Svävare

Utformning av hytt

Hovercraft
Cabin development

Martin Gustavsson

Fakulteten för teknik- och naturvetenskap
Examensarbete/Maskiningenjörsprogrammet

22.5 hp
Handledare: Anders Wickberg
Examinator: Nils Hallbäck
Datum: 2012-06-08
Sammanfattning

Detta projekt är ett samarbete mellan två studenter på Karlstads Universitet och Marcus Norström från företaget Hovercraft solutions. Projektet är uppdelat i två delar, en del syftar på design/utformning och en del på konstruktion. Denna rapport följer design- och utformningsdelen.

I uppdrag från Hovercraft solutions har en hytt skapats till svävarmodellen 380 TD från Griffon hoverwork som saknar hytt i grundutförande. 380 TD är en liten svävare med en längd på 6.8m och en bredd på 3.8m och själva ytan som finns tillgänglig för hyttkonstruktionen är inte mycket större än en bils överdel. På grund av svävarens storlek har framförallt bilars karosser varit den huvudsakliga inspirationskällan för utformningen av svävarhytten i projektet. Arbetet följer en systematisk produktutvecklingsprocess. Från ett valt koncept har hytten modellerats i CAD-programet ProE Wildfire och en skalenlig prototyp tillverkats. Modellen ligger som en grund för en tillverkning av hytten. Viktmålet på 80kg har uppnåtts och ergonomisk hänsyn har tagits till utformning av siktfält, tak- och ingångshöjd.
Abstract

The project in question is a joint effort between students at Karlstad University and Marcus Norström at the company Hovercraft solutions. The project is divided into two parts, one focusing on the purely technical aspects of engineering the product and one focusing on the design aspects of the product development. The project described in this report is the design of the product.

The assignment from Hovercraft solutions is regarding design engineering of a cabin for the hovercraft 380TD from the manufacturer Griffon hovercraft. The product lacks a cabin and none is offered from Griffon at the time being.

380TD is a relatively small hovercraft with a length of 6.8 metres and a width of 3.8 metres. The surface available for the cabin is not much different from the body of a car. Because of this, research has been focused primarily on car bodies. The product development process used in the project is following a systematic approach. From a chosen concept, the project was finalized with a CAD-modell as well as a detailed prototype. The weight target of 80 kg was reached and the ergonomic aspects were considered developing the sight field, roof- and entrance height.
Innehållsförteckning

Sammanfattning... 2
Abstract .. 3
1. Inledning.. 5
2. Genomförande .. 6
 2.1 Projektplanering .. 6
 2.2 Research ... 7
 2.3 Idégenerering .. 7
 2.4 Avstämnning med uppdragsgivare ... 7
 2.5 Vindrutekoncept ... 8
 2.6 Första prototypbygget ... 8
 2.7 CAD .. 9
 2.8 Ergonomisk utformning ... 10
 2.9 Andra prototypbygget ... 12
3. Resultat... 13
 3.1 Idégenerering .. 13
 3.1 Första koncepten ... 14
 3.2 Vindruta .. 15
 3.3 Sällning bland koncept ... 16
 3.4 Prototyp .. 18
 3.5 Taklucka ... 19
 3.6 Ergonomisk utformning ... 20
 3.7 CAD .. 23
 3.7.1 Grund .. 23
 3.7.2 Vindruta ... 24
 3.7.3 Parameterstyrning .. 25
 3.7.4 Slutgiltig konstruktion ... 26
 3.8 Andra prototypbygget ... 28
4. Diskussion .. 29
5. Slutsatser .. 32
6. Rekommendationer till fortsatt arbete ... 33
7. Tackord... 35

Bilaga 1: Projektplan
Bilaga 2: Kravspecifikation
Bilaga 3: Idégenerering 6-5-3 metoden
Bilaga 4: Koncepskisser
Bilaga 5: Diagram över typfall
1. Inledning

Projektet skall delas in i två delar. I detta examensarbete behandlas design, ergonomi och utformning. I ett parallellt arbete kommer Thomas Carlsson att fokusera på konstruktion, hållfasthet och materialval.

Min del i projektet behandlar designen, ergonomin och utformningen på hytten. Det jag vill uppnå är att väva in önskemålen och kraven företaget ställt på ett bra sätt i hyttens utformning men samtidigt skapa en hytt som är estetiskt tilltalande.

Arbetet har utförts på fakulteten för teknik och naturvetenskap på Karlstads Universitet. Handledare under projektet har varit Anders Wickberg och examinator är Nils Hallbäck.
2. Genomförande

2.1 Projektplanering
Projektet startades med ett möte med min uppdragsgivare Marcus Nordström. Då diskuterades Marcus önskemål och de krav som han ställde på hytten. Under mötet försökte jag reda ut vad som skulle kunna begränsa utvecklingen av hytten designmässigt på svävarmodellen 380TD och vad Marcus hade för idéer angående utformingen.

Som bas för arbetets metodik används produktutvecklingsprocessen taget från litteraturen [1]. Produktutvecklingsprocessen definierar dem stegen en produkt tar från idé till färdig produkt (figur 1).

2.2 Research
För att få idéer till tänkbara utformningar påbörjades ett researcharbete.
Till en början söktes information om redan befintliga svävarhyttor. Det fanns att de svävare som har hytter monterade oftast är av större modeller vilket gör det svårt att använda deras design i det här projektet. Då det inte fanns några riktigt bra alternativ på hytter till samma svävarstorlek som 380TD påbörjades informationsinlämning om bilkarosser istället. Då en bils överdel inte är så långt ifrån storleksmässigt och är byggd för samma ändamål kändes det som ett bra alternativ. Det är framförallt sportbilskarosser som varit den huvudsakliga inspirationskällan, då de har med sig viss aerodynamisk utformning och en estetisk tilltalande design. En mer sportig design var även något som uppdragsgivaren verkade positiv till, det var i alla fall det intryck som gavs vid mötet i början av projektet.

2.3 Idégenerering

2.4 Avstämning med uppdragsgivare
2.5 Vindrutekoncept
Efter mötet gjordes en ny undersökning över standardfrontrutor till svävarhytten för att kunna bygga upp en design runt en standardkomponent. Sökandet av rutor utgick från bilrutor och båtrutor, eftersom de passar bäst storleksmässigt till en svävare i 380TD’s storlek.
Konceptet Marcus valde att gå vidare med har en 5 delad standardruta från Ömetall som är ett företag som har specialiserat sig på att göra rutor till båtar. Dock ville han se ett par förändringar, en taklucka och en ruta bak på hytten.

2.6 Första prototypbygget
När konceptet fastställdes vidareutvecklades detta och som första steg skapades en småskalig prototypmodell av svävaren och hytten.
Svävaren modellerades utifrån en enkel ritning som erhållits från Griffon tidigt i projektet. För att få en bättre noggrannhet i modellen än en rent handarbetad hade kunnat erbjuda, ritades en modell av svävaren upp utan hytt upp i Pro Engineer [4]. När grundstommen på svävaren fanns att utgå ifrån modellerades det valda svävarhyttskonceptet upp utifrån detta. När både grunden och hytten var klara gjordes CAM-beredningar till de två modellerna så att det var möjligt att fräsa ut både grunden och hytten på universitetets CNC-fräs (figur 2).
Klasskamraten Eugen Löfman togs in som konsult för fräsoperationen.
För enkelhetens skull frästes både grunden och hytten ut i frigolitmaterial.
Detta gjorde det möjligt att efterredigera delarna lätt för hand där korrigeringsar behövde göras.
Figur 2. Här syns det när hyttdelen blir utfräst till prototypbygget.

2.7 CAD
För att komma vidare i projektet behövdes en bättre ritning av svävaren så att koncepthytten kunde passas in till svävaren, då den befintliga ritningen bara hade innehållit basmått som längd och bredd på hela svävaren och en skala där man kunde mäta sig till ungefärliga mått.

Efter att Marcus visade koncept 4 för Griffon fick vi äntligen tillgång till en bättre ritning av svävaren, tidigare hade Griffon haft svårt att släppa iväg ritningar till projektet.

Dock var det två viktiga mått som fattades på den nya ritningen.

2.8 Ergonomisk utformning

Eftersom produkten är en del i flera människors arbetsplats måste en ergonomiskt riktig konstruktion säkerställas.

1. Definition av designproblem
2. Identifiering av målgrupp
3. Antropometrisk databas
4. Representera antropometrisk variation genom typfall
5. Överföring av typfall till produktutformningskrav

På punkt ett har följande tre problem identifierats: En bekväm takhöjd, ingångshöjd till svävarhytten och ett bra synfält inifrån hytten, speciellt då sett från ett förarperspektiv. Därav har måttet för sittande huvudhöjd, sittande ögonhöjd och stående huvudhöjd valts eftersom det är direkt beroende av den problemformulering som ställts. Samtidigt måste hänsyn tas till den kravspecifikation som finns där inte hytten ska försämra svävarens prestanda och vara en
lättviktig konstruktion. Därför måste takhöjden hållas så låg som möjligt för att hålla nere vikt, tyngdpunkt och luftmotstånd.

På punkt två, identifiering av målgrupp, har svävarens ändamål tagits i beaktning, nämligen att köra ut servicepersonal till vindkraftverk. Därmed blir det svårt att bestämma målgruppens kroppslängd. För att gardera sig kan det vara önskvärt att anpassa svävarhytten till en person något längre än medellängd vid både takhöjd och ingångshöjd. Det beslutades att använda mått från män då de har en högre medellängd. Synfältet bör vara anpassat till uppdragsgivaren eftersom det är han som i första hand kommer att köra svävaren.

Punkt fyra, representera antropometrisk variation genom typfall, går ut på att sätta in olika typfall från målgruppen i de problem som definierats på punkt ett. Eftersom servicepersonalen som ska nytta transporttjänsten är en odefinierbar målgrupp valdes ett stort spann av kroppslängder från långt under till långt över medel. De percentiler som valdes ut var 25%il-, 50%il-, 75%il- och 90 %il:n, med percentil (%il) menas att ex den 75%il har en större kropp än 75% av befolkningen. De mått för de fyra olika typfallen fastställdes från databasen [6] både för 2009 (Hanson et al.) och 1969 (Lewin) för sittande och stående personers huvudhöjder.

På punkt fem, överföring av typfall till produktutformningskrav, fastställs vilka typfall som ska ligga till grund för produkten. Uppdragsgivaren är den person som kommer att tillbringa mest tid i hytten och höjdmässigt befinner sig runt den 60%il om man tar ett snitt mellan de två databaserna, eftersom sikten framåt ska vara anpassad till uppdragsgivaren kommer denna %il att vara som utgångspunkt för synfältet. Den 60%il står även som utgångspunkt för att bestämma en lämplig % vid bestämning av takhöjd och ingångshöjd. Samtidigt måste hytten vara anpassad till servicepersonal som åker ut och tillbaka från vindkraftverken. Eftersom dessa kan vara längre än uppdragsgivaren själv har hänsyn tagits till detta genom att justera upp något till den 75%il:n. Det valdes att inte gå högre upp än 75%il då detta ändå täcker 75% av befolkningen, samtidigt som servicepersonalen inte behöver befinner sig så lång tid i svävarhytten i förhållande till uppdragsgivaren.

Kravet på att inte hytten får försämra köregenskaper som blir till följd av att en högre takthöjd för med sig ökat luftmotstånd och en högre tyngdpunkt, spelade även roll när den 75%il
bestämdes. Detta fick då högre prioritet än att en väldigt liten del av befolkningen skulle få en perfekt anpassad takhöjd i en hytt de ändå tillbringar kortare stunder i.

Då denna metod är helt och hållet teoretisk beslutades det även att göra en undersökning av takhöjden från sittytan på personbilar. Detta eftersom bilindustrin brottas med exakt samma problem som fallet för svävarhytten. Det ansågs att en komplettering var nödvändig av verkliga exempel då måtten från databasen var med helt raka ryggar. I verklheten däremot kröks ryggen något vid en avslappnad sittställning.

2.9 Andra prototypbygget
Då cadmodellen av koncept 4 var färdigställd, beslutades det att göra en andra prototypmodell av svävaren. Utifrån den färdiga cadmodellen av hytten, skrevs sedan en prototyp i ABS+ plast ut i 3D-skivarn (figur 3) som tillhandahålls av Universitet. För att en 3D-utskrift skulle vara möjlig att genomföra så var det nödvändigt att ha en komplet cadmodell att utgå ifrån. Det är svårt att visualisera hytten enbart utifrån en cadmodell på datorn, det är inte förrän man kan se och ta på produkten man verkligkan få en bild av hur den slutgiltiga produkten kommer att se ut. Den största skala som tillåts på modellen på grund av 3D-skivarens storlek var 0,035 av verklig storlek, detta ger modellen en längd på ca 200 mm. De delar som valdes att skrivas ut var svävargrunden, de båda hytthalvorna samt bågen som hytt halvorna är fästa i. Det gör att svävarprototypen går att öppna på samma sätt som det är tänkt i verklheten.

Figur 3. På bilden visas det när hyttdelarna (de vita delarna) skrivs ut i universitetets 3D skrivare.
3. Resultat

3.1 Idégenerering
Resultatet från 6-5-3 metoden gav inte någon lösning till den slutgiltiga konstruktionen. Generellt hade idéerna dålig tillvekningsbarhet och då de i många fall var komplicerade lösningar som kunde innebära höga kostnader. Metoden inspirerade till några av koncepten i denna produktutveckling. Fast de föll bort under sällningen bland andra koncept. Nedan i (figur 4) visas ett av pappren från idégenereringen resterande finns i bilaga 3.

Figur 4. bilden visar ett av pappren från 6-5-3 metoden.
3.1 Första koncepten
Här nedan (figur 5 och 6) visas två av de första ideskisser på tänkbara utformningar som gjordes till hytten. Den slutgiltiga konstruktionen hämtade lite inspiration ifrån idéskiss 1 med sin u-formade vindruta som ger en bra förarvy. Genomgående för de första idéskisserna var att de var svåra att tillverka. Dels för att de ofta använde sig av för komplicerade geometrier men även för att det inte ingick några standardkomponenter i lösningarna.

Figur 5. Idéskiss 1

Figur 6. Idéskiss 2
3.2 Vindruta
De rutor som fanns och var lämpliga till att användas till koncept var en vindruta från Volvo 960 och en 5 delad ruta från Ömetall [7]. Framrutan Från Volvo 960 valdes dels eftersom bilen har samma bredd som svävaren vilket ger en god passform och för att det är en billig standardkomponent med hög tillgänglighet. Nackdelen att använda sig av en bilruta är att den bara är i en del, vilket gör att nederkanten på rutan kommer högt upp då rutan måste gå över den huv som sitter fram på svävaren. Ska man sedan ha sidorutorna i linje med frontrutan kommer de högre upp och man förlorar sikt inifrån svävaren.

Rutan från Ömetall är uppdelad i 5 sektioner, 3 sektioner utgör fonten på rutan och de två andra blir främre sidorutor på svävarhytten. Det är en dyrare komponent än rutan från Volvon fast den har andra fördelar. Det går att bestämma alla mått på de 5 sektionerna så det är möjligt att skräddarsy rutan efter behov. Eftersom främre delen på rutan är uppdelad i 3 sektioner kan rutan ta den båge över den främre huvuen på svävaren och ändå sluta i höjd med ramen som går runt svävaren, vilket ger en snyggare design på svävarhytten och ger en bättre sikt inifrån svävaren. Det går även att få en eluppvärmd frontruta av glas som var ett önskemål från uppdragsgivaren medan resten av rutorna är gjorda i plexiglas för att spara vikt. Rutan från Ömetall kan ses i (figur 7 och 8)

Figur 7. Bild över de mått som går att ändra på rutan från Ömetall [7].
Figur 8. Exempel på hur en ruta från Ömetall kan se ut, här monterat på en båt [7].

3.3 Sållning bland koncept

Tabell 1. Tabell över betydelsen av värdena till betygsättningen.

<table>
<thead>
<tr>
<th></th>
<th>Lösningen Uppfyller inte funktionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Lösningen uppfyller funktionen dåligt</td>
</tr>
<tr>
<td>1</td>
<td>Lösningen uppfyller funktionen tämligen bra</td>
</tr>
<tr>
<td>2</td>
<td>Lösningen uppfyller funktionen bra</td>
</tr>
</tbody>
</table>

16
Tabell 2. Sällningsmatris med 5 olika koncept med viktade funktioner.

<table>
<thead>
<tr>
<th>Viktkoefficient</th>
<th>Bra sikt framåt</th>
<th>Innehåller standardkomponenter</th>
<th>Tillverkningsbarhet</th>
<th>Estetiskt tilltalande</th>
<th>Bra sikt övrigt</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>koncept 1</td>
<td>2</td>
<td>3</td>
<td>0,23</td>
<td>0,17</td>
<td>0,1</td>
<td>2,53</td>
</tr>
<tr>
<td>koncept 2</td>
<td>0,4</td>
<td>0,9</td>
<td>0,69</td>
<td>0,34</td>
<td>0,2</td>
<td>2,53</td>
</tr>
<tr>
<td>koncept 3</td>
<td>0,4</td>
<td>0</td>
<td>0,46</td>
<td>0,34</td>
<td>0,2</td>
<td>1,4</td>
</tr>
<tr>
<td>koncept 4</td>
<td>2</td>
<td>2</td>
<td>0,23</td>
<td>0,51</td>
<td>0,3</td>
<td>2,04</td>
</tr>
<tr>
<td>koncept 5</td>
<td>0,6</td>
<td>0,6</td>
<td>0,69</td>
<td>0,51</td>
<td>0,3</td>
<td>2,7</td>
</tr>
<tr>
<td>koncept 6</td>
<td>0,4</td>
<td>0,9</td>
<td>0,69</td>
<td>0,34</td>
<td>0,2</td>
<td>2,53</td>
</tr>
</tbody>
</table>

3.4 Prototyp

Figur 10. Skalenlig modell av koncept 4 och svävare
3.5 Taklucka

Figur 11. En skissbild av Lewmar Low Profile Hatch Size 65 [9].
3.6 Ergonomisk utformning
Den ergonomiska utformingen omfattar takhiröjd, ingångshöjd och en bra utsikt, framförallt då i förarmiljö för svävarhyttstekniken. Då det var svårt att välja ut en specifik målgrupp att anpassa svävaren till fick det lov att vara ett stort spann på de typexempel som valdes ut. Undantaget var för ögonhöjden då den framförallt behövde anpassas till uppdragsgivaren. Typfallen som valdes togs ifrån två databaser (figur 12) med 25%il, 50%il, 75%il och 90%il. De mått som eftersöktes var stående huvudhöjd för ingångshöjd och sittande huvudhöjd för takhöjd till hytten. För att se skillnaderna mellan de valda %il togs de önskade måtten från typfallen och ställdes upp mot varandra i stapeldiagram. Det gjordes fyra diagram i Exel [10], två stycken för stående huvudhöjd där mått togs från 2009 (Hanson et al.) till ena diagramet och till det andra användes 1969 (Lewin). På samma sätt skapades två diagram för sittande huvudhöjd. Dessa diagram kan ses i bilaga 5.

Graferna av de fyra olika typfallen för sittande och stående huvudhöjd visade skillnaderna från 25%il till 90 %il. För stående huvudhöjd visade det sig att skillnaden mellan det kortaste och längsta typfallet var ca 135 mm och att det längsta typfallet hade ökat i längd med ca 50 mm till en längd på 1880 mm från den äldre databasen till den nyare. För den sittande huvudhöjden var skillnaden mellan den lägsta och högsta %il ca 75 mm och ökningen för det högsta typfallet mellan databaserna var ca 35 mm.

Målet var att anpassa hytten för en så stor del av målgruppen som möjligt och samtidigt ta hänsyn till att svävarens prestanda ska försöka bibehållas. Därför valdes det att använda typfallen för den 75%il som övre gräns då den täcker en stor del av befolkningen, samtidigt som det inte skiljer allt för mycket långdämningsvis sett upp till den 90%il som täcker 90% av befolkningen. Eftersom vår målgrupp befinner sig emellan de båda databaserna togs
medelvärdet fram för den 75%-il tillstående och sittande huvudhöjd. Måttet som valdes till utgångspunkt för måttättning av takhöjd och ingångshöjd till svävaren blev 948 mm för sittande huvudhöjd och 1812 mm tillstående huvudhöjd. Ögonhöjden från sittande position bestämdes till 809 mm.

För att applicera resultatet från stående huvudhöjd till svävarens ingångshöjd så sattes svävarens öppningsvinkel till 35°. Detta gradantal ger en ingångshöjd från ca 2100 mm vid svävarens höga del till 1700 mm vid svävarens lägre del. Vid denna höjd bör det vara lätt för de flesta personer att gå in och ut i svävarhytten utan att behöva kröka ryggen på ett skadligt sätt. Detta finns illustrerat i (figur 13).

![Figur 13. Mått från hyttens högre och lägre del i ingången när svävaren har en öppningsvinkel på 35°.](image)

För att ta fram en fungerande takhöjd till hytten gjordes även en egen undersökning av takhöjden i personbilar då antropometriska måttet är giltigt när man sitter rakryggat. Fast i verkligheten är ett normalt sittande med en krökt rygg vilket för med sig ett lägre mått än det som ficks genom metoden. Skull man enbart gå på det teoretiska värdet och sedan plussa på ett par centimeter för ett bekvämt luftrum skulle man få en onödigt hög takhöjd. När mätningar gjordes i personbilarna fanns det att en normal höjd från sittytan till taket var ca
920 mm. Då bilar är anpassade för många olika kroppsängder var det självklart att detta resultat var tvunget att tas i beaktning när takhöjden till hytten skulle bestämmas. Undersökningen finns illustrerat i (figur 14).

En referensperson på 184 cm, alltså lite över 75%il, användes för att ta reda på vilket spann som fanns mellan personens huvud och bilens tak. Det gav ett resultat på ca 8 cm. Man får ta i beaktning att personen som satt i bilen sjönk ner något i sätet. Svävaren har också en vadderad sittyta men den bedöms inte att sjunka ihop lika mycket som bilsätet. Då målet var att anpassa hytten till den 75%il kan man tycka att denna person ska kunna sträcka ut sig helt utan att slå huvudet i taket, därför har sitthöjden från sittytan till taket satts till 950 mm. Detta kommer att föra med sig att en person som befinner sig över den 75%il kommer att kunna sitta bekvämt i hytten men inte kunna sträcka ut sig helt och hållet.

Vad gäller den sittande ögonhöjden där måttet 809 mm bestämdes det som utgångspunkt för fönsterrutornas placering. Vad gällde framrutan beslutades det att göra den så stor som möjligt. Det främre förstret går ända ifrån taket på svävaren ner till den främre huven. De främre sidorutorna startar vid måttet 808 mm sett ifrån sittytan för att sedan minska något i mått längs sidorna. Men eftersom personen som sitter och kör svävaren kommer att ha ögonen längre ned på grund av att en normal sittställning har en krökt rygg anses detta inte vara något problem. De främre sidorutorna börjar även förhållandevis långt bak eftersom de tre främre rutorna bildar en u-form (figur 7 och 13) där mittenrutan sitter längre fram än de andra två. På
så sätt kommer föraren att få ett mycket bra synfält. De bakre rutorna på svävaren sitter på 775 mm i höjd ifrån sittytan. Detta kommer även att ge ett bra synfält för de övriga passagerarna i svävaren.

3.7 CAD

3.7.1 Grund

Figur 15. Grundstommen, modellerad utifrån tillverkarens ritning.
3.7.2 Vindruta

Figur 16. Framruta dynamiskt uppbyggd på ett skelett av punkter.
3.7.3 Parameterstyrning

Figur 17. Bild på svävarhyttskonstruktionen med en hög sitthöjd.

Figur 18. Bild på svävarhyttskonstruktionen med en låg sitthöjd.
3.7.4 Slutgiltig konstruktion

Figur 20. Svävarkonstruktionen bakifrån.

Figur 21. Svävarkonstruktionen när hyttdelarna är i öppet läge.
3.8 Andra prototypbygget

I (figur 22) kan resultatet av den 3D utskrivna modellen ses.

Figur 22. En skalenlig modell av hytten utskriven i ABS+ plast på universitetets 3D skrivare.
4. Diskussion

Sökandet efter och analys av andra lösningar har utan tvekan varit det verktyg som haft störst inverkan på den slutgiltiga hyttdesignen/konstruktionen, då sökandet av andra svävarhytter i stort sett uteblev då det upptäcktes att utbudet av svävare med hytt i samma storlek som 380TD var näst intill obefintligt. När det inte fanns några förslag från svävarvärlden att utgå från och hämta inspiration av till det här projektets hyttutformning vände jag mig istället till bilkarosser. Det var ex. där ifrån idén om att använda sig av smala förlängningar på varje sida på bakre delen av karossen kommer ifrån (figur 23) [12]. Att använda sig av sådana förlängningar ger ett snyggare avslut på svävarhytten än ett tvärt avslut, samtidigt som det fortfarande går att öppna den bakre motorrumshuven som är placerad i hålrumet mellan förlängningarna.

Den ergonomiska delen av arbetet som bestod av att bestämma takhöjd, ingångshöjd samt att skapa en bra sikt inifrån svävaren och då framförallt för föraren visade sig vara lite besvärligare än väntat. Det var svårt att finna någon användbar litteratur inom området, så istället fortsatte sökandet efter en elektronisk källa. När hemsidan från högskolan i Skövde
5. Slutsatser

De alla krav på svävarhytten som satts från uppdragsgivaren har uppnåtts! Vikten på hyttkonstruktionen som skulle vara ca 80 kg var utan tvekan det svåraste kravet att uppnå. Det är svårt att få något som är såpass stort som denna hytt är att väga så lite och samtidigt hålla för aktuella påfrestningar. Men efter att ha räknat ihop vikten på det material som används för konstruktionen kommer hytten att ligga runt 80 kg

6. Rekommendationer till fortsatt arbete

Figur 24. Bild på ett excenterlås. Ett lås av denna typ har en åtspännande effekt vilket skulle ge en stabil läsning av hytten.

Figur 25. Variant av täckning för hål som följer svävarens främre huv.
Figur 26. Variant av täckning med förlängning i samma vinkel som vindrutan ner till en plan yta som följer svävargrunden.

Båda förslagen är tänkt att vara uppbyggda på samma sätt som hytten, alltså med glasfiberarmerad divinycell samt förstärkningar med aluminiumprofiler. Öppningsfunktionen för dessa förslag är antingen separat eller integrerat med hytten. För en separat lösning används gångjärn sittandes längs ytterkanten på svävarens grund. Då öppnas täckningarna mot svävarens sidor. Alternativt kan dessa täckningar vara integrerade i hytten och följa med när hytten öppnas.
7. Tackord

Tack till;
Marcus Norström
Anders Wickberg
Thomas Carlsson
Referenslista

1. Johannesson et al, 2004: Produktutveckling - effektiva metoder för konstruktion och design

2. Eriksson & Lillesköld, 2005: Handbok för mindre projekt. Malmö

4. Sam Geisberg (1985) Pro Engineer Wildfire (Version Wildfire 5.0) [Datorprogram] Parametric Technology Corporation, Needham

Bilaga 1: Projektplan

Projektplan
Martin Gustavsson – Hytt till svävare

Bakgrund

Hovercraft solutions AB med Marcus Norstöm som ägare vill utforma och konstruera en hytt till svävarmodellen 380TD. I nuläget har Marcus bara en svävare med en hytt, men han tycker att den blir för stor. Därför vill han att vi ska utforma en hytt till den mindre svävarmodellen som i grundutförande inte har någon hytt. Projektet ska delas in i 2 delar, Thomas Carlsson kommer att fokusera på konstruktion, hållfasthet och materialval och Martin Gustavsson kommer ha hand om design, ergonomi och utformning.

Problemformulering

Mål

Min del i projektet är att utveckla design, ergonomi och utformning till hytten. Det jag vill uppnå är att väva in önskemålen och kraven Marcus sällt på ett bra sätt i hyttons utformning men samtidigt skapa en hytt som är estetiskt tilltalande.
Organisation

Uppdragsgivare – Marcus Norström
Handledare – Anders Wickberg
Examinator – Nils Hallbäck
Medarbetare – Thomas Carlsson
Projektansvarig – Martin Gustavsson

Projektmodell

- Research – Insamling av info/benchmarking
- Ide generering – Utformning av koncept
- Kravspec – Uppställning av krav och önskemål för hytten
- Val av koncept – Val av koncept att gå vidare med
- Utformning/cad – Göra modell av valt koncept
- Rapport – Skriva en rapport om projektet
<table>
<thead>
<tr>
<th>ID</th>
<th>Task Mode</th>
<th>Task Name</th>
<th>Duration</th>
<th>Start</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Rapportskrivning</td>
<td>87 days</td>
<td>Mon 12-01-30</td>
<td>Tue 12-05-29</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Research</td>
<td>37 days</td>
<td>Mon 12-01-30</td>
<td>Tue 12-03-20</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Idgivning</td>
<td>30 days</td>
<td>Wed 12-02-08</td>
<td>Tue 12-03-20</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>styrgruppmöte</td>
<td></td>
<td>Tue 12-03-20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Delredovning</td>
<td>3 days</td>
<td>Fri 12-03-23</td>
<td>Tue 12-03-27</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>videre nvikling</td>
<td>30 days</td>
<td>Tue 12-03-30</td>
<td>Sun 12-04-20</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>entradit</td>
<td>13 days</td>
<td>Sun 12-04-29</td>
<td>Tue 12-05-15</td>
</tr>
</tbody>
</table>
Riskanalys

<table>
<thead>
<tr>
<th>Risker</th>
<th>sannolikhet</th>
<th>konsekvens</th>
<th>summa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Att man inte får tillgång till cadritningar</td>
<td>2,5</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>2. Sjukdom</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3. Tidsbrist</td>
<td>3</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>4. Bristande planering</td>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>5. Dålig kommunikation med uppragsgivare</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>6. Dålig dokumentering</td>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Åtgärder
1. Ligga på Marcus för att få ritningarna
2. Håll dig frisk
3. Hålla sig till planeringen
4. Var noggrann när planeringen görs
5. Försöka skapa en bra kommunikation/ höra av sig ofta
6. Använd de hjälpmedel som USB och it's

Dokumenthantering

Projektgruppen Hovercraft solutions har skapats på Its.kau.se som gör de möjligt att på ett lätt sätt strukturera upp och dela med sig av information för projektet. Även använda hemmadator och USB minne för säkerhetskopiering.
Bilaga 2: Kravspecifikation

<table>
<thead>
<tr>
<th>Kriterie nr</th>
<th>Kriterie</th>
<th>Krav (K)</th>
<th>Ömål (Ö)</th>
<th>Begr (B)</th>
<th>Fkn (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>En lättviktig konstruktion (ca 80 kilo)</td>
<td>K</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Maximera siktenifrån hytten</td>
<td>Ö5</td>
<td>B,F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Inomr içi framsida</td>
<td>K</td>
<td>B,F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Värmeffektion</td>
<td>K</td>
<td>B,F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Fäste för elektronik på tak</td>
<td>K</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Öppnings funktion både fram och bak</td>
<td>K</td>
<td>B,F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kriterie</th>
<th>Krav (K)</th>
<th>Ömål (Ö)</th>
<th>Begr (B)</th>
<th>Fkn (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstruktions och utveckling för processen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Ergonomiskt utformad</td>
<td>Ö4</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Estetiskt tilltalade</td>
<td>Ö4</td>
<td>B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Framställning för processen				
9 Lättillverkad	Ö2	B		
10 Lätttillgängligt material	Ö3	B		

| Framställning för människan | | | | |
| 11 Lättillverkad | Ö2 | B | | |

brukning för processen				
12 Lätt att montera och plocka bort	K	F		
13 Får inte försämra svävarens prestanda				

brukning för människan				
14 Lätt att montera och plocka bort	K	B,F		
15 Maximera siktenifrån hytten	Ö5	B,F		
17 Behaglig tempereatur i hytten	Ö3	F		

Återvinning				
18 Miljövänligt material	Ö2	B		
19 Miljövänligt tillverkning	Ö1	B		
Bilaga 3: idégenerering 6-5-3 metoden

Nedan kan de resterande bladen från idégenereringen ses (figur 1 och 2).

Figur 125. Blad 1 från 6-5-3 metoden.

Figur 226. Blad 2 från 6-5-3 metoden.
Bilaga 4: konceptskisser

Genomgående för alla koncept är att deras kaross är tänkt att vara uppbyggd av glasfiberarmerad divinycell. Koncept 1, 2 och 5 (figur 1, 2 och 4) är av samma princip som vinnaren koncept 4, uppbyggda kring en båge i mitten av hytten som gör en öppningsfunktion fram och bak möjlig. Medans koncept 3 (figur 3) är utformad med en helgjuten kaross där bak och framrutan är tänkt att vara öppningsbara.

Figur 1. Koncept 1 är en variant av koncept 4 fast med en vindruta från Volvo 960.
Figur 2. Koncept 2 en variant som inte har några förlängningar längst bak. Detta koncept innehåller inga standardkomponenter och var det koncept som fick sämst poäng i sällningsmatrisen.

Bilaga 5: Diagram över typfall

Här nedan kan resultaten från punkt 4 från den ergonomiska utformingen ses i form av stapeldiagram (figur 1-4). Diagramen gjordes för att se skillnaderna mellan de fyra valda percentilerna och de två olika databaserna.

Figur 1. Skillnaden mellan de fyra valda percentilerna för stående huvudhöjd enligt 2009 (Hanson et al.).

<table>
<thead>
<tr>
<th>Percentil</th>
<th>2009 (Hanson et al.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>1881</td>
</tr>
<tr>
<td>75%</td>
<td>1839</td>
</tr>
<tr>
<td>50%</td>
<td>1791</td>
</tr>
<tr>
<td>25%</td>
<td>1744</td>
</tr>
</tbody>
</table>

Figur 2. Skillnaden mellan de fyra valda percentilerna för stående huvudhöjd enligt 1969 (Lewin).

<table>
<thead>
<tr>
<th>Percentil</th>
<th>1969 (Lewin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>1827</td>
</tr>
<tr>
<td>75%</td>
<td>1785</td>
</tr>
<tr>
<td>50%</td>
<td>1740</td>
</tr>
<tr>
<td>25%</td>
<td>1794</td>
</tr>
</tbody>
</table>
Figur 3. Skillnaden mellan de fyra valda percentilerna för sittande huvudhöjd enligt 2009 (Hanson et al.).