes upp under rubriker som baserades på de frågeställningar studien byggde på. I analysen ställdes sedan resultaten mot den teoretiska bakgrunden för att möjliggöra en analys resultatet.

4.5 Validitet och reliabilitet

4.6 Etiska aspekter
5. Resultat

Här presenteras de resultat som framkom vid de observationer och intervjuer som genomfördes. Kapitlet är uppdelat i olika avsnitt där varje avsnitt presenterar resultaten i en klass. För att ge en överskådlig bild av resultatet är varje avsnitt uppdelat i underrubriker där resultaten från observationer respektive intervjuer presenteras var för sig. I kapitlet presenteras all relevant data som insamlats. I kapitlet för analys sammanställs sedan all data och kategoriseras utifrån studiens frågeställningar.

5.1 Klass A

I denna klass observerades en lektion när klassen arbetade med problemlösningsuppgifter och en lektion där de i första hand arbetade med bråk och procent. Eftersom problemlösning är ett begrepp som kan tolkas olika kan det dock påstås att vissa uppgifter eleverna arbetade med under denna lektion var av problemlösningskaraktär. Det som presenteras i resultatet från observationerna är dock till stor del hämtat från den observation då eleverna enbart arbetade med problemlösningsuppgifter.

5.1.1 Observationer

Vid båda lektionerna fick eleverna möjlighet att arbeta i par eller grupper med tre till fyra elever i varje grupp. Någon enstaka elev arbetade enskilt på den lektion de arbetade med bråk och procent. Vid den andra lektionen, när de arbetade med problemlösningsuppgifter, tillhörde alla elever en grupp. Meningen var att alla elever först skulle reflektera själva över problemet de arbetade med och sedan skulle de diskutera det med övriga i gruppen för att tillsammans hitta en lösning. Den enskilda reflektionen innan de började diskutera varade dock inte länge för de flesta. På många håll diskuterades problemen men diskussionerna handlade inte alltid om konkreta förslag på hur de skulle gå tillväga, utan även om hur svåra problemen var och att de inte skulle gå att lösa.

De strategier som eleverna tillämpade när de arbetade med problemlösningsuppgifter var följande:

- gissa och pröva
- rita bilder
- göra listor eller tabeller
- välja en eller flera operationer att arbeta med

Uppgifterna var utformade på så vis att det fanns en uppgift med några meningar text och sedan fanns det en ruta med texten ”Rita din lösning om du vill…” och under rutan fanns det tommar rader där det stod ”… eller räkna här.” Längst ned fanns en tom rad som föregicks av texten ”Svar:”. Nedan följer ett exempel på hur ett problem kunde se ut.

Min pappa är brandman och han har 5 barn.
Så här gamla är vi:
Carl är 2 gånger 7, minus en fjärdedel av 4.
Amanda är hälften av 10, plus en fjärdedel av 12.
Alfred är en tredjedel av 21, plus en fjärdedel av 8.
Elsa är 3 gånger 3, minus hälften av 10.
Jag heter Robert och är en fjärdedel av 16, plus en tredjedel av 12.
Två av oss är tvillingar, vilka är det? (Agrell 2010 s. 11).
Eleverna fick välja mellan olika problem och detta var ett av de som gick att välja mellan. Den grupp som arbetade med denna uppgift använde sig av strategin att göra en lista/tabell för att få en överskådlig bild över alla barns ålder och sedan kunna söka de två med samma ålder och på så sätt få fram vilka två som var tvillingar.

5.1.2 Intervju
Av intervjun med klassens lärare framgick att läraren trodde att eleverna lärde sig bäst genom att arbeta i grupper eller i par. Att få möjlighet till att kunna diskutera matematiken påstod hon var något som efterfrågades av många elever. Ibland kunde läraren välja att de skulle arbeta i grupp och ibland valde eleverna det själva. Läraren påpekade dock att det ibland kan vara bra att arbeta enskilt, till exempel innan de arbetar i grupp, för att på så vis kunna delge varandra olika lösningar och lära av varandra.

Intervjuare: Uttrycker de vad de gillar bäst eller märker du... hur tror du att de lär sig bäst helt enkelt?

Lärare 1: Jag tror att de... eller många i alla fall trivs när man jobbar i grupp och man får diskutera matematiken. Mmm. Jag tror att, där. Sen att man laborerar och gör sådana saker också men... nej om man skulle fråga barnen så tycker de nog att det är bra att få alltså jobba i grupp eller ihop med någon då.

Här nedanför följer ett utdrag ur intervjun där läraren talar om laborativt material och bilder som strategi för problemlösning.

Intervjuare: Använder de laborativt material vid problemlösning, eller...?

Lärare 1: Ja, om de har behov, ja alltså, eller behov av det... såg att det kan ju bero vad det... vad det är för nönting. När man går i [klassens årskurs] nu så är det kanske mer att man får till den här bilden, alltså det blir det egna laborativa eller så. Att man verkligen ritar eller så. Behöver man, självklart så kan man ju ha laborativa grejer. Det beror på lite vad det är. År det geometrigrejer så... så kanske det är bra att man plockar fram och mäter lite för att man... nä men du vet såhär ska jag få tankarna konkret och så.

plan för problemlösning som de hade skapat såg ut på följande sätt och fanns på tavlan i klassrummet så att alla kunde se den:

1. Läs problemet noga. Vad frågas det efter?
4. Visa alla steg och uträkningar i din lösning.
5. Skriv svar.

5.2 Klass B
Observationerna i denna klass genomfördes vid två tillfällen då klassen var uppdelad i halvklass. Den ena gruppen hade matematik och den andra gruppen var på en annan lektion och befann sig inte i klassrummet. Samma lektionsupplägg observerades alltså två gånger.

5.2.1 Observationer
Lektionsupplägget följde Pólyas fyra faser och det fanns papper med dessa uppsatta i klassrummet. Lektionen inleddes med att en problemuppgift visades på tavlan med hjälp av en projektor. Problemet de arbetade med såg ut på följande sätt:

Eleverna fick diskutera uppgiften i helklass för att se till så att alla förstod uppgiften och de begrepp som fanns i texten. Om någon inte förstod ett visst ord började de med att diskutera vad ordet betydde i sammanhanget. Det framkom dock även senare efter en stunds enskilt arbete att ytterligare något ord behövde förklaras. I det här fallet handlade det om ordet klöste, som återfinns i problemet ovanför. Därefter började de reda ut vad som frågades efter och vad de redan visste efter att ha läst problemuppgiften, samt olika sätt att tolka den information som fanns. Sedan fick varje elev skapa en egen plan och en lösning på problemet. Efter att de försokt göra detta på egen hand gavs de möjlighet att diskutera och arbeta tillsammans med andra. Slutligen diskuterade de olika lösningar i helklass. Läraren poängterade för eleverna att olika lösningar var viktiga eftersom de kunde lära av varandra. En lösning var inte nödvändigvis rätt eller fel. Om två lösningar skiljde sig åt berodde det inte nödvändigvis på att någon gjort ett räknefel utan kunde bero på att problemet tolkats olika. I problemet som presenterades på tavlan diskuterades bland annat att det var ben *av olika slag* som skulle beräknas. Eleverna diskuterade dessutom hur många ben en stol har, eftersom det inte var givet i problemet. Alla elever arbetade med detta problem och de som
löste det arbetade vidare med problem som också krävde analys och förståelse eftersom
problemen bestod av information som krävde sortering innan det var möjligt att göra upp en
plan för hur problemen skulle kunna lösas.

Eleverna använde olika strategier för att lösa problem. Av observationerna framkom det att
eleverna använde sig av att:

- gissa och pröva
- rita bilder
- använda konkret eller laborativt material
- välja en eller flera operationer att arbeta med

Ett fåtal elever i klassen använde hörselskydd för att inte bli störda när de arbetade enskilt.
De minimerade alltså störningsmomenten omkring sig, vilket står i tydlig relation till det
kontextuella området inom fasen kontroll i SRL, som bland annat handlar om att göra
anstängningar för att minimera störningar omkring sig (Schunk 2005).

Ett problem handlade om pengar och för att lösa detta använde en del elever leksakspengar
som stöd. En vanlig strategi var att rita bilder och utifrån dessa skriva och räkna för att lösa
problemet. Några skrev uträkningar utan bilder, men istället för bilder innehöll viss text utförliga beskrivningar av problemet och informationen de kunde få av problempuppgiften
hade de skrivit ned i långa rader och användes som stöd för de beräkningar som var
nödvändiga att genomföra för att lösa problemet. Problemen de arbetade med vid
observationerna var problem av typen application with some choice.

5.2.2 Intervju
Läraren i den här klassen menade att de arbetade mycket med att prata om matematik i
allmänhet och det gällde även vid problemlösning. De arbetade både enskilt och diskuterade
i grupp och läraren lade särskild tyngd vid att hon ansåg att samspelet med andra bidrar till
lärande, att språket är ett viktigt redskap för lärande. Den enskilda reflektionen menade hon
dock också var viktig för att ge alla elever en chans att fundera. Hon upplevde emellertid att
den enskilda reflektionen passerade snabbt och att eleverna hellre ville och behövde diskutera
blicktillsammans med andra. Här följer ett utdrag ur intervjun med läraren där hon förklarade
utgångspunkten för det arbetssätt hon ville att eleverna skulle använda när de arbetade med
matematik och löste problem.

Intervjuare: Nu har ju jag observerat er, men hur tycker du att man ska arbeta
med problemlösning? I grupp, i par, enskilt? Vilka för- och nackdelar kan det
medföra?

Lärare 2: Jag tror ju väldigt mycket på det där att... att man lär i samspelet med
andra. Det är på något vis... alltså vad min praktiska teori grundar sig på är
det i den typen av teorier som handlar om att vi lär oss tillsammans och att
språket är redskapet för lärande. Så att jag tror att det finns en poäng i att
man får tänka själv först. Att man får en chans. Sen märker jag ju att när man
har gjort det, att om jag ber dem att om var och en tänker först och vi säger
att vi har ett rikt problem och så är det ju oftast att tänk... tänk först själv. Då
har det, går det oftast ganska snabbt till att de tycker att de har tänkt själva
färjligt och så börjar man prata för att man behöver bolla och mötas.
Läraren hade dessutom nyligen frågat eleverna hur de själva tyckte att de lärde sig bäst och fått svaret att de ville ha variation. En blandning av att arbeta med uppgifter i deras mattebok, tillsammans med genomgångar och diskussioner kring matematik, ansåg eleverna var det bästa sättet att arbeta med matematik.

Vid frågan om vilka olika problemtyper de brukade arbeta med svarade läraren att de främst arbetade med problem av typen *choice of a combination*, men att de även testat mer komplexa problem som skulle kunna placeras in i kategorin *approaching research level*. Dessa problem var dock nästan en för stor utmaning för eleverna. Problem av typen *one rule under your nose* ansåg hon fanns i matematikboken och att de användes för färdighetsträning. *Verkliga problem* hade de arbetat lite med och läraren skulle egentligen vilja att de arbetade mer med sådana problem.

5.3 Klass C

I den tredje klassen observerades när eleverna arbetade med det som i deras matematikbok kallades för kluringar. Problemen presenterades muntligt av läraren och den information som behövdes för att lösa problemen fanns skriven på tavlan, så att eleverna kunde titta på den.

5.3.1 Observationer

Även i denna klass använde eleverna olika strategier för att lösa problemen. De strategier som användes var:

- gissa och pröva
- rita bilder
- välja en eller flera operationer att arbeta med
Läraren föreslog att eleverna skulle rita bilder för att lösa problemen. Vissa elever kunde dock lösa problemen utan att rita bilder, antingen genom att pröva sig fram eller tack vare att de verkade ha automatiserat relevanta additions- och multiplikationstabeller. Dessa elever kunde till exempel se att $2 \times 15 + 10 = 40$. Utifrån observationerna kunde problemen placeras in i de problemtyper som kallas *one rule under your nose* och *application with some choice.*

5.3.2 Intervju

Intervjuare: Du sa ju att du gärna placerar dem två och två.

Lärare 3: Ja, gärna.

Intervjuare: Vid problemlösning och så med?

Lärare 3: Ja för jag tror att... får man tänka tillsammans med någon annan och man har dem till att kunna samarbeta för det får ju inte vara så att det är en som skriver av den andra såklart, men jag tror att det kan höja matten på en annan nivå också. Precis som att spela spel. Man kan göra det lustfyllt och det kan man göra när man jobbar två och två också. Att de klurar ihop och... återigen, samarbetet ska ju fungera.

Intervjuare: Det är ju en nackdel då som finns, om den ena gör mer än den andra.

De strategier eleverna använde och som diskuterades under intervjun, var att rita bilder och att välja en eller flera operationer att arbeta med. En intressant diskussion kring laborativt material uppstod också under intervjun. Läraren menade att eleverna ansåg att laborativt material var något som de använde när de var yngre. Hon brukade erbjuda eleverna att arbeta med olika laborativa material, men det var inte alla som var intresserade av att använda det. Om det användes för att presentera något i till exempel halvklass eller till alla elever samtidigt kunde det gå bra. Om läraren däremot föreslog att en enskild elev skulle använda laborativt material upplevde hon att det ofta fanns ett motstånd eftersom många elever ansåg att de skulle klara sig utan sådant. Samtidigt var eleverna inte ovana vid att arbeta med laborativt material eftersom de hade en lektion i veckan då de arbetade med olika laborativa material och spel.

De problemtyper som användes var, enligt läraren, problem av typen *one rule under your nose, application with some choice och choice of a combination*. Problem av den första typen användes exempelvis när läraren ville introducera något nytt, för att ge eleverna grundläggande kunskaper och några idéer de skulle kunna använda sig av. När eleverna arbetat med ett område inom matematik ett tag eller när de fått en vana att arbeta med problemlösning kunde de arbeta med de andra två problemtyperna.

5.4 Sammanfattning av resultat
Sammantaget var det minst en av de tre lärare som intervjuades som arbetade eller hade arbetat med varje typ av problem. Alla framkom inte under mina observationer men under intervjuerna framhöll de olika lärarna att de arbetade med några stycken av de problemtyper jag presenterade. För att ge svar på frågan om vilka typer av problem elever arbetar med vid problemlösning kan alltså sägas att de, enligt lärarna, arbetar med tre av de fem olika typer jag skrivit om. Utifrån mina observationer kan dock inte alla typer urskiljas. De problemtyper som användes när jag observerades var de tre första typerna, *one rule under your nose, application with some choice och choice of a combination*. De typer som inte framkom vid observationerna var således *approaching research level* samt verkliga problem.

- rita bilder
- gissa och pröva
- välja en eller flera operationer att arbeta med
- använda konkret eller laborativt material
- göra listor/tabeller

6. Analys

Här analyseras de data som presenterats i det föregående kapitlet. Analysen syftar till att koppla samman de teorier som beskrivits i den teoretiska bakgrunden med de resultat som framkommit vid studiens observationer och intervjuer. Kapitlet är uppdelat i underrubriker utifrån de frågeställningarna som studien byggde på.

6.1 Olika typer av problem

De fyra första typerna av problem som presenteras i Möllehed (2001), *one rule under your nose, application with some choice, choice of a combination och approaching research level* går i stegrande grad, vilket innebär att de blir mer komplexa att lösa. Den första typen är alltså enklare än den sista. Problemtypen *verkliga problem* står utanför denna rangordning av svårighetsgrad. Verkliga problem finns med i listan för att det var fullt möjligt att de även arbetade med sådana problem vid observationerna. Av mina undersökningar har det emellertid visat sig att det inte nödvändigtvis innebär att de beräkningar som måste genomföras för att lösa de komplexa problemyperna är svårare, utan snarare att tankegången kring problemen är mer komplex. I vissa fall bestod problemen av en textuppgift där det fanns en stor mängd information som behövde sorteras (se exempelvis problemet vid rubrik 5.2.1). I andra fall bestod problemen av en eller ett par meningar, alternativt en kort fråga (se exempelvis problemet vid rubrik 5.3.1). Ett problem som kräver flera metoder och beräkningssteg är ofta svårare att förstå och lösa än ett som endast kräver en metod och en beräkning. Samtidigt kan en svår beräkning i det problem som endast kräver en beräkning vara svårare att utföra än flera enkla beräkningar i ett problem som kräver flera beräkningar.

6.2 Elevernas strategier för att lösa problem

Av de strategier som Lester (1996) presenterat arbetade eleverna med följande:

- rita bilder
- gissa och pröva
- välja en eller flera operationer att arbeta med
- använda konkret eller laborativt material
- göra listor/tabeller

Av dessa strategier förekom strategierna rita bilder, gissa och pröva, samt välja en eller flera operationer att arbeta med i alla de studerade klasserna. De övriga två strategierna förekom vardera endast i en klass. Eftersom tre strategier förekom i alla klasser har ett mönster uppstått, vilket skapar tillfälle och möjlighet för analys. Om vi börjar med att titta närmare på strategin att rita bilder så kan det sägas att detta var en populär strategi hos eleverna eftersom åtminstone två av de tre lärarna föreslog denna strategi för sina elever. I en av klasserna arbetade de dessutom med problemuppgifter där det stod att eleven antingen skulle rita sin lösning eller göra en uträkning. Denna strategi var således en strategi som i flera fall...
rekommenderades till eleverna. I vissa fall kan det ha varit nödvändigt eftersom några elever visade motstånd till att lösa problemuppgifter och ansåg att det var för svårt eller för tråkigt.

Att välja en eller flera operationer att arbeta med är den tredje strategin som förekom i alla klasser. De elever som använde denna strategi använde alltså olika matematiska operationer för att lösa problemen de arbetade med. När några elever arbetade med följande problem, som tidigare presenterats i uppsatsen, så gjorde de olika beräkningar med hjälp av de fyra räknesätten för att komma fram till en lösning.

Min pappa är brandman och han har 5 barn.
Så här gamla är vi:
Carl är 2 gånger 7, minus en fjärdedel av 4.
Amanda är hälften av 10, plus en fjärdedel av 12.
Alfred är en tredjedel av 21, plus en fjärdedel av 8.
Elsa är 3 gånger 3, minus hälften av 10.
Jag heter Robert och är en fjärdedel av 16, plus en tredjedel av 12.
Två av oss är tvillingar, vilka är det? (Agrell 2010 s. 11).

För att lösa det här problemet är det tämligen uppenbart att flera operationer kan användas. Något som emellertid inte var nödvändigt vid alla problem som eleverna arbetade med. I vissa fall räckte det med att en operation användes för att lösa ett problem, exempelvis vid följande problem:
Farfar är 75 år gammal och farmor är 72 år. Min mamma är 35 år och min pappa är 43 år. Jag är 8 år gammal och min lillasyster är 4 år. Hur gammal var farmor när min pappa föddes? (Agrell 2010 s. 9).

6.3 Samarbetsformer vid problemlösning

De samarbetsformer som användes vid problemlösning var i stort sett samma i alla tre klasser. Det som var vanligast var att eleverna fick möjlighet att fundera själva en stund och sedan arbeta tillsammans i par eller i en grupp med tre till fyra elever. I en av klasserna fick eleverna inte möjlighet till detta vid de observerade lektionerna. Läraren framhöll dock att det dock vid intervjun, att hon många gånger lät eleverna tänka själva först och sedan arbeta tillsammans. I de andra klasserna, där eleverna skulle ha enskild reaktion innan de började arbeta i grupp, passade denna fas snabbt. Det var tydligt att eleverna ville arbeta tillsammans. I många fall för att de verkade tycka att problemet var svårt och behövde samarbeta med någon för att lösa det. Frågan är dock om den enskilda reaktionen hann genomföras överhuvudtaget. I vissa fall varade den enskilda reaktionen mindre än en minut innan eleverna började diskutera tillsammans.

I de fall då den enskilda reaktionen varade en kort period kan det tolkas som att eleverna hade bristande självreglering. Schunk menar att elever som är självreglerande kan ställa sig frågan ”Vad vet jag om det här?” för att medvetet aktivera de förkunskaper som de redan har. Detta står i relation till fasen för förtänskasamhet, planering och aktivering inom SRL (Schunk 2005). Vissa elever reflekterade enskilt längre än andra. Två av klasserna hade en mall för hur problemlösning borde gå till, som i klass A där det såg ut på följande sätt:

1. Läs problemet noga. Vad frågas det efter?
4. Visa alla steg och uträkningar i din lösning.
5. Skriv svar.

7. Diskussion och slutsatser

7.1 Metoddiskussion

Min önskan hade varit att observera under en längre tid, men av praktiska skäl, både från min egen sida och från majoriteten av de lärare som var med i studien, var detta inte möjligt. Observationerna genomfördes vid två lektioner per klass vilket ger en mycket begränsad bild av hur de olika klasserna arbetar med problemlösning. Det är inte rimligt att de skulle hinna visa alla olika sätt de arbetar med problemlösning och alla olika typer av problem de arbetar med under så få observationer. Resultatet av studien bör därför ses som ett inslag av hur problemlösning kan se ut i årskurserna 4-6. Resultatet är således inte generaliserbart, varken för ett geografiskt område eller för årskurserna 4-6.

7.2 Resultatdiskussion

Inledningsvis ställde jag frågan om det finns något att vinna med att arbeta utifrån problembaserade uppgifter. Frågan är inte en av de tre frågeställningarna jag sökte svar på under de studier som genomfördes, men jag anser att ett svar på denna fråga har visat sig genom de observationer och intervjuer som genomförts. Det går inte kontrollera om eleverna lärt sig mer av att arbeta med problemlösning jämfört med om de hade arbetat på annat sätt.

7.2.1 Olika typer av problem

Resultatet av observationerna överensstämde inte alltid med de svar intervjuerna gav. Med detta påstår jag dock inte att det var så att lärarna ansåg att de arbetade med svårare problemtyper än de faktiskt gjorde, utan motsatsen förekom också. Även om lärarna tolkade frågan som en mer generell fråga, det vill säga vilka typer av problem de brukade arbeta med, så borde de rimligen ha nämnt de typer som jag såg under mina observationer. I klass A framhöll läraren att de arbetade med one rule under your nose och verkliga problem medan jag bedömer att de problem de arbetade med vid observationerna var application with some choice och choice of a combination. Läraren för klass B ansåg att de främst arbetade med problem av typen choice of a combination medan min bedömning av problemen som observerades var att de bör placeras i kategorin application with some choice. Majoriteten av de problem de olika klasserna arbetade med var vad Lester (1996) kallar för processproblem, dock inte alla. Processproblem innebär arbete med problem som inte har en tydlig arbetsgång och undervisning kring problemlösning bör domineras av sådana problem (Lester 1996).

Den diskrepans som fanns mellan de resultat observationerna gav jämfört med de resultat intervjuerna gav kan ha uppstått på grund av att frågan vid intervjun varit otydlig eller att de intervjuade inte fått tillräcklig tid att förstå de olika problemtyperna och analysera det de arbetade med. För att kunna placera in varje enskilt problem i lämplig kategori krävs en analys av problemen och de olika lösningar som kan användas för att nå fram till ett svar,
något som lärarna inte fick någon större möjlighet att göra. Lärarna gav snarare svar på vilka problemtyper de har arbetat med under en längre tid, det vill säga vilka problemtyper de brukade arbeta med. Detta gav en bred bild av de typer klasserna arbetat med. Observationerna gav dock inte en bred bild eftersom lärarnas undervisning endast observerades vid två tillfällen per klass.

7.2.2 Elevernas strategier för att lösa problem

En strategi som användes av elever i alla de observerade klasserna var att gissa och pröva. En möjlig förklaring till detta är att det är en strategi som sannolikt används automatskt av de som inte vet vilken strategi de ska använda. Att gissa och pröva är en strategi som kan fungera på ett problem en elev till en början anser sig inte kunna lösa. Att börja gissa och pröva vilka räknesätt och operationer som skulle kunna tänkas användas i ett problem kan i slutändan göra så att eleven kommer fram till en lösning på problemet. En annan möjlig förklaring till att denna strategi var populär bland eleverna kan vara att de inte hade tillräckliga kunskaper om olika strategier som kan användas vid problemlösning. Som jag nämnde rekommenderade flera av lärarna att eleverna skulle rita bilder som strategi för att lösa problem. Det var däremot ingen av lärarna som berättade att eleverna exempelvis skulle kunna dramatisera problemet för att få en bättre förståelse för det och sedan större möjlighet att lösa det. Det kan alltså ha varit så att eleverna inte hade fått så många olika förslag på olika strategier för att lösa problem. Att gissa och pröva sig fram är med största sannolikhet något som eleverna är mer vana vid än att dramatisera ett matematiskt problem.
En strategi som bidrog till att några elever ökade sina möjligheter att lösa problem var att använda hörselskydd. Ett fåtal elever i en klass använde hörselskydd för att inte bli störda när de arbetade enskilt. De minimerade alltså störningsmomenten omkring sig, vilket stärk i tydlig relation till det kontextuella området inom fasen kontroll i SRL, som bland annat handlar om att göra just detta (Schunk 2005). De elever som använde hörselskydd hämtade dem självment vilket tyder på tydlig självreglering hos dessa elever.

7.2.3 Samarbetsformer vid problemlösning

7.3 Slutsatser

Sammanfattningsvis kan vi alltså se att eleverna arbetade med olika typer av problem. Från enkla problem för att exempelvis introducera ett arbetsområde, till mer komplicerade
problem. För att lösa problem använde eleverna olika strategier. Vissa strategier var dock vanligare än andra och det bidrog lärarna i flera fall till, eftersom de föreslog att eleverna till exempel skulle rita bilder för att lösa ett problem. Alla tre lärare ansåg att eleverna borde arbeta både enskilt och tillsammans med andra när de lösade problem. Vid observationerna kunde jag se att de var på detta sätt de faktiskt arbetade i två av tre fall, även om enskilt arbete fick mindre utrymme än grupparbete.

7.4 Förslag till vidare forskning

Referenser

Johansson, B & Svedner, P O (2010). Examensarbete i lärarutbildningen. 5. uppl. Uppsala: Kunskapsföretaget

Tillgänglig på Internet: www.anitacrawley.net/Articles/SchunkLegacyofPintrich.pdf [Hämtat 2013-11-17]

Tillgänglig på Internet: www.skolinspektionen.se/Documents/Kvalitetsgranskning/Matte/granskingsrapport-matematik.pdf [Hämtat 2013-11-17]

Tillgänglig på Internet: http://www.skolverket.se/publikationer?id=2608 [Hämtat 2013-12-08]

Tillgänglig på Internet: http://www.cm.se/webbshop_vr/pdf/etikreglerhs.pdf [Hämtat 2013-11-24]
Bilagor

Bilaga 1: Observationsmanual

Observationsmanual

1. Vilka typer av problem arbetar eleverna med vid problemlösning?
__
__
__
__
__
__
__

2. Vilka strategier använder eleverna för att lösa problem?
__
__
__
__
__
__
__

3. Vilka samarbetsformer används vid arbete med problemlösning?
__
__
__
__
__
__
Datum ______________________
Plats ______________________

Läraren hjälper eleverna utan att de ber om hjälp Ja Nej

Läraren hjälper eleverna med mer än att bara sätta igång deras tankar, dvs. mer eller mindre ger svaren Ja Nej

Har eleverna tillräckliga kunskaper för att kunna lösa problemen? Ja Nej

Vilken matematik arbetar eleverna med? Gynnas t.ex. vissa räknesätt? __
__
__
__
__

Elevernas val av strategi

1. rita bilder
2. gissa och pröva
3. använda konkret eller laborativt material
4. göra en lista/tabell eller ett diagram
5. Pólyas fyra faser – förstå problemet, göra en plan, genomföra planen, se tillbaka på lösningen
6. lösa ett liknande, enklare problem
7. annan strategi
8. kan inte lösa problemet

Vilka problemtyper används? (se nästa sida)

Problemtyp 1
Problemtyp 2
Problemtyp 3
Problemtyp 4
Problemtyp 5
Olika typer av problem (Möllehed 2001).

1. *One rule under your nose.* För att lösa ett problem av denna typ tillämpas en regel utan vidare tanke kring vad som egentligen sker matematiskt. Regeln som tillämpas ska ha blivit presenterad och diskuterad i samband med att problemet presenterats.

Bilaga 2: Exempel på problem som användes i undervisningen

Problem som användes i klass A:

• "Joseph var ett år när Napoleon föddes. Lucien var 6 år yngre än Napoleon. Jerome var 9 år yngre än Lucien. Hur gammal var Napoleon när Jerome föddes?” (Agrell 2010 s. 8).

• "Farfar är 75 år gammal och farmor är 72 år. Min mamma är 35 år och min pappa är 43 år. Jag är 8 år gammal och min lillasyster är 4 år. Hur gammal var farmor när min pappa föddes?” (Agrell 2010 s. 9).

• "Pappa har 2 systrar som har 4 söner och 1 dotter var. Mamma har 3 bröder och de har 1 son och 3 döttrar var. Är det fler pojkar än flickor eller fler flickor än pojkar bland mina kusiner?” (Agrell 2010 s. 10).

Problem som användes i klass B:

Problem som användes i klass C:

I följande problem fanns tre olika glassar att välja mellan: en för 8 kronor, en för 10 kronor och en för 15 kronor.

• "Du betalar 40 kr för tre glassar. Vilka glassar köper du?” (Andersson m.fl. 2003 s. 94).

• "Malvin köper fem glassar och betalar 63 kr. Vilka glassar köper han”? (Andersson m.fl. 2003 s. 94).

• "Arrax ska också handla för 63 kr, men han vill ha så många glassar som möjligt.
 a) Hur många glassar kan han köpa? b) Vilka glassar kan han köpa om han ska handla för exakt 63 kr?” (Andersson m.fl. 2003 s. 94).
Bilaga 3: Information till undersökningsdeltagare

Information till lärare för deltagande i examensarbete

Handledare för examensarbetet är:
Gunilla Nilsson,
0470-70 8180,
gunilla.i.nilsson@lnu.se

Härmed lämnar jag mitt godkännande till ovanstående text.
Underskrift: Datum:
________________________________ ____________________________

Tack för din medverkan!

Stefan Kullberg
Bilaga 4: Intervju med lärare

Intervju med lärare

1. Kan du beskriva den matematik ni arbetar med?
2. Hur tror du att elever lär sig bäst?
4. Har ni arbetat med att tolka de olika förmågorna i kursplanen, däribland förmågan att ”formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder”? Hur gick det arbetet till? Hur tolkar du förmågan?
5. Varför tror du problemlösning hör till en av de fem förmågor som ska tränas enligt Lgr 11? Vad är förtjänsten med att arbeta med problemlösning?
6. Problemlösning är ett begrepp som kan tolkas olika. Vad är din tolkning av problemlösning?
7. Planerar ni medvetet in arbete med problemlösningsuppgifter? Hur ser det ut i era läromedel?
9. Hur tycker du/hur gör ni när eleverna ska arbeta med problemlösning? Enskilt, par…? Vilka fördelar och nackdelar finns med de olika sätten?
11. Hur följer du upp undervisningen när de arbetat med problemlösning? (Möjlighet till diskussion av olika svar och tankegångar t.ex.)

De fem förmågorna:
- formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
- använda och analysera matematiska begrepp och samband mellan begrepp,
- välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
- förä och följa matematiska resonemang, och
- använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser (Skolverket 2011 s. 63).