Nutritionsbehandling på thoraxintensivvårdsavdelningen
En journalgranskningstudie

Författare: Elin Klots
Handledare: Björn Wikehult
Examinator: Lena Gunningberg

Examensarbete i vårdvetenskap
Inriktning mot intensivvård
Avancerad nivå 15 hp
VT 2012
SAMMANFATTNING

Intensivvårdspatienten befinner sig i ett stressrelaterat katabolt tillstånd med risk för svält. Negativ energibalans leder till nedbrytning av kroppens förråd av protein, fett och kolhydrater. Nutritionen är därför en viktig del i vården av dessa patienter. Forskning visar att en stor andel intensivvårdspatienter inte uppnår energibehovet, detta kan leda till bland annat högre infektionsrisk, sämre sårläkning och ökad dödlighet. Syftet med detta examensarbete var att undersöka hur väl patienter på thoraxintensivvårdsavdelningen (TIVA) nutreras, om patienterna uppnår det ordinerade kaloribehovet samt hur avdelningens riktlinjer efterföljs. Studien genomfördes med hjälp av journalgranskning på vårddygn tre och sex och data analyserades med hjälp av deskriptiv statistik och Chi²-test. Resultaten visade att mer än hälften av patienterna på TIVA (66 %) uppnådde det ordinerade/beräknade kaloribehovet och att det hos 65 % av patienterna fanns en kaloriordination i enlighet med TIVA:s riktlinjer. Det fanns inga signifikanta skillnader avseende uppnått kaloriintag mellan könen, åldersklasser eller nutritionsform. Det fanns dock ett signifikant samband mellan förekomst av kaloriordination och uppnått kaloriintag på dag tre och sex (p < 0,001, p = 0,006). Den vanligaste nutritionsformen var blandad nutrition och den minst vanliga var enteral nutrition (EN). Slutsatsen blir att förekomst av kaloriordination medför att patienterna uppnår kaloribehovet samt att kaloriordination inte alltid förekommer på TIVA.

NYCKELORD

Intensivvård, kaloribehov, riktlinjer.

ABSTRACT

The intensive care patient is in a stress related catabolic state with the risk of starvation. Negative energy balance leads to utilization of stored protein, fat and carbohydrates and nutrition is important in caring for these patients. Studies show that many intensive care patients don’t meet their energy needs, which can for example, increase the risk of mortality. The purpose of this study was to examine the nutritional therapy of patients in a cardiothoracic intensive care unit (TIVA). To see if they reached their energy needs and if guidelines were followed. The study was made through examination of charts on day three.
and six, data was analyzed with descriptive statistics and Chi²-test. Results showed that more than half of patients (66%) met their energy needs and in 65% of the cases a calorie prescription existed in accordance with the guidelines. There were no significant differences regarding reached energy needs between genders, ages or type of nutrition. There was, on both days, a significant correlation between reached energy need and presence of calorie prescription ($p < 0.001$, $p = 0.006$). The most common form of nutrition was mixed nutrition, while the least common was enteral nutrition (EN). The conclusion is that the presence of calorie prescription increases the amount of patients reaching their calorie needs, and that prescriptions of calories doesn’t always occur on TIVA.

**KEY WORDS**

Intensive care, energy need, guidelines.
FÖRKORTNINGAR

ASPEN = the American Society for Parenteral and Enteral Nutrition.
EN = enteral nutrition.
ESPEN = the European Society for Clinical Nutrition and Metabolism.
IVA = intensivvårdsavdelning.
Kcal = kilokalorier (kalorier).
PN = parenteral nutrition.
TIVA = thoraxintensivvårsavdelningen.
TPN = total parenteral nutrition.
VAP = ventilatorassocierad pneumoni.

ORDFÖRKLARINGAR

Blandad nutrition = kombination av enteral, parenteral och ibland oral nutrition.
Enteral nutrition = föda via tarmen, det vill säga ”den normala vägen”.
Hypoglykemi = lågt blodsocker.
Hyperglykemi = högt blodsocker.
Hyperlipidemi = förhöjda nivåer av lipider (fetter) i blodet.
Ischemi = lokal blodbrist.
Indirekt kalorimetri = metod för att mäta kaloribehov genom att mäta och beräkna koldioxidproduktion och syrgaskonsumtion.
Kompartmentsyndrom = ökat tryck i ett slutet rum (t. ex en grupp muskler inom gemensam muskelhinna) som ger nedsatt blodcirkulation.
Mesenteriet = en del av bukhinnan där tarmarna fäster vid bakre bukväggen.
Metabolism = ämnesomsättning.
Parenteral nutrition = tillförsel av näring intravenöst, det vill säga vid sidan av tarmen.
Total parenteral nutrition = hela näringsbehovet tillförs intravenöst, det vill säga ”vid sidan av tarmen”.


**INNEHÅLLSFÖRTECKNING**

<table>
<thead>
<tr>
<th>BAKGRUND</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutritionens betydelse för intensivvårdspatienten</td>
<td>1</td>
</tr>
<tr>
<td>Över- och undernutrition</td>
<td>1</td>
</tr>
<tr>
<td>Kaloribehov och näringsintag</td>
<td>2</td>
</tr>
<tr>
<td>Nutritionsformer</td>
<td>4</td>
</tr>
<tr>
<td>Enteral nutrition</td>
<td>4</td>
</tr>
<tr>
<td>Parenteral nutrition</td>
<td>5</td>
</tr>
<tr>
<td>Blandad nutrition</td>
<td>6</td>
</tr>
<tr>
<td>TIVA</td>
<td>7</td>
</tr>
<tr>
<td>Problemformulering</td>
<td>8</td>
</tr>
<tr>
<td>Syfte</td>
<td>8</td>
</tr>
<tr>
<td>Frågeställningar</td>
<td>8</td>
</tr>
<tr>
<td>METOD</td>
<td>10</td>
</tr>
<tr>
<td>Design</td>
<td>10</td>
</tr>
<tr>
<td>Urval</td>
<td>10</td>
</tr>
<tr>
<td>Datainsamlingsmetod</td>
<td>12</td>
</tr>
<tr>
<td>Tillvägagångssätt</td>
<td>14</td>
</tr>
<tr>
<td>Etiska överväganden</td>
<td>14</td>
</tr>
<tr>
<td>Bearbetning och analys</td>
<td>15</td>
</tr>
<tr>
<td>RESULTAT</td>
<td>17</td>
</tr>
<tr>
<td>Förekomst av kaloriordination på TIVA</td>
<td>17</td>
</tr>
<tr>
<td>Uppnått kaloriintag enligt ordination/beräkning</td>
<td>17</td>
</tr>
<tr>
<td>Samband mellan kaloriordination och uppnått kaloriintag</td>
<td>19</td>
</tr>
<tr>
<td>Kaloriintag och åldersgrupper</td>
<td>21</td>
</tr>
<tr>
<td>Kaloriintag och kön</td>
<td>22</td>
</tr>
<tr>
<td>Kaloriintag och olika nutritionsformer</td>
<td>24</td>
</tr>
<tr>
<td>DISKUSSION</td>
<td>28</td>
</tr>
<tr>
<td>Resultatdiskussion</td>
<td>28</td>
</tr>
<tr>
<td>Metoddiskussion</td>
<td>32</td>
</tr>
<tr>
<td>Praktisk betydelse</td>
<td>34</td>
</tr>
<tr>
<td>Slutsats</td>
<td>34</td>
</tr>
</tbody>
</table>
BAKGRUND

Detta examensarbete undersöker nutritionsbehandling och följsamhet till riktlinjer på en thoraxintensivvårdsavdelning.

Nutritionens betydelse för intensivvårdspatienten

Över- och undernutrition


EN = enteral nutrition
PN = parenteral nutrition
Förutom malnutrition finns även risker med övernutrition. Övernutrition har setts i samband med kombination av EN och parenteral nutrition (PN) (Caesaer et. al, 2011a; Reid, 2006) samt vid tillförsel av extra kaloririk EN (Reid, 2006). Överdriven tillförsel av kalorier med kolhydrater eller fett leder, precis som hos friska, till fettnybildning och fettinlagring i underhuden samt övriga celler. Överskott av protein och aminosyror leder till förbränning och en metabol belastning som ger ökad syrgasförbrukning och temperaturökning (Wernerman, 2005). Övernutrition ger en ökad risk för infektioner, hyperglykemi, hyperlipidemi, leversjukdom samt förlängd tid i ventilator (Caesaer et. al, 2011a). I en studie visade det sig att patienter utan ventilatorstöd och de med endotrachealtub var mer benägna att bli undernutrierade, medan patienter med tracheostomi löpte högre risk för övernutrition (Reid, 2006).

Kaloribehov och näringsintag

Ordinationer avseende kaloribehov har visats spela roll i intensivvårdspatienters uppnådda näringsintag. Underordination av näringsbehov från läkare visade sig leda till en fem gånger så hög risk att undernutrieras i jämförelse med patienter med en adekvat ordination av EN. Hos en grupp patienter som undernutrierades under vårdtiden skedde även en signifikant försämring av nutritionsstatus i jämförelse med en grupp som erhöll adekvat näringsstillförsel (Kim & Choi-Kwon, 2011).

I en undersökning av Binnekade och medarbetare (2005) upptäcktes att det ordinerade näringsbehovet hos intensivvårdspatienterna inte uppnåddes. Trots att det fanns tillgång till protokoll för EN samt daglig konsultation av dietist, intensivist och sjuksköterska, kom endast 50 % av intensivvårdspatienterna upp i adekvat näringsintag efter fem dagars upptrappning av sondmat. I en annan studie var det så få som 37,5 % av patienterna som nådde kaloribehovet (Kim & Choi-Kwon, 2011). Flera andra studier visar liknande resultat avseende kaloriintag. I en undersökning erhöll patienterna i snitt 81 % av sitt näringsbehov (Reid, 2006), men de flesta forskningsresultaten visar på ett kaloriintag omkring 50-60 % av behovet (Cahill, Dhaliwal, Day, Jiang & Heyland, 2010; Heyland et. al, 2003; Hise et. al, 2007; Krishnan, Parce, Martinez, Diette & Brower, 2003; Serón-Arbeloa, Puzo-Foncillas, Garcés-Gimenez, Escós-Orta, & Labarta-Monzón, 2010). Patienter som erhåller mindre än 60 % av rekommenderad energiintag under intensivvårdens första vecka, löper nästan 2,5 gånger så
hög risk för mortalitet på IVA jämfört med de som får i sig mer än 60 % (Tsai et. al, 2011). Negativ energibalans associeras med ökad infektionsrisk hos patienter som genomgått öppen hjärtkirurgi (Villeta et. al, 2006).

Införande av nutritionsprotokoll (McClave et. al, 2009; Soguel, Revelly, Schaller, Longchamp & Berger, 2012; Wöien & Björk, 2005) samt avdelningsdietist (Soguel et. al 2012) har visat sig förbättra läkarordinationer avseende nutrition (Spain et. al, 1999; Wöien & Björk, 2005), förbättra kaloriintag och minska den negativa energibalansen hos intensivvårdspatienter (Soguel et. al, 2012; McClave et. al, 2009; Spain et. al, 1999; Wöien & Björk, 2005). I en studie var ordinationerna av EN nästan tre gånger så höga efter införande av nutritionsprotokoll jämfört med innan, och patienterna tillgodosågs med nära 90 % av denna mängd (Wöien & Björk, 2005).


Indirekt kalorimetri är en metod som används för att beräkna energiförbrukningen genom att mäta hur mycket syrgas som konsumeras och hur mycket koldioxid som produceras. Detta ska helst utföras då patienten är i vila och fastande sedan minst fem timmar tillbaka (Haugen, Chan, & Li, 2007). Indirekt kalorimetri ses som det mest exakta mätinstrumentet för
kaloribehov hos intensivvårdspatienter (Singer & Pichard, 2012), men nackdelarna med
metoden är att det tar tid, kräver dyr utrustning och personal som är utbildad att använda den
(Ireton-Jones & Jones i McCarthy, 2000). Det finns över 30 olika formler som tagits fram för
att räkna ut energibehov, men exaktheten hos dessa instrument kommer endast upp i 37-65 %
av de uppmätta värdena som erhålls genom indirekt kalorimetri. Många patienter får då ett
uppskattat näringsbehov som kan ligga så mycket som 40 % över eller under det fysiologiska
målet. En förklaring till dessa stora skillnader är att de flesta av formlerna kräver noggrann
mätning av kroppsvikten (Singer & Pichard, 2012), något som ofta är svårt hos
intensivvårdspatienter på grund av bland annat vätskeretention (Singer & Pichard, 2012;
Widlicka, 2008). Dessa formler bör användas med försiktighet just eftersom
mätningsresultaten blir mindre exakta än med indirekt kalorimetri. Hos överviktiga patienter
blir ekvationerna än mer opålitliga (McClave et. al, 2009). Under akut sjukdom bör målet
vara att tillföra energi som kommer så nära den uppmätta energiförbrukningen som möjligt,
detta för att minska den negativa energibalansen. Om indirekt kalorimetri inte kan användas
bör intensivvårdspatienter erhålla 25 kcal/kg/dag med en ökning mot målet inom två till tre
dagar (Singer et. al, 2009).

**Nutritionsformer**

*Enteral nutrition*

Enligt riktlinjer för nutrition från the European Society for Clinical Nutrition and Metabolism
(ESFEN) ska samtliga patienter som inte förväntas tillgodose sitt näringsbehov oralt inom tre
dagar få EN (Kreymann et. al, 2006). Det råder enighet bland forskare om att administrera EN
inom 24-48 timmar hos hemodynamiskt stabila intensivvårdspatienter med fungerande mag-
tarmkanal (Cahill et. al, 2010; McClave et. al, 2009; Mehta, Alhariri & Patel, 2011;
Kreymann et. al, 2006; Wandrag, Gordon, O'Flynn, Siddiqui & Hickson, 2011; Widlicka,
2008). Detta för att uppnå de positiva fördelar såsom manskad infektionsrisk (Widlicka,
2008), kortare vårdtid i ventilator (Hamblin Woo et. al, 2010; Widlicka, 2008), kortare
sjukhusvistelse (Hamblin Woo et. al, 2010; Widlicka, 2008) och lägre mortalitet (Serón-
Arbeloa et. al, 2010), som associeras med tidig insättning av EN (Hamblin Woo et. al, 2010;
Serón-Arbeloa et. al, 2010; Widlicka, 2008).

Komplikationer kring användning av EN inkluderar kräkning och illamående, diarré, aspiraitionspneumoni och höga residualvolymer i magsäcken (Gramlich et. al, 2004; Kesek et. al, 2002). För patienter med problem i mag-tarmkanalen är EN även associerat med undernutrition (Ziegler, 2009). Fördröjning av tömningen i magsäcken är en av orsakerna till att EN inte alltid sätts in inom den rekommenderade tiden, eller att upptrappning av sondmatning är svår att genomföra (Widlicka, 2008). Ungefär 10 till 20 % av IVA-patienter har nedsatt tolerans mot eller en kontraindikation mot EN. Det kan röra sig om till exempel tarmhinder, bukkompartiment eller ichem i mesenteriet (Singer et. al, 2009). Avsaknad av tarmljud eller brist på bevis om fungerande tarm, såsom avföring eller gaser, är inget som ska förhindra administration av EN (McClave et. al, 2009).

Parenteral nutrition

Enligt ESPEN:s riktlinjer ska patienter erhålla nutrition eftersom svält eller malnutrition hos intensivvårdspatienter associeras med ökad sjuklighet och mortalitet. Patienter som inte förväntas kunna äta inom tre dagar, och där EN är kontraindicerat, bör få PN inom 24-48 timmar. PN utgör ett alternativ eller tillägg då andra nutritionsvägar inte är framgångsrika eller när det är omöjligt eller osäkert att använda andra vägar (Singer et. al, 2009). The American Society for Parenteral and Enteral Nutrition (ASPEN) förespråkar administration av

EN = enteral nutrition
PN = parenteral nutrition

PN medför en överhängande risk för övernutrition (Gramlich et. al, 2004; Singer et. al, 2009), vilket kan vara lika skadligt som undernutrition (Singer et. al, 2009). PN associeras även med ökad infektionsrisk (Cove & Pinsky, 2011; Gramlich et. al, 2004; Simpson & Doig, 2005; Singer et. al, 2009; Ziegler, 2009), vilket till viss del förmodligen kan förklaras med att PN i större utsträckning ger hyperglykemi (Cove & Pinksy, 2011; Gramlich et. al, 2004; Singer et. al, 2009) som försämrar immunförsvaret (Singer et. al, 2009). PN kan ges i antingen central eller perifer ven. Problemet med de perifera nutitionslösningarna är att de inte kan vara lika koncentrerade, vilket leder till att stora volymer måste ges för att nå upp i kaloribehovet (Ziegler, 2009).

**Blandad nutrition**

Enligt ESPEN:s riktlinjer bör man överväga tillägg av PN hos patienter som erhåller mindre än sin målordination av EN efter två dagar. Tillägg av PN till EN är dock ett område där forskningen pekar åt olika håll (Singer et. al, 2009). ASPEN rekommenderar tillägg av PN först efter sju till tio dagar om kaloribehovet med EN inte uppnås till 100 %. Tillägg av PN tidigare än detta förbättrar inte utsikterna och kan vara skadligt för patienten. När toleransen mot EN blir bättre ska andelen kalorier som tillförs via PN reduceras. PN ska inte avslutas helt förrän >60 % av det totala kaloribehovet kan tillfredsställas med EN (McClave et. al,
Blandad nutrition kan öka risken att drabbas av nosokomiala infektioner (Serón-Arbeloa et al, 2010).


**TIVA**

Journalgranskningen i denna studie kommer att genomföras på en thoraxintensivvårdsavdelning (TIVA) i mellersta Sverige. Avdelningen vårdar främst patienter som gjort operationer på hjärta, lungor och övre delen av aorta, men även patienter med svår hjärtsvikt, lungsjuka i behov av andningshjälp samt patienter med olika hjärtspumpar.

Problemformulering

En liknande studie genomfördes 2011 på en annan intensivvårdsavdelning på samma sjukhus. Journaler granskades vid fyra tillfällen under vårdtiden och resultatet visade att det som bäst var 17,5 % av patienterna som uppnådde sitt energibehov (Gustafsson, 2011).


Forskningen visar att IVA-patienter ofta inte får sitt energibehov tillgodosett och tidigare undersökningar på samma sjukhus visar både relativt goda och sämre resultat avseende detta. Varje år genomförs även ”dagen nutrition” på sjukhuset med syfte att kontrollera hur väl patienterna nutrieras. TIVA deltog inte i undersökningen 2011. Det vore därför intressant att undersöka huruvida thoraxintensivvårdsavdelningen följer sina riktlinjer angående nutritionsordinationer samt om patienterna försörjs med det kaloribehov som ordinerats.

Syfte

Syftet med detta examensarbete var att undersöka hur väl patienter på TIVA nutrieras, om patienterna uppnår det ordinerade/beräknade kaloribehovet samt hur avdelningens riktlinjer efterföljs.

Frågeställningar

1. Förekommer ordination av kaloribehov på TIVA på dag tre och sex?
2. Uppnår patienterna på TIVA det ordinerade kaloribehovet?
3. Finns det något samband mellan uppnått kaloribehov och ordinerat kaloribehov hos patienterna på TIVA?
4. Finns det någon skillnad hos patienterna på TIVA vad gäller uppnått kaloribehov mellan olika åldersgrupper?
5. Finns det någon skillnad hos patienterna på TIVA vad gäller uppnått kaloribehov mellan kvinnor och män?
6. Finns det någon skillnad hos patienterna på TIVA vad gäller uppnått kaloribehov mellan patienter som erhåller enteral nutrition, parenteral nutrition eller blandad nutrition?
METOD

Design

Detta examensarbete är en retrospektiv, deskriptiv, komparativ journalgranskningsstudie med kvantitativ ansats.

Urval


Åldersintervallet hos patienterna, som visas i Figur 1, sträckte sig mellan 19 och 86 år. Medelåldern hos både kvinnorna och männen var 64 år (64,36 respektive 63,96) och medianåldern var 66,5 år. De flesta av patienterna befann sig i åldern 64 till 77 år.
Av de utvalda patienterna var 33 kvinnor och 67 var män. I Tabell 1 beskrivs uppdelningen av ålder, längd och vikt uppdela mellan könen. Vikt fanns dokumenterat hos samtliga, men uppgift om längd saknades hos nio (sju män och två kvinnor) patienter, detta utgjorde dock inte något skäl för exklusion.
Tabell 1. Översikt av ålder, vikt och längd uppdelat på kön.

<table>
<thead>
<tr>
<th>Kön</th>
<th>Ålder (år)</th>
<th>N</th>
<th>Min</th>
<th>Max</th>
<th>Medel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man</td>
<td>67</td>
<td>26</td>
<td>86</td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>Vikt (kg)</td>
<td>67</td>
<td>55</td>
<td>155</td>
<td></td>
<td>89,5</td>
</tr>
<tr>
<td>Längd (cm)</td>
<td>60</td>
<td>161</td>
<td>195</td>
<td></td>
<td>178</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kön</th>
<th>Ålder (år)</th>
<th>N</th>
<th>Min</th>
<th>Max</th>
<th>Medel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kvinna</td>
<td>33</td>
<td>19</td>
<td>84</td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>Vikt (kg)</td>
<td>33</td>
<td>59</td>
<td>104</td>
<td></td>
<td>76,6</td>
</tr>
<tr>
<td>Längd (cm)</td>
<td>31</td>
<td>154</td>
<td>189</td>
<td></td>
<td>166</td>
</tr>
</tbody>
</table>

Datainsamlingsmetod

Samtliga data samlades in på ett för varje patient avsett journalgranskingsprotokoll (Bilaga 1). I vissa fall saknades information angående längd, men eftersom granskningen i dessa fall ändå kunde utföras tillfredsställande bidrog inte detta till exklusion. Varje patient granskades vid två tillfällen, på vårddygn tre och sex. Om nutritionsordination inte fanns, räknades ett kaloribehov ut enligt TIVA:s riktlinjer om 25 kcal/kg/dygn. Från det ordinerade alternativt beräknade kaloribehovet subtraherades 10 %, denna summa var sedan det mål som patienten behövde nå upp till för att anses ha uppnått sitt kaloribehov. Med ”kaloribehov” kommer härmed menas den summa som ordinerats/beräknas minus 10 %.

För att tillhöra kategorin ”enteral nutrition” skulle patienten inta sina kalorier per oralt och/eller via sondmat. Till ”parenteral nutrition” räknades de som fick sin näring via infusion, hit räknades både glukosinfusion och TPN. Om patienten fick både enteral och parenteral näring räknades de till kategorin ”blandad nutrition”. Många av patienterna fick sederingsläkemedlet Propofol vilket innehåller en del kalorier. Kalorier från läkemedelsadministration räknades med i det totala kaloriintaget men medförde inte att patienten automatiskt hamnade i gruppen blandad nutrition.
**Tillvägagångssätt**

Patienter som uppfyllde inklusionskriteriet, det vill säga en vårdtid på TIVA som sträckte sig över minst sju dagar, hämtades från TIVA:s inskrivningsliggare. Via personnumret söktes patienten fram i datajournalen Cosmic där information inhämtades avseende kön, ålder, längd, vikt och i vissa fall även samtlig information runt näringsordinationer och kaloriintag. Uppgifterna om längd och vikt fanns ofta dokumenterade vid flera tillfällen och då valdes de data som tidsmässigt låg närmast inskrivningsdatum på TIVA.

Patienter som varit inskrivna på avdelningen från och med januari 2012 hade vätske- och kaloriintag dokumenterat i ett särskilt dokument i Cosmic som nyligen införts på TIVA. I fall då detta dokument fanns att tillgå hämtades data angående nutritionsform, ordination och kaloriintag härifrån. I de fall där patienten varit inneliggande före januari 2012 hade dessa data dokumenterats på ett särskilt pappersdokument. Denna information hämtades sedan från Kovis där samtliga journalanteckningar på papper finns inskannade. All information angående vätske- och näringsbalans räknas ut dagligen av sjuksköterska och dokumenteras i ett avsett dokument.

**Etiska överväganden**

Ett hundra journaler har granskas utan patienternas vetskap eller tillstånd, dock har godkännande för utförande av studien att inhämtas från verksamhetschefen (Bilaga 2). Granskningen ägde rum vid fyra tillfällen under veckorna 9-12 2012. De uppgifter som hämtats ur journalen är kön, ålder, längd, vikt, nutritionsform, kaloriordinationer och näringsintag. Personnummer ersattes av kodnummer och dessa har endast att hanterats av författaren själv. Allt material har förvarats inläst utan möjlighet att läsas av någon annan än författaren.

**Bearbetning och analys**

Efter att all data samlats in fördes informationen in i ett Exceldokument. Detta exporterades sedan in i statistikprogrammet SPSS 19.0 för vidare analys. All data har analyserats i SPSS 19.0 med en signifikansnivå av p-värde <0,05. Analysmetoderna beskrivs i Tabell 2.

Efter att data exporterats till SPSS beräknades hur många procent av kaloribehovet som patienterna uppnått. Beroende på hur många kalorier som saknades för att uppnå, alternativt överbryggar kaloribehovet, delades patienterna in i adekvat, under- eller övernutrition. För att räknas som ”adekvat nutrierad” krävdes att patienten uppnått minst 90 % av kaloribehovet men inte mer än 119 %. Till kategorin ”undernutrierade” räknades de som erhållit 0-89 % av kaloribehovet, och de som fått mer än 120 % av ordinerat kaloribehov räknades som ”övernutrinerade”.

Patienterna befann sig i åldrarna 19-86 år. Utifrån detta formades sedan tre åldersgrupper (19-41 år, 42-64 år, 65-86 år), med så likstora åldersspann som det var möjligt, och varje patient delades in i en av dessa.

*EN = enteral nutrition
*PN = parenteral nutrition*
Tabell 2. Analysmetod som använts för respektive frågeställning.

<table>
<thead>
<tr>
<th></th>
<th>Frågeställning</th>
<th>Statistik metod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Förekommer ordination av kaloribehov på TIVA på dag tre och sex?</td>
<td>Deskriptiv statistik (medelvärden och standarsavvikelser).</td>
</tr>
<tr>
<td>2.</td>
<td>Uppnår patienterna på TIVA det ordinerade kaloribehovet?</td>
<td>Deskriptiv statistik (medelvärden, standardavvikelser och median).</td>
</tr>
<tr>
<td>3.</td>
<td>Finns det något samband mellan uppnått kaloribehov och ordinerat kaloribehov hos patienterna på TIVA?</td>
<td>Deskriptiv statistik och Chi²-test.</td>
</tr>
<tr>
<td>5.</td>
<td>Finns det någon skillnad hos patienterna på TIVA vad gäller uppnått kaloribehov mellan kvinnor och män?</td>
<td>Deskriptiv statistik (medelvärden och standardavvikelser) och Chi²-test.</td>
</tr>
<tr>
<td>6.</td>
<td>Finns det någon skillnad hos patienterna på TIVA vad gäller uppnått kaloribehov mellan patienter som erhåller enteral nutrition, parenteral nutrition eller blandad nutrition?</td>
<td>Deskriptiv statistik (medelvärden och standardavvikelser) och Chi²-test.</td>
</tr>
</tbody>
</table>
RESULTAT

Förekomst av kaloriordination på TIVA.

På både dag tre och dag sex förekom kaloriordination i 65 fall av 100. På dag tre fanns det ingen kaloriordination hos 35 av patienterna och på dag sex var denna siffra 34 (34,3 %). På dag sex fanns ett bortfall på grund av att en patient befann sig på en annan avdelning detta dygn. Medelvärdet för ordinerat/beräknat kaloribehov var 1759 kcal (SD= 330) på dag tre och 1760 kcal (SD= 275) på dag sex.

Uppnått kaloriintag enligt ordination/beräkning.

Det genomsnittliga kaloriintaget på dag tre och sex var 1802 kcal (SD= 445) respektive 1887 kcal (SD= 382). Tabell 3 visar en översikt av andelen patienter som uppnått ordinerat kaloribehov. Vid bågge kontrolltillfällena var det 66 patienter (66 %) som erhöll ordinerat antal kalorier. Trettioen (31 %) patienter fick inte sitt kaloribehov tillfredsställt på dag tre och på dag sex var den siffran 29 stycken (29 %). Det minsta kaloriintaget på dag tre och sex var 550 kcal respektive 200 kcal. Det största kaloriintaget var 3513 kcal på dag tre och 3012 kcal på dag sex. Av de som inte uppnådde kaloribehovet fattades det som mest 1450 kcal på dag tre och 1488 kcal på dag sex. En patient fick i sig 1713 kcal mer än ordinerat på dag tre, respektive siffror för dag sex var 1212 kcal. Patienterna erhöll mellan 12 % och 195 % av det ordinerade kaloribehovet, vilket ledde till ett genomsnittligt kaloriintag på hela 104 % (SD= 26) på dag tre och 109 % (SD= 23) på dag sex. Medianen för detta värde var 108 % på båda dagarna. Då data studerades avseende adekvat, under- eller övertreatment visade det sig att 22 % blev övertreated medan 21 % blev undernourished på dag tre. Respektive siffror på dag sex var 13 % och 25 % (se Figur 2 och 3).
Tabell 3. Antal patienter som uppnått kaloribehovet på dag tre respektive dag sex.

<table>
<thead>
<tr>
<th></th>
<th>Kaloribehov uppnått, dag 3. N (%)</th>
<th>Kaloribehov uppnått, dag 6. N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ja</td>
<td>66 (66)</td>
<td>66 (66)</td>
</tr>
<tr>
<td>Nej</td>
<td>31 (31)</td>
<td>29 (29)</td>
</tr>
<tr>
<td>Uppgift saknas</td>
<td>3 (3)</td>
<td>5 (5)</td>
</tr>
<tr>
<td>Totalt</td>
<td>100 (100)</td>
<td>100 (100)</td>
</tr>
</tbody>
</table>

Figur 2. Fördelningen mellan adekvat, under- och övernutrition på dag tre.
Figur 3. Fördelningen mellan adekvat, under- och övernutrition på dag sex.

Samband mellan kaloriordination och uppnått kaloriintag

Av patienterna med en kaloriordination uppnådde 81,5 % (n= 53) det ordinerade antalet kalorier, jämfört med endast 37,1 % (n= 13) av de som inte hade kaloribehov ordinerat (se Figur 4). Dag sex var dessa siffror 75,4 % (n= 49) respektive 50 % (n= 17) (se Figur 5). Då analys utfördes av dessa siffror hittades ett signifikant samband mellan förekomst av kaloriordination och uppnått kaloriintag på både dag tre och dag sex (p < 0,001, p = 0,006). Om en kaloriordination fanns, var det större chans att patienten uppnådde kaloribehovet. Bortfallet på dag tre var 3 % (n= 3) och på dag sex 5 % (n= 5).
Figur 4. Uppnått kaloribehov på dag tre, fördelat efter förekomst av kaloriordination.

Figur 5. Uppnått kaloribehov på dag sex, fördelat efter förekomst av kaloriordination.
Kaloriintag och åldersgrupper

Under det tredje vårddygtet var det sju av nio (77,8 %) i gruppen 19-41 år som uppnådde kalorimålet, sämst var det i gruppen 42-64 år där endast 17 patienter av 32 (53,1 %) fick i sig tillräckligt med kalorier (se Figur 6). På dag sex var det istället minst antal patienter (33,3 %) som uppnådde kalorimålet i gruppen 19-41 år. Här var det istället flest i gruppen 42-64 år där 75 % av patienterna kom upp i ordenat kaloribehov (se Figur 7). Det fanns inga signifikanta skillnader (p=0,086 och p=0,092) mellan åldersgrupper och uppnått kaloribehov på varken dag tre eller dag sex.

**Figur 6.** Uppnått kaloribehov på dag tre, fördelat på åldersgrupper.
Kaloriintag och kön

Det fanns inga signifikanta skillnader mellan könen vad gällde uppnått kaloribehov på varken dag tre eller dag sex (p= 0,175, p= 0,943). Under vårddygn tre var det 72,7 % (n= 24) av kvinnorna som nådde sitt kaloribehov och 62,7 % (n= 42) av männen (se Figur 8). På dag sex var motsvarande siffror 60,6 % (n= 20) bland kvinnorna och 68,7 % (n= 46) bland männen (se Figur 9). Det genomsnittliga kaloriintaget var på dag tre 1813 kcal (SD= 439) för kvinnor och 1796 kcal (SD= 451) för män. Under dag sex var genomsnittsintaget 1693 kcal (SD= 382) respektive 1972 kcal (SD= 352).
Figur 8. Uppnått kaloribehov på dag tre, fördelat på kön.

Figur 9. Uppnått kaloribehov på dag sex, fördelat på kön.
Kaloriintag och olika nutritionsformer

I Figur 10 och 11 visas fördelningen av andelen som uppnått kaloribehovet bland de olika nutritionsformerna. Blandad nutrition var den vanligaste nutritionsformen på både dag tre (69 %) och dag sex (69 %). På dag tre var det 23 % av patienterna och på dag sex 19 % som erhöll PN medan endast 5 % och 7 % fick EN på dag tre respektive sex. På dag tre var det flest patienter (80 %) i gruppen som erhöll EN som också uppnådde kaloribehovet. Bland de som fick PN kom 65,2 % upp i ordinerat kaloribehov och i gruppen med blandad nutrition var motsvarande siffra 68,1 %. Det fanns inga signifikanta skillnader (p= 0,813) avseende uppnått kaloribehov mellan nutritionsformerna på dag tre.

Under det sjätte vårddynget var det istället flest patienter (78,9 %) i gruppen med PN som nådde sitt ordinerade kaloriintag och minst antal patienter i gruppen med EN (42,9 %). Bland de patienter som erhöll blandad nutrition var det 68,1 % på dag tre och 69,6 % på dag sex som nådde ordinerat kaloribehov. Inte heller under dag sex fanns några signifikanta skillnader mellan grupperna (p = 0,208). Medelvärdet av uppnått kaloriintag bland dem som fick EN, PN och blandad nutrition var 1778 kcal (SD 182), 1608 kcal (SD 498) och 1868 kcal (SD 424) på dag tre. Motsvarande siffror på dag sex var 1554 kcal (SD 231), 1847 kcal (SD 492) och 1931 kcal (SD 345). Detta visas i Tabell 4. På grund av ofullständiga uppgifter fanns på dag tre ett bortfall på tre patienter, motsvarande siffra på dag sex var fem.

EN = enteral nutrition
PN = parenteral nutrition
**Figur 10.** Uppnått kaloribehov på dag tre, fördelat på nutritionsform.

**Figur 11.** Uppnått kaloribehov på dag sex, fördelat på nutritionsform.

*EN = enteral nutrition
PN = parenteral nutrition*
Tabell 4. Genomsnittligt intag i kcal fördelat på nutritionsformer.

<table>
<thead>
<tr>
<th>Nutritionsform</th>
<th>N dag 3 (N dag 6)</th>
<th>Medelintag i kcal Dag 3 (SD)</th>
<th>Medelintag i kcal Dag 6 (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enteral nutrition</td>
<td>5 (7)</td>
<td>1778 (182)</td>
<td>1554 (231)</td>
</tr>
<tr>
<td>Parenteral nutrition</td>
<td>23 (19)</td>
<td>1608 (498)</td>
<td>1847 (492)</td>
</tr>
<tr>
<td>Blandad nutrition</td>
<td>69 (69)</td>
<td>1868 (424)</td>
<td>1931 (345)</td>
</tr>
</tbody>
</table>

På dag tre fanns både flest undernutrierade (26,1 %) och flest övernutrierade (26,1 %) i gruppen som erhöll PN. Motsvarande siffror i gruppen med EN var 20 % och 20 % och i gruppen med blandad nutrition 20, 3 % och 21,7 % (se Figur 12). På dag sex var det flest övernutrierade patienter (29 %) i gruppen med blandad nutrition. I gruppen med PN blev 26,3 % övernutrierade medan ingen (0 %) blev övernutrierad i gruppen som fick EN, där istället 42,9 % av patienterna blev undernutrierade. Andelen patienter med undernutrition var 15,6 % i gruppen med PN och 10,1 % i gruppen som erhöll blandad nutrition (se Figur 13).

EN = enteral nutrition
PN = parenteral nutrition


EN = enteral nutrition
PN = parenteral nutrition
DISKUSSION

Syftet med detta examensarbete var att undersöka hur väl patienter på TIVA nutreras, om patienterna uppnår det ordinerade kaloribehovet samt hur avdelningens riktlinjer efterföljs. Resultaten från studien visar att mer än hälften av patienterna på TIVA (66 %) uppnådde det ordinerade/beräknade kaloribehovet och att det hos 65 % av patienterna fanns en kaloriordination i enlighet med TIVA:s riktlinjer. Det fanns inga signifikanta skillnader avseende uppnått kaloriintag mellan kön, åldersklasser eller nutritionsform. Det fanns dock ett signifikant samband mellan förekomst av kaloriordination och uppnått kaloriintag vid bågge granskningstillfällena. Majoriteten av patienterna (69 %) erhöll blandad nutrition medan den minst vanliga nutritionsformen var enbart EN (5 % dag tre, 7 % dag sex). Det minsta observerade kaloriintaget var 200 kcal, det högsta intaget var 3513 kcal och det genomsnittliga intaget på dag tre och sex var 1802 kcal (SD= 445) respektive 1887 kcal (SD= 382). På dag tre var det 22 % av patienterna som övernutrierades, på dag sex var denna siffra 25 %. Vad gäller undernutrition var siffrorna 21 % och 13 % på dag tre respektive sex.

Resultatdiskussion

I 65 % av de observerade fallen fanns en kaloriordination dokumenterad. Enligt TIVA:s riktlinjer ska detta ske dagligen, men så är alltså inte fallet. Nutritionsprotokoll (McClave et. al, 2009; Soguel et. al, 2012; Wöien & Björk, 2005) samt avdelningsdietist (Soguel et. al, 2012) har enligt tidigare forskning förbättrat läkarordinationer avseende nutrition (Spain et. al, 1999; Wöien & Björk, 2005), förbättrat kaloriintaget samt minskat den negativa energibalansen hos intensivvårdspatienter (McClave et. al, 2009; Soguel et. al, 2012; Spain et. al, 1999; Wöien & Björk, 2005). Det borde rimligtvis inte vara omöjligt att uppnå kaloriordination i 100 % av fallen, och med tanke på de eventuella vinster som kan uppnås är detta något som definitivt bör eftersträvas. Även om kaloriordinationen är en läkaruppgift är det viktigt att sjuksköterskan, och kanske även undersköterskan, tar ansvar för att påminna och efterfråga ordenationen om det inte har utförts. Ju fler som hjälper till desto större chans är att det blir gjort och att det till slut blir en väl inarbetad daglig rutin. Det kan även vara bra att ta hjälp av dietist om en sådan finns kopplad till avdelningen, detta är särskilt viktigt hos

EN = enteral nutrition  
PN = parenteral nutrition
patienter där nutritionen är ett stort problem, såsom hos redan malnutrierade eller överviktiga patienter.
I studien granskades 100 patientjournaler vid två olika tidpunkter. I 132 (66 %) av dessa fall hade patienten uppnått det kaloribehov som antingen ordinerats av läkare eller beräknats av författaren. Även tidigare forskning har visat att en stor del av patienterna inte når sitt energibehov (Binnekade et al., 2005). En studie av Kim & Choi-Kwon (2011) visade att patienter med en underordination av kaloribehov ledde till en fem gånger så hög risk att undernutrieras i jämförelse med de som erhöll en adekvat kaloriordination. I denna studie kunde ett signifikant samband (p < 0,001, p = 0,006) visas mellan förekomst av kaloriordination och uppnått kaloriintag vid båda granskningstillfällena. De patienter som hade en kaloriordination uppnådde alltså i större utsträckning kalorimålet i jämförelse med de som saknade ordination. Detta resultat visar att om samtliga patienter på TIVA dagligen skulle ordineras ett kaloribehov så skulle ett betydligt högre antal i större utsträckning också få i sig sitt energibehov.

Sextiosex procent av patienterna i denna studie nådde sina kalorimål, siffror som ligger ganska nära tidigare forskningsresultat (Binnekade et al., 2005). Vad som är anmärkningsvärt är att patienterna nådde i snitt 104 % och 109 % (median 108 %) av kalorimålen på dag tre respektive sex. Av de patienter som nådde kalorimålen var det alltså en stor del som erhöll mycket mer än sitt ordinerade behov, en av patienterna fick så mycket som 95 % mer än det ordinerade/bäcknade kaloribehovet. Detta resultat ligger långt över de siffror som uppmätts i tidigare studier, där patienterna oftast uppnår endast 50-60 % av de ordinerade kalorimålen (Cahill et al., 2010; Heyland et al., 2003; Hise et al., 2007; Krishnan et al., 2003; Serón-Arbeloa et al., 2010). Det visade sig också att ungefär en fjärdedel av patienterna övernutrierades, något som kanske kan kopplas samman med att många av patienterna erhöll PN, oftast tillsammans med EN men även som ensam nutritionskälla. Detta bör kunna förhindras genom att ansvarig sjuksköterka observerar och kontrollerar kaloriintaget under dygnet och stänger av pågående näringsinfusion (EN eller PN) när patienten uppnått sitt mål. Om patienten dessutom äter eller dricker själv är det extra viktigt eftersom det annars är lätt att patienten överskriver sitt näringsbehov utan att själv veta om det.

EN = enteral nutrition
PN = parenteral nutrition
Analyser utfördes på dag tre och dag sex för att se om det fanns någon skillnad mellan äldersgrupper avseende uppnått kaloribehov, men så var inte fallet (p=0,088 och p=0,094). Det hade dock underlättat jämförelsen om grupperna hade varit lika stora eller åtminstone jämnare. På dag tre var det flest i gruppen 19-41 år som nådde kaloribehovet och minst andel i gruppen 42-64 år. På dag sex var resultatet det motsatta med störst andel som nådde målen i gruppen 42-64 år och minst i gruppen 19-41 år. Hög ålder associeras med låga muskelreserver, vilket leder till att äldre patienter är mer utsatta för stressrelaterad katabolism och därmed mer känsliga för undernutrition (Thibault & Pichard, 2010).

Det fanns heller inga signifikanta skillnader mellan mäns och kvinnors uppnådda kalorimål vid något av granskningstillfällena (p= 0,175, p= 0,943). Enligt Strack van Schijndel och medarbetare (2009) är det mer sannolikt att kvinnor uppnår sina kalorimål på grund av att de generellt sett har lägre energiförbrukning än män, men i denna studie hittades alltså inga sådana bevis. På dag tre var det en högre andel kvinnor än män som nådde sina kalorimål, men på dag sex var männen som uppnådde kalorimålet fler än kvinnorna. Även här var det så att fördelningen mellan män och kvinnor var ojämn och detta kan ha påverkat resultatet.

Mer än hälften av patienterna erhöll blandad nutrition medan den minst vanliga nutritionsformen var EN. På dag tre var det flest patienter i gruppen med EN som nådde kaloribehovet och minst andel i gruppen som erhöll PN. Detta resultat kan ses som något förvånande eftersom PN (Gramlich et. al, 2004) och blandad nutrition (Dhaliwal et. al, 2004; Villet et. al, 2005) associeras till högre energiintag (Dhaliwal et. al, 2004; Gramlich et. al, 2004; Villet et. al, 2005) medan enbart EN ofta förknippas med undernutrition (Singer et. al, 2009; Ziegler, 2009). Det bör dock påpekas att antalet patienter som fick EN (n= 5, n= 7) var betydligt färre både på dag tre och dag sex än de som fick PN (n= 23, n= 19) och blandad nutrition (n= 69, n= 69), vilket gör att resultaten är svårare att tolka. Vid granskningen på det sjätte dygnet var det patienten med PN och blandad nutrition som i störst utsträckning nådde sina kalorimål, medan det i gruppen som fick EN var lägst antal patienter som uppnådde kaloribehovet. I grupperna som erhöll PN eller blandad nutrition var andelen patienter som nådde kalorimålet (65,2 %, 68,1 %) större än de som inte gjorde det (34,8 %, 21,1 %). I gruppen som fick EN var dock, på dag sex, andelen patienter som inte nådde kaloribehovet.
(57,1 %) större än de som gjorde det (42,9 %). Detta stödjer tidigare forskningsresultat som menar att det är svårt att nå upp i kaloribehovet med hjälp av enbart EN (Kesek et. al, 2002; Singer et. al, 2009).


---

EN = enteral nutrition
PN = parenteral nutrition


Metoddiskussion
En av styrkorna i detta examensarbete är att så många som 100 patientjournaler granskades och att ingen exkluderades ur studien. Bortfallet i analyserna var som mest 12,1 %, vilket inte är någon hög siffra. Det finns gott om tidigare forskning i ämnet och många av de studier som använts som referenser i detta arbete är tämligen nygjorda. Det har även gjorts liknande nutritionsstudier på sjukhuset, både på en annan intensivvårdsavdelning samt på TIVA i form av en mindre journalgranskningsstudie. Dessa undersökningar har fungerat som inspiration till, samt till viss del legat till grund för detta examensarbete. Studiens syfte och frågeställningar anses ha kunnat besvaras.

Svagheterna i studien innefattar att journalerna enbart granskades vid två tillfällen, trots en vårdtid på sju dagar eller mer. Då författaren själv beräknade kaloribehov togs ingen hänsyn till speciella omständigheter som till exempel feber eller dialysbehandling. Dessa är omständigheter som i normala fall måste tas i beaktande vid beräkning av energibehov och detta skulle alltså kunnat påverka resultatet. Grupperna av patienter som erhållit EN, PN eller blandad nutrition skiljde sig åt i storlek och det är därför svårt att generalisera dessa resultat. Samma sak gäller fördelningen mellan åldersgrupper och kön. Information om patienternas olika diagnoser var ingenting som studien fokuserade på och det är möjligt att detta kan ha inverkat på resultatet.

De flesta av patienterna hade genomgått en operation innan ankomst till TIVA, men så var inte fallet för samtliga patienter vilket kan innebära att de behandlats olika avseende nutritionsbehandling. Det finns även en möjlighet att vissa patienter varit fastande inför eventuella undersökningar eller operationer, vilket har lett till att de inte kunnat få EN. Detta har i så fall haft betydelse i valet av nutritionskälla samt eventuellt också påverkat energiintaget under det aktuella dygnet.

Angående analysmetoder så användes deskriptiv statistik och Chi²-test genomgående i studien. Eventuellt hade analyserna kunnat utföras med hjälp av Spearman’s rangkorrelation (fråga 3), Mann Whitney U-test (fråga 5) och Kruskal-Wallis ANOVA (fråga 4 och 6), men eftersom variablerna som analyserades var kvalitativa valdes istället Chi². Designen för detta

EN = enteral nutrition
PN = parenteral nutrition
examensarbete var retrospektiv, deskriptiv, komparativ journalgranskingsstudie med kvantitativ ansats. Detta kändes som en väl fungerande design för studiens syfte.

Om ytterligare studier skulle genomföras i ämnet borde jämnare grupper avseende ålder, kön och nutritionsform eftersträvas för att därmed få säkrare resultat. Eftersom övernutrition var relativt vanligt förekommande i denna studie vore det intressant att titta närmare på just detta och att undersöka om det eventuellt finns något samband mellan övernutrition och användning av PN på TIVA. Ett förslag till framtida forskning vore till exempel att göra en randomiserad kontrollerad studie där patienterna erhåller olika nutritionsformer, och att sen undersöka om detta i så fall har något samband med över- och undernutrition.

**Praktisk betydelse**

Det som skulle kunna förbättras på TIVA är förekomsten av ordination avseende kalorimål samt att användning av indirekt kalorimetri bör övervägas om det finns möjlighet. Förekomst av kaloriordination bör finnas hos samtliga patienterna och även om det kanske är ett svårare mål att nå kaloribehovet hos 100 % bör det ändå vara det som ska eftersträvas. Många av patienterna inte bara nådde kalorimålet utan erhöll mycket mer kalorier än vad som var ordinerat. Eftersom även övernutrition associeras till flertalet allvarliga komplikationer är detta något som bör uppmärksammas och försöka förhindras. Ett tänkbart alternativ skulle kunna vara att utveckla kaloriordinationen till att innehålla både en minimum- och en maximumgräns av kalorier, där minimumgränsen inte bör understigas och maximum inte bör överstigas.

**Slutsats**

Denna studie visade att mer än hälften (66 %) av patienterna på TIVA erhöll sitt kaloribehov, samt att det fanns ett signifikant samband mellan förekomst av kaloriordination och uppnått kaloriintag. De flesta av de studerade patienterna fick blandad nutrition (69 %), vilket tyder på att TIVA följer ESPEN:s rekommendationer angående nutrition hos IVA-patienter som säger

---

*EN = enteral nutrition  
PN = parenteral nutrition*
att EN är förstahandsval men att PN ska sättas in om kalorimålet inte kan nås med enbart EN. Ungefär en fjärdedel av patienterna övernutrierades (22 %) på dag tre och nästan lika många (21 %) undernutrierades. Respektive siffror för dag sex var 25 % och 13 %.
REFERENSER


BILAGA 1 - DATAINSAMLINGSMALL

Journalnummer:

<table>
<thead>
<tr>
<th>Kän (1/2)</th>
<th>Ålder (år)</th>
<th>Längd (cm)</th>
<th>Vikt (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dag 3</th>
<th>Dag 3</th>
<th>Dag 3</th>
<th>Dag 3</th>
<th>Dag 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutritionsform (1/2/3)</td>
<td>Ordinerat kaloribehov (kcal)</td>
<td>Beräknat kaloribehov, om ej ordinerat (kcal)</td>
<td>Ordinerat/beräknat kaloribehov -10 % (kcal)</td>
<td>Dag 3. Uppmätt kaloriintag (kcal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dag 6</th>
<th>Dag 6</th>
<th>Dag 6</th>
<th>Dag 6</th>
<th>Dag 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutritionsform (1/2/3)</td>
<td>Ordinerat kaloribehov (kcal)</td>
<td>Beräknat kaloribehov, om ej ordinerat (kcal)</td>
<td>Ordinerat/beräknat kaloribehov -10 % (kcal)</td>
<td>Dag 6. Uppmätt kaloriintag (kcal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Man = 1
Kvinna = 2
Enteral nutrition = 1
Parenteral nutrition = 2
Blandad nutrition = 3
Ja = 1
Nej = 0


Elin Klots