Ordered indexing methods for data streaming applications

Sobhan Badiozamany
Abstract

Ordered indexing methods for data streaming applications

Sobhan Badiozamany

Many data streaming applications need ordered indexing techniques in order to maintain statistics required to answer historical and continuous queries. Conventional DBMS indexing techniques are not specifically designed for data streaming applications; this motivates an investigation on comparing the scalability of different ordered indexing techniques in data streaming applications. This master thesis compares two ordered indexing techniques – tries and B-trees - with each other in the context of data streaming applications. Indexing data streams also requires supporting high insertion and deletion rates. Two deletion strategies, bulk deletion and incremental deletion were also compared in this project. The Linear Road Benchmark, SCSQ-LR and Amos II were comprehensively used to perform the scalability comparisons and draw conclusions.
Acknowledgments

The idea of this project was suggested by Prof. Tore Risch. Without his continuous valuable supervision, support, guidance and encouragement it was impossible to perform this study. I would also like to thank Erik Zeitler and Thanh Truong. Erik helped me in understanding the LRB and also running the experiments. Thanh generously shared his valuable knowledge on extending Amos with new indexing structures.

I owe my deepest gratitude to my wife Elham, who has always been supporting me with her pure love. She went through a lot of lonely moments so that I can finish my studies. I would also like to show my gratitude to my parents for their dedication and the many years of support during my whole life that has provided the foundation for this work. I also want to thank our little Avina who with her beautiful smile gave a new meaning to our family life and provided relaxation from stressful moments.

My special thanks go to my best friend Karwan Jacksi, who during last two years was always around for a none-study-related friendly talk. Amanj, Hajar, Salah and other friends, thank you very much for your support and friendship.

This project is supported by VINNOVA, grant 2007-02916.
Table of Contents

1. Introduction .. 1

2. Background and related work .. 4
 2.1 The Linear Road Benchmark .. 4
 2.1.1 LRB data load .. 4
 2.1.2 LRB performance requirements .. 5
 2.2 Amos II and its extensibility mechanisms .. 6
 2.3 SCSQ-LR .. 7
 2.3.1 Segment statistics, the SCSQ-LR bottleneck ... 8
 2.4 Previous applications of tries in data streaming .. 10
 2.5 Tries and common trie compression techniques .. 10
 2.5.1 Naïve trie ... 11
 2.5.2 How to support integer keys in tries ... 12
 2.5.3 Naïve tries’ sensitivity to key distribution .. 12
 2.5.4 Using linked lists to reduce memory consumption in tries 13
 2.5.5 Building a local search tree in every trie node .. 13
 2.5.6 Burst Trie ... 14
 2.5.7 Judy, a trie based implementation from HP .. 14
 2.6 A brief evolutionary review on main memory B-trees .. 18

3. Ordered indexing methods in main memory; Trie vs. B-tree ... 19
 3.1 Insertion ... 20
 3.2 Deletion .. 20
 3.3 Range Search ... 21
 3.4 Memory utilization ... 22
 3.5 B-trees vs. Tries in LRB .. 24
 3.6 Tries vs. B-trees: a more general comparison and analysis 24

4. SCSQ-LR implementation specifics ... 26
 4.1 LRB simplifications ... 26
 4.2 Exploiting application knowledge to form integer keys .. 26
 4.3 Implementation structure: C, ALisp, AmosQL ... 27
 4.4 Performance improvements ... 29
1 Introduction

In recent years, the area of stream processing applications has attracted many research activities from the database research community. In contrast to database management systems (DBMSs), in a Data Stream Management System (DSMS) data is not stored in persistent relations; instead it is produced in continuous, transient and rapid data streams. There are various applications for DSMS; Examples include network monitoring, data gathered from high throughput scientific instruments, stock market, data from telecommunications industry, web applications, and sensor networks. DSMS applications require support of continuous queries (1), approximation (2), and adaptivity (3) features in order to process queries on huge data volumes in streams. Because DBMSs do not fully support these capabilities, in many of the mentioned applications, it is not possible to load the DSMS data into a traditional DBMS and perform conventional database queries and transactions. A number of DSMSs have been developed to handle high volume data streams, including Aurora (4), STREAM (5) and TelegraphCQ (6), and SCSQ (7) (8) (9).

Indexing techniques play a key role in answering continuous and ad-hoc queries in data streaming applications. One of the main characteristics of a data stream is that after a data element has arrived to the system, it is not possible to re-visit it (10). This characteristic point out the nature of challenges involved in answering ad-hoc queries that require data produced early in a stream. In order to overcome these challenges, a DSMS needs to maintain summary information about past data. Analogous to traditional DBMS applications, data indexing techniques can be employed to maintain such summary data. Yet the requirements of data stream indexing is not exactly the same, causing some traditional DBMS indexing structures to fail meeting the requirements of DSMS applications. One of the main differences between DBMS and DSMS indexing requirements is that, In addition to performance requirements for conventional DBMS indexing, indexing structures in data streaming applications need to be able to handle very high insertion and deletion rates. Nevertheless, traditional data indexing techniques have been employed in DSMS applications to answer ad-hoc queries. For example, in DSMSs B-trees are often used when range search queries are needed (4), (11) and hashing techniques are commonly utilized for counting, e.g. for identifying frequent events in a stream (12), (13).
In this project the scalability of two different ordered indexing structures - tries and B-trees - are compared in data streaming applications. To get a realistic test case for data streaming application in which we could test different indexing strategies, we used the Linear Road Benchmark (LRB) (14). LRB is designed to evaluate the performance of a DSMS. The main goal of the benchmark is evaluating performance of a DSMS under very high load of input streams and historical queries. According to the benchmark specifications, in order to pass validation an LRB implementation has to produce accurate results and meet response time requirements as well.

In comparing scalability of different ordered indexing methods for data streaming applications, it is important to note that supporting high insertion and deletion rate is one of the major indexing demands. This supported the initial hypothesis that the indexing techniques which support higher insertion and deletion rates are better candidates for data stream indexing. On the other hand, experimental results revealed that in practice, it is the specific mixture of insertion, deletion and range search in a particular application that determines which indexing technique provides the most scalable solution. To get a realistic mixture of insertion, deletion and search queries, we used LRB to test the scalability of indexing methods. Particular to our benchmark LRB implementation, the range search was the most demanding operation and therefore B-trees outperformed tries.

Regarding the indexing maintenance, two deletion alternatives were compared, bulk deletion and incremental deletion. Again LRB was used as a testing platform. As anticipated the bulk deletion was a more scalable solution, but since in LRB the range search was the dominant operation, different deletion alternatives provided minor improvements which did not affect the final outcome of the benchmark implementation in terms of the \(L\)-rating.

The rest of this report is organized as follows. In Chapter 2 the LRB, SCSQ-LR, tries and B-trees are reviewed to provide the knowledge that is required to understand the rest of the report. Chapter 3 presents a general comparison of in-main-memory ordered indexing structures that are used in this project; Judy and main memory B-tree. Chapter 4 presents the developments activities that were done on SCSQ-LR during this project to provide fair comparison between Judy and main memory B-tree in the context of a data streaming application. Chapter 5 compares two different index maintenance strategies in data streaming applications; bulk deletion and incremental deletion. Finally, the
experimental results are presented in chapter 6. Chapter 7 and chapter 8 draw the conclusion and suggest future work.
2 Background and related work

In this chapter first the Linear Road Benchmark (LRB), its specifications and its performance requirements is reviewed. Then the particular implementation of the LRB - SCQS-LR – that we have used in our experiments is reviewed. Next a rather detailed review of tries and common trie compression techniques are presented. More focus is given to Judy, a trie implementation that was used in the experiments.

2.1 The Linear Road Benchmark

The Linear Road Benchmark (LRB) (14) is designed to evaluate the performance of a DSMS. Unlike SQL, used for queries in DBMSs, there is no standard query language for DSMSs, thus LRB specifies a benchmark without requiring exact queries in any specific query language. LRB simulates a variable toll system (15) for a number of expressways (L). Each expressway is 100 miles long and is divided into 100 1-mile-long segments. An implementation of LRB by a DSMS achieves an L-rating, which is the maximum number of expressways it can handle. The input stream is generated by the MIT Traffic Simulator (16) which generates input files for a given L-rating. There are four types of tuples in the input stream: vehicle position reports, daily expenditure queries, account balance queries, and estimated travel time queries.

2.1.1 LRB data load

LRB runs for 3 hours. The input stream rate is not constant during the benchmark implementation. In a single expressway, in the first second there are only 14 events. The number of events increases as the simulation proceeds; at the end of the simulation it reaches 1700 events per second. Because the last 13 minutes of the simulation contains 10% of all input events, the major challenge for an LRB implementation is to handle the load at the end of the simulation. Figure 1 illustrates the load distribution for L=1.0. The load distribution for higher L ratings is similar, but proportional to L.
The performance requirements of LRB could be categorized into two types: First, real-time response time which is required in answering continuous queries, and second maintaining the statistics that is required in processing historical queries.

There are two forms of continuous queries that LRB implementations must deliver; accident detection and toll processing. LRB implementations must generate accidents notifications as an output stream. An accident happens when at least two cars report the same position at the same time, so on each position report the accident detection process must be involved. Toll processing is another output stream which is also triggered by position reports. Every time a vehicle enters a new section the toll for that section must be calculated based on the current congestion, average speed on the section and proximity to accident. The real time response requirements for both of the

Figure 1 - Load distribution for L=1.0 (11)
mentioned continuous queries an output event to be delivered not later than 5 seconds after the respective position report arrives to the system.

LRB specifies three historical queries; account balance, daily expenditure, and travel time estimation. An answer to an account balance query must accumulate all tolls charged to a vehicle from the start of the simulation. The daily expenditure query asks about the toll for a given expressway at a given date. The travel time estimation query requires the system to predict the time it takes to travel from one section of an expressway to another one based on the statistics from previous ten weeks. Historical queries are triggered when the request for them appears in the input stream. The real time response requirement for historical queries specifies that the output must be ready not later than 5 seconds after the respective query appears in the input stream.

Responding to continuous and historical queries requires the system to keep statistics per each section of every expressway in every minute. In other words, statistical data required to produce average speed and number of cars in each segment have to be stored in an indexing structure to make fast retrieval possible when answering continuous queries and also when historical queries arrive. If ordered indexing structures are used to maintain statistics, like in the SCSQ-LR implementation (11), calculating statistics becomes the bottleneck of the LRB implementation.

The LRB provided the realistic simulation in which we compared the scalability of ordered indexing methods.

2.2 Amos II and its extensibility mechanisms

AMOS II (17) is an extensible mediator database system. There are various extensibility mechanisms provided by Amos II, which provides the possibility of querying heterogeneous data sources, integrate Amos II with existing systems and functionalities in other systems, and most interestingly incorporate new indexing structures. In general there are two methods of extending Amos II to incorporate new indexing structures. The first method is more general and is commonly used to extend the system with any component written in other programming languages such as C, Lisp, Java, or Python. This is done through writing foreign functions described in (18) (19). While this method provides all required facilities to add a new indexing structure, it takes more development time and complicated coding. The second method, specifically designed to add external indexing structures is called Meta External Index Manager (MEXINMA) (still under development). MEXINMA is designed based on the fact that on an abstract level
all indexing methods share some analogous functionality. In MEXINMA most of the foreign functions to access an index are previously defined and they just need to be specialized. Furthermore, MEXINMA supports dynamic linking and provides facilities to define index-specific query rewrite rules that are essential for query optimization.

Extensibility mechanisms of Amos II were used in this project to incorporate new indexing structures.

2.3 SCSQ-LR
SCSQ (Super Computer Stream Query processor) (7) (8) (9) is a DSMS as an extension of AMOS II. SCSQ-LR (11) is an implementation of the Linear Road Benchmark that is based on Amos II. SCSQ-LR achieved L-rating of L=1.5 on a single processor (11). The original SCSQ-LR can be downloaded from (20). Figure 2 illustrates the overall SCSQ-LR architecture and shows how components are interconnected.

![Figure 2 – Overall SCSQ architecture](image)

The SCSQ-LR engine consists of several components. In order to identify the bottleneck of SCSQ-LR, we need to take a closer look at the SCSQ-LR engine. Figure 3 illustrates the internal data flow of SCSQ-LR.
2.3.1 Segment statistics, the SCSQ-LR bottleneck

In SCSQ-LR B-trees with node size optimized for the processor’s cache line were used as the indexing structure. First we review the segment statistics that are required, alongside the data elements that must be taken into consideration in order to generate segment statistics.

Whenever a car position report arrives to the system, among other fields, the input tuple includes the following fields:

- Expressway it is traveling on (x)
- The direction in which it is traveling on (d) which is either east or west
- The segment of the expressway (s)
• The vehicle id (v).

Segment statistics in a given \{x, s, d\} consists of two figures LAV and NOV. LAV stands for Latest Average Velocity and is calculated over the last 5 minutes. NOV stands for Number Of Vehicles and is calculated over the last minute. In order to have enough information to generate LAV and NOV per \{x, s, d\}, the following grain statistics have to be stored when a position report arrives:

• Average velocity of each car in a given \{x, s, d\}
• Number of cars in a given \{x, s, d\}

The straight forward indexing approach is to maintain last 5 (in case of LAV) and 1 (in case of NOV) minute of data in two B-trees. In other words, there should be two B-trees containing the following <key, value> pairs:

• \(\langle\{x, s, d, v\}, \text{LAV}\rangle\)
• \(\langle\{x, s, d, v\}, 1\rangle\) (NOV is sum of values for the given key range: \(\{x, s, d,*\}\))

This requires keys to be removed when they are older than 5 (or 1) minutes, so there will be as many individual deletions from indexing structure as there are insertions into it. This incremental deletion approach is studied in section 5.2 alongside the bulk deletion approach. The latter is implemented in the original SQSQ-LR and is as follows. In the beginning of each new minute, two new B-trees are created, one for LAV and one for NOV. Since data from last 5 and 1 minutes is required to calculate LAV and NOV respectively, B-trees older than 5 (and 1) minutes are entirely deleted. This is based on the fact that removing the whole B-tree is computationally cheaper than incrementally removing individual elements from it. In total 8 B-trees were used in SCSQ-LR, 6 for maintaining LAV and 2 for maintaining NOV. The extra B-trees are needed to store current minute data.

Having data stored per minute as described, calculating NOV and LAV is rather simple. To calculate NOV for a given \(\{x, s, d\}\), a count query with pattern \(\{x, s, d, *\}\) is posed to the NOV B-tree of last minute, this means retrieving the number of vehicles that are in \(\{x, s, d\}\). LAV can be calculated by computing the average values in the LAV B-trees of the last 5 minutes in the \(\{x, s, d, *\}\) key range. To find more details about the original SCSQ-LR segment statistics code refer to Appendix A (10.1).
The bottleneck of SCSQ-LR implementation were identified by profiling. Range search \((avgv)\) was found to be the bottleneck. The main reason for this is that for each toll alert, all keys in a given \(\{x, d, s\}\) have to be visited in a range search.

During this project it was also discovered that this expensive range search can be avoided by incrementally maintaining a *moving average* \((21)\) to eliminate the necessity of employing ordered indexing methods and therefore hash indices provide the most scalable solution. Since the focus of this project was ordered indexing methods, no more explanation will be provided on the range search free version of SCSQ-LR. However, readers can refer to Appendix B \((10.2)\) which contains the range search free version of segment statistics.

2.4 Previous applications of tries in data streaming

Tries are frequently used when prefix sharing is required. One of such applications in data streaming is filtering of XML streams in publication and subscriptions systems \((22)\) \((23)\). In filtering of an XML stream, the problem is distributing the incoming XML stream into several outputs/destination streams by applying respective filters. Tries were used to implement such filters in \((23)\) and \((22)\). In filtering XML streams tries represent the filters rather than indexing the incoming data stream. For example in Xtrie \((23)\) when an XML document appears in the stream, after it is parsed, substrings of the document are used to probe the trie to find possible matches. In other words, in publication and subscriptions systems tries were used to index the filters and not the incoming stream.

In contrast to applications of tries in XML stream processing, in this thesis tries were used in a completely different context. Here we employ tries in a very general indexing scheme that supports the same applications as other ordered indexing structures like B-trees support. In this thesis tries were used to maintain statistics of incoming streams which requires massive insertion and deletion of incoming stream data into the indexing structure.

2.5 Tries and common trie compression techniques

Digital trees or tries are multi-way tree data structures that store an associative array. Since their introduction, the most common application of tries has been indexing text. Tries sequentially partition the key space to form the digital tree, therefore in contrast to most tree-based indexing structures (like binary trees and spatial partitioning trees), the position of a node in a trie indicates the keys it holds. Therefore a trie can be considered as a type of multilevel hashing technique. Digital trees have a key difference
to hashing though; they maintain the order of the keys and therefore can answer range search queries as well. The key positioning model in a trie directly implies another attractive feature as well. There is no need for balancing the digital tree structure when keys are added or removed. Some indexing structures like B-trees might suffer from balancing over-head when keys are massively added or removed as for high volume streams.

2.5.1 Naïve trie

In the simplest form of tries for indexing text, a trie is a tree structure in which each node is an array of pointers of size of the alphabet, e.g. 256. In the internal nodes, each element of this array points to another lower level node. In the leaf nodes, each element points to data. In a naïve trie implementation, the keys are not stored in the tree, they are inferred by position. The main advantage of naïve trie is its trivial implementation. Search/insertion algorithms are simple; start from the root node and the first character of the string key, decode the first character and follow the respective pointer from the root node’s pointer array to get to the next node. The search/insertion then continues by the new node and the next character in the string until we reach the end of the string or a leaf node.

Figure 4 shows a trie that contains keys “cat”, “car”, “cone”, “cold”, “dell”, and “delta”.

![Figure 4](image-url)
The main advantage of a trie is fast insertion and retrieval. Each string is mapped in a time proportional to its length. This implies that if the key length is fixed, tries support constant insertion/search access time. Another advantage is that there is no need to compare the whole key in each level, only one byte of the key needs to be considered at each level. In contrast, in balanced trees, the several characters of the key have to be processed at each level, which possibly becomes expensive if the keys are long.

2.5.2 How to support integer keys in tries
Although tries are initially introduced to index character strings, they can be modified easily to index integer values. The most straightforward way is breaking the integer into bytes and introducing these bytes to the trie like characters of a string. In this report for simplicity reason we always consider integers to be 32 bits. Furthermore, in this report it is always assumed that 32 bit integer keys are broken to 4 bytes, in order to address related pointers in different levels within the trie. Nevertheless, tries can be modified to support longer integers and other forms of breaking integers are also possible.

In a naïve trie implementation for integer keys, the trie is always 4 levels deep. Each node is a simple array of 256 pointers to nodes in the next level. (Or in case of nodes in 4th level, a data pointer) Refer to Appendix F (10.6) to review naïve trie data structure.

2.5.3 Naïve tries’ sensitivity to key distribution
The naïve trie suffers from poor memory utilization. Depending on data distribution, there might be many null pointers in the sparse pointer arrays representing the trie node, which is a waste of memory. For example, naïve tries do not scale well for uniform distribution in wide ranges. To illustrate this phenomenon, two tests were performed on naïve tries.

In the first test, random numbers were generated from uniform data distribution from the full integer range. This means that in this test, each number was randomly picked from range $[0 - 2^{32}]$. This distribution causes naïve tries to run out of memory by a relatively small key population. This behavior is due to the fact that if the number of inserted keys is big enough (roughly around $2^{32} / 256 \sim$ around 16 million keys), in a flat (uniform) distribution, many of those keys share the first 3 bytes, and therefore they are identical except for the last byte. This results the trie to grow to a full 256ary tree 4 levels deep. This requires $(256^4)\cdot1$ nodes, which will not fit into the main memory. In practice naïve tries exhaust the main memory much earlier.
The second test, was also a uniform key distribution, but from a narrower integer range. As expected, it was observed that if the data distribution range is narrower, naïve implementations don’t waste too much main memory. This can be described using the same concepts discussed in analyzing the first test results. For example, if the key distribution is flat from a range that is 10,000,000 keys wide, it needs \(\frac{10,000,000}{256} = 39062 \) nodes in the lowest level in the worst case (when trie is fully grown) and this number of nodes can easily be stored in main memory of the modern computers. The overall utilization of each node depends on the number of keys in the trie and it increases proportional to the density of keys in the range.

To conclude, naïve trie implementations are sensitive to key distribution. If the distribution of the keys is random (flat) in a very wide range, naïve tries use too much memory and do not scale. On the other hand, according to our experiments, a naïve trie implementation scales reasonably well with normal (Gaussian) data distribution.

When designing indexing structures for streaming data, the main challenge is how to support fast insertion/retrieval together with reasonable main memory consumption. Several compression techniques have been introduced to overcome naïve tries weak memory utilization (24) (25) (26) (27) (28). The main objective in most of them is to achieve a compact representation that despite its compactness can still support constant insertion/search time. The main trie compression techniques are reviewed in the coming sections.

2.5.4 Using linked lists to reduce memory consumption in tries

The simplest compression approach is to use a linked list instead of a fixed size array to represent sparse pointer array in each node. This approach is optimized good solution from the memory consumption point of view, but it delivers poor performance. Insertion and search algorithms need to perform a linear search in each node to find the proper next pointer to follow. Furthermore since internal node elements are scattered across the whole main memory, this solution does not exploit CPU caches effectively. Two linked-list-based compression approaches are introduced in (25) (26).

2.5.5 Building a local search tree in every trie node

Another alternative to reduce memory consumption and achieve relatively good performance is building a search tree in every node to represent the sparse pointer array instead of having a fixed size array. This approach delivers better performance in comparison to a linked list solution. In this approach, a logarithmic time is required to
traverse the node’s internal elements to find the proper pointer to follow. This is not an optimal solution because there is still need for local search in every node which reduces the performance of original trie implementation. This idea is implemented in ternary search tries (27). Similar to a linked list solution, this approach does not utilize CPU caches.

2.5.6 Burst Trie
A burst trie (28) is based on the idea that as long as the population is low, keys that share same suffix can be stored in the same container (or node). Containers have a limited capacity and therefore in an attempt to insert more keys into a full container, depending on the implementation particulars, the container “bursts” into several containers. Keys will be redistributed to new containers based on deeper suffix calculations. This is an effective approach in decreasing memory consumption. However, since the container capacity is fixed in all nodes, memory is still wasted in low population nodes, and therefore this is not the optimal solution for trie memory consumption problem.

In burst trie, the CPU cache utilization depends on the representation of the containers. If the container is stored in consecutive memory cells (i.e. in arrays), the implementation takes advantage of the CPU cache. Implementing containers using linked lists will result in poor performance since CPU cache is not utilized.

2.5.7 Judy, a trie based implementation from HP
Developed by Doug Baskins at HP Labs, Judy (24) (29) (30) is a compressed trie implementation that focuses on CPU cache utilization to improve performance. It could be categorized as a variation of burst trie, but with an important extension to it; the node (container) data structure and size is not fixed. To improve memory and CPU cache utilization, Judy changes node structures according to the current population of each node. Since Judy was used in our experiments, we review its internal structure here.

The key to an effective compression technique is to design a compact node structure such that it fits in a single cache block. In this fashion, as soon as the node is accessed, all of its contents are stored in the CPU cache for fast successive access.

Judy uses arrays to store compact nodes; the sizes of which are decided very carefully so that they fit in one cache block. This gives Judy a great advantage over most other compression techniques since it exploits the CPU cache very efficiently. Unlike Judy,
most compact tries (27) (28) (26) use linked lists and trees to store contents of the compact nodes of a trie. Since the elements of a linked list are scattered across the main memory, they do not take advantage of modern CPU caches.

In its most basic form, Judy indexes keys of the size of a machine word using the JudyL array structure, therefore several JudyL arrays have to be combined to index longer strings (30). This structure by definition works well for indexing integers of the size of a machine word. JudyL is a 256ary trie, thus in 32 bit environments JudyL is always 4 levels deep. In each level one byte of the key is decoded to locate the next-pointer to follow. This implies that every key in a JudyL is accessible in (maximum) 4 cache line misses.

Depending on the population of each node, Judy nodes transform between one of three node structures: linear, bitmap, and uncompressed (24). Figure 5 shows how a node transforms from one node type to another. Linear and bitmap nodes are stored in arrays that fit in a single cache block, but an uncompressed node is flat array of 256 elements. Judy assumes that cache line size is 64 bits, or 16 words (24).

![Image]

Figure 5 – How nodes in a Judy array transform from one form to another.

2.5.7.1 Linear nodes

When the number of pointers in a node is very small (up to 7 keys, compared to 256 keys in a fully populated uncompressed node), linear nodes are used. A linear node consists of three sections: number of pointers, current bytes-to-decode of the keys present in the node, and next-pointers. One byte is needed to store the number of keys, and 7 bytes to store the current bytes of the keys. These two consume 8 bytes (2 words) and assume 16 words cache line size; the 14 remaining words in a linear node are used to store 7 (sorted list of) pointers (2 words each) to next level nodes. Even if the population is below 7, the linear node is still 16 words long. This is to simplify insertion/deletion and faster memory allocation.

Figure 6 illustrates a linear Judy node. JP stands for Judy pointer. The reason JP is longer than expected is that it contains population data and pointer type information too. Each
wide block represents two words; first two narrower blocks are one word each. These 16 words are stored in an array and they altogether compose a linear node.

<table>
<thead>
<tr>
<th>NumJP=4</th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP for expanse 1 (E1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP for expanse 2 (E2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP for expanse 3 (E3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP for expanse 4 (E4)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(one word across)

(two words)

(total 16 words)

Figure 6 - Judy linear node (24)

Similar to burst tries, the linear nodes burst into bitmap and/or uncompressed nodes during key insertion process if they become full.

2.5.7.2 Bitmap nodes

When a linear node becomes full, it bursts into a bitmap node. A bitmap node is a two layer structure. The first level is the bitmap together with pointers to the second level. The second level is a linear (packed) list of next level pointers. Bitmap nodes are also converted to uncompressed nodes when population justifies doing so. The bitmap needs to cover 256 elements, therefore it requires 256 bits. These bits are packed into 8 bit groups; each followed by a pointer to the list of actual next-pointers. The bitmap is exactly 16 words long which fit in one cache block. Figure 7 illustrates an example of a
bitmap node. Bitmap nodes shrink to linear nodes if the number of elements in them drops to less than 7.

Figure 7 - Judy bitmap node example (24)

2.5.7.3 Uncompressed nodes

Uncompressed nodes resemble nodes in naïve trie implementations. They are simply an array of 256 pointers. When the population of a linear or a bitmap node is big enough to justify for an uncompressed node, it bursts into an uncompressed node at insertion time. Note that in order to retrieve the next pointer in uncompressed nodes, the process directly accesses the respective element of the array by its index. This costs exactly one cache line miss.
2.6 A brief evolutionary review on main memory B-trees

First introduced in 1972 by R. Bayer and E. M. McCreight (31), for over three decades, the B-tree has been the most widely used ordered indexing method in secondary storage. A B-tree is a generalization of binary search trees with the extension that each node can have many children. B-trees were originally designed in the context of storing indexing structures on disks. With ever increasing availability of cheaper and larger main memory, in many cases it has become possible to load and/or maintain the whole B-tree in the main memory. Unlike the first generation of B-trees in which they were tuned to minimize expensive disk access, indexing data in main memory requires a different optimization and tuning approach.

There were attempts to re-introduce B-tree-like indexing structures that are specifically designed to be maintained in the main memory; among them is the T tree (32). A T tree is again a variation of the binary tree data structure in which the nodes have always two children and they hold an ordered array of data pointers. While T-trees are recurrently used for main-memory databases such as Datablitz, eXtremeDB, MySQL Cluster, Oracle TimesTen and KairosMobileLite (33), a recent study suggests that in modern processors, they actually do not perform better than classical B-trees in the context of in-main-memory indexing (34). Therefore classical B-trees regained the research focus and there has been attempts to make B-trees cache conscious (34) (35).

The Main memory B-tree that was used in this project was a classical B-tree implementation derived from (36), with one key performance improvement for in-main-memory indexing; the sizes of the nodes were experimentally tuned to minimize cache misses.
3 Ordered indexing methods in main memory; Trie vs. B-tree

Although LRB provides a practical mixture of insertion, deletion and range search operations, to have a more precise assessment on individual operations, in the first step B-trees and tries were compared for pure insertion, deletion, and range search operations outside the LRB. The data used for all these experiments were LRB data. In addition, to remove any source of ambiguity in measuring time, all tests were done in pure C.

In order to make sure that all time measurement of insertion, deletion, and range search operations are pure operation-specific-time and include least possible amount of overhead, the tests followed the following procedure:

- **Remove duplicates**: read input tuples from the LRB input file, form the integer keys, and store them in a unique index.
- **Form data array**: read the unique index and insert all the keys in an array. (to remove index access time overhead in next step, the insertion)
- **Insert time measurement**: the keys are read from the array and inserted to the indexing structure.
- **Range search time measurement**: random [low, high] ranges were generated such that they all have the same selectivity - the ratio of number of keys in [low, high] over total number of keys in the index. The average time it took to execute 500 range searches were measured for each index structure.
- **Incremental deletion time measurement**: by sequentially accessing the keys in the data array, delete the keys from the indexing structure.

Given that the intention was to measure scalability, we gradually increased the number of keys in the indexing structure in a number of steps, and then measured the time it took to perform insertion, deletion, and range search operations. Moreover, to typify the measurement, operations were done in batch, i.e. instead of measuring the time of insertion of a single key in each step, which could be affected by noise, we measure the time it took to insert e.g. 0.5 million keys.
All experiments were run on an Intel (R) Core(TM) i5 760 @2.80GHz 2.93 GHz CPU with 4GB RAM.

3.1 Insertion
Figure 8, shows comparison of scalability of the insert time in B-tree and Judy. As of Judy, the insertion time was constant. Therefore, it provides the best scalability behavior in which the insertion rate could be kept constant no matter how big the index becomes. Judy’s constant insertion time is because the key length is fixed in our experiments, and fixed key length provides constant access time as described in section 2.5.2. On the other hand, B-trees insertion scalability resembles a logarithmic behavior, which again confirms the theoretical analysis of B-tree insertion algorithm. The steepness of this logarithmic curve is dependent on node size in B-tree.

![Figure 8 - The scalability of insert: Judy vs. B-tree. The time required to insert 0.5 million keys by current index size.](image)

3.2 Deletion
Figure 9, shows comparison of deletion times in B-tree and Judy. As of Judy, the deletion time was constant. Therefore, it provides the best scalability behavior in which the deletion rate could be kept constant regardless of the current size of the index. Judy’s constant deletion time is because the key length is fixed in our experiments, and fixed key length provides constant access time as described in section 2.5.2. On the other hand, B-trees deletion scalability resembles a logarithmic behavior, which again
confirms the theoretical complexity analysis of B-tree deletion algorithm (average time complexity). The steepness of this logarithmic curve is dependent on node size in B-tree.

![Figure 9 - The scalability of Deletion: Judy vs. B-tree. The time required to delete 0.5 million keys by current index size.](image)

3.3 Range Search

Average range search time for B-trees and Judy are illustrated in Figure 10. In each index size, 500 randomly generated ranges were retrieved such that they all have the same selectivity. Then the average retrieval time is calculated and plotted in Figure 10.

The B-tree behaves like this because in B-trees keys are stored in order, i.e. adjacent keys in the order are – in most cases – stored in the same B-tree node, and more importantly, the range search is implemented as a mapper function which continues scanning the B-tree (most of the times in the same node) until it reaches a key that is out of the range. Suppose accessing range R1 takes T time units, and range R2 is N times bigger (wider) than R1, then accessing R2 takes approximately T*N time units. This brings about the linear scalability behavior of B-tree range search.

In Judy, on the other hand, range search is implemented in a different way. The range search in Judy starts by looking for lower bound of the range. The algorithm then
continues retrieving the next key in range in a loop until the key retrieved is bigger than the upper bound of the range. Although in most cases keys that are adjacent in the order are stored in the same node in Judy, since the procedure to retrieve the next element always start from the root, it does not exploit this locality. Sample code implementing range search in Judy is provided in Appendix E (10.510.5). To understand the scalability curve of Judy in Figure 10, it must be noted that when LRB data is used, as the tries grows, it gets more and more densely populated (the traffic in a given \(\{x, d, s\}\) increases). This means that in trying to access the next element in the range, the procedure more frequently accesses almost the same path down the trie, except the last level (see key formation in section 4.2), which implies less cache hit misses and improvement in performance. This provides a good basis for the hypothesis that in an improved Judy range search, where (similar to B-tree) search resumes locally, Judy will still behave similarly, but the red curve will be pushed down.

![Figure 10](image)

Figure 10 – The scalability of the range search: Judy vs. B-tree. The average time to retrieve a range with a constant selectivity ratio, as the index grows.

3.4 Memory utilization

As discussed in section 2.5.3, since the placement of the key in a trie is based on the byte string of the key, tries are sensitive to key distribution. B-trees on the other hand,
place the keys in the tree based on the function that defines the order between keys. As a result, B-trees are not sensitive to key distribution from the memory utilization viewpoint.

![Memory utilization comparison, random key distribution](image)

Figure 11 – Memory utilization comparison, random key distribution

Figure 11 and Figure 12 show how this sensitivity to key distribution affects the memory utilization of Judy compared to B-tree. In Figure 11, the key distribution is random, so the keys are sparsely distributed in the whole key range. On the other hand, in Figure 12, keys are derived from the LRB data. In LRB, as the simulation proceeds, traffic goes high, causing more and more cars to appear in a given section of each expressway. This means that the number of the keys in range \{x, d, s, *\} increases, and therefore key density raises. This explains why memory utilization of Judy in Figure does not increase with a constant rate as in Figure 11.

Judy takes the advantage when the density of the keys in the range increases, i.e. keys share some prefix. Nevertheless, even in random distribution, which is the worst case for tries, Judy still outperforms B-tree from memory utilization perspective. This is best explained by dynamic population-based node structure in Judy, explained in section
2.5.7. The B-tree curve on Figure 11 and Figure 12 is identical, confirming the fact that Memory utilization of B-trees is not sensitive to key distribution.

![Memory utilization comparison graph](image)

Figure 12 – Memory utilization comparison, Keys derived from LRB input file.

3.5 B-trees vs. Tries in LRB

Toll calculation is the most frequent continuous query in the LRB. According to specifications mentioned in (11), whenever any car enters a segment in which it has not been before, the car has to be notified about the current toll of the segment. Most car position reports happen only once in a segment, making toll calculation necessary for almost all position reports. This makes toll calculation and consequently range search in ordered index the hot spot in any LRB implementation that uses ordered indexing for maintaining segment statistics. Therefore, it is no surprise that in comparison of different ordered indexing methods in this scheme, the ones with faster range search will outperform others.

3.6 Tries vs. B-trees: a more general comparison and analysis

B-trees were originally designed and optimized for disk based storage environments where data is read from magnetic disk and loaded into main memory. Since accessing disk is very expensive, in a disk based storage environment, the main goal is to minimize
the number of accesses to disk. Consequently, the optimal node size for indexing structures is equal to the size of a disk block. Since the disk block is huge (compared to 64 bytes CPU cache line size), B-tree nodes can contain a very high number of pointers. More pointers in a node means higher fan out degree and a shallower tree which is the main advantage of B-tree.

Indexing data in main memory resembles the same challenges as disk based environments. The roles are different though, main memory is the slow storage and CPU cache is the fast one. Another difference is that the CPU cache line is much smaller than a disk block. Similar to disk based environments, in main memory indexing, data structures must take block size (here, cache-line size) into consideration in order to provide a fast and scalable indexing technique. Consequently, the optimal node size for an in-main-memory indexing techniques is equal to the cache line size.

Although the cache line miss optimization is important in indexing data in main memory, the best way to understand the difference between B-trees and tries is through analysis of computational complexity of algorithms. B-trees need to maintain a balanced structure but tries don’t. Keeping the structure balanced adds computation costs to insertion and deletion procedures. In contrast, tries do not need to balance the structure and provide constant access time in insertion and deletion. This characteristic makes tries very good indexing solutions for data stream indexing. But when it comes to retrieving a range, it is very important how the range search algorithm exploits locality. As discussed in section 3.3.3, since the range search algorithm in B-trees exploits locality better than Judy, it scales better in range search retrievals. After all, there is no free lunch; tries cannot be good at all operations. Trie provides very fast insertion and single-key-lookup at the cost of slower range search.

As a final point, choosing an ordered indexing structure for a particular application is very much dependent on the nature of the application, and also its design. In case of implementing LRB using ordered indexing, the application and design dictates an index-operation-mixture in which the range search dominates insertion and deletion operations and as a result B-trees outperform tries. Tries are still good candidates in other data streaming applications where range search is more seldom than insertion and deletion.
4 SCSQ-LR implementation specifics

To compare the scalability of B-trees and tries in a realistic data streaming simulation, the B-tree based SCSQ-LR implementation (11) available at (20) was used. In order to have a fair comparison all B-tree calls were replaced by trie calls. Thus the resulting trie-based implementation was identical to B-tree based implementation except the indexing part. Some parts of the original implementation were also improved to provide a more precise assessment.

4.1 LRB simplifications
In our experiments historical data was ignored, but this does not change the performance demands of the benchmark. As illustrated in figure 3, Historical data is needed in order to answer daily expenditure queries. The original SCSQ-LR implementation loads the historical data into the main memory as an initialization step. This is not necessary because of the following reasons. First, the historical data is not changed during the benchmark, and also is not frequently queried. Second, after a certain L rating, historical data becomes so huge that it consumes all main memory allocated for a 32 bit application, leaving no more space for the rest of SCSQ-LR components to run. Therefore, the daily expenditure query has a conventional DBMS nature and can be handled by a regular DBMS as in the SCSQ-PLR implementation (37). Thus we do not need to store historical data in main memory and therefore excluded historical queries from our measurements.

4.2 Exploiting application knowledge to form integer keys
Tries are very scalable when it comes to insertion and deletion, particularly for indexing integer keys. They provide constant operation time in insertion, single element retrieval, and deletion. This makes tries very good indexing candidates for many problems, but requires keys to be presented as an integer. The key formation procedure has to preserve the key order if the objective is ordered indexing. However, finding proper integer representation for keys that preserve the order is not always simple. In many cases, application knowledge is needed to decide how to form the integer keys.

In the trie-based SCSQ-LR implementation, in order to use Tries instead of B-trees, it was required to present the compound key \{x, d, s, v\} (explained in section 2.3.1) as a single integer to form the corresponding trie-key. The SCSQ-LR implementation required range search queries of forms \{x, d, s, *\} which means retrieving information about all vehicles
travelling at a given \(\{x, d, s\} \). This provides the required application knowledge about how to preserve the order of the keys.

To form the ordered key, we put key components of the original compound key into a single 32 bit integer in this way:

- X: [0-3] (4 bits)
- D: [4] (1 bit)
- S: [5-11] (7 bits)
- V: [12-31] (20 bits)

The above key formation poses some obvious limitations on key components; number of expressways cannot exceed \(4^2 \), and the number of vehicles cannot exceed \(20^2 \). The number of bits to present direction (D) and segment (S) are always sufficient though, since there are only two directions and 100 segments in all cases. There are two possible ways of overcoming these limitations. The first solution is using 64 bit integers instead of 32 bits. This solves the problem but results in a deeper trie and therefore a slower implementation. A second solution is making a trie for each combination of expressway and direction. This releases 5 more bits to address vehicles. The second solution is faster because it still needs only 32 bit integers, but it requires the indexing structure to be redesigned.

4.3 Implementation structure: C, ALisp, AmosQL

SQSQ-LR is implemented using a combination of AmosQL (38) and ALisp (39) functions. Most of the components that are required for the LRB implementation are written in AmosQL. Unlike AMOSQL, ALisp is not declarative, hence it provides greater deal of control over how the program executes. In SCSQ-LR ALisp is used only when high performance is required. Since segment statistics is the system bottleneck, the functions to maintain segment statistics are written in ALisp.

The core indexing techniques were done in Alisp, therefore to have a fair comparison, testing new indexing techniques required development of driver functions that make them available in ALisp. This crossed out the possibility of using MEXINMA (section 2.2) and therefore the current design forced us to use the foreign functions instead. Furthermore, we used Judy to implement a trie-based SCSQ-LR; as a result we needed to replace B-tree calls in ALisp with Judy-trie calls. Judy is written in C, thus to make Judy available to ALisp, we needed to write some ALisp foreign functions in C as documented.
in (19). Figure 13 shows how segment statistics in original SCSQ-LR was implemented using AmosQL and ALisp. For more details on segment statistics in original SCSQ-LR, refer to Appendix A (10.1).

![Diagram of Original SCSQ-LR implementation]

Figure 13 – Original SCSQ-LR implementation. Add_stat adds statistics to the indexing structure, avgv calculates average velocity in a given \(\{x, d, s\} \) and count_visited returns the number of cars in a given \(\{x, d, s\} \)

The next step was to replace B-tree indices with Judy indices. After replacing B-tree calls with Judy calls, and performing some tests, the real system bottleneck was revealed. Figure 14 demonstrates the problem. Since we did not change any part of the design, and we just replaced the calls, consequently even though Figure 14 is specific to the trie based implementation, it also shows how B-tree based version works under the hood. In original B-tree based implementation, to calculate the average value for keys in range \(\{x, d, s, *\} \), a mapper function written in Alisp was passed to B-tree map. The latter is a function in C that applies the mapper function over \(<key value>\) pairs in a given range. Since the B-tree was written in C and the mapper function was written in Alisp, as the load started to increase, these unnecessary inter-language calls started to slow down the whole implementation. This was the problem in the original implementation too, but not revealed until this point.
4.4 Performance improvements

The Amos II profiling feature identified the bottleneck as the \textit{avgv} function. After analyzing the program structure, it was observed that the original range search was implemented by two functions written in different languages (C and Lisp) The C function \textit{avg_v} in Figure 14 was calling a mapper function in Lisp for every key in the range. These avoidable calls were eliminated by moving the whole range search function into C. Figure 15 shows the ultimate solution. However, due to nature of the LRB \textit{avgv} still remained the bottleneck, even in the improved design. Nevertheless, profiling results showed that in the new design, \textit{avgv} was more efficient; instead of taking around 60\% of the whole process time in the initial design, now it took around 35\%. Appendix C (10.3) contains trie-based version of segment statistics.

After this point, The B-tree based implementation was also improved by writing the \textit{avgv} function completely in C. In order to do this it was required to have B-tree code in pure C and writing some Alisp foreign functions in C (19), analogous to the process followed to incorporate Judy to Amos II.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure14.png}
\caption{initial trie-based implementation, the red arrow shows where unnecessary inter-language calls are made.}
\end{figure}
Figure 15 – SCSQ-LR improved implementation
5 Index maintenance strategies

In window based stream processing (40) (41), when the number of elements in a window grows, linear search becomes costly and an indexing structure is required. Maintaining an index over a data stream requires high insertion rate together with high deletion rate. In most cases elements in the stream are time stamped, and when they reside out of the window (i.e. they expire), they must be deleted to release the memory allocated for them.

Notice that in any maintenance strategy, after a key is removed from the primary indexing structure, the associated tuple in database image has to be removed from the database to release the memory allocated for that object.

In both deletion strategies in the LRB case, the window size is 5 minutes with 1 minute stride, meaning that in the beginning of each minute M, all keys that have a time stamp of M-5 have to be deleted. Here we introduce and compare two different deletion strategies, we name them bulk deletion and incremental deletion.

5.1 Bulk deletion

In bulk deletion one index is maintained per window stride. When the window tumbles, the index that contains older data has to be wiped out and a new index needs to be created. Since the whole index structure is removed at once instead of removing individual keys from it, we call this method bulk deletion. If the index being removed is the primary index, all data elements that are referred by it have to be released too. This implies that a full index scan is required.

The initial design of SCSQ-LR was based on bulk deletion. In case of the LRB, to maintain the statistics of last 5 minutes with window stride parameter one, 6 indices are needed. In the beginning of any minute M, the index associated to minute M-5 needs to be wiped out. This indexing structure can be implemented by a one dimensional array of size 6 of indexes each of which containing the data for one minute. When the array becomes full, the cell containing oldest data is selected to be released and replaced with the new index. Table 1 shows the content of this index array during minutes 1 to 10 (here the timer starts from 1, and not 0). In each minute incoming data is inserted only to the index associated with the current minute, tagged as @X in Table 1. The statistical
functions over the 5-minute window are applied on the whole array except the item that is marked as [exc].

<table>
<thead>
<tr>
<th>The index array</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Time (Minute)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>@1</td>
<td>@2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>@1</td>
<td>@2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>@1</td>
<td>@2</td>
<td>@3</td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>@1</td>
<td>@2</td>
<td>@3</td>
<td>@4</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>@1</td>
<td>@2</td>
<td>@3</td>
<td>@4</td>
<td>@5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>@6</td>
<td>[exc]</td>
<td>@2</td>
<td>@3</td>
<td>@4</td>
<td>@5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>@6</td>
<td>@7</td>
<td>[exc]</td>
<td>@3</td>
<td>@4</td>
<td>@5</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>@6</td>
<td>@7</td>
<td>@8</td>
<td>[exc]</td>
<td>@4</td>
<td>@5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>@6</td>
<td>@7</td>
<td>@8</td>
<td>@9</td>
<td>[exc]</td>
<td>@5</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>@6</td>
<td>@7</td>
<td>@8</td>
<td>@9</td>
<td>@10</td>
<td>[exc]</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 1 – Index array used in the bulk deletion. Each @X represents the index for minute X. [exc] means that the content of this index cell is discarded (except) in avgv calculations.

The original SCSQ-LR segment statistics - Appendix A (10.1) - contains the Lisp code for bulk deletion. Notice that the statistical information of the whole 5 minute window – in this case the average velocity - is retrieved by the avgv function, *init_stat* creates and drops indexes, and *add_stat* inserts <key value> into appropriate index in the index array.

In bulk deletion, there is no need to store the time stamp within keys. Instead, the time stamp is intrinsically inferred from the position of the index in the index array. So the key remains as \{d, x, s, v\}.

5.2 Incremental deletion

In contrast to bulk deletion, in incremental deletion there is only one indexing structure for the whole window, and instead of wiping out an indexing structure as a whole, individual keys are removed from it when they expire. In order to be able to implement incremental deletion using B-trees, a B-tree deletion algorithm in (36) was implemented and tested as a part of this project.

In contrast to bulk deletion, in incremental deletion the time stamp has to be explicitly stored as a part of the key. In case of LRB, the key takes the form of \{t, d, x, s, v\} where t
is the time stamp associated with \{x, d, s, v\}. In order to make fair comparison with tries, we formed a 64 bit integer key to represent a key \{t, x, d, s, v\}. Figure 16 shows how the key is formed in this scheme. The two left most bytes are not used, offering room for supporting higher ranges for the key components \(t, x\) and \(v\).

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unused (16 bits)</td>
<td>T (8 bits)</td>
<td>X (7 bits)</td>
<td>D (1 bit)</td>
<td>S (8 bits)</td>
<td>V (24 bits)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 16 - 64 bit integer representation of the ordered key \{t, d, x, s, v\}.

The addition of time stamp \(t\) into the key imposes changes in insertion, retrieval and most importantly statistical aggregation. For instance, in the LRB case, if time stamp \(t\) of a key represents the minute in which the value associated with the key \{x, d, s, v\} is reported, then calculating average velocity in last five minutes (\(\text{avgv}\)) for a given minute \(M\) requires executing 5 queries of form \{\(M-i, x, d, s,*\}\) \((0 \leq i < 5)\) and then calculating the average of 5 \(\text{avgv}'s\).

Deletion is straight forward, after the time stamp \(t\) expires, all keys of form \{\(t, *, *, *, *\)\} need to be removed. Since an ordered indexing structure is used, all keys in this range could be efficiently retrieved, the pointers to database objects removed, and finally entry deleted from the index.

Appendix D (10.4) contains the Lisp code for incremental deletion in LRB. Notice that the statistical information of the whole 5 minute window – in this case the average velocity - is retrieved in \(\text{avgv}\) function written in C, which details aside, returns average of values stored in the whole index, \(\text{init_stat}\) removes keys with old time stamp, and \(\text{add_stat}\) inserts <key value> into the index.

5.3 Bulk vs. Incremental deletion

Bulk deletion outperforms incremental deletion. It requires less memory, provides a more efficient deletion algorithm, and is simpler. Incremental deletion on the other hand, requires more space (due to the addition of time stamp to the key) and is less efficient (due to the deletion of single elements).

Surprisingly, the experimental results show that bulk deletion and incremental deletion do not make a considerable difference in the LRB in terms of \(L\)-rating, both (B-tree
based) implementations achieved $L=8.0$. This is due to the nature of the LRB in which deletion happens only once in a minute, and therefore its contribution to overall processing time is insignificant. On the other hand, the range search (avgy) followed by the insertion (add-stat) are the most demanding parts of LRB execution and they dominate the whole implementation. Profiling results also support the hypothesis provided above.
6 Experimental results

To compare the scalability of different indexing methods, the Linear Road Benchmark (explained in section 2.1) was used as a realistic simulation of a data streaming application. Table 2 contains the L-Rating achieved by each indexing technique.

<table>
<thead>
<tr>
<th></th>
<th>Original SCSQ-LR (B-tree-based)</th>
<th>B-tree-based (after improvement)</th>
<th>Judy-based (after improvement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk deletion</td>
<td>L=3.0</td>
<td>L=8.0</td>
<td>L=6.0</td>
</tr>
<tr>
<td>Incremental deletion</td>
<td>Not tested*</td>
<td>L=8.0</td>
<td>Not tested*</td>
</tr>
</tbody>
</table>

* Table 2- the L-rating achieved by different indexing techniques. * expected to be the same as the L-rating for incremental deletion, but not implemented.

All tests were performed on a HP desktop machine with "Intel (R) Core(TM) i5 760 @2.80GHz 2.93 GHz" CPU and 4GB RAM. Furthermore, only a single CPU was used during all the experiments.

During this project it was realized that the need for range search in LRB could be eliminated by maintaining of a moving average (16) (Appendix B 10.2), hence the ordered indexing was not required in the LRB implementation and hashing methods would present the most efficient and scalable indexing solution. The range-search-free based LRB implementation is expected to achieve better results, though investigating its scalability is out of the scope of this project and therefore has not been fully tested yet.
7 Conclusion

In this project, two ordered indexing methods were compared in a practical application, the Linear Road Benchmark. Some developments in the Linear Road Benchmark were required to achieve a platform on top of which we could perform the comparison. Using ordered indexing methods in the implementation of the Linear Road benchmark dictates a major bottleneck, the range search. Since the trie data structure we used – Judy – was not as fast as B-tree in range search retrievals, B-trees outperformed Judy. More general experiments show that tries are superior in insertion and deletion, a fact that still keeps tries among good candidates for data streaming applications where range search is more seldom compared to insertion and deletion.

Two index maintenance strategies were also compared in this project, Bulk deletion and Incremental Deletion. Although bulk deletion is more efficient and more scalable than incremental deletion, Experiments based on the Linear road benchmark show that - yet again - due to dominance of the range search, using bulk deletion does not improve the final outcome of the benchmark in term of the L-rating.
8 Future work

It is worth to investigate the possibility of development of a faster range search in tries. This is motivated by their scalable insertion and deletion operations, which — if complemented by a more scalable range search — possible makes them the best ordered indexing solutions for data streaming applications. The current range search in Judy is implemented such that the search starts from the root of the trie every time the search starts. Developing a mapper function that traverses the trie given a [high, low] bound could potentially improve the support of the range search by tries and perhaps win the battle against the B-trees. During this investigation, other compact trie variations can also be tested and compared to Judy and B-trees. Especially simpler burst tries are worth to try because they provide similar behavior to Judy and it is easier to investigate possible improvements on range search facilities.

Comparing the performance of Judy to B-trees in other data streaming applications could reveal different results. It is therefore worth to perform a similar study in applications where ordered indexing is required, but the fraction of the required range search is relatively smaller than insertion and deletion.

After studying different deletion strategies and powered by MEXINMA, a window based indexing structure for data streaming applications could emerge as a package with high abstraction level. This will improve the declarative nature of SCSQ and eventually makes it possible to develop a fully declarative implementation of LRB and eliminate the code currently written in Lisp and/or C.

Another interesting aspect to investigate is effect of running bulk deletion in a separate thread. At the moment, SCSQ-LR runs in a single thread, and therefore bulk deletion blocks the whole process. If bulk deletion runs in a separate thread, it could potentially support a closer-to-real-time behavior which results in a smoother response time curve. However, because deletion is not the most demanding part of the SCSQ-LR, this is not expected to make significant improvements in terms of L-rating.

A byproduct of this project was range search free implementation of SCSQ-LR. It opens the possibility to utilize the state of the art hashing methods and investigate the highest possible L-rating that could be achieved on a single CPU. This, together with parallel SCSQ-LR implementation (37) can achieve higher L-rating with lower number of nodes.
9 References

10 Appendixes

10.1 Appendix A – The original SCSQ-LR segment statistics code

(defun sdiv (v n)
 (if (eq 0 n) 0 (/ (+ v 0.0) n)))

(osql "
create function init_stat(Integer mn)-> Boolean
 as foreign 'init-stat';")

(defun init-stat (fno mn)
 (seta _cars_ (mod mn 2) (make-btree))
 (let ((i (mod mn 6)))
 (seta _stat_ i (make-btree))))

(osql "
create function add_stat(Vector rep, Integer mn)->Boolean
 as foreign 'add-stat';")

(defun add-stat (fno rep mn);; MN: minute
 (let ((vehicle (elt rep 2));; Vehicle ID
 (v (elt rep 3));; speed
 (x (elt rep 4));; freeway
 (d (elt rep 6));; direction
 (s (elt rep 7));; Segment
 (stat (elt _stat_ (mod mn 6)))))
 (let* ((w (vector s x d vehicle))
 (tmp (get-btree w stat)))
 (put-btree w (elt _cars_ (mod mn 2)) t) ;; Record different cars this minute
 (cond (tmp (rplacd tmp (/ (+ v (* (car tmp) (cdr tmp)))
 (+ 1.0 (car tmp)))))
 (rplaca tmp (1+ (car tmp))))
 (t (put-btree w stat (cons 1 v))))))

(osql "
create function count_visited(Integer s, Integer x, Integer d, Integer mn)
 -> Integer
 as foreign 'count-visited';")
(defun count-visited (fno s x d mn r)
 (let ((count (count-btree (elt _cars_ (mod mn 2))
 (vector s x d '*)))))
 ;; Count number of different cars
 (osql-result s x d mn count)))

(osql "
create function avgv(Integer s, Integer x, Integer d, Integer mn)->Number
as foreign 'avg-v';")

(defun avg-v (fno s x d mn r)
 (let ((v 0)
 (n 0)
 (w (vector s x d '*))
 (except (mod (+ 1 mn) 6)))
 (maparray _stat_ (f/l (ct i)
 (cond ((eq i except))
 (t (let ((vxsd 0)
 (nxsd 0))
 (map-btree
 ct w w
 (f/l (key cell)
 (setq vxsd (+ vxsd (cdr cell)))
 (1++ nxsd)))
 (cond ((eq nxsd 0))
 (t (setq v (+ v (sdiv vxsd nxsd)))
 (1++ n)))))
 (osql-result s x d mn (sdiv v n))))))

(osql "
create function prelav(Integer s, Integer x, Integer d, Integer mn)->Vector
as foreign 'pre-lav';")

(defun pre-lav (fno s x d mn r)
 (let ((v 0)
 (n 0)
 (w (vector s x d '*)))
 (map-btree (elt _stat_ (mod mn 6)) w w
 (f/l (key cell)
 (setq v (+ v (cdr cell)))
 (1++ n)))
 (osql-result s x d mn (vector v n (sdiv v n)))))))

10.2 Appendix B – Range-Search-Free segment statistics
(defun _cars_; Number of vehicles
 (vector (make-btree) (make-btree)))
(defglobal _stat_; To compuite avg speeod of a given vehicle in a segment in last five minutes
(vector (make-btree) (make-btree) (make-btree)
 (make-btree) (make-btree) (make-btree)))

(defglobal _avgv_; maintains moving average avgv in a given dxs in last five minutes in form of sum/count
 (vector
 (MAKE-HASH-TABLE :TEST (FUNCTION EQUAL))
)
)

(defun sdiv (v n)
 (if (eq 0 n) 0 (/ (+ v 0.0) n)))

(osql "
create function init_stat(Integer mn)-> Boolean
as foreign 'init-stat';")

(defun init-stat (fno mn)
 (seta _ca r s (mod mn 2) (make-btree))
 (let ((i (mod mn 6)))
 (seta _stat_ i (make-btree))
 (seta _avgv_ i (MAKE-HASH-TABLE :TEST (FUNCTION EQUAL)))
)
)

(osql "
create function add_stat(Vector rep, Integer mn)->Boolean
as foreign 'add-stat';")

(defun add-stat (fno rep mn);; MN: minute
 (let ((vehicle (elt rep 2));; Vehicle ID
 (v (elt rep 3));; speed
 (x (elt rep 4));; freeway
 (d (elt rep 6));; direction
 (s (elt rep 7));; Segment
 (stat (elt _stat_ (mod mn 6)))
 (avgv_ht (elt _avgv_ (mod mn 6)))
)
 (let* (w (vector s x d vehicle))
 (tmp (get-btree w stat))
 (avgv_key (vector s x d))
)
)
(avgv_val (gethash avgv_key avgv_ht))
)
(put-btree w (elt _cars_ (mod mn 2)) t)
;; Record different cars this minute
(cond (tmp
 (let ((prev_v (cdr tmp)))
 (rplacd tmp (/ (+ v (* (car tmp) (cdr tmp))) (+ 1.0 (car tmp)))));
 update avgv of this car in sx
 (rplaca tmp (1+ (car tmp)));
 increment number of occurences of this car in sx
 ;; adjust avgv in sxd, (no increase in number of cars)
 (rplacd avgv_val (+ (cdr avgv_val) (/ (- (cdr tmp) prev_v) (car avgv_val))))
)
))
(t;; First time this car apperas in sx
 (put-btree w stat (cons 1 v));
 ; add vehicle info to sxdmn stats
 ;; update avgv in sx
 (cond
 (avgv_val;; in case avgv fo sxd already exists
 ;; adjust avgv of sxdmn for new vehicle speed
 (rplacd avgv_val (/ (+ (* (car avgv_val) (cdr avgv_val)) v) (+ 1.0 (car avgv_val)))
 ;; increment the number of vehicles involved in this avgv
 (rplaca avgv_val (+ 1.0 (car avgv_val)))
)
)
)
(avgv_key (vector s x d))
(avgv_ht (elt _avgv_ (mod mn 6)))
(count (car (gethash avgv_key avgv_ht)))

;; Count number of different cars
(osql-result s x d mn count)
)
)

(osql "
create function avgv(Integer s, Integer x, Integer d, Integer mn) -> Number
as foreign 'avg-v-ht';")

(defun avg-v-ht (fno s x d mn r)
(let (
 (v 0)
 (n 0)
 (w (vector s x d))
 (except (mod (+ 1 mn) 6))
)

(maparray _avgv_ (f/l (ct i)
 (cond
 ((eq i except))
 ((gethash w ct)
 (setq v (+ v (cdr (gethash w ct))))
 (1++ n)
)
)
)

(osql-result s x d mn (sdiv v n)))
)

(defun avg-v-original (fno s x d mn r)
(let ((v 0)
 (n 0)
 (w (vector s x d '*))
 (except (mod (+ 1 mn) 6))
 (maparray _stat_ (f/l (ct i)
 (cond ((eq i except))
 (t (let ((vxsd 0)
 (nxsd 0))
 (map-btree
 ct w w
 (f/l (key cell)
 (setq vxsd (+ vxsd (cdr cell)))))
 (setq nxsd (+ nxsd (cdr cell)))
 (setq vxsds (+ vxsds (cdr cell))))
)
)

(osql-result s x d mn (sdiv v n)))
)
\((1++ \text{nxs}) \)
\((\text{cond} ((\text{eq} \text{nxs} 0)) \)
\((\text{t} \ (\text{setq} \ \text{v} \ (+ \ \text{v} \ (\text{sdiv} \ \text{vxs} \ \text{nxs}))) \)
\((1++ \ \text{n}))))) \)

\((\text{osql-result} \ \text{s} \ \text{x} \ \text{d} \ \text{mn} \ (\text{sdiv} \ \text{v} \ \text{n}))) \)

\((\text{osql "} \)
create function prelav(Integer \text{s}, \text{Integer} \text{x}, \text{Integer} \text{d}, \text{Integer} \text{mn}) \rightarrow \text{Vector}
\text{as foreign 'pre-lav';"})

(\text{defun} \text{pre-lav} \ (\text{fno} \ \text{s} \ \text{x} \ \text{d} \ \text{mn} \ \text{r}) \\
(\text{let} ((\text{v} 0) \\
\ (\text{n} 0) \\
\ (\text{w} \ (\text{vector} \ \text{s} \ \text{x} \ \text{d} {}))))) \\
(\text{map-btree} \ (\text{elt} \ _\text{stat}_ \ \text{(mod} \ \text{mn} \ 6)) \ \text{w} \ \text{w} \\
\ (\text{f} / (\text{key} \ \text{cell}) \\
\ (\text{setq} \ \text{v} \ (+ \ \text{v} \ (\text{cdr} \ \text{cell}))) \\
\ (1++ \ \text{n}))) \\
(\text{osql-result} \ \text{s} \ \text{x} \ \text{d} \ \text{mn} \ (\text{vector} \ \text{v} \ \text{n} \ (\text{sdiv} \ \text{v} \ \text{n})))) \)

\textbf{10.3 Appendix C – Trie-based segment statistics}

(\text{defun} \text{add-stat} \ (\text{fno} \ \text{rep} \ \text{mn});; \text{MN:} \text{minute} \\
(\text{let} ((\text{vehicle} \ (\text{elt} \ \text{rep} \ 2)));; \text{Vehicle ID} \\
\ (\text{v} \ (\text{elt} \ \text{rep} \ 3));; \text{speed} \\
\ (\text{x} \ (\text{elt} \ \text{rep} \ 4));; \text{freeway} \\
\ (\text{d} \ (\text{elt} \ \text{rep} \ 6));; \text{direction} \\
\ (\text{s} \ (\text{elt} \ \text{rep} \ 7));; \text{Segment} \\
\ (\text{stat} \ (\text{elt} \ _\text{stat}_ \ \text{(mod} \ \text{mn} \ 6)))) \\
(\text{let*} (((\text{w} \ (\text{trie-key} \ \text{vector} \ \text{s} \ \text{x} \ \text{d} \ \text{vehicle})))) \\
\ (\text{tmp} \ (\text{get-trie} \ \text{w} \ \text{stat}))) \\
\ (\text{put-trie} \ \text{w} \ (\text{elt} \ _\text{cars}_ \ \text{(mod} \ \text{mn} \ 2)) \ \text{t}) \\
;; \text{Record different cars this minute} \\
\ (\text{cond} \ (\text{tmp} \ (\text{rplacd} \ \text{tmp} / \ (+ \ \text{v} \ (* \ (\text{car} \ \text{tmp}) \ (\text{cdr} \ \text{tmp})))) \\
\ (1++ \ \text{car} \ \text{tmp}))) \\
\ (\text{rplaca} \ \text{tmp} \ (1+ \ (\text{car} \ \text{tmp})))) \\
\ (\text{t} \ (\text{put-trie} \ \text{w} \ \text{stat} \ \text{(cons} \ 1 \ (1+ \ \text{v}))))));; \text{add} \ 0.0 \text{so that v is always a floating point number}

;;\text{trie-low-range} \ \text{x} \text{takes vector of numbers x eg.} \ (\text{s} \ \text{x} \ \text{d} {})) \text{and returns the trie key representing the buttom of the range}

;;\text{trie-high-range} \ \text{x} \text{takes vector of numbers x eg.} \ (\text{s} \ \text{x} \ \text{d} {})) \text{and returns the trie key representing the top of the range}

(\text{osql "} \\
create function count_visited(Integer \text{s}, \text{Integer} \text{x}, \text{Integer} \text{d}, \text{Integer} \text{mn}) \\
\rightarrow \text{Integer} \\
as foreign 'count-visited';"})
(defun count-visited (fno s x d mn r)
 (let ((count (count (count-trie (elt _cars_ (mod mn 2))
 (trie-low-range (vector s x d '*))
 (trie-high-range (vector s x d '*))
)))
 ;; Count number of different cars
 (osql-result s x d mn count)))

(osql "
create function avgv(Integer s, Integer x, Integer d, Integer mn)->Number
as foreign 'avg-v';")

(defun avg-v (fno s x d mn r)
 (osql result s x d mn (avg-v-c (vector s x d '*) mn _stat_)))
)

(osql "
create function avgvo(Integer s, Integer x, Integer d, Integer mn)->Number
as foreign 'avg-v-o';")

(defun avg-v-o (fno s x d mn r)
 (let ((v 0)
 (n 0)
 (low (trie-low-range (vector s x d '*)))
 (high (trie-high-range (vector s x d '*)))
 (except (mod (+ 1 mn) 6)))
 (maparray _stat_ (f/l (ct i)
 (cond ((eq i except))
 (t (let ((vxsd 0)
 (nxsd 0))
 (map-trie ct low high
 (f/l (key cell)
 (setq vxsd (+ vxsd (cdr cell)))
 (1++ nxsd)))
 (cond ((eq nxsd 0))
 (t (setq v (+ v (sdiv vxsd nxsd)))
 (1++ n))))))))
 (osql-result s x d mn (sdiv v n))))

(osql "
create function prelav(Integer s, Integer x, Integer d, Integer mn)->Vector
as foreign 'pre-lav';")
(defun pre-lav (fno s x d mn r)
 (let* (v 0 n 0
 (w (vector s x d '*))
 (low (trie-low-range w))
 (high (trie-high-range w))
)
 (map-trie (elt-stat (mod mn 6)) low high
 (f/l (key cell)
 (setq v (+ v (cdr cell)))
 (1++ n)))
 (osql-result s x d mn (vector v n (sdiv v n))))

10.4 Appendix D – Implementation of segment statistics using Incremental deletion

(defglobal _cars_; Number of vehicles
 (make-bt))

(defglobal _stat_; To compute avg speeed in a segment last five minutes
 (make-bt))

(defun sdiv (v n)
 (if (eq 0 n) 0 (/ (+ v 0.0) n)))

(osql "
create function init_stat(Integer mn)
 as foreign 'init-stat';")

(defun init-stat (fno mn)
 (BT-bulk-del mn 5 _stat_)
 (BT-bulk-del mn 1 _cars_)
)

(osql "
create function add_stat(Vector rep, Integer mn)
 as foreign 'add-stat';")

(defun add-stat (fno rep mn);; MN: minute
 (let ((vehicle (elt rep 2));; Vehicle ID
 (v (elt rep 3));; speed
 (x (elt rep 4));; freeway
 (d (elt rep 6));; direction
 (s (elt rep 7));; Segment
)
 (let((tmp (get-BT64 s x d vehicle mn _stat_)))

(put-BT64 s x d vehicle mn _cars_t)
;; Record different cars this minute
(cond (tmp (rplacd tmp (/ (+ v (* (car tmp) (cdr tmp)))
(+ 1.0 (car tmp)))))
 (rplaca tmp (1+ (car tmp)))
 (t (put-BT64 s x d vehicle mn _stat_ (cons 1 (+ 0.0 v))))))) ;; added + 0.0 so that the DT of cell is always real

(osql "
create function count_visited(Integer s, Integer x, Integer d, Integer mn)
 -> Integer
 as foreign 'count-visited';")

(defun count-visited (fno s x d mn r)
 ;; Count number of different cars
 (osql-result s x d mn (count-bt64 _cars_ s x d mn)))

(osql "
create function avgv(Integer s, Integer x, Integer d, Integer mn)->Number
 as foreign 'avg-v';")

(defun avg-v (fno s x d mn r)
 (osql-result s x d mn (BT-avg-v-c64 s x d mn _stat_)))

Appendix E – Sample code for implementing Judy ordered retrieval

```c
#include <stdio.h>
#include <Judy.h>

Word_t   Index;                     // array index
Word_t   Value;                     // array element value
Word_t * PValue;                    // pointer to array element value
int      Rc_int;                    // return code

Pvoid_t  PJLArray = (Pvoid_t) NULL; // initialize JudyL array

while (scanf("%lu %lu", &Index, &Value))
{
    JLI(PValue, PJLArray, Index);
    If (PValue == PJERR) goto process_malloc_failure;
    *PValue = Value;                 // store new value
}

// Next, visit all the stored indexes in sorted order, first ascending,
// then descending, and delete each index during the descending pass.

Index = 0;
JLF(PValue, PJLArray, Index);
while (PValue != NULL)
{
```

50
printf("%lu %lu\n", Index, *PValue);
JLN(PValue, PJLArray, Index);
}

Index = -1;
JLL(PValue, PJLArray, Index);
while (PValue != NULL)
{
 printf("%lu %lu\n", Index, *PValue);

 JLD(Rc_int, PJLArray, Index);
 if (Rc_int == JERR) goto process_malloc_failure;

 JLP(PValue, PJLArray, Index);
}

10.6 Appendix F – The Naïve trie data structure
#define MAXINT 4294967295

///
//Naive trie Data Structure definitions//
///

typedef struct _TrieNode TrieNode;
typedef struct _Trie Trie;
typedef struct _Trie_Node_Element Trie_Node_Element;

struct _Trie_Node_Element{
 //key=0 element not used;key=MAXINT internal node;Otherwise "key"
 int key;
 //Consequently, we have the following for *next:
 //key=0 NULL pointer;key=MAXINT internal pointer;Otherwise data pointer
 void *next; // dual use: internal pointer and data pointer
};

struct _TrieNode {
 unsigned int use_count;
 Trie_Node_Element items[256];
};

struct _Trie //trie object just keeps the pointer to the root node
 TrieNode *root_node;
 int number_of_nodes;
};

//functions
//creates a naive trie and returns a pointer to it
Trie *naive_trie_new(void);

//Releases the memory allocated to naive trie node trn
//and recursivly, all it's child nodes
void naive_trie_free(TrieNode* trn);

//Breaks an integer i into 4 bytes
//returns the pointer to an array that contains the 4 bytes.
unsigned int *BreakInt(unsigned int i);

//looks up the trie tri for key ikey.
//returns a pointer to the value associated with ikey
int* naive_trie_lookup(Trie* tri, int ikey);

//removes ikey from trie tri
void naive_trie_remove(Trie* tri, int ikey);

//inserts iket into trie tri
//returns the pointer to the corresponding Trie_Node_Element
Trie_Node_Element* naive_trie_insert(Trie* tri, int ikey);

//searchj trie tri for next element of ikey
//returns Trie_Node_Element that has the key k1 such that
//k1 has a value greater than or equal to ikey
//this is used in traversing the trie in ascending order
Trie_Node_Element naive_trie_next(Trie *tri, int ikey);