"Alltså, jag har inte fattat att teknik kan vara skapande. Vi kanske ska ta in lite annat material i ateljén?
-Vad sker i möte mellan pedagoger i förskolan och teknikämnet?

Ulrika Sultan

Pedagogik på avancerad nivå/Pedagogik med didaktisk inriktning III
Uppsats, avancerad nivå, 15 högskolepoäng
Vårterminen 2012
1 Inledning ... 1
1.1 Syfte .. 3
1.2 Frågeställningar .. 3
1.3 Uppsatsen disposition ... 3
1.4 Centrala begrepp ... 4
 1.4.1 Begreppet attityd .. 4
 1.4.2 Begreppet uppfattning ... 4
 1.4.3 Begreppet teknikämnets plats i skolans praktik .. 5
 1.4.4 Begreppet förskola ... 6
 1.4.5 Begreppet undervisning .. 6
2 Bakgrund .. 8
 2.1 Lpfö 98 reviderad 2010 .. 8
 2.2 Teknikämnets plats i förskolan i förskolans praktik idag .. 9
 2.3 Teknikämnets plats i förskolan idag ... 9
2.4 Teknikdidaktik i en historisk kontext ... 11
 2.4.1 Friedrich Fröbel och barnträdgården .. 11
 2.4.2 Chistopher Polhem .. 12
 2.4.3 Eric Eklund .. 13
 2.4.4 Elsa Köhler .. 14
 2.4.5 John Dewey ... 15
2.5 Teknikämnets plats i skolans praktik .. 16
2.6 Didaktik, ämnesdidaktik och PCK ... 17
2.7 Attityder till de naturvetenskapliga ämnena samt teknikämnets plats i skolans praktik .. 19
2.8 ROSE - undersökningen ... 22
2.9 Sammanfattning av bakgrund ... 24
3 Metod .. 28
 3.1 Teoretisk förankring ... 29
 3.1.1 Grounded theory ... 29
 3.1.2 Fenomenografi & fenomenografisk analys .. 31
 3.2 Praktiskt utförande ... 32
 3.2.1 Tillförlitlighet och giltighet .. 32
 3.2.2 Forskningsetiska principer .. 32
 3.2.3 Urval .. 34
 3.2.4 Enkäter .. 35
 3.2.5 Genomförande ... 35
 3.3 Sammanställning av enkäter .. 37
Sammanfattning

Denna uppsats har även en historisk kontext som lyfter pedagoger som kan tolkas varit inflytelserika inom framväxten av didaktik och utbildningsfilosofi inom teknikämnnet och därmed påverkat och påverkar teknikämnnet i förskolan. Pedagogerna är Friedrich Fröbel, Christopher Polhem, Eric Eklund, Elsa Köhler och John Dewey. Studien relaterar även till didaktik och PCK i relation till pedagogerna i förskolan.

Resultatet från enkäten visar pedagogernas positiva uppfattningar om sitt eget kunnskande inom teknikämnnet i förskolan samt en positiv förväntan på arbetet med teknikämnnet i förskolan. Även pedagogernas uppfattningar om teknik kan uppfattas som positiva utifrån enkätens resultat. Teknik samt teknikämnnet ses av pedagogerna som en viktig del av samhället och barnets dag i förskolan. Pedagoger i studien uttrycker uppdraget att undervisa i teknikämnet med blandade attityder. Fältanteckningarna åskådliggör att när pedagogerna pratar med varandra visar de att de inte kan eller saknar vissa kunskaper inom teknikämnnet. Denna diskurs som motsäger en del av enkätresultatet diskuteras i slutet av uppsatsen.
1 Inledning

Vi vet alltför lite om hur teknikämnet gestaltas i skolan och ännu mindre om hur det gestaltas i förskolan. Samtidigt är det ett expanderande forskningsområde. På bland annat forskarskolorna Nationella Forskarskolan i Naturvetenskapernas och Teknikens Didaktik, FONTD (Linköpings universitet), Centrum för Utbildningsvetenskap och Lärarforskning, CUL (Göteborgs universitet) och Teknikutbildning För Framtiden, TUFF (Stockholms universitet, KTH och Högskolan i Gävle) pågår forskning inom teknikdidaktik där vissa av projekten syftar till att öka kunskaperna om lärande och undervisning inom teknik i förskolan samt hur intresset för ämnet utvecklas (CETIS 2012). De, här sammanfattade, inledande forskningsresultat som än så länge framkommit från forskarskolorna visar bland annat på ämnets svaga ställning inom förskolans dagliga verksamhet samt att denna brist ger intryck av att vara relaterat med pedagogernas osäkerhet inför ämnet. Dessa inledande resultat kan ses relatera till min egen studie som undersöker personalen i förskolans attityder och uppfattningar. En mindre presentation av forskningsresultaten framkommer senare i studien.
Att det fortfarande i stort sett saknas forskning inom teknikämnet i förskolan och för att i framtiden förhoppningsvis kunna fylla detta kunskapshål ville jag genom använda den här uppsatsen till att undersöka vilka attityder i form av uppfattningar som lärarna inom förskolan har till lärande inom teknikämnet. Genom att närma mig en förståelse av hur lärare uppfattar teknikämnet i förskolan kan jag förhoppningsvis använda denna kunskap till att bygga vidare på en utveckling inom den professionen.
1.1 Syfte
Viljan att bidra till kunskapsbildan runt hur teknikämnena som fenomen gestaltas i förskolan avgjorde hur denna studie uppstått. Studiens har uppstått ur det kunskapshål som fortfarande finns runt teknikämnet i förskolan. Syftet med denna studie är att få en ökad förståelse för pedagogernas föreställningar kring teknikämnena och teknikämnena i förskolan samt hur de uttrycker uppdraget att förmedla teknikämnena och på så sätt kunna bidra till vidare forskning inom forskningsfältet.

1.2 Frågeställningar
Vilka uppfattningar och attityder har pedagogerna i förskolan kring teknik?
Hur uttrycker pedagoger i förskolan uppdraget att undervisa i teknikämnena?

1.3 Uppsatsen disposition
1.4 Centrala begrepp

1.4.1 Begreppet attityd

Sven Hemlin (2010) fördjupar förståelsen av begreppet och menar att attityder är psykologiska infererade varibler, dvs de kan inte observeras direkt i verkligheten utan att det handlar om att inferera, eller att läsa mellan raderna. Hemlin fortsätter och lyfter att:

[---] attityder utlöses av stimuli och ger upphov till beteenden och genom observation av upprepade situationer där samma stimuli ger upphov till en och samma reaktion kan man dra slutsatser om attityder (Hemlin 2010, s75)

1.4.2 Begreppet uppfattning

1.4.3 Begreppet teknikämnet

Det förekommer att ordet teknik används synonymt med naturvetenskap vilket skall undvikas i denna studie. Teknik och naturvetenskap utgår ibland från samma kunskap och fakta och när detta sker finns det skillnad i ämnena hur dessa kunskaper och fakta används. För att belysa skillnaderna kan målen för respektive ämnes mål beskrivas på detta sätt

Teknik: att skapa användbara föremål, system och miljöer för att tillfredsställa behov.

1.4.4 Begreppet förskola

1.4.5 Begreppet undervisning
Med begreppet undervisning menas, i denna studie, den förmedling av ämneskunskaper som sker mellan pedagogen i förskolan och barnen i verksamheten. Att använda begreppet undervisning kan ses som problematiskt i verksamhet med yngre barn då det kan uppfattas som en önskan av regelrätta lektioner efter behavioristiskt exempel. Det vill säga att barnen är tomma kärl som läraren ska fylla.

Av mer allvarligt i ett pedagogiskt sammanhang är den hierarkisering av mänskliga relationer som behaviorismen förespråkar. I detta synsätt ingår att eleven definieras i terms av ett objekt där lärarens stimuli är avgörande för elevens respons (Tomas Englund & Ingemar Engström 2011, s15).

sådana målstyndra processer som under ledning av lärare eller förskollärare syftar till utveckling och lärande genom inhämtnande och utvecklande av kunskaper och värden (Skollag 2010:800, 3§)

Här ses förskolläraren nämnas i förhållande till definitionen av undervisning. Vilket även framgår tydligt under SFS 2010:800 13§:

Endast den som har legitimation som lärare eller förskollärare och är behörig för viss undervisning får bedriva undervisningen (Skollag 2010:800, 13§).
2 Bakgrund

Syftet med denna studie är som tidigare nämnt, att få en ökad förståelse för pedagogernas föreställningar kring teknikämnet och teknikämnet i förskolan. Bakgrunden börjar med att beskriva hur teknikämnet gestaltas i förskolan idag för att sedan sätta det i relation till den historiska kontexten, nutida sammanhang samt teknikdidaktiker som kan anses ha påverkat teknikämnet i förskolan. Teknikämnets nuvarande roll beskrivs även via gällande styrdokument.

2.1 Lpfö 98 reviderad 2010

Kunskap är inget entydigt begrepp. [-----]Verksamheten skall utgå från barnens erfarenhetsvärld, intressen, motivation och drivkraft att söka kunskaper. Barn söker och erövrar kunskap genom lek, socialt spelas, utforskas och skapades, men också genom att iakttaga, samtala och reflektera. Med ett temainriktat arbetsätt kan barnens lärande bli mångsidigt och sammanhängande. (Lpfö 98 s.6)

Strävan efter kunskap genom barnens erfarenhetsvärld kan vara en ingång till teknikämnet då Lpfö 98 även förespråkar tematiskt arbetsätt. Kunskapen kommer då gemensamt från arbetslaget och de barn som ingår i förskolans verksamhet.
2.2 Teknikämnet i förskolans praktik idag

Ett behov (vill leka) → en idé (bygga torn) → bygga→ prova→ utveckla→ testa ännu en gång (fungerar det?) → modifiera (bygga om)

2.3 Teknikämnet i förskolan

Den reviderade versionen av Lpfö 98/2010 inkluderar förtydliganden och kompletteringar av vissa mål och riktlinjer, kompletterande avsnitt om uppföljning, utvärdering och utveckling, samt förtydliganden av förskollärares och förskolechefens ansvar samt hur verksamheten skall anpassas till den skollag som träddde i kraft 1 juli 2011. I relation till teknikämnet kan Lpfö 98 reviderad 2010 ses fördjupa strävan av att varje barn skall ha tillgång till teknikämnet i förskolan.
Målet är att förskolan skall sträva efter att varje barn ”utvecklar sin förmåga att urskilja teknik i vardagen och utforska hur enkel teknik fungerar samt utvecklar sin förmåga att bygga, skapa och konstruera med hjälp av olika tekniker, material och redskap” (Lpfö 98/2010 s10).

Läroplanen visar på förskollärarens ansvar då det kommer till att barnet skall “stimuleras och utmanas i sitt intresse för naturvetenskap och teknik” (Lpfö 98/2010, s11). Vidare uppmans arbetslaget att ”utmana barns nyfikenhet och begynnande förståelse för språk och kommunikation samt för matematik, naturvetenskap och teknik” (ibid). Detta förtydligande skiljer sig mot den äldre reviderade versionen av Lpfö 98. I den versionen hade inte teknikämnet samma och tydliga plats som i den reviderade läroplanen.

Lpfö 98/2010 belyser teknikämnet genom att under målen lyfta att förskolan skall sträva efter att låta varje barn “utvecklar sin förmåga att bygga, skapa och konstruera med hjälp av olika material och tekniker” (Lpfö 98/2010 s.9). Denna strävan kan ses genom de material som förskolan erbjuder i sin dagliga verksamhet. Materialet kan innehålla konstruktionsmaterial så som Kaplastavar, Lego samt tyger av olika material och storlek vilka används inomhus till att bygga koja (Trageton, Arne 2009).

Leken som kunskapsmetod kan spåras tillbaka till Friedrich Fröbelns barnträdgårdar och har sedan introduktionen av organisierad barnverksamhet genomsyrat pedagogiken. Studien återkommer till Fröbel under rubriken teknikdidaktik i historisk kontext. I Lpfö 98/2010 lyfts leken som något att främja samt som metod för lärande.

I lekens och det lustfyllda lärandets olika former stimuleras fantasi, inlevelse, kommunikation och förmåga till symboliskt tänkande samt förmåga att samarbeta och lösa problem (Lpfö 98/2010 s.6)

Förmågan till symboliskt tänkande och problemlösende som citatet pekar på kan ses som att relateras till hur teknik definieras. Det vill säga som en process som handlar lika mycket om att tänka som att tillverka. Där teknik handlar om att lösa praktiska problem i sin vardag.

2.4 Teknikdidaktik i en historisk kontext

Det finns genom historien pedagoger som varit tongivande inom didaktik och vars utbildningsfilosofiska tankar samt förhållningssätt till utbildning av barn inom teknikämnet kan ses ha påverkat och eventuellt fortfarande påverkar dagens svenska förskola och skola. Nedan presenteras ett urval av dessa teknikdidaktiska förgrundsföreträdare. Detta avsnitt har tagits med för att visa på att tankarna om att arbeta med teknikämnet funnits med sedan omsorg för yngre barn övergick till att vara i organiserad form.

2.4.1 Friedrich Fröbel och barnträdgården

Filosofen och pedagogen Friedrich Fröbel (1782–1852) anses vara den moderna småbarnspedagogikens grundare. Enligt Britt Tellgren (2008) ansåg Fröbel att:

barnet bäst utvecklas om det får ske i enlighet med Gads lagar, och om det får ske i barnens speciella behov av uppväxtbetingelser. Barnet sågs som en människoplanta, och liknades vid allt växande i naturen. Den unga plantan behöver god omvårdnad, rätt behandling, varsamhet och närings och den bär i sig själv möjligheterna till tillväxt och utveckling (Tellgren 2008, s.23).
Aktiviteter som förekom inom Fröbles barnträdgårdar var bland annat trädgårdsarbete. Andra aktiviteter som känns igen och kan relateras till nutida förskolverksamheter är samling, fruktstund och fri lek.

Teknikämnets plats i nutidens förskola och kontinuitet av teknikrelaterad aktivitet handlar bland annat om tillgången på material som pedagogen och barnet anser vara relevant för lärandet. Även tillgången till lämpligt utrymme att ägna sig åt teknikaktiviteten är önskvärt. Detta kan återfinnas i Fröbels tankar om hur material kunde användas på ett pedagogiskt vis. Materialutbudet i barnträdgårdarnas verksamhet hämtades ofta från naturen.

Naturen skulle användas året om och det skulle ge barnen en uppfattning om hur allting från början har skapats. Redan de små barnen skulle kunna undersöka klötets, kubens, cylinderens och konens egenskaper i lekfulla experiment (Tellgren 2008, s23).

Barnträdgårdarna kan tolkas som en plats där barnets praktiska kunskaper ansågs leda till aktivt lärande som i sin tur skapade förutsättningar för ett välartat vuxenliv. Denna syn leddes eventuellt till att barnträdgårdens personal i rollen som lärare kom i bakgrunden. De skulle inte leda praktiska moment utan istället fungera som handledare och medutforskare (Sandels 1945).

2.4.2 Christopher Polhem

Christopher Polhem ansåg sig se en begränsning i utbildningsväsendet inom ämnet teknik och mekanik och bestämde sig för att bidra till skolningen av unga pojkar, runt tio år gamla, som hade fallhenhet för mekanik och teknik. Polhem utvecklade även egna undervisningsplaner i teknikämnnet. En del i detta var skapade av modellsamlingen, *Polhems mekaniska alfabet*, tänkt som teknikdidaktiskt material i teknikundervisningen. Det mekaniska alfabetet består av modeller av trä som visar flertalet rörelsemekanismer och återfinns idag att skåda bland annat i Tekniska museet samt Falu Koppergruvas samlingar.

Polhems intentioner var likt läroplanen för förskolan, att möta barnets intressen och därmed låta barnet vara grund till verksamheten och inte tvärtom. Mekanik kan tolkas som en återkommande aktivitet på förskolan då barnet cyklar, snurrar på hjul, gör kulbanor, barnet gungar för att nämna några aktiviteter som har med mekanik att göra.

2.4.3 Eric Eklund

En annan person som kan ha gjort avtryck på ämnet teknik i förskolan är Eric Eklund (1713-1766). Eklund presenterade en uppfrostringslära som bland annat innehöll ämnena fysik, kemi och mekanik. 1746 publicerade han boken *Upfostrings-läran som visar sätt och medel til ungdomens rätta skötsel och underwisning*. I denna bok förespråkar Eklund ”uppfrostrans mål och medel, vetenskapernas inbördes sammanhang samt ungdomens snillegåvor och olika mognad” (Wiberg 2012). Han kritiserar skolans undervisning och menar att de nödvändiga ämnena, vilket var de ämnen som var nödvändiga för den enskilde och folkelära utkomst bör vara de som premiersas i undervisning. Ämnen som då var traditionella inom skolan, som exempelvis gamla språk, kunde skjutas upp till de högre åldrarna ansåg Eklund. De nödvändiga ämnena var kunskaper som jordbrukare, handlare och ämbetsmän hade nytta av att kunna, ansåg Eklund (1746).

1 Mognad utifrån Eklunds beskrivning, ej Jean Piaget tankar om barnets mognad. Detta då Piaget inte var aktuell under den tidsperioden som Eklund verkade.
Alla dessa teman involverar teknikämnnet och alla teman har relation till tekniskt kunnande och kräver av yrkesutövarna inom respektive tema en mångfacetterad kunskap om naturvetenskap och teknik. Förskolans ateljéer samt utemiljöer med någon form av konstruktionsmöjlighet, exempelvis sandlåadan är exempel på miljöer där barnet idag ägnar sig åt praktiska kunskaper utifrån sin mognad och kunnande på det sätt som Eklund nämner i sin pedagogiska ambition.

Både Polhem och Eklund kan ses som normbrytande då de ville att skolans innehåll skulle innehålla praktiska kunskaper som kommer samhället tillgodo mer än den enskilda människan. Barnet skall formas till en medborgare. Denna strävan kan också idag hittas i Lpö 98/2010:

Förmåga att kunna kommunicera, söka ny kunskap och kunna samarbeta är nödvändig i ett samhälle präglat av ett stort informationsflöde och en snabb förändringstakt. Förskolan ska lägga grunden till att barnen på sikt kan tillägna sig de kunskaper som utgör den gemensamma referensram som alla i samhället behöver (Lpö 98/2010 s 6)

2.4.4 Elsa Köhler

2.4.5 John Dewey

John Dewey (1938/1997) utbildningsfilosofiska teori har som innehåll att individens, som deltar i utbildning, behov och intressen ska vara utgångspunkt för allt lärande och att lärande bygger på egen aktivitet, i form av t.ex. laboration, observation och ett vetenskapligt arbetssätt. Enligt Deweys utbildningsideal, som kan ses vila i progressivismen, är det viktigt som pedagog att ha vetskap om elevers attityd och inställning till olika ämnen, som exempelvis teknik, för att kunna utgå från dessa i undervisning.

Undervisningens uppgift är följd att hitta det material som engagerar en elev i en specifik verksamhet, en verksamhet som har mål och syften som är av betydelse eller intresse för eleven och som inte behandlar saker och ting som intellektuella gymnastikredskap utan som medel för att nå målen (Dewey 1916/1999, s.175)

Progressivismen ställer eleven i centrum genom att undervisa utifrån människans, som deltar i utbildningen, egna intressen och behov.

Vidare betonade Dewey att de praktiska aktiviteterna på skolan inte endast var av social natur utan också utmanade elevernas medfödda impulser såsom den sociala instinkten, kreativiteten, viljan att uttrycka sig, och en konstnärlig impuls. Några av dessa impulser kan pedagogen aktivera för att nå pedagogisk framgång enligt Dewey (1916/1999). Dessa impulser är:

- Den sociala instinkten (behov att samspela)
- Instinkten att tillverka (vilja att konstruera)
- Instinkt att undersöka (barn som gör saker som sedan får ett resultat)

Vinsten med att aktivera dessa impulser genom lärande med praktisk tillämpning är att eleven skall få utöva det de lär sig teoretisk i praktiska former samt att eleven lär genom aktivt deltagande. Dewey (ibid) menade att samhället och skolan skall ses som en enhet, en organism och genom att barnet lär genom görande sammanflätas skola med samhälle. Inom förskolans verksamhet kan de nämnda impulserna ses återkomma i Lpfö98/2010:

I förskolan läggs grunden för att barnen ska förstå vad demokrati är. Barnens sociala utveckling förutsätter att de alltfler förmåga får ta ansvar för sina egna handlingar och för miljön i förskolan. De behov och intressen som barnen själva på olika sätt ger uttryck för bör ligga till grund för utformningen av miljön och planeringen av verksamheten (Lpfö 98/2010 s12).

Förskolans verksamhet innehåller ofta någon form av skapade process där barnet skall skapa utifrån sin egen fantasi med valfritt material eller utifrån givna ramar med förutbestämda material. Denna skapande process kan, istället för att benämnas endast som skapande, även benämnas med orden konstruktion eller teknik, enligt min mening.

2.5 Teknikämnet i skolans praktik

Undervisningen i teknikänet skall enligt kursplanen för teknik, syfta till att eleverna utvecklar sitt tekniska kunnande och sin tekniska medvetenhet. Undervisningen skall bidra till att eleverna utvecklar intresse för teknik och förmåga att ta sig an tekniska utmaningar på ett medvetet och innovativt sätt.

Då årskurs 1-3 ligger närmast förskolan rent åldersmässigt har jag valt att presentera de tekniska lösning som ingår i det centrala innehållet i kursplanen för teknik. Dessa tekniska lösningar som eleverna skall ha mött är:

- Några vanliga föremål där enkla mekanismer som hävstängar och länkar används för att uppnå en viss funktion, till exempel föremål på lekplatser och husgeråd av olika slag.
- Några vanliga tekniska lösningar där människan hämtat naturen, till exempel den kupade handen som förebild för förvaringskärl.
- Material för eget konstruktionsarbete. Deras egenskaper och hur de kan sammansättas.
- Några enkla ord och begrepp för att benämna och samtala om tekniska lösningar.

Lösningarna som ingår i det centrala innehållet kan ses svara väl mot Polhems teknikundervisning med mekanik som ingång till teknisk förståelse. Instinkten att undersöka så som Dewey föreskrev den tillfredsställs via tiden för eget konstruktionsarbete.

2.6 Didaktik, ämnesdidaktik och PCK

Forskning kring teknikdidaktik är på internationell framfart. Jan-Erik Hagberg & Magnus Hultén (2005) definierar teknikdidaktisk forskning som studier i:

hur man lär sig förmågor och kunskaper i teknik, hur lärare undervisar i teknik, innehåll i lärande i teknik och undervisning, vilken kunskap som är central och vilka kontextuella förhållanden som har betydelse för lärande och undervisning i teknik (Hagberg & Hultén 2005, s11)

Denna definition av teknikdidaktisk forskning visar på didaktikens mångfacetterade rikedom i undervisningen. Genom ämnesdidaktik kan lärarens kunskaper i ämnet och kännedom om olika undervisningsstrategier konstruera en professionell lärarkunskap. Ämnesdidaktiken kan beskrivas som en förbindelse mellan ämnet som undervisas och pedagogiken (Skolverket 2012). Ämnesdidaktik är ett sätt för läraren att kunna fokusera på vilka förutsättningar som är av betydelse för lärandet av ett specifikt ämne.
Lee Shulman (1987) som myntat begreppet Pedagogical Content Knowledge, PCK, menar att lärares kunskaper förutom ren ämneskunskap och pedagogisk kunskap, även bör innehålla pedagogisk ämneskunskap. PCK skulle kunna översättas till pedagogisk ämneskunskap. PCK är enligt Shulman:

A special amalgam of content and pedagogy that is uniquely the province of teachers, their own special form of professional understanding (Shulman 1987, s8).

2.7 Attityder till de naturvetenskapliga ämnena samt teknikämnnet

Begreppet attityd har redan kortfattat bemötts men jag har valt att fördjupa detta då pedagogens attityd till teknikämnnet kan tänkas ha betydelse för hur respondenterna svarat på den enkät som till stor del liggade till grund för studiens resultat.

2 Organisation for Economic Co-operation and Development (eng.).
OECD visar i rapporten att elever, som går på skolor där varierad undervisning sker, förefaller ha en mer positiv attityd till ämnena. Vilket manifesterar sig som större tilltro till sin egen kunskap inom ämnena samt att eleverna blir bättre på att sätta realistiska mål med sitt lärande samt att de använder sig av olika strategier för att nå lärandet.

En större internationell studie som varit en viktig del av denna studie är det så kallade ROSE undersökningen. ROSE-undersökningen ger elevernas perspektiv och åsikter om naturvetenskap och teknik samt erfarenheter om naturvetenskap och teknik utanför skolan. För lärarutbildare, lärare eller blivande lärare kan det tänkas vara av intresse hur eleverna uttrycker sig i relation till dessa ämnen för att kunna utveckla undervisningen i ämnena. Nedan följer en presentation av ROSE.
2.8 ROSE - undersökningen

ROSE är en förkortning för Relevance of Science Education. I forskningsprojektet deltog femtonåringar från 40 länder (ROSE 2012). I Sverige svarade 751 elever från olika delar av landet. Enkätfrågorna består av olika delar bland annat om vad eleven vill lära sig, hur de förhåller sig till naturvetenskap i skolan, vad eleven bär för åsikter om naturvetenskap och teknik samt erfarenheter om naturvetenskap utanför skolan. Studiens resultat ger bland annat en skildring av de deltagande elevernas uppfattningar och attityder till naturvetenskap, teknik, miljöfrågor och forskning i naturvetenskap och teknik. Målet med studien var ”att bidra till en kritisk debatt om skolans NO- och teknikundervisning och att arbeta för att skapa en undervisning som kan upplevas som meningsfull för alla elever” (Hallonsten 2012, s17).

3 Min översättning
Ett resultat som framkommit i *The ROSE project. An overview and key findings* (2010) är att elevers minskade positiva uppfattning och negativa attityder till de naturvetenskapliga ämnena och teknikämnet beror på att eleverna personligen inte finner ämnena meningssfulla (Sjøberg & Schreiner 2010). Detta visar sig framför allt i de så kallade industriländerna där en lägre andel svarande elever visar intresse för de undersökta ämnena medan svarande elever i de så kallade utvecklingsländerna är i större grad intresserade av att lära om naturvetenskap och teknik.

![Diagram](image)

Figur 2. Exempel på resultat från internationella ROSE-undersökningen. Enkätfrågan ”Jag skulle vilja ha naturvetenskapliga ämnena så mycket som möjligt i skolan”*. Från Svein Sjøberg & Camilla Schreiner (2010, s. 14).

4 Min översättning
2.9 Sammanfattning av bakgrund

Sammanfattningen av den del av uppsatsen som valts att kallas bakgrund, syftar till att ge en kortfattad version av tidigare genomgången information. Syftet med denna studie är, som bekant, att få en ökad förståelse för pedagogernas föreställningar kring teknikämnet och teknikämnet i förskolan.

Denna uppsats har även en historisk kontext som lyfter pedagoger som kan tolkas varit inflytelserika inom framväxten av didaktik och utbildningsfilosofi inom teknikämnet. Filosofen och pedagogen Friedrich Fröbel (1782–1852) anses vara den moderna småbarnspedagogikens grundare. Aktiviteter som förekom inom Fröbels barnträdgårdar var bland annat trädgårdsarbete. Andra aktiviteter som känns igen och kan relateras till nutida förskolverksamheter är samling, fruktstund och fri lek. Leken syftade till att ge barnet möjligheten att uttrycka sin egen kompetens. Leken skulle vara den viktigaste byggstenen i all undervisning enligt Fröbel (Tellgren 2008). Teknikämnet i dagens förskola handlar bland annat om tillgången på material som pedagogen och barnet anser vara relevant för lärandet. Även tillgången till lämpligt utrymme att ägna sig åt teknikaktiviteten är önskvärt. Detta kan återfinnas i Fröbels tankar om hur material kunde användas på ett pedagogiskt vis.
Christopher Polhem (1661-1751) var uppfinnare, industriman och anses allmänt som ”den svenska mekanikens fäder” (Westerlund, 2000). Mindre erkänd är han som utvecklare av pedagogiskt material vars tillkomst skulle stödja elever i lärandet av mekanik. Polhem skapade på grund av vad han ansåg var en brist i utbildningsväsendet egna undervisningsplaner i teknikämnet. En del i detta var tänkt som modeller som kunde användas som teknikdidaktiskt material i teknikundervisningen.

En annan person som kan ha gjort avtryck på ämnet tekniken i förskolan är Eric Eklund (1713-1766). Eklund kritiserade skolans undervisning och menar att barnet bland annat ska äga sig åt praktiska kunskaper utifrån sin mognad och kunnande (1746). Idag kan förskolans ateljeer samt utemiljöer med någon form av konstruktionsmöjlighet, exempelvis sandlådan ses som exempel på miljöer där barnet idag ägnar sig åt praktiska kunskaper utifrån sin mognad och kunnande på det sätt som Eklund nämner i sin pedagogiska ambition. Både Polhem och Eklund kan ses som normbrytande då de ville att skolans innehåll skulle innehålla praktiska kunskaper som kommer samhället tillgodo mer än den enskilda människan.

Elsa Köhler (1879–1940) drev Fröbelinspirerad förskolepedagogik i Sverige. Köhler införde ”det fria skapandet” i verksamheten och hennes avsikt var att innehållet inte skulle delas upp i olika ämnen utan hållas samman till tematiska helheter (Tellgren 2008). Att läta det fria skapandet leda barnet var en tanke som fylld Köhlers syn på barnets uppföstran och samma tankar kan återfinnas i dagens förskola. Teknikämnet i förskolan kan se gestaltas genom barnets skapande som inte bara handlar om konstnärliga uttryck utan det handlar även om konstruktion. Det vill säga teknik.

För att få en kontinuitet i arbetet med teknikämnet i förskolan vill uppsatsen visa på hur teknikämnet är tänkt i de yngre skolåren. Undervisningen i teknikämnet skall enligt kursplanen för teknik, syfta till att eleverna utvecklar sitt tekniska kunnande och sin tekniska medvetenhet. Undervisningen skall bidra till att eleverna utvecklar intresse för teknik och förmåga att ta sig an tekniska utmaningar på ett medvetet och innovativt sätt. Lösningarna som ingår i det centrala innehållet för årkurs 1-3 kan svara väl mot Polhems teknikundervisning med mekanik som ingång till teknisk förståelse. Instinkten att undersöka så som Dewey föreskrev den, tillfredsställs via tiden för eget konstruktionsarbete.

Sundberg & Ottander (2009) visar att även om lärarutbildningen kan ge ämneskunskap och positiv attityd till det naturvetenskapliga ämnet känner studenten ändå tveksamhet inför arbetet med naturvetenskapliga aktiviteter på förskolan då studenterna uppfattar att naturvetenskapen inte traditionellt tillhör förskolans vardag.

ROSE- projektets resultat ger bland annat en skildring av de deltagande elevernas uppfattningar och attityder till naturvetenskap, teknik, miljöfrågor och forskning i naturvetenskap och teknik. Ett resultat som framkommit i ROSE-undersökningen är att elevers minskade positiva uppfattning och negativa attityder till de naturvetenskapliga ämnena och teknikämnet beror på att eleverna personligen inte finner ämnena meningsfulla (Svein & Schreiner, 2010). Målet med studien var ”att bidra till en kritisk debatt om skolans NO- och teknikundervisning och att arbeta för att skapa en undervisning som kan upplevas som meningsfull för alla elever” (Hallonsten 2012, s17).
3 Metod

Datainsamlingen i denna studie är kombinerad kvalitativ och kvantitativ eftersom det har skett dels genom inledande observationer som sedan följs av fältanteckningar och insamling av skriftligt material i form av enkätsvar.
3.1 Teoretisk förankring
Nedan följer den teoretiska förankring som metoddelen grundar sig i.

3.1.1 Grounded theory

Inom Grounded theory påbörjar man analysen av insamlade data direkt efter att första observationen är gjord. Nästa datainsamlingsomgång påverkas av denna första analys. Datainsamling och analys går sedan parallellt och nya fynd styr den fortsatta datainsamlingen (ibid). På så sätt tillåter man en eller flera bilder växa fram redan under själva datainsamlingen och lägger till nya vinklar och insikter allt eftersom:

grounded theory is a method of analysis for ANY data - observation, survey, or case study. It is NOT a qualitative-only method [----] represent the data; ask it questions - what is this data about? (Glaser 1978, s13)

Den postpositivistiska synen på verkligheten innebär att verkligheten ses som komplex och därmed svår att beskriva, samtidigt som det inte anses finnas någon objektiv verklighet att beskriva. Dock kan man närmare sig sanningen om verkligheten genom att använda sig av många olika metoder för datainsamling samtidigt, t.ex. observationer och intervjuer. Den konstruktivistiska synen på verkligheten utgår ifrån att det finns lika många verkligheter som det finns människor, och verkligheten anses därmed utgöras av människors konstruerade verkligheter. Med detta synsätt fyller det ingen funktion att skilja på ontologi och epistemologi, eftersom det inte anses finnas någon annan verklighet än kunskapen om verkligheten. (Daniel Dagobert & Emma Åred 2010, s22)

Det som därmed kan förstås om verkligheten är det som konstrueras mellan forskaren och de som studeras (Guvå & Hylander, 2003). Denna studie antar det konstruktivistiska utgångsläget. Utgångspunkt i studien är att generera kunskap om upplevelser av verkligheten genom att fråga objekten som befinner sig i den verklighet som studien fokuserar på.
Då den konstruktivistiska synen på verkligheten utgår ifrån att det finns lika många verkligheter som det finns människor valde jag att komplettera grounded theory med ännu en vetenskaplig metod, den fenomenografiska. Min tanke är att då verkligheten kan upplevas komplext kan fenomen inom verkligheten komma fram genom att använda fenomenografi.

3.1.2 Fenomenografi & fenomenografisk analys

3.2 Praktiskt utförande
Nedan följer det praktiska förfarande som används för att synliggöra frågeställningen.

3.2.1 Tillförlitlighet och giltighet

Begreppet tillförlitlighet innebär att i största möjliga mån som forskare inneha skickligheten att ge trovärdiga beskrivningar av de situationer som skildras i undersökningen. Denna studie eftersöker trovärdighet genom utförliga beskrivningar av alla de olika steg denna forskningsprocess tagit. Även den kommunikativa prestationen i dialogform mot forskarsamhället tas med i beräkningen för att skapa tillförlitlighet. Arbetsprocessen har under studiens framväxt haft kontakt med aktuell forskning som hanterar förskolan och teknik som forskningsfält och då genom bland annat konferensrapporter från PATT 2011. Genom att låta forskningsbakgrunden, forskningsfrågor samt hela forskningsprocessen vara transparent för läsaren skapas denna studies tillförlitlighet (jmf Thulin 2011).

Begreppet giltighet kan definieras som hur väl de använda begreppen och sambanden dem emellan är förankrade i teori. Denna studies ambitioner har varit att tydligt förankra begreppen i teoretisk ansats det vill säga de begrepp som tillhör de teorier är noga med att användas och användas korrekt.

3.2.2 Forskningsetiska principer
Vetenskapsrådet har satt upp fyra huvudkrav som skall följas. Dessa fyra huvudkrav är:

- informationskravet
- samtyckeskravet
- konfidentialitetskravet
- nytjandekravet

Informationskravet innebär för denna studie att de berörda, i detta fall enhetschef, kollegor samt deltagare, informerades om att jag ville genomföra en studie med hjälp av deltagarna på förtbildningskursen. De inblandade delgavs skriftlig samt muntlig information om studiens syfte, upplägg och i stora drag om vilka sorts frågor som kunde tänkas ställas dock utan att avslöja forskningsfrågorna. Valet att inte avslöja forskningsfrågorna gjordes för att respondenterna inte skulle inbjudas att svara så som de eventuellt trodde att jag skulle vilja att de svarade. De berörda fick även information om kontaktuppgifter till mig och namnet på min handledare för att de skulle kunna ställa frågor om behov uppstod. Respondenterna blev även informerade om att undersökningen var anonym samt att den var frivillig att delta i.

3.2.3 Urval

Fortbildningskursen som pedagogerna deltog i var en del av ett projekt från Europeiska socialfonden, ESF. ESFs mål är ”att förbättra EU-medborgarnas liv genom att ge dem bättre kompetens och skall hjälpa EU-länderna att göra Europas arbetskraft och företag bättre rustade att möta nya, globala utmaningar” (ESFa 2012). Projektet innebar att cirka 1 800 personer på 128 förskolor i kommunen berörts av projektet. De yrkeskategorierna som deltog i kursen var barnskötare och förskollärare. Huvudsyftet med projektet var enligt kommunen som anlitat min arbetsplats att:

- se över möjligheterna att komplettera barnskötarnas utbildning så att de kan arbeta kvar i verksamheten
- se över behoven att komplettera förskollärarutbildningen för de förskollärare som har äldre grundutbildning
- förbereda för eventuell omställning/förflyttning tillgodose behovet av kompetensförsörjning
- på sikt öka kompetensens hos personalen
- se över möjligheten att ordna kompetensutveckling över förvaltningsgränserna skapa flexibla och stimulerande arbetsplatser. (ESFb 2012)

En viktig ambition från kursskaparna var att kursen inte bara skulle bli ”edutainment” i form av roliga byggen utan att deltagarna skulle förstå funktionen bakom det skapade för att på sådant sätt kunna föra med sig kunskapen till sina verksamheter och vidareutveckla den där. Tanken från kurslärarna var att om hjärnan är med i alla moment och inte bara händerna kommer lärandet att befästas som kunskaper. De praktiska momenten som utfördes av kursdeltagarna bygger på Elsa Köhler, Christopher Polhem, Eric Eklund och John Deweys tankar och traditioner om vad undervisningen bör innehålla och varför. Exempelvis konstruerade pedagogerna en Polhemsknut baserat på John Deweys undervisningsfilosofiska tankar runt de impulser som barnetdrivs av.

3.2.4 Enkätten

Enkätten är inspirerad av det så kallade ROSE-projektet som tidigare redovisats. Det är delen Åsikter om naturvetenskap och teknik samt delen om Naturvetenskap i skolan som jag främst inspirerats av och omvandlat till att passa syftet med studien6.

Enkättfrågorna som inspirerats av ROSE-undersökningen utformades på följande sätt. Enkätten började med tre frågor som frågade om dem själva exempelvis vilka egenskaper som de anser att en pedagog i förskolan bör ha. Detta för att ge mig en utgångspunkt. Sedan följer strukturerade frågor med fastställda svarsalternativ. De fastställda svarsalternativen går på en femgradig skala från svarsalternativet instämmer inte alls till svarsalternativet instämmer helt. Se Bilaga 2. Dessa svarsalternativ valdes för att enkätten skall vara konkret och lättbesvarad och tidsmässigt vara effektiv för respondenterna att besvara. I enkätten används ordet teknik i stället för begreppen teknik och teknikämnet. Detta begreppssval skedde på grund av att kursdeltagarna ansågs, av mig, ägde en förståelse av betydelsen av begreppet teknik beroende på de olika kontexter som det presenterades i.

3.2.5 Genomförande

6 För fullständig ROSE enkät se: http://roseproject.no/key-documents/key-docs/master-rose-q.doc
Det är i genomsnitt 8 personer i varje grupp som deltar. Grupperna är skapade på så sätt att ingen, i så stor utsträckning som möjligt, skall delta i kurstillsätze med någon som de arbetar med. Detta för att inte de dagliga verksamheten inom förskolan som kursdeltagaren arbetar på skall bli lidande av personalbortfall.

Vid utbildningsstart presenterade jag muntligen huvudstudien och bad dem att svara på min enkät. Jag placerade enkäten vid det fikabord, där deltagarna kan hämta kaffe, te och smörgås. Denna placering av enkäten valdes för att pedagogerna skulle kunna ta enkäten och fylla i den på ett diskret sätt som även var i en avslappnad situation. Tanken med detta upplägg var att ge respondenterna tidsutrymme att svara samt en avslappnad miljö att svara i. På så sätt var deltagandet frivilligt och anonymt eftersom jag inte vet vilka av dessa 180 personer som svarat på enkäten.

Enkäten i denna studie skall ses som ett stickprov då endast 55 av de 180 deltagarna svarade på den vilket motsvarar cirka 30 procent av deltagarna på kursen. Att fler kursdeltagarna av 180 inte svarat i studien beror på att mitt material endast bestod av 55 enkäter. Den summan valdes på grund av att jag ansåg det kunna generera en mäng data som var hanterbart för denna studies förutsättningar.

Det handlar alltså om att i kvalitativa studier undersöka hur ett fenomen är utformat. I mitt fall har det handlat om att undersöka hur pedagoger uppfattar fenomen. Genom att fokusera på individernas uppfattningar så har min ambition varit att upptäcka nyanser, variationer och eventuella likheter utifrån det material som tolkas. Min observationsstudie är en informell och induktiv observationsstudie. Med detta menas att min observation var induktiv det vill säga ostrukturerad, utan att vara deltagande (Bryman 2011).
3.3 Sammanställning av enkäter
Här presenteras hur det praktiska förfarandet med sammanställning av enkätsvaren gick till.

3.3.1 Sammanställning av frågor med öppna svar

3.3.2 Sammanställning av frågor med fasta svarsalternativ

<table>
<thead>
<tr>
<th>Instämmer helt</th>
<th>Instämmer delvis</th>
<th>Ingen uppfättning</th>
<th>Instämmer delvis inte</th>
<th>Instämmer inte alls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enkätfråga</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enkätfråga</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

För att ge en visuell överblick infördes svaren i den förenklade men likaväl talande tabell som redovisas längre fram.

3.4 Fältanteckningar

3.4.1 Sammanställning av fältanteckningarna

Effortets att jag inte har kontroll över vilka som svarat på enkätorna medför det att de som svarat på enkätens frågor eventuellt inte är de som fångats i fältanteckningarna när de uttryckt sin egen förmåga och inställning till teknik. Det kan anses vara problematiskt och har tagits hänsyn till i tolkning och analys av materialet.
4 Resultat

4.1 Resultat av enkätfrågor med öppna svar

Beskrivningskategorier som framträdde inom svaren på enkätfrågan Vilka egenskaper (både medfödda och inlärda) tycker du att en barnskötare/förskollärare/lärare bör ha (med tanke på de åldrar du själv arbetar med)? Nämnn de fem viktigaste:

- Egenskaper i relation med vuxna/kollegor. Exempelvis kommunikativ förmåga, samarbetsförmåga samt kunna ta konstruktiv kritik

- Egenskaper i det vardagliga arbetet med barnen. Exempelvis lyhördhet, tålmod, flexibilitet samt ett bra förhållningssätt

- Egenskaper för lärandet. Exempelvis att agera medhjälpare/medutforskare, förmåga att entusiasmera, låta barnen prova på samt att ta tillvara på barnens egna intressen

- Egenskaper att ha som vuxen i socialinteraktion med barnen. Exempelvis empati, omtänksamhet, vara snäll, ha humor, vara positiv samt vara trygg

- Egenskaper som lyfter lärandet. Exempelvis öppet sinne, nyfikenhet, vara påhittig, uppfinningsrik, kreativ samt ha fantasi
För frågan *Utöver det, finns det andra färdigheter och kunskaper en lärare bör ha för att vara en professionell och kompetent barnskötare, förskollärare, lärare?* Följande beskrivningskategorier utkristalliserades:

- **Egenskaper inom kategorin förhållningssätt.** Exempelvis lugn, humor, omtänksamhet och tålamod

- **Egenskaper i samband med ämnesspecifikt arbete med barnen.** Exempelvis förmågan att kunna ställa frågor som gör att barnen själva tillsammans kan klara vidare på fenomen, låta barnen äga sin förmåga, vara öppen för barnets åsikter, att lägga aktiviteter på barnens nivå, inte servera sanningar och fakta

- **Egenskaper som kan behövas i arbetet med kollegorna.** Exempelvis att kunna lyssna på andra, vilja utvecklas, ha ett lärandeprocess agencies, samarbetsförmåga samt viljan att lära mer och nytt

- **Egenskaper i det vardagliga mötet med barnen.** Exempelvis att vara medutforskare, att vara här och nu, att observera, att känna in, lust att lära tillsammans, förmåga att entusiasmera

- **Egenskaper som kan tolkas som praktiska kunskaper.** Exempelvis kunna dokumentera, IT-kunning, organisationsförmåga, kunskap om t.ex. NO och teknik som inte fåtts genom utbildning.

- **Egenskaper som relaterar till arbetet med teknikämnet i förskolan.** Exempelvis vara teknisk, vara smart, låta barnen prova på, låta det ta tid, kunna förmedla teknisk kunskap, att vara pedagog
4.2 Resultat av enkätfrågor med fasta svarsalternativ

Tabell 1. Graden av instämmande till påståenden med huvudtemat *Hur väl stämmer följande påstående in på din egen uppfattning om teknik.*

<table>
<thead>
<tr>
<th>Hur väl stämmer följande påståenden in på din egen uppfattning? Kryssa i lämplig ruta</th>
<th>Instämmer inte %</th>
<th>Ingen uppfattning %</th>
<th>Instämmer %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Det finns många likheter mellan skapande verksamhet och teknik</td>
<td>3</td>
<td>10</td>
<td>86</td>
</tr>
<tr>
<td>Teknisk forskning ger oss ett bättre samhälle</td>
<td>7</td>
<td>7</td>
<td>86</td>
</tr>
<tr>
<td>Forskning (i allmänhet) ger oss ett bättre samhälle</td>
<td>8</td>
<td>10</td>
<td>82</td>
</tr>
<tr>
<td>Det är viktigt för ett land att invånarna är allmänbildade inom teknik</td>
<td>8</td>
<td>35</td>
<td>81</td>
</tr>
<tr>
<td>Jag tycker teknisk kunskap är bra att ha för att kunna ta viktiga beslut i mitt liv</td>
<td>6</td>
<td>35</td>
<td>59</td>
</tr>
<tr>
<td>Jag tycker om att titta på teknikprogram på tv</td>
<td>32</td>
<td>6</td>
<td>46</td>
</tr>
<tr>
<td>Jag gillar böcker och tidningar som handlar om teknik</td>
<td>57</td>
<td>11</td>
<td>32</td>
</tr>
<tr>
<td>Jag ägnar mig åt teknik på fritiden</td>
<td>53</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>Jag kommer ihåg teknikundervisningen i skolan som intressant</td>
<td>59</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>Man måste vara smart för att hålla på med teknik</td>
<td>78</td>
<td>22</td>
<td>0</td>
</tr>
</tbody>
</table>
Tabell 2. Procentuella fördelningen av instämmande till påståenden med huvudtemat *Frågor om dina tankar kring teknik och barn.*

<table>
<thead>
<tr>
<th>Hur väl stämmer följande påståenden in på din egen uppfattning? Kryssa i lämplig ruta</th>
<th>Instämmer inte</th>
<th>Ingen uppfattning</th>
<th>Instämmer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Barn bör lära sig att göra egna undersökningar tidigt</td>
<td>6</td>
<td>6</td>
<td>88</td>
</tr>
<tr>
<td>Det är viktigt att barn lär sig som teknik tidigt</td>
<td>0</td>
<td>12</td>
<td>87</td>
</tr>
<tr>
<td>Det viktigaste med teknik med barn är att de får utlopp för sin fantasi</td>
<td>4</td>
<td>12</td>
<td>84</td>
</tr>
<tr>
<td>Jag ser fram emot arbetet i teknik med barn</td>
<td>5</td>
<td>15</td>
<td>80</td>
</tr>
<tr>
<td>Jag tycker det är roligt att hålla i pedagogisk verksamhet som handlar om teknik</td>
<td>8</td>
<td>12</td>
<td>80</td>
</tr>
<tr>
<td>Jag kommer ofta att hålla på med teknik relaterad verksamhet med barnen</td>
<td>8</td>
<td>21</td>
<td>71</td>
</tr>
<tr>
<td>Det finns ingen anledning att använda svåra ord (t.ex. krets) när man pratar med barn om teknik</td>
<td>45</td>
<td>16</td>
<td>39</td>
</tr>
<tr>
<td>Jag tycker det är svårt att veta vad man ska göra med barnen i teknik</td>
<td>49</td>
<td>22</td>
<td>29</td>
</tr>
</tbody>
</table>

Som tidigare nämnts har presentationen av enkätresultaten för de fasta svarsalternativen förenklats genom att sammanföra svaren instämmer helt och instämmer, ingen uppfattning samt instämmer inte alls och instämmer inte till tre kategorier; *instämmer helt, ingen uppfattning samt svaret instämmer inte.* Detta för att förtydliga och förenkla läsningen.
4.3 Analys av enkätter

De öppna och fasta svaren kommer analyseras för sig först, för att sedan kompareras. Det första som framkommer är att pedagogernas svar kunde grupperas i beskrivningskategorier som kunde jämföras och som tillsammans sedan används för att beskriva ett utfallsrum. Vill påminna om att de exempel som ges är direktcitat av pedagogernas enkätsvar. Det ligger ingen tolkning av orden från min sida.

4.3.1 Analys av de öppna svaren

Svaren på den öppna frågan *Vilka egenskaper (både medfödda och inlärda) tycker du att en barnskötare/förskollärare/lärare bör ha (med tanke på de åldrar du själv arbetar med)?*

På frågan *Utöver det, finns det andra färdigheter och kunskaper en lärare bör ha för att vara en professionell och kompetent barnskötare, förskollärare, lärare?* Här föreslås omsorgsegenskaper men till största delen handlar kommentarerna om egenskaper som krävs för att arbetslaget skall kunna fungera såsom till exempel kunna lyssna på andra, vilja utvecklas, ha ett lärandeprocessstänk, samarbetsförmåga samt viljan att lära mer och nytt. Men också egenskaper som kan behövas då barnen skall lära sig kunskaper i specifikt ämne nämns, till exempel förmåga att entusiasmera, låta barnen prova på samt att vara pedagog. Inom beskrivningskategorierna under andra frågan framgick även att ämneskunskap var något önskvärt. Då det i första frågan av de öppna svaren inte framkom alls att ämneskunskaper var en viktig egenskap som pedagog att inneha framkom ämneskunskaperna i svaren på den andra frågan. Här ses exempel som kunskap om t.ex. NO och teknik som inte fåttits genom utbildning samt kunna förmedla teknisk kunskap.

7 För fler exempel återgå till resultatdelen av de öppna svaren
8 För fler exempel återgå till resultatdelen av de öppna svaren
4.3.2 Analys av de fasta svarsalternativen i samband med fältanteckningar

Resultaten i tabellerna visar på att pedagogerna i de flesta fallen är samstämmiga i förhållande till påståendena, men att det i några fall finns olika uppfattningar i relation till påståenden som nedan kommer att exemplifieras. Resultaten visar att vissa saker finns det samstämmighet kring och andra inte. Detta ger en beskrivning av gruppens uppfattningar. Resultatet redovisas med kortare exempel på utdrag ut fältanteckningarna.

Detta bekräftades även av fältanteckningarna som återkommande visar att pedagogernas uppfattning av teknikämnet till stor del hämtades från den egna erfarenheten av teknikämnet i skolan. Från samtalen om teknikämnets innehåll i skolan eller avsaknad av innehåll framkommer även starka personbeskrivningar om lärare i teknikämnet. Teknikläraren har bland annat upplevt, enligt respondenternas muntliga beskrivningar, som tråkig, stel och oförmögen att lära ut. Resultatet återkommer i analysen av fältanteckningarna. Detta kan ses relatera till den andra aspekten av attityd som Hewstone, Strobe & Klaus (2012) nämner. Där den andra omfattar känslor och den emotionella reaktionen. Respondenterna visar genom sina enkätssvar och samtal att de visar kritiska känslor gentemot det egna mötet med teknikämnet i skolan och framför allt teknikläraren.

Under det andra huvudtemat Frågor om dina tankar kring teknik och barn kommer tre nedslag ur data att göras. De visar på den uppfattning som pedagogerna som grupp uttrycker. På det första påståendet Barn bör lära sig att göra egna undersökningar tidigt svarar 88 procent av pedagogerna att de instämmer med påståendet medan 6 procent instämmer inte. I fältanteckningarna bekräftar detta i Pedagogernas önskan om att göra undersökningar tillsammans med de allra yngsta barnen som är i åldrarna ett till tre år.

Det andra påståendet som betonas är Det är viktigt att barn lär sig om teknik tidigt. Här svarar 87 procent av pedagogerna att de instämmer. Under kursens gång skapade pedagogerna aktivt sig ett material som senare var tänkt att användas i arbetet med de yngsta barnen men även för de äldre barnen på avdelningen, det vill säga barn i åldern fyra till fem.

Det tredje påståendet som valts att lyftas i denna resultatdel är Jag ser fram emot arbetet i teknik med barnen. 80 procent av pedagogerna svarar att de instämmer. Fältanteckningarna visar att talet om det framtidiga arbetet med teknikämnet i förskolan uttrycks positivt. Pedagogerna uttrycker nyfikenhet på hur barnen i verksamheten ska ta emot det som pedagogerna konstruerat och byggt under fortbildningen. Påståendet i enkäten kan ses speglad pedagogernas uppfattning.

4.4 Redovisning och analys av fältanteckningarna

Dock kan enskilda individers påståenden exempelvis hjälpa till att lyfta urvalsgruppens uppfattning för läsaren. Pedagogerna benämnas i resultatet med nummer för att lättare kunna urskilja i konversationen vem som sagt vad.

Konversation 1

- Teknik är för mig lampor och andra blinkande saker (Pedagog 1)
- Jag tänker på datorer och it (Pedagog 2)
- Ja, allt som är jobbigt (Pedagog 1)

Konversation 2

- Vi håller på att bygga om hemma (Pedagog 3)
- Vad bygger ni? (Pedagog 4)
- Vi bygger en veranda på baksidan (Pedagog 3)

Konversation tre och fyra korrresponderar väl med påståendet Jag kommer ihåg teknikundervisningen i skolan som intressant. På detta påstående var det 59 procent av respondenterna som inte instämde.

Konversation 3

- Jag får ångest av detta (Pedagog 5)
- Jag vill inte heller (Pedagog 6)
- Men vi är här för att lära oss eller hur? (Pedagog 5)
- Men jag fattade ingenting av tekniken i skolan. Det var lampor och sånt (Pedagog 6)
- Jag minns inte ens att vi hade teknik (Pedagog 5)
Konversation 4

- Min tekniklärare var det torraste i ett par skor. Han stod framme vid tavlan och mässade om lödnings och syrabad. Det är det jag minns (Pedagog 6)
- Vi fick göra ett hus. Det var ganska kul, fast det blev ju inte så bra. Det var fyra väggar och så fick vi göra en lampa, tror jag. Tak! Ja, tak var det [skratt] (Pedagog 7)
- Han drog såååååå dåliga skämt (Pedagog 6)

Konversation tre kan även som dialog tänkas speglan att bilden av teknik som objekt skapas inom teknikundervisningen om eleven inte har någon egen tidigare relation till ämnet. Konversation fyra kan tänkas visa på att ämnet inte lyckats framställas som intressant samt att fokus även lagat på läraren som person.

Det som kan uttolkas av samtalen är en osäkerhet inför teknikämnets delar, förutsättningar för teknikämnet samt den egna förmågan samt motsätter enkätvaren angående påståendet jag tycker det är roligt att hålla i pedagogisk verksamhet som handlar om teknik.
På påståendet om *det finns många likheter mellan skapande verksamhet och teknik* svarar hela 86 procent av respondenterna att detta stämmer och endast 3 procent anser det inte stämma. Denna procentutdelning gör att antagande kan göras om att påståendet verkar tilltala pedagogerna. Fältanteckningarna bekräftar pedagogernas enkätssvar. Nedan presenteras ett exempel:

Konversation 7

- Jag gillar att pyssla (Pedagog 12)

- Vi brukar göra mycket pyssel på förskolan men det blir mest till jul och påsk och så där vi gör grejer tillsammans. Annars så målar mest barnen och jag tittar på, jag kan inte måla. (Pedagog 13)

- Jag pysslar mycket hemma på jobbet är det ju barnen som ska pyssla (Pedagog 12)

- Alltså, jag har inte fattat att teknik kan vara skapande. Vi kanske ska ta in lite annat material i ateljén? (Pedagog 13)

Konversationen kan tolkas som att genom att pedagogerna själva fått arbeta fram sitt teknikmaterial har en större förståelse av teknikämnet viarierande natur framkommit.

4.5 Sammanfattning av de uppfattningar som framkommer tydligast

Fältanteckningarna visar att pedagogerna inte ser sig själva som tekniker, det vill säga som en person som utför teknik. Respondenterna i konversation ett uttrycker delvis att teknik endast är datorer och IT samt ellära medan konversation två visar att respondenten sysselsätter sig med teknik på fritiden även om denna inte uttrycker att personen just gör teknik. 59 procent av respondenterna svarade instämmer inte på enkätpåståendet *Jag kommer ihåg teknikundervisningen i skolan som intressant*. Detta speglas även i respondenternas tal om teknik då deltagarnas referenser till teknikämnet till mängt och mycket härstammar från mötet med teknikämnet genom den egna skolgången. 80 procent av respondenterna svarade instämmande på enkätpåståendet att de *tycker det är roligt att hålla i pedagogisk verksamhet som handlar om teknik*. Detta speglar inte fältanteckningarna som visar att pedagogerna inte anser det vara roligt att hålla i pedagogisk verksamhet som handlar om teknik. Respondenterna uttrycker snarare svårigheter med att hålla i teknikverksamhet i förskolan. Fältanteckningarna bekräftar enkätpåståendet *det finns många likheter mellan skapande verksamhet och teknik*. Pedagog 13 fick exemplifiera detta med sitt påstående ”Alltså, jag har inte fattat att teknik kan vara skapande. Vi kanske ska ta in lite annat material i ateljén?”
5 Metodiskussion

Att låta en forskningsfråga uppstå ur ett pedagogiskt fält, kräver tid och analytisk förmåga från forskaren som är i fältet. Att låta frågan växa fram tar tid men jag anser att i detta fall gjorde denna tidsättning att studiens forskningsfrågor blev mer genomgripande då de utgått från fältet och inte tvärtom. Att anta det arbetsätt som jag hade krävde i mitt fall en tilltro till att empirin kan stå för sig utan att först ha förankrats i litteratur. Litteraturen fick bli det som kompletterade empirin på det sätt som grounded theory föreskriver.

Studiens önskan är att kunna visa på hur läraren uttrycker sina uppfattningar. För att kunna se om pedagogen handlar utifrån sina uppfattningar hade det varit av värde att studera pedagogen på respektive förskola för att fördjupa giltigheten av studien men på grund av tidsram fick fältanteckningarna bli den del av studiens fenomenografiska strävan.

I de öppna svaren kan läsaren se att de öppna svarsfrågorna inte använder sig av uttrycket pedagoger i förskolan utan istället uttrycket barnskötare/förskollärare/lärare. Uttrycket med alla yrkeskategorier kan i efterhand ses vara osmidigt att använda i en enkätfråga men valet att använda dessa yrkeskategorier gjorde jag på grund av att jag visste att förskollärare, barnskötare och lärare från grundskolan arbetade inom förskolans verksamhet och då jag skapade enkäten inte ville utesluta någon yrkeskategori.

De fem beskrivningskategorier som uppstod ur empirin från de öppna svaren. Detta var inga beskrivningar som jag varken föreställt mig eller sökt efter innan materialet var färdigställt åt respondenterna. Det vill säga jag ägde ingen föreställning om eventuella beskrivningskategorier innan skapandet av empirin. Vilket jag i efterhand kan tycka blev ett positivt arbetsätt.

Att redovisa de fasta svaren sammanslagna som begreppen instämmer och instämmer inte kan anses förminska de resultat som ligger till grund för sammanförandet. Men då studiens ambition är att visa på gruppens uppfattningar togs beslutet att detta sätt att redovisa resultaten inte skulle påverka analysen på ett missledande sätt samtidigt som det skulle ge en bättre tydlighet av utfallsrummet.

Att inte ta hänsyn till respondenternas kön, ålder och yrkestillhörighet i fältanteckningar och enkät kan ses som att negligerar en viktig variabel. Dock intresserar jag mig inte i denna studie av ålders- eller genusperspektiv utan intresset ligger i subjektets uppfattningar.
Yrkestillhörigheten hade kunnat vara en intressant variabel för att se om de lika yrkeskategorierna på något sätt skilde sig åt men för att bibehålla fokus på uppfattningar om fenomen valdes detta medvetet bort. Min ambition var att behålla materialet kondenserat utan att låta empirin förångas av variabler.

Enkätundersökningen i relation till fältanteckningarna kunde ha stärks. Under genomförandet såg jag inga problem med att enkätens genomförande skedde på ostrukturerad basis. Med det menar jag att jag inte visste vem som fyllt i den. I efterhand, vid bearbetningen av enkätan och fältanteckningarna såg jag att det hade varit av intresse att jämföra om det var samma person som uttryckt en säkerhet kring teknikämnet i enkätan som muntligt uttryckte osäkerhet i arbetet med teknikämnet framför kollegorna.

När det kommer till enkätens uppbyggnad och val av svarsalternativens mängd kan enkäten förändras på olika sätt. En skala med fyra svarsalternativ var ett alternativ som valdes bort då det kan leda till att respondenten, när den saknar ett neutralt svarsalternativ, svarar mer av slentrian. Dock kan enkät med fyra svarsalternativ ses som positivt för att deltagarna tvingas ta ställning och undvika att respondenten sätter kryss för mitten alternativet i en femgradigskala skala med svarsalternativ (Trost 2007).

Att genomföra en enkät kan medföra nackdelar i och med det bortfall som normalt förekommer i samband med den typen av undersökningar (Cohen, Manion & Morrison, 2008). I mitt fall påverkades enkätanhanteringen av att respondenterna fick fylla i enkätan under den tid de fanns på utbildningen. Detta medförde att enkätan aldrig fick möjlighet att försvinna eller glömmas bort som kan hända vid e-posthantering eller brevförsändelser men samtidigt skapade en form av bortfall i och med de som inte valde att fylla i.

Dock visar bland annat denna studie att kvantitativa undersökningar kan visa på verkligheter som inte kunnat åskådliggöras med enbart kvalitativ undersökningsmetod såsom observation och fältanteckningar. Studien visar att en enkätstudie kan visa på hur fenomen uttrycks.

Utan enkätens deskriptiva statistik hade inte konflikten mellan de muntligen uttalade attityderna och uppfattningarna, till teknikämnet och det nedskrivna ordet uppmärksammats. Samtidigt som fältanteckningarna bekräftar enkäten. Detta genom att de mesta av pedagogernas muntliga uttryck överensstämmer med det som de svarat i enkäterna. Detta kan bero på att fältanteckningarna var informella och jag antecknade det jag fann intressant vilket i sin tur kan ha gjort att det som finns nedskrivet är det som tilltalade mig som undersökare. Denna problematik var jag medveten om vid insamlande av fältanteckningarna och arbetade medvetet för att få med olika konversationer som kunde spegla hur kursdeltagarna uppfattade fenomenet teknik och fenomenet arbeta med teknikämnet. Allt detta för att studiens tillförlitlighet skulle bibehållas.

Som forskare kan man i och för sig aldrig vara helt säker på att man inte låter ens egna värderingar och föreställningar påverka resultaten. Målet har självlänt varit en opartiskhet och nyfikenhet inför empirin. Även i metoder som videofilmning, som kan uppfattas som mer objektiva än fältanteckningar, ingår det påverkan av material från den som forskar. Detta på grund av att videokameran riktas mot ett specifikt mål (jmf Tellgren 2008).

Valet att inte göra en ljudinspelning av samtalen och sedan transkribera dem för att efter det se om några mönster utkristalliserat sig beror på att ljudnivån var hög under de praktiska utförandena under kursen. Det sågades, borrades et cetera samt att salen var stor och placeringen på respondenterna i förhållande till salen gjorde att det skulle krävas en annan form av ljudteknisk tillgång, än den jag i normalfall tillhandahåller, för att fånga samtalen. Fältanteckningar blev då den metod som i denna specifika kontext ansågs lämpligast.
6 Diskussion

I mina ögon är det mest anmärkningsvärdt med denna studie de motsägelsefulla uppfattningar som pedagogerna uttrycker beroende på vilken forskningsmetod de uttrycks i. Till stor del bekräftar de sina enkätvar men också olikheter framkommer via fältanteckningarna. Enkäten visar t.ex. på positiva uppfattningar om eget kunnande i teknikämnet i förskolan och förväntan på arbetet med teknikämnet i förskolan. Även pedagogernas uppfattningar om teknik kan uppfattas som positiva utifrån enkätens resultat. Teknik samt teknikämnet ses av pedagogerna som eniktig del av samhället och barnets dag i förskolan. Pedagoger i studien uttrycker uppdraget att undervisa i teknikämnet med blandade attityder.

När pedagogerna beskriver de egenskaper de anser behövs i arbetet med barnen ses personliga drag såsom humor och påhittighet som viktigast. För mig som är utbildad förskollärare anser jag det vara mycket intressant att inlärda kunskaper som exempelvis kunskapen om lärandeprocesser, identitetsutveckling, utvecklingspsykologiska teorier och kunskapen om gruppdynamik samt ämnesspecifika kunskaper inte närmäs i större utsträckning. Detta är kunskaper som eventuellt kan fås via en lärarutbildning och som sedan kan lyfta verksamheten. Jag anser som respondenterna att en person som arbetar med barn och unga ska vara en positiv och stärdande person men det bedömer jag inte som förminskande i betydelsen av ämneskunskaperna.

Att relatera tekniken i förskolan till didaktiker som Fröbel, Köhler, Dewey, Polhem och Eklund är att förankra teknikämnet historiskt men också att låta sitt arbete med teknikämnet drivas av praktiska moment utan att låta sig fastna i en sorts metod, för att återknyta till ämnesdidaktikens ambitioner. Teknikundervisning kan tolkas vara de praktiska moment som skedde i Fröbles barnträdgårdar och genom att se teknik som något vi skapat för att lösa vardagliga problem exempelvis en stol för att sitta på, ett paraply som skydd för regnet samt en gaffel att äta med medför att teknikämnet inte behöver vara något krångligt som det krävs specialkompetens för att kunna undervisa eller vara delaktig i. Ämnesdidaktiken kan då vara en eventuell väg till ökad professionell lärarkunskap som kan lyfta teknikämnet i förskolan.

6.1 Slutord
7 Referenser

Sjöberg, Svein & Schreiner, Camilla (2010): The ROSE project. An overview and key findings. Oslo: University of Oslo

59

7.1 Läroplaner

7.2 Elektroniska referenser

CETIS - Centrum för tekniken i skolan (2012): *Forskning och utveckling*

OECD (2012): *PISA in focus: Are students more engaged when schools offer extracurricular activities?* http://www.oecd.org/pisa/pisa%20in%20focus%20n18%20(eng)--v05.pdf [Hämtad 2012-08-19].

Skolverket (2012): *Pedagogisk ämneskunskap*
http://www.skolverket.se/skolutveckling/forskning/omraden/naturvetenskap/rapporter/pedagogisk-ämneskunskap-1.122387 [Hämtad 2012-08-06].

Vetenskapsrådet (2011): *Förskolans praktik i mötet med naturvetenskap*
http://vrproj.vr.se/detail.asp?arendeid=87088 [Hämtad 2012-07-14].

http://www.nad.riksarkivet.se/sbl/Presentation.aspx?id=16850 [Hämtad 2012-07-06].
Frågor om uppfattningar kring lärande.

Sammanfattning av muntlig information vid utdelning av enkäter.

Deltagande i enkät och deltagande i fältanteckningar är frivilligt. Du kan när som helst välja att avstå deltagande i studien.

Resultaten från enkäten kommer att redovisas i form av medelvärden och kategorier. Det kommer alltså inte vara möjligt att se just dina svar och vi kommer inte att berätta för någon vad just du tycker. Alla resultat från undersökningen kommer att förvaras inlåsta och jag kommer att vara den enda person med tillgång till rådata.

Det finns inga rätta svar på frågorna utan det är dina erfarenheter och åsikter som är viktiga.

Tack så mycket för din medverkan!

Ulrika Sultan, student. Pedagogik avancerad nivå. Telefonnummer xxxx-xxxxxx

Ulrika.sultan@xxx.xx

Handledare: Bodil Sundberg. Telefonnummer xxx-xxxxxx
Bilaga 2 – Enkätfrågorna

Först några frågor om dig själv:

1. Vilka åldrar arbetar du med?

..

2. Vilka egenskaper (både medfödda och inlärda) tycker du att en barnskötare/lärare/förskolelärare/ bör ha (med tanke på de åldrar som du själv arbetar med)?

Nämn de fem viktigaste!

3. Utöver det, finns det andra färdigheter och kunskaper en lärare bör ha för att vara en professionell och kompetent barnskötare/lärare/förskolelärare/fritidspedagog?
Frågor som rör din uppfattning om teknik

Hur väl stämmer följande påståenden in på din egen uppfattning? Kryssa i lämplig ruta

<table>
<thead>
<tr>
<th>Uttryck</th>
<th>Instämmer inte alls</th>
<th>Instämmer helt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jag gillar böcker och tidningar som handlar om teknik</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Jag tycker om att titta på teknikprogram på TV</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Jag ägnar mig åt teknik på fritiden</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Jag tycker teknisk kunskap är bra att ha för att kunna ta viktiga beslut i mitt liv</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Det är viktigt för ett land att invånarna är allmänbildade inom teknik</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
Forskning (i allmänhet) ger oss ett bättre samhälle

Teknisk forskning ger oss ett bättre samhälle

Man måste vara smart för att hålla på med teknik

Jag kommer ihåg teknikundervisningen i skolan som intressant

Det finns många likheter mellan skapande verksamhet och teknik
Frågor om dina tankar kring teknik och barn

Kryssa i lämplig ruta

<table>
<thead>
<tr>
<th>Instämmer inte alls</th>
<th>Instämmer helt</th>
</tr>
</thead>
</table>

1. Det är viktigt att barn lär sig som teknik tidigt
 - □ □ □ □ □

2. Det viktigaste med teknik med barn är att de får utlopp för sin fantasi
 - □ □ □ □ □

3. Barn bör lära sig att göra egna undersökningar tidigt
 - □ □ □ □ □

4. Det finns ingen anledning att använda svåra ord (t.ex. krets) när man pratar med barn om teknik
 - □ □ □ □ □

5. Jag tycker det är roligt att hålla i pedagogisk verksamhet som handlar om teknik
 - □ □ □ □ □

6. Jag kommer ofta att hålla på med teknik relaterad verksamhet med barnen
 - □ □ □ □ □
Jag tycker det är svårt att veta vad man ska göra med barnen i teknik

Jag ser fram emot arbetet i teknik med barn

Tack så mycket för din medverkan!