LTE uplink scheduling in multi-core systems

XINYUN LI

Master's Degree Project
Stockholm, Sweden

XR-EE-LCN 2012:005
LTE uplink scheduling in multi core system

Xinyun Li

Examiner: Viktoria Fodor (KTH)

Supervisor: Carola Faronius (Ericsson)

Jon Sundberg (Ericsson)
Abbreviations .. 5
Table of Figures .. 6
Table of Tables .. 6
Abstract ... 7
1 Introduction .. 8
 1.1 Overview .. 8
 1.2 Objective and Limitations ... 8
 1.3 Thesis Outline ... 9
2 LTE Basics ... 11
 2.1 Introduction ... 11
 2.2 LTE Time-Frequency Structure ... 11
 2.2.1 Uplink Modulation Reference Signals .. 12
 2.2.2 Scheduling Element ... 12
 2.2.3 LTE Frame Structure .. 13
 2.2.4 LTE Bandwidth .. 13
 2.3 Channel Dependent Scheduling .. 13
 2.4 LTE Uplink Scheduling ... 14
 2.4.1 LTE Uplink Scheduling Procedure .. 14
 2.4.2 Scheduling Request (SR) .. 15
 2.4.3 Scheduling Decision ... 15
 Estimation Error ... 16
 2.4.4 Scheduling Grant ... 16
 2.4.5 Buffer Status Report .. 16
 2.5 Related Work .. 16
3 Simulator .. 18
 3.1 Simulator Overview ... 18
 3.2 Channel Model ... 19
 3.3 Traffic Load .. 20
4 Scheduler .. 21
4.1 Overview .. 21
 4.1.1 Number of DSPs ... 22
4.2 Pre-Scheduling Phase ... 23
 4.2.1 Weight Calculation ... 24
4.3 Parallel Scheduling Phase .. 25
 4.3.1 Throughput Calculation .. 26
4.4 Post-Scheduling Phase ... 26
5 Scheduling Algorithm .. 28
 5.1 Serial Scheduling ... 28
 5.2 Pre-Scheduling Phase ... 28
 5.2.1 Simple UE Division Scheme ... 29
 5.2.2 Advanced UE Division Scheme ... 29
 5.2.3 Simple Frequency Division Scheme .. 29
 5.2.4 Advanced Frequency Division Scheme ... 30
 5.3 Parallel Scheduling Phase .. 30
 5.3.1 Maximum Throughput .. 30
 5.3.2 Maximum Fairness ... 30
 5.4 Post-Scheduling Phase ... 30
 5.4.1 Simple Post-Scheduling Phase .. 31
 5.4.2 Advanced Post-Scheduling Phase ... 31
6 Performance Evaluation .. 32
 6.1 Simulation Scenarios .. 32
 6.1.1 Simulation 1 ... 32
 6.1.2 Simulation 2 ... 32
 6.1.3 Simulation 3 ... 32
 6.1.4 Simulation 4 ... 33
 6.2 Results .. 33
 6.2.1 Reference Simulation .. 34
 6.2.2 Simulation 1 ... 35
 6.2.3 Simulation 2 ... 39
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.4</td>
<td>Simulation 3</td>
<td>41</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Simulation 4</td>
<td>46</td>
</tr>
<tr>
<td>7</td>
<td>Discussions</td>
<td>49</td>
</tr>
<tr>
<td>7.1</td>
<td>Conclusion</td>
<td>49</td>
</tr>
<tr>
<td>7.2</td>
<td>Future Work</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>References</td>
<td>52</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3GPP</td>
<td>3rd Generation Partnership Project</td>
</tr>
<tr>
<td>CP</td>
<td>Cyclic Prefix</td>
</tr>
<tr>
<td>OFDM</td>
<td>Orthogonal Frequency Division Multiplexing</td>
</tr>
<tr>
<td>UMTS</td>
<td>Universal Mobile Telecommunications System</td>
</tr>
<tr>
<td>HSPA</td>
<td>High Speed Packet Access</td>
</tr>
<tr>
<td>FDD</td>
<td>Frequency Duplex Division</td>
</tr>
<tr>
<td>TDD</td>
<td>Time Duplex Division</td>
</tr>
<tr>
<td>MIMO</td>
<td>Multiple Input and Multiple Output</td>
</tr>
<tr>
<td>OFDMA</td>
<td>Orthogonal Frequency Division Multiple Access</td>
</tr>
<tr>
<td>SC-FDMA</td>
<td>Single-Carrier Frequency Division Multiple Access</td>
</tr>
<tr>
<td>LTE</td>
<td>Long Term Evolution</td>
</tr>
<tr>
<td>PUCCH</td>
<td>Physical Uplink Control Channel</td>
</tr>
<tr>
<td>HARQ</td>
<td>Hybrid Automatic Repeat Request</td>
</tr>
<tr>
<td>UE</td>
<td>User Equipment</td>
</tr>
<tr>
<td>TBS</td>
<td>Transport Block Size</td>
</tr>
<tr>
<td>MAC</td>
<td>Medium Access Control</td>
</tr>
<tr>
<td>PHY</td>
<td>Physical</td>
</tr>
<tr>
<td>RB</td>
<td>Physical Resource Block</td>
</tr>
<tr>
<td>QoS</td>
<td>Quality of Service</td>
</tr>
<tr>
<td>RE</td>
<td>Resource Element</td>
</tr>
<tr>
<td>RS</td>
<td>Reference Signal</td>
</tr>
<tr>
<td>SINR</td>
<td>Signal to Interference Noise Ratio</td>
</tr>
<tr>
<td>UE</td>
<td>User Equipment</td>
</tr>
<tr>
<td>PAPR</td>
<td>Peak-to-Average Power Ratio</td>
</tr>
<tr>
<td>MSC</td>
<td>Modulation and Coding Scheme</td>
</tr>
<tr>
<td>TFS</td>
<td>Transport Format Selection</td>
</tr>
<tr>
<td>HSUPA</td>
<td>High-Speed Uplink Packet Access</td>
</tr>
<tr>
<td>UL-SCH</td>
<td>Uplink Shared Channel</td>
</tr>
</tbody>
</table>
Table of Figures

Figure 1 Resource Grid for one Scheduling Resource Block 12
Figure 2 LTE Frame Structure .. 13
Figure 3 eNodeB and User Equipment Interaction .. 15
Figure 4 Cumulative Distribution Function of SINR Values 19
Figure 5 Channel Condition with Rayleigh Fading .. 20
Figure 6 Parallel Scheduling Algorithm Structure .. 22
Figure 7 Theoretical Scheduling Delay Weight Form .. 25
Figure 8 Pre-Scheduling Phase Structure .. 29
Figure 9 Throughput trend with different NrOfDSPs .. 36
Figure 10 Time Consumption for different Phases .. 36
Figure 11 Total Time Consumption for Scheduling Processes 37
Figure 12 Throughput Performance at Scheduling Phases ... 39
Figure 13 Time Consumption at Scheduling Phases ... 40
Figure 14 Average Scheduled Number of UE ... 41
Figure 15 Average Scheduled Number of UE .. 42
Figure 16 Number of RBs per Scheduled UE ... 43
Figure 17 Throughput per Scheduled UE .. 44
Figure 18 Data Rate per Scheduled RB ... 45
Figure 19 Throughput trend with different Scheduling Phases 46
Figure 20 Time Consumption in different Scheduling Phases 47
Figure 21 Throughput/Time Efficiency ... 48

Table of Tables

Table 1 Different Number of RBs for different LTE bandwidth 13
Table 2 MCS Switching Threshold and Derived Spectral Efficiency 26
Table 3 Bits/symbol Rate with Different Modulation Scheme 26
Table 4 Setting for Simulation 1 ... 32
Table 5 Setting for Simulation 2 ... 32
Table 6 Setting for Simulation 3 ... 33
Table 7 Setting for Simulation 4 ... 33
Table 8 Maximizing Throughput .. 34
Table 9 Maximizing Fairness .. 35
Abstract

With the goal to achieve higher and higher performance with the next-generation of Long Term Evolution (LTE) equipment, multi-core processors are implemented more and more inside LTE eNodeB. The development and increasing use of multi-core processors system raises a challenge to the current scheduling algorithm. The intuitive way of scheduling is a serial process, by which users are scheduled one after another within one cell. It becomes very inefficient in a multi core system, since the parallelism provided by the multi core platform is not fully utilised.

The goal of this study is to investigate how the uplink scheduler algorithm can be parallelised efficiently over several DSPs in a multi-core environment. In this thesis, a three-phase algorithm is presented. For each phase, two solutions are provided and evaluated against each other in terms of throughput, time efficiency and fairness, the result is compared with serial scheduling process.

The simulation result indicates that the parallel scheduling algorithm is able to achieve higher time efficiency than serial scheduling algorithm, while keeping the same throughput performance. The time improvement depends on the number of schedulable UEs in the system, processors number, the solution used in each phase and the throughput trade-off.
1 Introduction

In this section, an overview introduction of the thesis background, aim and motivation will be presented. A short thesis outline of this report will also be given in the end.

1.1 Overview

This master thesis is performed in Ericsson Design & System, focusing on the LTE uplink scheduling algorithm investigation. The main objective of the thesis work is to design a parallel processing algorithm for LTE uplink in a multi processor system and evaluate the performance of this algorithm with respect to throughput, efficiency as well as algorithm complexity.

With the goal to achieve higher and higher performance for the next-generation of Long Term Evolution (LTE) equipment, multi-core processors which cram multiple microprocessors onto one chip, will be implemented more and more inside LTE eNodeB. However, the development and increasing use of multi-core processors system raises a challenge to the current scheduling algorithm on the singular processor platform. Since the intuitive way of scheduling is, to be simple, a serial process. After prioritizing the schedulable users in one scheduling time unit, the scheduler assigns resources to these users according to the priority level one by one until there are no more users to be scheduled or there is no spectral resource left according to the scheduling algorithm.

While this scheduling algorithm works fine in single DSP platform, it becomes very inefficient on a multi-core platform. The reason is, during the resource allocation processes, low priority user equipment can not be scheduled until the former users get scheduled. However, in a multi-core environment the parallelism provided by this platform is wasted in this serial way of scheduling, only one processor is working on scheduling process even when there are other free processors ready to provide service. Since the available time for the scheduling process is strictly limited, it directly restricts the number of user equipments that can transmit in one time unit. If the multi-processor system provides the possibility to run scheduling process in parallel, more user equipments can be allocated into spectrum by increasing the number of processors number. The proposal of parallel scheduling can be a promising way to increase current system performance and it is the main topic investigated in this master thesis.

1.2 Objective and Limitations

The target of this thesis is to investigate, on a system level first, how the uplink scheduler process can be parallelised efficiently over several DSPs in a multi-core environment, i.e to divide the scheduling execution on multiple DSP-cores. By dividing UEs into separated user groups, each UE group is granted with one processor.
The frequency resource is also divided into separated fragments, and then mapped to different UE groups. The multi processors run the scheduling process independently from each other. One processor is responsible for only part of the total UE population, and has access only to part of the frequency resources. The reduced number of users may result in decreasing of scheduling time, thus it is possible to schedule more users within the same span of time. However, the parallel scheduling method may also cause decrease of the system throughput as a side effect. Since the available frequency resources are divided into several fragments and matching each to a certain UE group, the user equipments in one group can move around only within this fragment. They are not allowed to go over fragment boundary and get allocated in other part of spectrum. Thus, compared with serial scheduling, parallel algorithm may cause users to settle in worse frequency resources.

This study is to investigate how the uplink scheduler algorithm can be parallelised efficiently over several DSPs both from time and throughput perspective. The following paragraph gives a general introduction of the algorithm and its evaluation process.

The algorithm presented in this paper can be divided into three phase. In the first phase, the pre-scheduling phase, user equipments and frequency band is divided into Groups and Fragments according to different rules, and each group is matched with one fragment. In the second phase, the parallel scheduling phase, the multi processors platform takes over the scheduling process by running spectrum allocation in parallel streams. In this phase, two methods are designed and evaluated in our study: throughput maximizing and fairness maximizing. In the last phase, which is called post scheduling phase, the main purpose is taking advantage of the time saved by Phase 2 to improve spectral efficiency.

For each phase, two solutions are provided and evaluated against each other in terms of throughput, time efficiency and fairness. The proposed algorithm is also evaluated against serial scheduling algorithm with respect to throughput, time efficiency, memory usage, and implementation possibility.

Considering limitation of the scope of this thesis, the simulation is implemented without memory from different scheduling processes, which means there is no interaction between previous time units with the next one. Since the diversity of performed simulations are based on variation of scheduling algorithm, this thesis will not delve deep in how different traffic loads and channel models affect the performance of the scheduling process.

1.3 Thesis Outline

The thesis report starts with a background introduction in Chapter 1. Chapter 2 is designed to explain the LTE basics knowledge related to this thesis topic. Chapter 3 gives a detailed introduction of the current simulation environment used in this thesis. The scheduler structure is described in a separated chapter in Chapter 4, followed by Chapter 5, which introduces four simulation cases. The report ends with the result presentations and conclusion in Chapter 6 and 7.
2 LTE Basics

2.1 Introduction

3GPP Long Term Evolution (LTE), introduced in 3GPP Release 8, is a standard for wireless communication of high-speed data. It introduces a flat, all IP-based network architecture, which represents a significant change to the 3G UMTS/HSPA radio access and core networks. A common, packet-based infrastructure is used for all services (voice and data), removing the need for the dedicated circuit-switched and packet-switched domains which are present in 3G UMTS/HSPA networks. The radio access network is simplified in LTE with the base station, or evolved-NodeB (eNodeB), implementing the functions which were previously distributed between the 3G RNC and NodeB. [1]

As a data dominated network, LTE is focusing on supporting Packet-Switched (PS) Service. The performance of LTE system shall fulfil a number of requirements regarding throughput and latency. Significantly increased peak data rate should be delivered and improved spectrum efficiency should be achieved in LTE system. Some details can be summarized as follows: [1]
- Data Rate: Peak data rates target 100 Mbps (downlink) and 50 Mbps (uplink) for 20 MHz spectrum allocation, with a 2-by-2 Multiple Input and Multiple Output (MIMO) transmission system, while 2 receive antennas are available at UE and 2 transmit antenna at the base station.
- Spectrum Efficiency: Downlink target is 3-4 times better than release 6 High-Speed Uplink Packet Access (HSUPA), uplink target for 2-3 times better than release 6 HSUPA.

2.2 LTE Time-Frequency Structure

In LTE, scheduling of users can be implemented both in time domain and frequency domain, which provides time-frequency diversity in LTE transmission. A resource element, known as the smallest physical resource in LTE, is in the size of one subcarrier in frequency domain and one OFDM symbol in time domain. Several resource elements are combined into one physical resource block (PRB), which consists of 12 continuous subcarriers, equals to 180 KHz in frequency domain, and 7 OFDM symbols with normal cyclic prefix as 0.5ms in time domain. With respect to different bandwidth or frequency carrier, PRB size remains the same for all conditions. Figure 1 below shows an overall structure of uplink resource grid for both FDD and TDD.
2.2.1 Uplink Modulation Reference Signals

Within the resource block structure, uplink demodulation reference signals are located at the forth symbol of each uplink slot. For every sub-frame, there are two reference signal transmissions, one in each slot.

Uplink modulation reference signals are used for channel estimation for coherent demodulation of the Physical Uplink Shared Channel (PDCCH) and Physical Uplink Control Channel (PUCCH). Thus, they are transmitted with PUSCH or PUCCH with the same bandwidth as the corresponding physical channel. [12]

2.2.2 Scheduling Element

From scheduling perspective, the smallest scheduling unit is a scheduling resource block, which is 180 KHz in frequency domain, and 1ms in time domain. One Scheduling Resource Block (SRB) equals to the size of two Physical Resource Blocks (PRS) in time domain.

To simplify, in this report, we use resource block (RB) to refer to scheduling resource block (SRB). But just to be clear, scheduling block and physical resource block is two

Figure 1 Resource Grid for one Scheduling Resource Block
different structures and with different size in time domain.

2.2.3 LTE Frame Structure

In time domain, one Transmission Time Interval (TTI) has the same length as one sub-frame in LTE system. Taking FFD model as example, the general frame length in time domain lasts 10 ms, which can be divided into 20 slots, each slot has a duration of 0.5 ms. One LTE sub frame consists two slots which equals to 1 ms in total. [5]

![LTE Frame Structure](image)

Figure 2 LTE Frame Structure

2.2.4 LTE Bandwidth

In frequency domain, LTE supports a high degree of bandwidth flexibility, allowing for an overall transmission bandwidth ranging from 1.4MHz up to 20MHz, which corresponds to 6 to 100 RBs. The numbers of RBs with respect to different bandwidth is shown in the following table. [4]

<table>
<thead>
<tr>
<th>Channel Bandwidth</th>
<th>1.4</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Resource Blocks</td>
<td>6</td>
<td>15</td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
</tr>
</tbody>
</table>

2.3 Channel Dependent Scheduling

The purpose of scheduling is to decide which terminal will transmit data on which set of resource blocks with what transport format to use. The objective is to assign resources to the terminal such that the quality of service (QoS) requirement is fulfilled. Scheduling decision is taken every 1 ms by base station (termed as eNodeB) as the same length of Transmission Time Interval (TTI) in LTE system.

In general, two types of scheduling can be implemented in uplink scheduler, channel dependent scheduling and non channel dependent scheduling.

Non channel dependent scheduling does not consider channel condition during a scheduling process. The users without channel quality information can obtain
frequency diversity gain through frequency hopping, and the system capacity can be improved without increasing equipment costs. \[1\]

Channel dependent scheduling takes into account of the channel variations between mobile terminals and base station. Since channel condition is time-varying due to fading and shadowing, different user terminals experience different channel condition at a given time. At one specific time slot, there is a high possibility some users are experiencing good channel conditions. By allowing these user terminals to transmit, the spectrum is used in an efficient way and the total throughput of the system will be maximized. \[11][12\] With channel dependent scheduling algorithm, user equipments are granted with the advantageous frequency resources which provide better channel condition within the total frequency band. The time-frequency scheduling structure provides the diversity for users to choose the scheduling elements in both domains. If the scheduling resources are in favorable conditions and user service requirement is flexible, the spectrum utilization and system throughput will be improved. However, compared with non channel dependent scheduling, the performance increase comes at the cost of complexity of the system.

On the other hand, channel dependent scheduling can give raise to fairness problem. Since channel dependent scheduling algorithm grants users with better channel performance higher priority to transmit, during one sub-frame, the bad performed users may be starved for their low Signal-to-noise-and-interference ratio (SINR) level. From mobility perspective, fast moving users may get out of fading with a higher speed, but in reality, the users in slow fading or located at the edge of cell suffer from bad channel condition for a significant amount of time. In these cases, the scheduling algorithm put these users at a risk of never getting scheduled if the channel condition varies slowly.\[1\]

Thus, when designing a scheduling algorithm, issues above need to be considered. A compromised solution needs to be made between wireless resource efficiency and levels of fairness among users.

2.4 LTE Uplink Scheduling

In LTE uplink Single-carrier Frequency Division Multiple Access (SC-FDMA) is implemented to provide orthogonality between different users and remain at a low peak-to-average power ratio (PAPR) level. \[10\] However, unlike OFDMA, user equipments transmitted in SC-FDMA scheme are only allowed to take continuous frequency recourses. Thus during scheduling, each user is constrained to use consecutive resource blocks.\[18\]

2.4.1 LTE Uplink Scheduling Procedure

At the beginning of scheduling process, the buffer sizes of UEs are not available to uplink scheduler. After some initial setup signaling, user equipment sends a scheduling request (SR) to notify base station that this UE has data to transmit. The SR does not contain buffer status information, and then scheduler assigns initial resources without detailed knowledge of buffer content. In order to require the buffer
status information of a user and allow transmission, base station sends an uplink scheduling grant back to UE. When UE receives this grant, it sends out user data to eNodeB, in most cases this first uplink transmission will include a Buffer Status Report (BSR). Based on buffer estimation, scheduling is performed and a scheduling decision is made.

![Figure 3 eNodeB and User Equipment Interaction](image)

2.4.2 Scheduling Request (SR)

The scheduler need to know about the amount of data waiting transmission from terminals in order to assign proper amount of frequency resources accordingly. Obviously there is no need to provide uplink scheduling resources to a terminal which has no data to transmit. Thus, as a minimum, the scheduler needs to obtain the knowledge of whether or not a terminal has data to send in their buffer. This is known as scheduling request. However, a scheduling request provides only limited knowledge about buffer situation at terminal.

Each user will be granted an opportunity to transmit scheduling request every n TTIs. After the scheduling request is sent, terminal expects a grant for transmission from base station. If the terminal does not receive a scheduling grant till the next scheduling request sub-frame, it will re-send it again.

A scheduling request provides only limited knowledge about buffer situation at terminal. When the terminal is scheduled to transmit on Uplink Shared Channel (UL-SCH), more information about buffer situation will be provided. [12]

2.4.3 Scheduling Decision

For every cell in every TTI, the scheduler decides which user terminals are allowed to transmit on which resources with what transport format. The scheduling is performed in order to ensure resources are used in an efficient way.

Link adaptation, which includes transport format selection, is closely related to scheduling and two functions interact by exchanging information prior to each scheduling decision. The purpose is to have a rough estimation on how much resource blocks each UE may require in the scheduling process, which is called estimated required RBs. This estimation is based on the average channel condition on the whole frequency band and the estimation of data amount in the UE buffer. Transport format selection (TFS) includes selecting the modulation and coding scheme (MCS) and
transport block size (TBS). In LTE uplink, TFS is based on SINR measurements on
the uplink demodulation reference signal.
A scheduling decision is made based on the scheduling algorithm. A scheduling
algorithm should be simple, fair within one sub-frame and spectral efficient.

Estimation Error
When estimating the required RBs for a user, the estimation is based on the channel
condition, such as average SINR over the whole available bandwidth. However, after
frequency selective resource allocation, the actual assignment of this user is based on
the channel condition of the frequency resource it obtained. Thus, in this case, the
original estimation may be different from the actual requirement, this difference is
referred as ‘estimation error’ in this thesis.

2.4.4 Scheduling Grant
A scheduling decision is made based on the buffer estimation. In the uplink grant,
resources allocation plan, transport-block size, modulation scheme, and transmitting
power are included. Among these, in order for scheduler to make the right decision on
selecting transport format, the accurate information about terminal situation such as
buffer status and power availability is required.
Only when a terminal obtains a valid grant is it allowed to transmit on the
corresponding UL-SCH. It monitors Physical Downlink Control Channel (PDCCH)
for uplink scheduling grant, upon detecting one, it will transmit on its UL-SCH
accordingly. [12]

2.4.5 Buffer Status Report
After a grant is received, a terminal is allowed to transmit on assigned uplink
resources. In order for the scheduler to make a more accurate decision about the
amount of scheduling resources to grant in future sub-frames, information about the
buffer situation is useful. This information is provided to scheduler during uplink
transmission, in most cases, this first uplink transmission will include a buffer report.

2.5 Related Work
Concerning multi-core scheduling process, some previous work [14] has proposed a
multi core adaptive scheduler with the capacity to re-compute every 1ms the
multi-core mapping of the algorithm.
In this paper, the scheduler uses data flow graph transformation and scheduling
techniques, in order to keep a low uplink completion time. The proposed approach
combines static scheduling of predefined cases and adaptive multi-core platform
together, which consists of two parts. Initialization phase generates a parameterized
graph model, providing the predefined combinations of resource allocations with the
amount of available resources in system. Then, adaptive scheduler is called every 1ms
when the MAC scheduler changes the resource block allocations. This design is to
adapt each sub-frame to the number of transmitting users and to the data rate of the
services they require. Although the scheduling method in this paper opens a creative way of scheduling for LTE uplink, the proposed scheduling requirements such as memory requirement and the adaptive multi-core system are not implementable in our system.

Some previous work [13] has focus on opportunistic scheduling algorithm. A solution called Heuristic Localized Gradient Algorithm (HLGA) is used for uplink scheduling in 3G LTE system. It allows the users maximize a certain criteria to be scheduled first, and the rest left resources are divided to other users. The algorithm is mainly structured from a gradient algorithm for the scheduling but adopts a heuristic approach in the allocations of the scheduled bands. Gradient based algorithm means, select the transmission rate vector that maximizes the projection onto the gradient of the system’s total utility. [21] In this paper, a procedure named ‘pruning’ is presented. Resources blocks are assigned to users by HLGA regardless of the amount of data they have in the buffer. After resource allocation, pruning is implemented to search for free RBs that can be allocated to other unsatisfied users. This pruning procedure serves similar function as Phase 3 in our scheduling algorithm, and it is based on the estimation error we described in previous sections. However, this scheduling algorithm presented in this report is theoretical optimum scheduling process. The time to implement pruning is strictly limited by the number of users in the system, and HLGA solution for resource allocation has high demand on memory resources and processing ability. Thus in our report, by paralleling the scheduling process, we try to gain more time for later improvement such as implementing pruning.
3 Simulator

Since the conclusion of this thesis is mostly based on simulation result, the simulation settings will directly affect the performance that is derived. This section will be contributed to simulator structure and settings descriptions. However, the scheduler structure will be presented in a separated chapter in Chapter 4. This chapter starts with a general introduction of the simplified system model we used, which followed by an overall picture of the simulator structure. The settings and limitations of this simulation environment will be explained in the next two sections.

3.1 Simulator Overview

The main aim of this thesis is to compare algorithm performance between the serial and paralleled way of scheduling, at the same time for parallel scheduling algorithm, performance differences between solutions in each phase are also investigated. The variety of performed simulations is mostly based on changes in scheduling algorithm. Thus, we provide only one setting for the simulation environment to reduce the complexity.

The simulation environment we built in Matlab works TTI independently. For each time unit it generates a whole new set of user data and channel condition randomly according to simulation setting. Data during the scheduling process, such as spectrum allocation, throughput performance and time consumption are recorded for later analysis. However, this information is not taken into account during next scheduling process in the following time unit.

The simulator in Matlab can generate accurate result for throughput performance based on the simulation settings, but the time consumption generated by Matlab is based on the time cost for Matlab to run the scheduling process. This time consumption does not take hardware limitation into account, such as the time needed for loading data to local DSP memory and the time required for saving it. But this result reflects the complexity of solutions differences between different scheduling solutions, and it is enough for comparing solution. The throughput-time trade-off and all the time-related results in this report are based on this assumption.

The time estimation in hardware scheduling environment is further investigated later in this thesis. The estimation is based on the result from simulation environment of the current implementation. The clock cycle generated by this simulation environment is exactly the same as hardware generation. By dividing the designed scheduling algorithm into smaller functions and comparing them with the functions we have in the current system, estimated time consumption is derived. However, due to confidentiality, the result and analysis will not be presented in this thesis report.
3.2 Channel Model

The variation of channel condition is both implemented in time domain and frequency domain. In time domain it follows a normal distribution with the mean value at 10 dB. The cumulative distribution function of SINR values for a single user in time domain is shown in figure below.

![CDF of SINR Values](image)

Figure 4 Cumulative Distribution Function of SINR Values

In frequency domain, Multi-path Rayleigh fading model is used. For every simulation in Matlab environment, it can be seen as a snapshot of one TTI during scheduling process. The channel is assumed to be slowly fading such that the channel state stays essentially constant during one TTI. That is: the coherence time of the channel is assumed to be longer than the duration of the TTI and thus the channel exhibits block fading characteristics. The network uplink bandwidth available for scheduling is set to 20MHz, which is divided into 100 consecutive RBs in our simulation environment. Each RB is granted a SINR value, within the bandwidth of this RB which equals to 180 KHz, the channel condition does not vary. Figure 5 is an example of a random TTI during scheduling process, in which 7 users are generated and their respective channel condition in frequency domain is presented in the figure.
3.3 Traffic Load

In every TTI, UE generator generates a random number of users from 4 to 16. This number has no memory from the last scheduling process. Each user has an amount of data waiting to transmit, which is represented by ‘required RBs size’ in our simulation model. The estimated required RBs sizes are generated within the range 2 – 20 RBs following a uniform distribution. In this simulation environment, estimation error is represented by an offset uniformly distributed from -20% to 20% based on the required RB size.
4 Scheduler

In the previous chapter, we gave an overall picture of the simulator and the description of simulation settings. Since the scheduling algorithm has a three-phase structure, the settings and functions of the scheduler will be explained phase by phase. Due to confidentiality, the detailed scheduling algorithm will not be described, but in the next chapter the scheduling solutions in each phase will be presented at a general level.

This chapter starts by giving an overview picture of the scheduler simulation scenario. It follows by descriptions of the three-phase structure used for scheduler in this thesis. In each phase, the limitations and important factors which may affect the scheduling result are discussed.

4.1 Overview

In this thesis, most of the focus is put on the scheduler algorithm design and performance evaluation. The scheduling algorithm in this thesis has three phases, in each phase two solutions are designed for comparison. The scheduler gets UE list, channel condition together with the available frequency resource as input. After scheduling, the spectrum efficiency and time consumption of scheduling process are evaluated with respect to different solutions.

As stated in the former chapters, compared with serial scheduling, the paralleled scheduling has a risk of decreasing spectral efficiency performance. In order to reduce this degradation, scheduling algorithm needs to be improved. On the other hand, even though an algorithm can generate good throughput result, the complexity may also stop it being implemented in hardware environment. Thus, both throughput performance and complexity need to be considered when designing a scheduling algorithm.

In this thesis, a three phase scheduling structure is chosen to be studied. The process begins with Pre-scheduling Phase, which can also be seen as scheduling preparation phase, the user equipments are divided into Groups and frequency resource is divided into Fragment. The order of UEs getting scheduled and which frequency fragment users would get are also planed in this phase. Based on the priority of users decided in Phase 1, the UE goes through the second phase, which is parallel scheduling phase. According to the chosen solution in this phase, UEs will be allocated one by one in the assigned frequency fragment. Different groups of UEs are processed by different processors in parallel, thus there is no interaction between different processor and UE groups. The parallelism provided by the multi-core platform is used to provide the possibility of scheduling more users or to save clock cycles. At the end of scheduling process, Post-scheduling Phase is introduced, which is the last chance in this scheduling process to improve the spectrum efficiency. In the last phase, different solutions are used to increase throughput, which include extending the current
resource allocation and reallocating the users, more details will be shown in next chapter.

![Diagram of scheduling algorithm structure](image)

As Figure 6 shows, both first and last phase use singular processor platform, meaning the scheduling processes in these two phases is serial. In serial scheduling process, the users are able to choose any location they want in the frequency band. The choice is not constrained by the fragment concept used in parallel scheduling. Thus in Phase 1, more freedom is granted to every user when dividing groups. In this way, a better spectral efficiency may be achieved. In the last phase, when fragments concept is removed, the current allocation of users is able to extending beyond the fragment boundaries. If reallocation is implemented in Phase 3, serial scheduling gives users more freedom of choosing locations.

However, the second phase is implemented on a multi-processor environment. The reason for running Phase 2 in a multi-core platform is because resource allocation is a time consuming process, and time is wasted on waiting for previous users. If it is possible to implement this process in parallel by several DSP, a large amount of time can be saved and more users can be scheduled during the same amount of time.

4.1.1 Number of DSPs

In order to investigate the changes on throughput and time as processor number increases, the number of processors is variable. The number of processor indicates how many separate parallel streams will be implemented in Parallel Scheduling Phase. In our scenario, the number of processor can be chosen from the number 1, 2, 4, 8 and 16. When processor number equals to 1 the scheduling process is implemented in serial and in other cases it is in parallel.

Another assumption we made regarding the number of processors is that when generated UEs are less than processor in the system, not all the processors are used. For example, in one TTI, there are 4 UEs generated and 16 processors are available,
then only 4 processors are used out of the 16.

4.2 Pre-Scheduling Phase

As the first scheduling phase, pre-scheduling phase serves as a preparation function in the whole scheduling process. The main purpose of this phase can be separated into two parts.

The first one is dividing available frequency band in the system into N Fragments, and N here equals to the number of processors according to our simulation setting.

The second function is dividing UEs into Groups as the same. For parallel scheduling in the next phase, each processor is responsible for one group. When dividing UEs into groups, in order to achieve a higher spectral efficiency and time efficiency at the end of scheduling process, several conditions need to be taken into consideration, the details will be explained below.

First, we consider time efficiency. When processing in parallel, one processor is responsible for one group, but the whole resource allocation process ends only when all the processors finish their works. In this case, the most efficient way to allocate resource is when every processor finishes at the same time, i.e. every DSP gets a UE group with the same size. The ‘size’ here can be interpreted in many ways, depending on what is the key factor affecting processing time, for example the estimated required RBs in one UE group, or the number of users in each group. In hardware environment, the loading time and memory usage may also affect the processing time, but in our simulation assumption, these factors are not considered. Thus, to simplify, in this simulation the meaning of ‘size’ is narrowed down to the “required RB size” in each UE group. By having the similar group sizes, different processors require similar time for resource allocation, meaning no processor would waste time waiting for other processors during parallel scheduling phase.

Apart from time efficiency, a good pre-scheduling solution should also target for higher spectral efficiency. As is explained before, parallel scheduling generally reduces the time cost for resource allocation process, however may decrease the spectral efficiency at the same time. Although the decrease of throughput is theoretically inevitable, a well-designed pre-scheduling solution may reduce the degradation to a minimal level.

In order to achieve a high throughput, the most straightforward method would be giving each UE the fragment with best channel condition. How to calculate the best fragment for one user is the first step deciding UE groups. However, in practical implementation, how to evaluate the channel condition in one fragment when it varies in frequency domain is a tricky topic. For example, a fragment may have one RB with high SINR value but decrease fast in the adjacent RBs. In another case, it may be in good channel condition in general but dragged down by a few ‘bad’ RBs. Both peak and average value are not 100 percent reliable or fair to evaluate channel condition, but taken all these factors into consideration, the calculation itself is also a compromise of accuracy and complexity. A solution that can reach a balanced between the two factors is good enough.
On the other hand, even the best fragment can be accurately decided, whether the user can be allocated accordingly also depends on its scheduling priority in its group. As was discussed in the first chapter, within one UE group lower priority users are scheduled after high priority users. There is a possibility one UE will not get its best RBs because they are already taken by previously scheduled UEs. Since the order of user getting scheduled has a large impact on the final scheduling result, each user is granted a weight deciding its scheduling priority. More details about the weight system are introduced below.

4.2.1 Weight Calculation

Weight system is used for deciding the order of UEs to be divided into group. For each UE, the higher the weight is, the earlier it can choose the group. At the same time, the scheduling order of UE in each group is also decided at this moment.

- **Channel-Dependent Weight**

 When link adaptation is used in the system, it would be resource consuming to transmit a certain amount of data to a user with bad channel condition. It would be more efficient to schedule or give higher priority to users with higher SINR values first and wait for the channel condition to improve on the lower ones. Thus, channel-dependent weight is used in simulation to grant users with better channel condition a larger opportunity for scheduling. The value is calculated from UE’s SINR value.

- **Scheduling Delay Weight**

 Based on channel-dependent weight, transmission would be more efficient in the system. However, users suffer from slow fading can be starved due to long term bad channel condition. Due to this reason, scheduling delay weight is introduced to provide fairness in a Round Robin fashion. This weight is an additional weight bonus generated from the time length that has been passed since the user equipment is queuing in scheduling system. The longer it stays in the system, the higher this value should be. In order to achieve fairness during scheduling process, user equipments that spend long time waiting to be scheduled should have higher weight generated from this parameter thus granted larger chance to be scheduled in the next decision making process. Figure 7 shows the form of linear equation for theoretical scheduling delay weight calculation.
In our thesis simulation, since every time unit all data is generated freshly, there will not be an accurate scheduling delay weight based on the queuing time.

4.3 Parallel Scheduling Phase

In this phase, multi-processor platform take over the single processor platform from the first phase to continue the scheduling process. The main function is allocating resource blocks from one fragment into users within the corresponding UE group. When designing spectrum allocation algorithm, both the performance of scheduling result and complexity of the algorithm need to be taken into consideration.

As is described in the former sections, in LTE uplink only consecutive resource blocks are allowed for one user. The most accurate method to find the optimum location for a user (for example, a user required 10 RBs) is cross comparing every 10 RBs in the frequency band and find the consecutive 10 RBs that generate highest result. However, accurate it may be, this method is way too complicated and resource consuming to implement in a hardware environment. Thus, in a compromised solution, the throughput performance generated by the user may be lower than the ideal case, but it provides simplicity and time efficiency for the scheduling system.

On the other hand, apart from maximizing throughput, fairness needs also to be taken into consideration. Without any consideration of fairness, some UEs with higher scheduling weight and large estimated required RB sizes may take all the spectral resources available in the system. In this case, some lower priority UEs may be starved in the end, meaning the users staying at the back of a scheduling queue are at a risk of not getting allocated. When designing the resource allocation algorithm, one needs to investigate how to ensure fairness but at the same time reducing the throughput loss.

At the end of this phase, in order to evaluate the scheduling result from spectral efficiency perspective, calculation of throughput is implemented.
4.3.1 Throughput Calculation

In order to calculate the performance of spectral efficiency, we use Table 2 as SINR level to bit-per-resource-block transition reference. The results from Table 2 are based on system-level simulations with adaptive coding and modulation. The MCS selection is based on Table I from [15] and ideal link adaptation is assumed. For simplicity, we assume equal transmit power for all RBs.

<table>
<thead>
<tr>
<th>Modulation</th>
<th>Code Rate</th>
<th>Min. SINR [dB]</th>
<th>η [*144 bits/RB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>QPSK</td>
<td>½</td>
<td>5.0</td>
<td>1.0</td>
</tr>
<tr>
<td>QPSK</td>
<td>¾</td>
<td>8.0</td>
<td>1.5</td>
</tr>
<tr>
<td>16QAM</td>
<td>½</td>
<td>10.5</td>
<td>2.0</td>
</tr>
<tr>
<td>16QAM</td>
<td>¾</td>
<td>14.0</td>
<td>3.0</td>
</tr>
<tr>
<td>64QAM</td>
<td>2/3</td>
<td>18.0</td>
<td>4.0</td>
</tr>
<tr>
<td>64QAM</td>
<td>¾</td>
<td>20.0</td>
<td>4.5</td>
</tr>
</tbody>
</table>

The calculation of data rate per symbols is dependent both on modulation and code rate.

<table>
<thead>
<tr>
<th>Modulation</th>
<th>QPSK</th>
<th>16 QAM</th>
<th>64 QAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>bits/symbol</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

For example, as Table 3 shows, 16QAM produces 4 bits/symbols, compared with QPSK it is able to carry more bits of information per symbol. Code rate equals to ½ means there is 100% redundancy bits, out of two total data bits there is only one effective data bit used for data transmission. Together it generates 4 * ½ = 2 bits/symbols data rate.

In LTE system, one scheduling block equals to two physical resource blocks, which equals to 12 subcarriers * 7 slots * 2 = 168 resource elements with normal CP. Although not all the RE is used for data transmission, as Section 2.2 introduced, only 144 out of 168 are used for data transmission.

Based on above calculation, the data rate per RB is mapped with the SINR level of scheduled users as Table 2 presents.

4.4 Post-Scheduling Phase

In a single processor system, since scheduling is serial, when user number is large, resource allocation takes a large proportion of scheduling time. By having a parallel resource allocation process, time is saved for possibility to improve scheduling result at the end of scheduling. Thus in parallel scheduling, Post-scheduling phase is introduced.
In this phase, there is no UE Group or frequency fragment concept. The reason for this is that users would have more freedom to extend their current resource allocation or to be reallocated. However, due to this change, this phase may generate lower time efficiency than Phase 2, users has to wait for previous users to be scheduled first. Thus, the number of users needed to be reallocated or modified should not be too large. Keeping the algorithm simple and efficient is important in phase 3, some compromise between time saving and throughput improvement is needed.
5 Scheduling Algorithm

This chapter is designed to give a detailed description regarding all the considered scheduling algorithms. In order to explain the differences between implemented solutions, first 4 sections are given for explaining different solutions we used in each scheduling phases. 5.1 is used for serial scheduling description, 5.2 is presenting the different solutions used in pre-scheduling phase, followed by 5.3 and 5.4 that represent the parallel scheduling and post-scheduling phase respectively.

5.1 Serial Scheduling

Since the parallel scheduling algorithm will be compared and evaluated with the serial process on time consumption and throughput improvement, the first simulation will run in serial scheduling algorithm.

The serial scheduling process contains only one phase, in order to facilitate the evaluation of the scheduling performance later, the resource allocation method is set to be the same in serial scheduling and paralleled scheduling. However, there is no fragment and group concept in serial scheduling.

The focus of compression between serial and parallel scheduling will be put on time and throughput tradeoff under the same simulation scenario and settings. The result of the serial scheduling will be presented in the next chapter when analyzing the performance of parallel scheduling.

5.2 Pre-Scheduling Phase

In parallel scheduling process, two methods will be presented for dividing both Frequency Fragments and UE Groups. The two steps in Phase 1 will be labeled as Phase 1-1 and Phase 1-2 respectively. Methods in each step are presented using the name of ‘simple scheme’ and ‘advanced scheme’, a detailed explanation of how each method works will follow below.
5.2.1 Simple UE Division Scheme

One of the steps of Pre-scheduling Phase, Phase 1-2, is dividing user equipments into several groups, number of groups are the same as the number of DSPs. This section describes the simple solution in Phase 1-2, which means when dividing the UE groups, scheduler doesn’t take channel condition into consideration. The way of dividing UE groups with simple solution is that UEs are assigned to groups according to the estimated required RB numbers. The user equipments are put in a decreasing order according to required RB size, the biggest one goes to Group 1 and second biggest one goes to Group 2 and so forth. The purpose is to divide UEs to groups which have similar sizes, since in this way each DSP may require similar processing time. At the end of Phase 1, groups are mapped to different fragments randomly.

5.2.2 Advanced UE Division Scheme

Compared with the simple solution, the advanced solution is implemented based on the average SINR of each user. The Weight of the users are calculated and user are put in a decreasing order. Users are able to choose the frequency fragments which may provide a better channel condition with the limit of user number per group. This solution considers both the processing time balancing between different groups and throughput maximizing. As a more throughput oriented solution, better spectral efficiency is achieved at the cost of the simplicity of algorithm, more processing time and data input are required.

5.2.3 Simple Frequency Division Scheme

Another step in Phase 1 is dividing frequency bands into smaller fragments and mapping each UE Group to one frequency fragment, known as Phase 1-1 in this report. The boundaries of one fragment are setting the limits of how much resources one user group obtain. The first solution, referred as simple solution here, divides the frequency fragments
regardless of UE Groups sizes. Frequency resources are divided evenly into fragments according to the processor number.

5.2.4 Advanced Frequency Division Scheme
The advanced scheme for dividing frequency band is based on the assumption that if a bigger group is assigned to a larger fragment it may make better use of the frequency resources and fewer resources will be wasted. And in this way, the users in big groups have more available frequency resource to choose from, which may improve spectral efficiency as well. Thus, different from the simple solution, all fragments sizes are not the same, i.e. they are adjusted according to the group sizes.

5.3 Parallel Scheduling Phase
In the second phase, in a multi-core environment, each processor obtains one UE list and the corresponding fragment, allocating users into frequency fragment. In this phase, two solutions are presented. One is designed from maximizing fairness perspective and called fairness-oriented solution. Another one is from maximizing throughput perspective and named as throughput-oriented solution. The following sections will explain more in details about the tradeoff between these two factors.

5.3.1 Maximum Throughput
From a maximizing throughput perspective, since the users with better channel condition level may generate better spectral efficiency, such users are allowed to take as many resources as they require. However, in this case, the inevitable flaw is the unfairness. Some users within the same group as the greedy UEs may lose their chance for frequency resources, thus ‘starved’ in this scheduling time unit. But in this throughput-oriented solution, fairness is not our main concern. If some users are starved because the better performed users take all the resources, they will be removed from list at the end of scheduling process.

5.3.2 Maximum Fairness
On the contrary of the above throughput-oriented solution, the second scheme is named as ‘fairness-oriented solution’, which is proposed from a fairness point of view. During each simulation, the generated user equipments will be granted with at least one resource block in the system. It means with ‘fairness-oriented solution’ no user is going to be starved. To ensure fairness among all the users, some “big” users need to sacrifice some required RBs. The scheduler will only satisfy part of their requirements when allocating resources.

5.4 Post-Scheduling Phase
As the last phase in the scheduling process, post-scheduling phase is the last chance to improve scheduling performance. It is possible to improve the spectral efficiency by
extending the current resource allocation or by reallocating users in new locations. However, as single processor platform it’s important to keep the algorithm simple and effective and also hold the number of rescheduled UEs as low as possible. In the below sections, we present two alternative methods.

5.4.1 Simple Post-Scheduling Phase
The first solution, known as Phase 3-1, is aimed for higher throughput performance based on a simple modification on assigned UEs. In order to minimize the complexity, no reallocation is implemented but only extending the resource allocation for scheduled users. Extending current resource allocation means, due to different reasons a user may only get part of their required RB, if there are available RBs adjacent to its current allocation, it will make use of these resources after this step.

5.4.2 Advanced Post-Scheduling Phase
The advanced alternative for post-scheduling phase consists of two separated steps, and both are with higher complexity than the simple solution. All the post-scheduling steps are isolated from each other, and it is possible to implement independently. In advanced solutions, it is possible to reallocate the users at new locations for higher throughput. The difference between two steps is that Phase 3-2 is reallocating user to a new location that provides more available frequency resources, and Phase 3-3 moves a user because the new location provides better channel conditions. More frequency resources means, in the current location one user may get 10 RBs, but in the new location it may get 15 RBs available.
6 Performance Evaluation

6.1 Simulation Scenarios

In order to provide a better picture of performed simulations in this thesis and for the facility of result and solution chapter, this section will be used to list different performed simulation settings.

6.1.1 Simulation 1

The first simulation will use both simple and advanced solutions in Phase 1. The performance evaluation will focus on throughput and scheduling time trend with respect to different number of processors. To show the pros and cons for each solution, the scheduling methods in the other phases are fixed as Table 4 shows.

<table>
<thead>
<tr>
<th>Category</th>
<th>Sub-Step</th>
<th>Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-scheduling Phase</td>
<td>Divide Spectrum</td>
<td>Advanced</td>
</tr>
<tr>
<td></td>
<td>Divide UE Group</td>
<td>Simple/Advanced</td>
</tr>
<tr>
<td>Parallel Scheduling Phase</td>
<td></td>
<td>Fairness Oriented</td>
</tr>
<tr>
<td>Post Scheduling Phase</td>
<td></td>
<td>Simple</td>
</tr>
<tr>
<td>General</td>
<td>DSP Number</td>
<td>2 4 8 16</td>
</tr>
<tr>
<td></td>
<td>UE Number</td>
<td>Default</td>
</tr>
<tr>
<td></td>
<td>Channel Condition</td>
<td>Default</td>
</tr>
</tbody>
</table>

6.1.2 Simulation 2

In the second simulation, the focus will be on comparison between the simple and advanced way to divide the frequency spectrum. To compare the performance between these two methods, a fixed scheduling solution will be used in Phase 2 and 3.

<table>
<thead>
<tr>
<th>Category</th>
<th>Step</th>
<th>Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-scheduling Phase</td>
<td>Divide Spectrum</td>
<td>Simple/Advanced</td>
</tr>
<tr>
<td></td>
<td>Divide UE Group</td>
<td>Advanced</td>
</tr>
<tr>
<td>Parallel Scheduling Phase</td>
<td></td>
<td>Fairness Oriented</td>
</tr>
<tr>
<td>Post Scheduling Phase</td>
<td></td>
<td>Simple</td>
</tr>
<tr>
<td>General</td>
<td>DSP Number</td>
<td>2 4 8 16</td>
</tr>
<tr>
<td></td>
<td>UE Number</td>
<td>Default</td>
</tr>
<tr>
<td></td>
<td>Channel Condition</td>
<td>Default</td>
</tr>
</tbody>
</table>

6.1.3 Simulation 3

To show the difference between fairness oriented solution and throughput oriented
solution for resource allocation, in simulation 3 we will focus on Phase 2. In Phase 1 and 3, the methods will be used as Table 6 shows. To give a more elaborate picture of these two solutions, the result will be presented from different perspectives. The setting for generated UE number is different from other performed simulation as well.

<table>
<thead>
<tr>
<th>Category</th>
<th>Step</th>
<th>Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-scheduling Phase</td>
<td>Divide Spectrum</td>
<td>Advanced</td>
</tr>
<tr>
<td></td>
<td>Divide UE Group</td>
<td>Advanced</td>
</tr>
<tr>
<td>Parallel Scheduling Phase</td>
<td></td>
<td>Fairness/Throughput Oriented</td>
</tr>
<tr>
<td>Post Scheduling Phase</td>
<td></td>
<td>Simple</td>
</tr>
<tr>
<td>General</td>
<td>DSP Number</td>
<td>2 4 8 16</td>
</tr>
<tr>
<td></td>
<td>UE Number</td>
<td>Fixed number: 5 10 15 20</td>
</tr>
<tr>
<td></td>
<td>Channel Condition</td>
<td>Default</td>
</tr>
</tbody>
</table>

6.1.4 Simulation 4

In the fourth simulation, the main focus is on the last scheduling phase. Different methods of post-scheduling is simulated, and the result of throughput improvement of each step will be presented in the same figure. The purpose of this simulation is to show the time consumption and throughput improvement achieved by each step in phase 3.

<table>
<thead>
<tr>
<th>Category</th>
<th>Step</th>
<th>Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-scheduling Phase</td>
<td>Divide Spectrum</td>
<td>Advanced</td>
</tr>
<tr>
<td></td>
<td>Divide UE Group</td>
<td>Advanced</td>
</tr>
<tr>
<td>Parallel Scheduling Phase</td>
<td></td>
<td>Fairness Oriented</td>
</tr>
<tr>
<td>Post Scheduling Phase</td>
<td></td>
<td>Simple + Advanced</td>
</tr>
<tr>
<td>General</td>
<td>DSP Number</td>
<td>2 4 8 16</td>
</tr>
<tr>
<td></td>
<td>UE Number</td>
<td>Default</td>
</tr>
<tr>
<td></td>
<td>Channel Condition</td>
<td>Default</td>
</tr>
</tbody>
</table>

6.2 Results

In this chapter, simulation result will be presented and analyzed. The simulations are performed according to the descriptions in the previous chapter. Except for the reference simulation, all the simulations will be implemented in a multi-processor environment. Section 6.2 and 6.3 focus on comparing different solutions in the first phase, 6.4 analyzes the performance difference for the resource allocation process in the second scheduling phase, and 6.5 is mostly dedicated to the post scheduling phase. The evaluation of performance is mostly done from a time efficiency and throughput performance point of view.
6.2.1 Reference Simulation

First, we present the result generated with the Serial Scheduling algorithm with both throughput maximizing and fairness maximizing resource allocation schemes. Table 8 shows the results from three perspectives for each simulation. By introducing the definition and meaning of each item, we give a general overview of how the performance is evaluated and analyzed for all the performed simulations.

‘Spectral Efficiency’ tables show the throughput performances from each scheme, the values are affected by two factors. First one is the number of resource blocks assigned during each TTI, and the second one is channel condition of the assigned resource blocks.

Based on the mapping from SINR value to data rate introduced in Table 2, the throughput of a certain user can be calculated.

- First, the average SINR of the user is calculated based on the resource blocks he gets.
- Table 2 provides the mapping from SINR value to the estimated data rate per RB generated from ideal link adaptation. Using the average SINR value of one user to find the corresponding data rate per RB, multiply with the number of RBs each user gets, the total throughput of this user can be obtained.

The throughput presents the amount of data each user can send during one TTI. The unit for throughput is (*144 bits/ms) in all the performed simulation.

For the ‘Resource Assignment Efficiency’ in Table 8, ‘NrOfUnassignedUE’ is an indicator of the number of starved UE during each TTI. Every TTI the user number is generated randomly from 4-16, and in this example on average 0.866 user doesn’t get any frequency resource. ‘NrOfUnassignedRequiredRBs’ stands for the sum of RBs resources which are not assigned during one TTI. It means among the total 100 RBs in this simulation environment, 28.5 are left unused on average.

The ‘Time Efficiency’ in Table 8 represents the amount of time consumed to finish each scheduling process. As we explained before, in the simulation environment time is based on Matlab simulation, which shows the differences of complexity when running different simulation cases. For this reason, the unit of time in this report will not be presented, since as long as it is able to present the comparison of time improvement, the absolute value of time in this report is not of concern.

<table>
<thead>
<tr>
<th></th>
<th>Spectral Efficiency</th>
<th>Resource Assignment Efficiency</th>
<th>Time Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughput (*10^5 bits/s)</td>
<td>219.8003</td>
<td>NrOfUnassignedUE: 0.8669</td>
<td>Time: 74.9939</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NrOfUnassignedRequiredRBs: 28.4993</td>
<td></td>
</tr>
</tbody>
</table>
Table 9 Maximizing Fairness

<table>
<thead>
<tr>
<th>Spectral Efficiency</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughput (*10^5 bits/s)</td>
<td>186.4233</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transmission Efficiency</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NrOfUnassignedUE</td>
<td>0</td>
</tr>
<tr>
<td>NrOfUnassignedRequiredRBs</td>
<td>35.0402</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time Efficiency</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>91.5848</td>
</tr>
</tbody>
</table>

In these two cases, we can observe that the throughput-oriented solution generates much higher user data rate than the fairness-oriented solution. This result confirms our earlier analysis, that in order to keep fairness between different users, throughput performance will be decreased. From ‘NrOfUnassignedUE’ figure we can see 0 instead of 0.8669 users are starved during each TTI, the fairness performance is improved by implementing fairness-oriented solution. The increase ‘NrOfUnassignedRequiredRBs’ may be due to the reason that UEs are restricted to transmit only part of their requirements for the purpose of saving more frequency resource for low priority users. From this result we can see the fairness-oriented solution increases fairness among different users, however, it may also result in reducing the total utilization of frequency resource. Regarding the time consumption between these two cases, fairness-oriented solution brings more complexity and consumes more time than throughput-oriented solution.

6.2.2 Simulation 1
Figure 9 shows the throughput performance for Simulation 1, which focuses on different ways of dividing users into groups. The two curves in this figure represent two different solutions, and shows how throughput changes according to increasing number of processors.

As can be seen from this figure, simple solution generates lower spectral efficiency than the advanced solution, and it also decreases faster as the DSPs number increases. In the simple scheme, group members are selected randomly among generated UE list. The order of scheduling in each group is based on decreasing SINR values. The throughput performance is much lower than serial way of scheduling, since the UEs’ location can no longer be selected from the whole frequency bandwidth. Advanced scheme of dividing users allows users to choose the fragment that provides better channel condition. Thus as the result shows, it generates much better throughput performance than the simple solution, and as the processor number grows the decreasing of throughput is slower. The total throughput performance degradation keeps within 5% as DSP number growing from 2 to 16.

Compared with serial scheduling performance, the advanced solution generates a similar or even better spectral efficiency, especially when the processors numbers are less than 8. Part of the reason is the implementation of the Phase 3, which does not exist in serial scheduling.

Figure 10 Time Consumption for different Phases
Figure 10 and Figure 11 together provide a complete picture of the time consumption for scheduling process. Figure 10 shows the time consumed at each phase in parallel algorithm, while Figure 11 show how the total scheduling time changes with increasing processor numbers.

In Figure 11, the advanced solution requires more time in general compared with simple solution. However, as the number of processors increases, the time cost to complete the scheduling process is not simply increasing or decreasing. First, when the number of processors increases from 2 to 4, both algorithms shows a large reduce of time consumption, but when the number increases from 4 to 8 or 8 to 16, the time consumption increases again. Theoretically, the more processors in the system the less time it should take, since more users are scheduled in parallel at the same time. However, the simulation shows different result.

In Figure 10, which shows the time consumption for every scheduling step, Phases 1-1 and Phase 3 cost almost the same time between different simulations, but it varies significantly at Phase 1-2.

For example, when DSP number equals to 2, simple scheme requires 20 time unit to complete dividing-UE-group, while advanced policy needs 30 time unit instead. As the number of processors grows, the time difference between simple and advanced solution gets even larger.

On the other hand, at Phase 2 with the same number of processors, time consumption between the two solutions is similar, but the result between different numbers of processors varies significantly. As Figure 10 Phase 2 shows, the time consumed by
4-processor system is almost half of the amount of 2-processor system. Although it is not possible to divide the UE groups into exactly the same size, it means the time of parallel scheduling is less likely to be exactly the half of serial scheduling time consumption, both solutions show an obvious improvement of time as the processor number increases in Phase 2.

After studying both Phase 1-2 and 2, which are two of the most time consuming phases in this scheduling process, the following paragraph is used for analyzing how these two steps affect total scheduling time.

Time saved by running spectrum allocation process in parallel is decreasing as processor number increases. Compared with the time saved from 2-processor system to 4-processor system, when processor number grows larger, the improvement becomes smaller. At the same time, the complexity of Phase 1-2 increases largely with the processor number growing. As a result, the advantage of paralleled scheduling is getting less and less from time perspective as processor number grows larger than 4. And when the processor number reaches 4, the time consumption for the whole scheduling process decreases to the lowest level.

However, in the generated Figure 11, the time we mentioned here is from a complexity point of view, as it was stated before in this report, the time consumption in Matlab simulation does not represent the hardware environment. Loading and saving data time may differ in hardware platform with our simulation. However, Matlab simulation provides an overview of complexity changes from serial scheduling process to paralleled scheduling process.

As Simulation 1 result shows, advanced solution for dividing UE groups improves throughput performance greatly compared with simple solution, and it generates similar performance as the serial scheduling algorithm. When the processors number is smaller than 4, the spectral efficiency shows even better result than serial one. When processor number increases, the throughput performance degrades, and simple solution has faster degradation than advanced solution.

From time perspective, parallel scheduling in general costs less time than serial scheduling, and advanced solution requires more time to make a scheduling decision than simple solution. Regarding the difference between processor numbers, when the number of processors changes from 1 to 2 and 2 to 4, it shows significant improvement of time efficiency. The improvement comes from the time saved in Phase 2, which runs resources allocation process in parallel. However, when the processor number grows larger than 4, the time consumption increases again. The reason is the complexity increases in Phase 1, when dividing UE into groups, it shows when the number grows larger it takes longer to make a decision. The improvement in Phase 2 is lower than the increase of time in Phase 1, thus the total time consumption is increasing when the processor number reaches 8 or 16.
6.2.3 Simulation 2

The main purpose of simulation 2 is to show the throughput improvement regarding different schemes for frequency dividing, which locates at Phase 1-1 in the scheduling process.

In the figure, four cases are presented for compression, they are both simple and advanced solution with 2-processor and 16-processor system. Although the frequency dividing is implemented in Phase 1, the throughput result shows in second and third phases during the scheduling process.

As the figure shows, both methods generate almost the same throughput performance. However, advanced methods provides slightly better performance than the simple methods at Phase 2. This is because in advanced solution, the larger groups are granted larger fragments, which provide more frequency resources to satisfy the users in these groups. And smaller groups get smaller fragments, thus less resources will be wasted.

However, after Phase 3, advanced solution can have an even lower performance than simple solution when processor number is large. This is because when the number of fragments grows, the number of UE per fragment reduces accordingly, so are the numbers of RBs per fragment. When using the advanced solution, fragment sizes are adjusted according to the group sizes, the more fragments there are the more adjustments are needed. In a 2-processor system, there are only two adjustments needed, the possibility that users best location is still within his host fragments is high.
However, if in a 16-processor system, after adjust fragment sizes for 16 times, it is highly likely that the best location of a UE is already moved out of his host fragment. That explains in 16-processor system why advanced solution generates even lower performance than simple solution at Phase 3.

Above Figure 13 shows the complexity and time consumption by using different solutions. From the time perspective, Phase 1-1 represents the time costs by each solution. To compare the time of Phase 1-1 with the total scheduling time, later phases are also presented in this figure, however, they are not our focus in this simulation. According to the figure, in Phase 1-1 both advanced and simple algorithm take a similar length of time, 16-processor system may require more time than 2-process system, however, the increase is limited. No matter which solution is used in the simulation, the time consumption does not increase significantly compared with the total scheduling time.

To summarize, advanced and simple solutions provides similar result both from time and throughput perspectives. But advanced solution provides slight improvement on spectral efficiency. When the processor number is large in the system and Phase 3 is implemented, simple solution is recommended. And when processor number is smaller, or Phase 3 is absent in the scheduling process, advanced solution is preferred.
6.2.4 Simulation 3

Simulation 3 is mostly focused on different resource allocation schemes in parallel scheduling Phase, which is the second phase within this scheduling algorithm. In this section, to simplify, Scheme 1 is used for throughput-oriented solution and Scheme 2 refers to fairness-oriented solution in the figure.

Different from other simulations, the number of users per simulation is not generated randomly from 4 to 16 according to the simulation system setting. It is fixed each time, chosen from the number 5, 10, 15 and 20. Figure 14, Figure 16, Figure 17 and Figure 18 is presented based on ‘Scheduled UE number’, which means the number of users gets scheduled among all the generated users. Figure 15 is based on ‘Generated UE Number’, which is the number of users existing in the simulation system.

Figure 14 shows how the overall system throughput changes with different cases, each curve shows the throughput changes as number of scheduled users changes. When the number of scheduled users is small, both schemes generate similar results. However, when this number reaches 20, the difference of throughput performance between these two solutions becomes larger.

From another perspective, among throughput-oriented cases, when there are more processors in the system, throughput is lower. The difference of throughput between 2-processor system and 16-processor system is much larger than the fairness-oriented solutions. In fairness-oriented simulation, throughput is much less affected by
processors number. As the number of processors grows from 2 to 16, the throughput performance remains stable. Comparing throughput and fairness-oriented schemes, throughput-oriented solution obviously generates much better spectral efficiency performance.

![Figure 15 Average Scheduled Number of UE](image)

Figure 15 above provides a fairness performance compression between different solutions. In Figure 15, each curve stands for the average number of scheduled UE with respect to different generated UE populations, and different curves show the results from different processor numbers. In this figure, fairness-oriented solution schedules all the user equipments generated regardless of the processors number. Throughput-oriented scheme is implemented with higher priority to generate better spectral efficiency, thus during the scheduling process, especially when UE number is large, it may sacrifice some low SINR users to satisfy better performed users. As can be seen from Figure 15, it schedules much less users than fairness-oriented solution.
In order to investigate more about the performance differences between the two schemes, Figure 16, Figure 17 and Figure 18 are provided.

Figure 16 shows the average RBs per scheduled UE in different simulation cases, the comparison will focus on result generated by different solutions. First, when the DSP number equals to 2, throughput-oriented scheme provides more RBs per scheduled UE. The reason is that in throughput-oriented simulation, fewer users are scheduled compared with fairness-oriented solution, and thus fewer users are sharing the whole frequency resources. However, when the processor number grows to 16, the difference becomes less obvious, since more fairness is ensured by large fragment number.

Thus, we can derive in general, throughput-oriented solution has more RBs per users, and this difference gets smaller when there are more processors in the system.
Figure 17 compares efficiency per UE perspective between two solutions, which presents the data rate per user in this simulation system. For fairness-oriented solution, as the number of scheduled UE grows, the average data rate per UE decreases, which means in order to keep fairness between different users, the performance of every single user may be lowered. However, for throughput-oriented solution, fairness is with lower priority. Thus in Figure 17, the simulation result shows that the data rate for each UE is increasing drastically in throughput-oriented simulation when some lower SINR users are starved.
Based on the observation from Figure 17, Figure 18 investigates in detail by showing the data rate per assigned resource block in the system. Figure 18 together with Figure 16 explains the reason of the data rate differences in Figure 17.

In Figure 17, for fairness-oriented solution, the average data rate per RB remains the same when scheduled number of user grows. However, in throughput-oriented solution, the data rate increases significantly. This is due to the reason in order to maximize throughput, only high SINR users are scheduled, the lower channel condition users are left starved. Thus, in fairness-oriented solution the performance is stable, but in throughput-oriented solution it increases several times.

In conclusion, fairness-oriented solution generates lower throughput in general, but it provides better fairness among all the generated users. However, throughput-oriented solution chooses to starve lower priority users during scheduling process, in order to keep throughput at a high level.

Average number of RBs per scheduled users decreases with user number in both solutions, and the number in fairness-oriented solution is slightly less than throughput-oriented solution. Comparing overall throughput per scheduled user, fairness-oriented solution is much lower than throughput-oriented solution. The reason is it generates higher average data rate performance per scheduled RB.

With all the above observations, there is no strict conclusion on which solution is better. However, between the throughput and fairness tradeoff, a compromised solution can be developed, which generates higher throughput but at the same time ensure fairness to some extent.
Simulation 4 focuses more on Phase 3, analyzing from time and throughput perspective, evaluating the efficiency of different post-scheduling steps.

In Figure 19, the throughput performance from the end of Phase 2 is presented, different curves represent simulated system with different processor numbers, and x-axis presents each step in Phase 3. As the figure shows, different curves have similar throughput performance, among which 2-processor system generate better spectral efficiency. For different scheduling steps, the throughput improves most at Phase 3-1 and slows down at Phase 3-2 and Phase 3-3. However, compared with the whole system throughput, Phases 3-1 improves 5% and the whole Phase 3 generates improvements less than 10%.
Figure 20 represents the time consumption in each step of Phase 3. In order to provide references for time scale in scheduling process, this figure presents time consumption for each step, but Phase 1 and Phase 2 are not our focus in this simulation.

In Phase 3, first step represents the simple methods in post-scheduling, which can be seen from the figure, time consumed by Phase 3-1 is the least among the three post-scheduling steps. With the methods getting more and more complicated, the time they cost is increasing, especially at Phase 3-3, it generates three times more complexity compared with simple method in Phase 3-1.
To show the efficiency of different steps in Phase 3, Figure 21 presents the trend of throughput/time performance. As it shows in the figure, Phase 3-1 generates much higher efficiency than Phase 3-2 and Phase 3-3. The low efficiency in the last two steps is both due to the weak improvement of throughput and high complexity of the methods used.

In conclusion, the post-scheduling phase increases the overall system spectral efficiency, but only to a small extent. Among the three steps in Phase 1, the first step generates best improvement and requires least time, thus it provides best efficiency. From the above analysis in this section, it is reasonable to remove the second and third steps in Phase 3, and in some cases, the whole Phase 3 can be removed from the scheduling system in order to gain more time for scheduling with large number of users.
7 Discussions

7.1 Conclusion

Based on the simulation result and analysis presented in the last chapter, in this section, pros and cons of different solutions in each phase will be discussed in pairs, and conclusions will be drawn.

In Phase 1-1, dividing frequency band into fragments, both solutions provide similar results both in throughput and time perspective. However, advanced solution is able to provide slight improvement on spectral efficiency. When the processor number is large (8 or 16) in the simulation system and Phase 3 is implemented, simple solution is recommended. And when processor number is smaller (2 or 4) or Phase 3 is absent in the scheduling process, advanced solution is preferred.

In Phase 1-2, dividing UE groups, simple solution saves more time but generate lower spectral efficiency, to be more specific, the throughput performance is 20% lower than serial scheduling result. The advanced solution consumes more time but keeps a similar throughput performance as serial scheduling. Both solutions are processing faster than serial scheduling algorithm and when processor number is no bigger than 4 it generates better throughput and time performance than the cases when processor number is larger. Thus, in the cases when time is more critical than throughput, simple solution is recommended, but if throughput is the main concern, advance solution provides better result. In both solutions, number of processor is recommended to be no more than a certain number, this number depends on the simulation environment of the system, however, in this thesis environment, it equals to 4.

In Phase 2, which is the resource allocation phase, fairness-oriented solution schedules every generated user, thus it has higher fairness compared with throughput-oriented solution, while the throughput-oriented solution provides better spectral efficiency performance in general. Based on the throughput and fairness tradeoff, there is no strict definition on which is the better solution. However, a compromised solution can be developed, which may generate a throughput performance between the results of two tested solutions and ensures fairness to some extent.

In the last phase, among all the three steps tested, first step is able to improve throughput by 10% and it shows a higher efficiency compared with following two steps. It is reasonable to suggest removing the second and third steps in Phase 3 due to their low efficiency. And in some time critical cases, the whole Phase 3 can be removed from the scheduling system in order to gain more processing time for scheduling with large number of users.

To summarize the conclusion, based on our simulation result, the current 3 Phases structure of parallel scheduling algorithm is able to provide better throughput and time efficiency compared with the serial scheduling algorithm. The details about improvements brought by parallelism are not only dependent on the number of
processor in use, the number of generated users in system but also on throughput fairness performance tradeoff. When the number of generated users in the system is larger, the improvement of parallel scheduling algorithm is more obvious. Based on the simulation settings in this thesis, the parallel scheduling algorithm with 4-processor platform is able to generate the same throughput performance with the serial algorithm, and the time consumption is reduced by 30% in Matlab simulation. However, the time consumption in this thesis simulation does not reflect the hardware environment. Thus, it can not be used as a reference to describe the real time improvement, the recommended number of processors in real system needs more investigation built on hardware environment. Above all, based on the simulation, the recommended solution in each phase is listed as below.

In time critical cases, simple solution for dividing the UE groups and frequency fragments are preferred, at the same time Phase 3 can be removed from the scheduling system, or only step one in Phase 3 is recommended. In order to ensure a higher level of fairness in the system, in Phase 2, fairness-oriented solution is a favorable choice. If the system throughput is the main concern when choosing scheduling solutions, advanced solutions are recommended in Phase 1, throughput-oriented scheme in Phase 2 and first step in Phase 3.

7.2 Future Work

In this thesis scope, the most focus has been put on variation of scheduling methods in different phases and the pros and cons of each combination. As a result, a simplified simulation environment has been used with respect to traffic load and simulation settings.

- **Time Domain Memory**
 This thesis is focusing on studying simulation performance from a frequency domain point of view. During each scheduling time unit, this simulation environment would generate required data all over again. However, it would be an interesting path of investigation if the scheduling process simulation has a UE memory in the time domain. The information of unsatisfied data can be save for the next time unit, and the scheduling delay weight is increased due to this prolonged scheduling time, which will grant this user higher priority to be scheduled in the following TTI. The simulation will present a picture of how this algorithm performed in the time domain.

- **Traffic Load**
 Some spectral efficiency performance improvement is not obvious after post-scheduling process or difference is not fully shown between different scheduling solutions, one of the reasons can be the traffic load used. There is only one traffic load model in the simulation environment with one setting of required RBs and generated user number. More obvious improvement will be
generated if a larger user number is used, and larger processor number is implemented. And different required RBs setting would also generate a different simulation performance.

- **Time Evaluation**
 The current time consumption is based on the simulation in Matlab. In general it is an ideal and simplified simulation model. In a time perspective, the time for loading and saving data in DSP is not taken into account, neither is some setting up time needed in a hardware environment, thus is not 100 percent accurate in time estimation and evaluation between serial and parallel algorithm. The efficiency of post-scheduling phase can be reevaluated, so is the time improvement brought by parallel scheduling. With a simulator that has the exact same performance as current hardware implementation, the time evaluation would be more accurate.

Above all, the result of parallel algorithm would be further verified by implementing above suggested simulations.
8 References

[4] 3GPP TS 36.101; User Equipment (UE) radio transmission and reception (Release 8)
[5] 3GPP TS 36.211; Physical Channels and Modulation (Release 8)
[9] H. G. Myung, et al; Peak-to-average Power Ratio of Single Carrier FDMA Signals with Pulse Shaping; Accepted to IEEE PIMRC’06
[10] UMTS Long Term Evolution (LTE) Technology Introduction; Application Note, Rohde & Schwarz

[16] Hongkun Yang, Fengyuan Ren, Chuang Lin, Jiao Zhang; Frequency-Domain Packet Scheduling for 3GPP LTE Uplink; INFOCOM, 2010 Proceedings IEEE
[19] Long Term Evolution Protocol Overview; White Paper; Freescale Semiconductor