

UPTEC F08 064

Examensarbete 30 hp
November 2008

Scheduling Physicians using
Constraint Programming

Samuel Edqvist

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Scheduling Physicians using Constraint Programming

Samuel Edqvist

The thesis demonstrates the suitability, flexibility and efficiency of applying constraint
programming for an automatic generation of schedules for physicians. Constraint
programming is about assigning values to a number of variables subject to constraints.
In personnel scheduling, a variable represents a staff member at a certain time and
these variables are assigned work tasks or shifts. Examples of constraints are that a
limited number of doctors can do operation simultaneously and that there is a lowest
number of appointments that must be scheduled each week. A real life problem from
a Swedish clinic has been studied and a prototype software, without any optimisation,
has been developed. Tests with random pre-assignments have been carried out for
different variable orders. The clinic's constraints were formulated as two global
constraints: count and logical constraints. The software successfully makes schedules
for some instances, but to make it more dynamic, real life pre-assignments and
constraints on individual doctors should be tested interactively, using an appropriate
user interface.

ISSN: 1401-5757, UPTEC F08 064
Examinator: Tomas Nyberg
Ämnesgranskare: Justin Pearson
Handledare: Pierre Flener

Sammanfattning

Schemaläggning av personal är ofta en mycket tidskrävande och sv̊ar process. Det
finns dels generella krav som gäller verksamheten i stort och dels krav som gäller
varje individ, enligt lagstiftning, fackliga regleringar och personliga önskem̊al. Alla
dessa krav ska uppfyllas samtidigt.

Inom en verksamhet som v̊ard är det speciellt sv̊art eftersom v̊arden ska vara
tillgänglig 24 timmar om dygnet, 7 dagar i veckan. Läkarna p̊a en klinik är en
begränsad resurs som man vill f̊a ut maximalt av samtidigt som man uppfyller
de individuella önskem̊al som finns i största möjliga m̊an. Dessutom m̊aste man ta
hänsyn till läkarnas olika erfarenhet och specialistkompetenser. Verksamheten är of-
tast s̊a komplex att det är en läkare själv som m̊aste utföra schemaläggningen, vilket
ocks̊a tar mycket av dennes arbetstid. Trots att schemaläggning är ett välstuderat
problem, är det fortfarande brist p̊a bra programvara i Sverige, som effektivt kan
utföra automatiskt schemaläggning av läkarpersonal.

Ett personalschema best̊ar oftast av tv̊a axlar: personal och dag. Man f̊ar d̊a
ett rutnät där uppgiften blir att ge varje person en arbetsuppgift per dag, dvs fylla
i ett tecken eller en text i varje ruta. Ofta kan ocks̊a dagen vara indelad i flera
tidsintervall eller moduler med olika tecken. Figuren visar ett exempelschema med
fem läkare.
Här används fem olika tecken: “J” – Jour, “O” – Operation, “M” – Mottagning,
“X” – Ledighet samt “–” – Övrig fr̊anvaro, s̊asom kurser och uppdrag p̊a annan
klinik.

Antag att kliniken har en akutmottagning. För detta krävs att det varje dag,
inklusive helger, finns en läkare som g̊ar jour. För övrigt krävs det att kliniken har
minst 4 mottagningsmoduler och 5 operationsmoduler i veckan. Det finns endast
tv̊a operationssalar, därför kan maximalt tv̊a läkare ha operation en och samma dag.
Antag att en mottagningsdag är p̊afrestande och därför gäller det att en läkare ska
ha maximalt en mottagningsdag per vecka. Vidare m̊aste läkare som har jour vara
lediga dagen efter. Detta kan sammanfattas med följande villkor:
Antalet J per dag = 1,
Antalet O per dag ≤ 2,
Antalet M per vecka ≥ 4,
Antalet O per vecka ≥ 5,
Antalet M per läkare ≤ 1,
J ⇒ X dagen efter.

Verifiera gärna själv att alla dessa villkor uppfylls i exempelschemat ovan. Om
vi nu ska l̊ata ett datorprogram automatiskt generera ett liknande schema som
uppfyller villkoren m̊aste vissa inmatningar ske först. Eftersom kurser och uppdrag
p̊a annan klinik (“–”) är s̊adant som bestäms n̊agon annanstans, s̊a m̊aste dessa fyllas
i manuellt, innan schemat genereras. Nu var detta exempelschema ganska litet och
best̊ar endast av 35 rutor. I verkliga fall kan antalet läkare vara 20, dagen delas upp
i tre moduler och schemaläggningshorisonten 2 m̊anader, vilket ger ungefär 3600
rutor som ska fyllas i. N̊agot som kan bli mycket rörigt och tidskrävande när det

Dr. A J X O ‒ O X X
Dr. B M J X O O X J
Dr. C O ‒ J X M J X
Dr. D M O ‒ J X X X
Dr. E O ‒ O M J X X

Läkare Måndag Tisdag Onsdag Torsdag Fredag Lördag Söndag

Exempelschema

görs manuellt.
Som exemplet visar s̊a best̊ar ett schemaläggningsproblem allts̊a i att uppfylla

ett antal (matematiska) villkor. Det existerar m̊anga olika typer av lösningsmetoder
för schemaläggning. En metod som har visat sig bra är villkorsprogrammering
(constraint programming). Det som är speciellt med villkorsprogrammering är att
man skiljer p̊a villkoren som definierar problemet och algoritmerna som ska hitta en
kombination som uppfyller villkoren. Förutom att schemaläggningsmjukvara som
bygger p̊a villkorsprogrammering snabbt kan hitta lösningar, s̊a är det ocks̊a ganska
naturligt att formulera problemet med villkor.

Ett problem som uppst̊ar är dock när alla de villkor man ställt upp inte till-
sammans kan uppfyllas. Om vi återg̊ar till exempelschemat och tänker oss att
Dr. B istället är fr̊anvarande p̊a Måndagen och att Dr. A inte f̊ar ha mottagning
överhuvudtaget. Därmed finns bara 3 mottagningsmoduler i schemat och villko-
ret var minst 4. För att korrigera detta l̊ater vi Dr. C istället ha mottagning p̊a
m̊andagen. Detta medför att Dr. C har 2 mottagningsmoduler istället för 1 som var
maxvillkoret, men det föreg̊aende villkoret är viktigare och b̊ada kan inte uppfyllas
samtidigt. Det första villkoret kallas därför för ett h̊art villkor, det m̊aste alltid var
uppfyllt, medan det andra kallas mjukt villkor, det är önskvärt att det uppfylls,
men man f̊ar bryta mot det, om nödvändigt. Målet, när mjuka villkor är inblandat,
är att uppfylla s̊a m̊anga mjuka villkor som möjligt och samtidigt uppfylla samtliga
h̊arda. Det finns ocks̊a metoder som hanterar att de mjuka villkoren prioriteras
olika.

I det här arbetet har ett specifikt problem fr̊an ortopedkliniken p̊a Kalmar
sjukhus studerats och en prototypmjukvara för att generera scheman åt kliniken
har utvecklats. Syftet är att demonstrera hur effektivt villkorsprogrammering är
för schemaläggning och att ge en bild av hur schemamodellen för läkare kan se ut i
Sverige. Klinikens villkor visade sig vara begränsade till “antaletvillkor” (liknande
de sex första villkoren i exemplet) och logiska villkor (liknande det sistnämnda i
exemplet). Villkoren har anpassats s̊a att schemaläggning enbart blir ett beslut-
sproblem, dvs. inga mjuka villkor används. Programmet kan generera scheman,
men det förutsätter att det finns förifyllda tecken (“–” i exempelschemat) och dessa
m̊aste ges av kliniken. Slumpmässigt angivna förifyllda värden har använts för att
göra tester p̊a olika metoder som söker efter lösningar.

Contents

1 Introduction 3
1.1 Background . 3
1.2 Previous Work . 3

2 Theory 5
2.1 Constraint Programming . 5

2.1.1 Constraint Satisfaction . 5
2.1.2 Searching . 6
2.1.3 Optimisation . 7

2.2 Global Constraints . 7
2.2.1 Count . 7
2.2.2 Sum . 8
2.2.3 Reification . 8

3 Methodology 9
3.1 Schedule Model . 9
3.2 The Kalmar Model . 10

3.2.1 Background . 10
3.2.2 Scheduler Implementation . 10
3.2.3 Decision Variables and Constraints 12

3.3 Used Software . 16

4 Experiments and Results 17
4.1 Description . 17
4.2 Testing System . 17
4.3 Variable Orders . 18
4.4 Results . 18

5 Conclusions 22
5.1 Restrictions and Delimitations . 22
5.2 Future Directions . 23

Acknowledgements 24

1

2

References 24

Chapter 1

Introduction

1.1 Background

Scheduling of any staff can be both hard, time-consuming and tedious. In health
care, work must be carried out at a continuous basis, 24 hours a day, 7 days a week.
What is particularly difficult when it comes to doctor’s rostering is that the access is
very limited and that the doctors’ level of experience and their special competence
varies even within one clinic. Moreover, the activity of making schedules for doctors
can also be quite complex which is why the scheduler is normally a doctor them self,
whose valuable time can be used more effectively, giving patients medical assistance
instead.

Scheduling in health care is a well studied and difficult task. Most of the time it is
still solved by hand in a lengthy process and where automated systems are involved
they tend to be strongly linked to a particular context [1]. Scheduling problems are
usually defined by time and capacity constraints which can be formulated in an easy
way [2] and constraint programming has shown to be very efficient for short-term
scheduling.

The department of orthopaedics, Kalmar hospital, Sweden experiences that their
scheduling takes up a lot of time and energy from the scheduler particularly and
that an efficient software that can automatically generate schedules would be of
much help. They have not found any such efficient software on the Swedish market,
however. This is the case for several clinics in Sweden.

In this thesis I am concentrated on making a model for the Kalmar clinic specif-
ically. This will hopefully give a good start for future research towards a more
generic model. No optimisation techniques are involved, the problem is treated as
a decision problem.

1.2 Previous Work

[1] recognises two families of staff scheduling: rotating schedules and personalised
schedules. Rotating schedules give a repeating pattern of sequences of work and

3

1.2. Previous Work 4

rest days alternating over a certain period. The individual schedules are then iden-
tical but out of phase with each other, ensuring a fair schedule (see [3]). This ap-
proach is only appropriate when the staff is interchangeable. Very often in physician
scheduling however this is not the case since work differs due to things as seniority,
unavailabilities due to other activities such as courses and special preferences.

The “HIBISCUS” software in [1] uses a model with different types of global
constraints that captures a lot of different rules. HIBISCUS have been successfully
applied both to a nurse scheduling instance as well as three different physician
instances, all in the Montréal area.

Internationally there exists a few commercial software that are more or less spe-
cialized on physician scheduling. “Physician Scheduler” by AtStaff purely specialises
in physician scheduling for different types of clinics and Omega Optimisation’s prod-
ucts have been successfully applied on a hospital in Quebec. In Sweden there exists
software that deals with scheduling of physicians that guarantees no double book-
ings and that gives valuable statistics that help the scheduler to make it fair. None
of those have fully broken through, however.

Chapter 2

Theory

2.1 Constraint Programming

Constraint programming is used to solve combinatorial problems by stating con-
straints on and between variables. This can make it particularly powerful in ap-
plications where it is natural to describe the problem with constraints. Such ap-
plications are, beside from scheduling: finance, logistics, transport etc. The power
of constraint programming is that it separates the definition of the constraints that
define the problem and the algorithms and heuristics for solving them. If the con-
straints can be expressed or broken down to some more generic constraints, called
global constraints (see 2.2), the algorithms can be gotten “for free”, if available.
Efficient such algorithms are available in different constraint programming libraries
for many different global constraints and new ones can be developed. In this section,
the most relevant parts of constraint programming are explained.

2.1.1 Constraint Satisfaction

A constraint satisfaction problem (CSP) consists of (discrete) variables, called de-
cision variables, and a number of constraints that acts on these variables. The
decision variables are associated with a domain, that is a non-empty set, specifying
what values they can take. The goal with the CSP is to assign values to all variables
within their respective domain, so that all constraints are satisfied.

A typical example of a CSP is the game Sudoku. Sudoku consists of a 9× 9 grid
where each square is either empty or has a digit between 1 and 9. The goal is to fill
in digits between 1 and 9 in the empty squares, so that: all the squares in each row,
column and 3 × 3 sub square, takes different values respectively. Here the decision
variables are the squares and the domain is (initially) [1,9] for all the empty squares
and the others are assigned to their pre-filled value.
Let X denote a matrix with all the squares. Then the constraints are:

alldifferent (Xi,0, . . . , Xi,8) i=0,. . . ,8 (rows)
alldifferent (X0,j , . . . , X8,j) j=0,. . . ,8 (columns)

5

2.1. Constraint Programming 6

alldifferent (X3·bi/3c+bj/3c,3·i mod 3+j mod 3, j=0,. . . ,8) i=0,. . . ,8 (sub squares)
where alldifferent(A) guarantees that all variables in A takes different values. Note
that 27 “alldifferents” are posted here, since there are 9 columns, rows and sub-
squares, respectively.

2.1.2 Searching

When a CSP has been defined, that is, all constraints have been posted, the solving
begins. The first step is the so called constraint propagation that is supposed to use
the constraints to prune values from the domains. Using alldifferent for example on
〈{1,2,3},{1,2,4},1〉 , can be reduced to 〈{2,3},{2,4},1〉 , removing 1 from the first
two domains as it is already assigned to the third variable.

In the example above, there are still several possible combinations left, but not
all satisfies alldifferent, which is why another technique on top of the constraint
propagation must be introduced, namely branching. Branching is a way of test-
ing by assigning certain variables certain values or just decrease their domain by
removing values. After a branch the constraint propagation is carried out again,
and if there are still more than one value, in one or more domains, the branching
continues. In the previous example lets say we try by assigning the first variable to
2, then propagation will remove 2 from the second variable and we have one single
combination left; 〈2,4,1〉 which satisfies alldifferent. This is one solution, if we want
to find more solutions we back track to 〈{2,3},{2,4},1〉 and try with other values.
Back tracking is also carried out when branching leads to a combination that fails
to satisfy a constraint. Branching is illustrated by a binary search tree, as in figure
2.1.

Figure 2.1: A binary search tree. The diamonds are solutions, the squares are where the
branching got to a fail and the circles are where there exists unassigned decision variables
after propagation.

2.2. Global Constraints 7

Branching uses a certain heuristic for in what order to pick variables to branch
on, the variable order, and between what values in that variable’s domain, the
branching should take place, the value order. Common variable orders are largest
domain size first or the one with the smallest minimum value, largest maximum
value, smallest maximum value etc. The value order can be to first assign to the
smallest or to the largest value or to split the domain in half and remove either
the upper or the lower half. Picking the right variable and value order is crucial
for performance and it is very problem dependent. For this reason it is important
to test many different heuristics empirically. A good strategy however is to pick a
heuristic that “fails first”.

2.1.3 Optimisation

Optimisation is about minimising or maximising an objective function, sometimes
subject to a number of constraints. By adding some objective function of the decision
variables in a CSP, we have a constraint optimisation problem. Constraint optimi-
sation can have two types of constraints: hard and soft. All the hard constraints
must be satisfied, but the soft constraints can be violated. The optimising criterion
is then to maximise the number of satisfied soft constraints, possibly weighed differ-
ently, subject to all of the hard constraints. The use of soft constraints is common
in scheduling problems since there is often rules, for example concerning comfort,
that can’t always be satisfied simultaneously as all the hard ones.

2.2 Global Constraints

A global constraint is a generic constraint. One that was mentioned earlier is “alld-
ifferent” that guarantees that all decision variables it acts on are assigned different
values respectively. “Sum” is another that constrains the sum of some variables to
be in some relation to a value. There are good propagation algorithms, known as
filtering algorithms, available for many global constraints in different CP libraries,
including Gecode. In the rest of this section the global constraints that are used in
the Kalmar model are explained .1

2.2.1 Count

Consider a vector of integer decision variables V , two constants c1 and c2 and a
relation operator R.

#{V = c1} R c2

Guarantees that the number of variables in V that takes the value c1 is in relation
R to c2. If R is =, c2 can also be a decision variable.

Example: R is = , c2={1,4,5} and c1=0
1See [4] for a comprehensive list of global constraints and their definitions.

2.2. Global Constraints 8

#{V = 0} = {1,4,5} (#{V = 0} ∈ {1,4,5})
Guarantees that the number of variables in V that takes the value 0 is either 1,4 or
5. The constraint has arc-consistent filtering [4].

2.2.2 Sum

Consider a vector of integer decision variables V , a constant c and a relation operator
R. ∑

V R c
Guarantees that the sum of variables in V is in relation R to c. If R is =, then c
can also be a decision variable.

2.2.3 Reification

Consider a condition c and a boolean decision variable b. c can be reified into b
denoted

c ⇔ b
Constraints can then be posted on two or more of these booleans, particularly logical
constraints between two booleans can be useful.
Example: Consider two decision variables x and y, let

x < 5 ⇔ b1
y > 4 ⇔ b2

then
b1 ⇒ b2

will post the constraint y > 4 if x < 5.
Reification should generally be avoided since it introduces many propagators

which yields weak propagation.

Chapter 3

Methodology

3.1 Schedule Model

A schedule normally consists of variables in two dimensions: the time and the staff,
divided into teams or individuals. In this case, the time index can represent a
single day and the value that the variables are assigned, would correspond to a
work task in combination with a certain shift (time slot), for each staff member
respectively. Instead of combining a work task with a certain time slot, the schedule
can be extended with a third dimension representing the time slots. The time slots
are hereafter called modules. The schedule is then a 3D-matrix where a variable
represents what a certain doctor does at a certain day in a certain module, this is
hereafter called a cell. There is an important trade off here: using the 2D-schedule
decreases the number of variables, but the number of possible values can become
very large. The number of possible permutations of assignments is

TM

where T is the number of possible tasks and M is the number of cells. Most of these
permutations can of course be ruled out by constraints stating that not all tasks can
be assigned to any single cell independently, some tasks are for example, whole days
only. This will implement such constraints directly in the model instead which is
often much better. One disadvantage with this approach is that if the clinic wants
to change constraints, the whole model might need to be changed.

In nurse scheduling and often also for doctors the sense of different work tasks
is not visible in the schedule(see for example [5] and [6]) but only what shift (e.g.
morning, day or night) a certain staff member is assigned at a certain day. In this
case, day variables is the obvious choice.

The main categories of rules from hospitals in the Montreal area and other
relevant literature is presented in [1]. Based on this and my own experience from
the Kalmar case, here are the categories:

Possible Combinations of Modules for Tasks. Even though there are sev-
eral modules per day, some tasks are not allowed to be scheduled to any combination
of modules for a single day and doctor. Some tasks are for example whole days only.

9

3.2. The Kalmar Model 10

Demand. A sufficient number of cells of the different work tasks must be staffed
throughout every day, week, month or the whole scheduling horizon to guarantee
minimum coverage.

Staff Availability. A given staff member are not available for all tasks based
on his/her qualification, therefore assignments to such tasks for that staff member
must be forbidden. A staff member can also be unavailable at a certain cell because
of vacation or other leisure, part time status or because of outside responsibilities,
courses etc. These are pre-assigned.

Room Availability. There is a limited amount of wards, surgery rooms, special
instruments etc. at certain times.

Distribution. Scheduling should guarantee a somewhat fair distribution of
different tasks among the staff. This is about balancing a certain type of shift
among the staff, either evenly or according to some criterion such as seniority and
to give each doctor an individual schedule with an even distribution of the different
tasks. Also the number of weekends off should be well distributed.

Ergonomics. The individual schedules should give the doctors continuity in
some tasks and not working too many heavy tasks in the same week or month.

The rules regarding demand and staff/room availability are always hard. Some
of the distribution and ergonomic rules must sometimes be relaxed, or treated as
soft.

3.2 The Kalmar Model

3.2.1 Background

The clinic has 19 doctors and schedules are made with 8 weeks horizon. Work
hours are fixed every day for every doctor except that two doctors are on-call the
whole day, partially at the hospital and partially at home. One of the on-calls is
primary and the other one is back-up. The primary on-call is scheduled only as
such the whole day, the back-up on-call however is also scheduled as simultaneous
with other tasks. Every day is divided into 3 modules that correspond to three time
intervals of approximately the same length. This system is chosen for simplification
and to give a decent overview and does not always exactly correspond to how they
actually work. These cells are assigned one out of several different work task or
leisure. There are differences in the doctors’ seniority as well as special training
which affects availability as mentioned in 3.1.

Figure 3.1 shows a sample schedule from Kalmar constructed by the clinic’s
scheduling person. See 3.2.2 for explanation of the different characters, everything
that is not listed there is treated as miscellaneous.

3.2.2 Scheduler Implementation

Most of the assignments have precise constraints regarding them and can therefore
be assigned by the scheduling software. Other assignments are of such nature that

3.2. The Kalmar Model 11

Week 4 Week 5 Week 6 Week 7
21/1 28/1 4/2 11/2

Dr. A

O O O O X A A W O O W Oh B B
Dr. B O O O O X A PA W O O W Oh B B

O O O X K K O A B B
W O A W Oh B B A A O O X A O A O O A A

Dr. C W O A W B B A R O O X R O PA O O A A
K O A B B K HLRO O X K O A O R K
O O A A X W O A W O W A A W Oh B B O A O A X

Dr. D O O A R X W O PA W O W A A W Oh B B O A A X
O O A X A O O O O O PV B B O X
O O K O A Foot FU A K O O O A A O O

Dr. E O O K Course O A Meeting FU A K O O O PA R O O
O O O HLR PA R O O O A A O O

Dr. F

A A O O O O A O O O A A O O PA A A
Dr. G R A O O A O O A O O O A A O O A A A

A PA O A HLR O O O PA O O PA
 O O O O X O O A A W O O W
Dr. H O O O O X Off O O R PA BH O O W

O O A O X O O A A BH O A
W A O W A O O A O Oh B B O O O PA X O O PA A A

Dr. I W A O W A O O A O B B O O O X O O R A
A O O K R O O K HLRB B O O O A X O O A A R

 W O O W A W A O W A A O O O A
Dr. J Off W W A W A O W A A O O O A

PA HLRFM R O R

Dr. K

A O O P X O O A P X W W W W P P X A O A O
Dr. L SC O O P X O SC P X W W W W P P X A O A O

SC O O P X O HLRSC P X A A O P P X O PA O
A O W W P P A A P X W W A O P P

Dr. M Off A W W P P A A P X W W PA O P P
PA HLRO A P P O P X O O A O P P

W W W W W W P X W O O O A A O P X O A
Dr. N W W W W W W P X PA O O O A A BH P X O A

O A A P X HLR O O FM PA BH P X O PA
P X Foot P O P X O A P X W W W P

Dr. O Off P X Meeting P O P X O A P X W W PA P
P X P P X PA P X A P

 A A P X A P O W W O A PA P A
Dr. P A R P X A P O W W O A Off P A

O A P X R P O A St O R A St R
O P X O P P X O O O A W W P X W

Dr. Q O P X O P P X O O O A W W P X PA Off
O P X O P P X O A R A A P X
W W W W W W P X W W P X O O O O W W

Dr. R W W W W PA W P X W PA P X O Course O O O W PA
A A O O A P X O P X HLR A A P A
P X A P W W W P X

Dr. S P X PA Off Course P W W W P X
P X A P A A O P X

Cph Rtg

Cph Rtg Mö

Cph Rtg Mö

Cph Rtg Mö

Cph Rtg Mö

Cph
Wb

Cph Rtg

Cph Rtg

Cph Mö

Cph Mö Rtg

Cph

Uph Rtg Mö

Uph Rtg

Epi

Uph Rtg

Uph Mö
Hö
Hö

Uph Hö

Uph Mö

Uph

Uph

Figure 3.1: Real man-made schedule from the Kalmar clinic.

3.2. The Kalmar Model 12

they are rather done manually. Assignments of the latter type can be either assigned
before search (pre-assigned) or after search (post-refined).

The constraints are spanning over one month at most and searches are therefore
made with that horizon, even though the actual planning horizon is larger.

Two schedules must be searched for since back-up on-call is, on week days, done
simultaneously with other tasks. The main schedule is represented with a 3d-matrix
X, where Xi,j,k states what doctor i is doing at day j in module k. The back-up
on-call schedule is represented with a vector Xb where Xbj represents who that
has back-up on call at day j. Exactly one doctor is back-up on-call every day. The
doctors are divided into two groups: chief physicians (Cph) and non-chief physicians
(Uph).

This implementation uses 6 different values in the main schedule and 11 values
in the back-up on-call (the total number of Cph doctors). One of the assignments
in the main schedule is “miscellaneous”, representing tasks that are only assigned
manually, either before or after search. If the value miscellaneous is pre-assigned, it
means that the cell is assigned a task that is not represented by the other values. If
it is assigned by the scheduling software, it means that the cell is available for any
task and this must be specified manually.
Let

n = “the total number of staff members”
d = “the scheduling horizon”
m = “the number of modules per day”

then the number of variables(cells) in this model is
n · d ·m + d = 19 · 28 · 3 + 28 = 1624

where h is added for the back-up on-call schedule. This is a quite large instance.
The different assignments in the main schedule are:

P – Primary on-call
W – Ward
A – Appointments
O – Operation
x – Off
– – Pre-assigned miscellaneous task (value NA)
〈blank〉 - Cell is available. (same value as “–”, never pre-assigned)
The value for 〈blank〉 and “–” will be called NA. The back-up on-call is marked

with a thick red border around the cells corresponding to the day and doctor.

3.2.3 Decision Variables and Constraints

3d-matrix X and vector Xb of decision variables.
Xi,j,k = doctor i’s task at day j in module k
Xi,j,∗ is all decision variables for doctor i at day j etc.
Xbj = which doctor goes back-up on-call at day j.
There are n doctors, d days and m modules. Furthermore, let

WD = {“All week days (Monday-Friday)”}

3.2. The Kalmar Model 13

WDw = {“All week days in week w”}
WeD = {“All week-end days (Saturdays and Sundays)”}
WeDw = {“All week-end days in week w”}
FtSw = {“Friday to Sunday week w”}
Us = {“All Uph doctors”}
Cs = {“All Cph doctors”}
NoVac = {“All Doctors with at most 2 weeks on vacation”}
b1, b2,. . . are booleans.

Generic

g1 Only on-calls and off at week ends. Remove all other values from their
domains.
Xi,j,k 6= {A,W,O,NA} , ∀i, k and j ∈WeD

g2 Offs are whole days only. Either 0 modules (not off) or m modules (off
all modules).
#{Xi,j,∗ = x} ∈ {0,m} , ∀i, j

Back-up On-call (B)

B1 Whole days only.
Treated by the model, since the back-up on-call schedule only has one
variable per day.

B2 Only Cph doctors.
Treated by the model, since the back-up on-call schedule only has the
Cph doctor’s indices.

B3 One doctor every day.
Treated by the model.

B4 Cannot be B when off.
b1 ⇔ (Xi,j,0 = x), b2 ⇔ (Xbj = i), ¬(b1 ∧ b2), ∀j, ∀i ∈ Cs
Presupposes that g2 is posted.

B5 Week end B is always Friday, Saturday and Sunday.
#j∈FtSw {Xbj = i} ∈ {0,3}, ∀i, w

B6 Always off the Friday after a week end B.
b1 ⇔ (Xbj = i), b1 ⇔ (Xi,j+5,0 = x), ∀j ∈ Sundays | j ≤ d−1, ∀i ∈ Cs
Presupposes that g2 is posted.

B7 At most one week day B per week.
#j∈WeDw {Xbj = i} ≤ 1 , ∀w, ∀i ∈ Cs

B8 At most 4 B per month.
#{Xb∗ = i} ≤ 4 , ∀i ∈ Cs

3.2. The Kalmar Model 14

Primary on-call (P)

P1 P is whole day only. Either 0 modules (not P) or m modules (P all
modules).
#{Xi,j,∗ = P} ∈ {0,m}, ∀i, j

P2 No P for Cph.
Xi,j,k 6= P, ∀i ∈ Cs, ∀j, k

P3 One doctor every day.
#i∈Us{Xi,j,0 = P} = 1, ∀j
Presupposes that P1 is posted.

P4 Always off the day after a P.
b1 ⇔ (Xi,j,0 = P), b2 ⇔ (Xi,j+1,0 = x), b1 ⇒ b2, ∀j ≤ d-1, ∀i ∈ Us
Presupposes that P1 and g2 are posted.

P5 2-4 weekday Ps per month (period of four weeks).
2 ≤ #j∈WeD{Xi,j,0 = P} ≤ 4, ∀i ∈ Us
Presupposes that P1 is posted.

P6 P on Friday is always together with P on Sunday.
#{〈Xi,j,0, Xi,j+2,0〉 = P} ∈ {0,2}, ∀j ∈ Saturdays, ∀i ∈ Us
Presupposes that P1 is posted.

P7 At most one weekend P per month (period of four weeks).
#j∈WeD{Xi,j,0 = P} ≤ 1, ∀i ∈ Us
Presupposes that P1 is posted.

P8 At most one weekday P per week.
#j∈WeDw {Xi,j,0 = P} ≤ 1, ∀i ∈ Us, ∀w
Presupposes that P1 is posted.

Ward (W)

W1 Always module 0 and 1.
#{〈Xi,j,0, Xi,j,1〉 = W} ∈ {0,2}, ∀i, j

W2 Never module 2.
Xi,j,2 6= W, ∀i, j

W3 2 Uphs every (week)day.
#i∈Us{Xi,j,0 = W} = 2, ∀j ∈WD
Presupposes that W1 is posted.

W4 Mondays and Thursdays 2 additional Cphs.
#i∈Cs{Xi,j,0 = W} = 2, ∀j ∈Mondays ∪ Thursdays
Presupposes that W1 is posted.

3.2. The Kalmar Model 15

W5 No Cphs except Mondays and Thursdays.
Xi,j,k 6= W, ∀i ∈ Cs and ∀k, ∀j ∈ Tuesdays ∪Wednesdays ∪ Fridays

W6 The same Cph on Monday and Thursday.
#{〈Xi,j,0, Xi,j+3,0〉 = W} ∈ {0,2}, ∀i ∈ Cs and j ∈Mondays
Presupposes that W1 and W4 are posted.

W7 The same two Uph doctors the whole week.
#j∈WDw {Xi,j,0 = W} ∈ {0,5}, ∀i ∈ Us and ∀ weeks w
Presupposes that W1 and W3 are posted.
This constraint is relaxed when testing some of the real instances, since
they are over-constrained: Post the constraint that at most 4 doctors
have ward at one week and only allow 1,3,4 or 5 Ws, to not spread it
too much, but to make it possible to satisfy constraint W3.
Introduce matrices of auxiliary variables:
Xw – Holding the number of W every doctor has each week.
Xob – Booleans for each doctor and week stating whether a doctor i has
W (at least ones) week w.

Count W occurrences for every doctor each week and carry in Xw :
#j∈DWw {Xi,j,0 = W} = Xw i,w, ∀i ∈ Us and ∀w

Forbid 2 occurrences:
Xw i,w 6= 2, ∀i, w

Reify at least one W for every week and doctor into Xob:
Xw i,w ≥ 1 ⇔ Xobi,w, ∀i, w

Post constraint less than or equal to 4 doctors having W for each week:∑
i Xobi,w ≤ 4, ∀w

Appointments (A)

A1 8-14 cells per day except Fridays.
8 ≤ #{X∗,j,∗ = A} ≤ 14, ∀j ∈WD\Fridays

A2 At least 42 cells per week.
#j∈WDw {X∗,j,∗ = A} ≥ 42, ∀w

A3 At most 4 doctors at the same time (i.e. the same day and module).
#{X∗,j,k = A} ≤ 4, ∀j, k

A4 Never A on both the last 2 modules.
#{〈Xi,j,1, Xi,j,2〉 = A} ≤ 1 ∀i, j

3.3. Used Software 16

A5 Never A on the last module Fridays.
Xi,j,2 6= A, ∀j ∈ Fridays, ∀i

Operation (O)

O1 Before noon surgeries are the first two modules.
#{〈Xi,j,0, Xi,j,1〉 = O} ∈ {0,2}, ∀i, j

O2 A certain interval for the number of surgeons before noon (module 0 and 1),
different for different days in the week.
#{X∗,j,k = O} ∈ {“Before noon demand for j’s weekday”}, ∀j ∈ WD , ∀k ∈
{0, 1}
Presupposes that O1 is posted.

O3 A certain interval for the number of surgeons after noon, different for different
days.
#{X∗,j,2 = O} ∈ {“After noon demand for j’s weekday”}, ∀j ∈WD
Presupposes that O1 is posted.

O4 At least 4 operation days for Uphs per month.
#{Xi,j,k = O} ≥ 4, ∀i ∈ Us ∪NoVac, ∀k ∈ {0, 2}, ∀j ∈WD
Presupposes that O1 is posted.

O5 At least 8 operation before noon for Cphs per month.
#{Xi,j,0 = O} ≥ 8, ∀i ∈ Cs ∪NoVac, ∀j ∈WD
Presupposes that O1 is posted.

O6 At least 2 operation afternoon noon for Cphs per month.
#{Xi,j,3 = O} ≥ 2, ∀i ∈ Cs ∪NoVac, ∀j ∈WD
Presupposes that O1 is posted.

3.3 Used Software

The programming language that was used was Java both for my familiarity with
it and for being easy to debug, which saves much of the time spent on developing.
Together with Java, Gecode/J was used, which is a Java wrapper for the C++
constraint programming library Gecode.

Gecode is an open, free and very efficient environment for constraint program-
ming. It supports the programming of new filter algorithms as well as decision
variable types and branching strategies. Filter algorithms for all global constraints
that are used are included in the current version of Gecode/J that is used here
(v2.2.0), as well as several standard branching strategies. As of the end of this work
it was announced that the Gecode/J support will be discontinued by its current
developers, but this implementation is being ported to C++ and Gecode. For more
information on Gecode and documentation see [7].

Chapter 4

Experiments and Results

4.1 Description

Experiments have been carried out to test the performance for a quite large instance
as the Kalmar model is. Many things can be altered here, variable order, value order,
pre-assignments, horizon and constraints, yielding many combinations. To limit the
number of test runs I have fixed the scheduling horizon, the value order and all
constraints are used on all the test runs. The scheduling horizon is fixed to 1 month
since no constraint is spanning over a longer period than that. The value order is
fixed to assigning values in this order: P, W, A, O, NA, x. This corresponds to the
most constrained value first. Note that there are no constraints on “NA” which is
why “x” (leisure) will never be assigned by branching in the first solution.

Tests have been done for different branching heuristics with random pre-assignments
at each run. The randomisation only pre-assigns to complete vacation weeks in a
manner that solutions exists. It should be noted that the random pre-assignments
does not correspond to real life. Since these specific constraints are used from the
Kalmar model, the purpose of these tests are merely to give an idea of what this
scheduling software is capable of and to give a guidance to what branching heuris-
tics are the best. Changing the constraints, even though of the same type, and the
number of modules, might change things dramatically.

One test was also made on real-life provided instance from Kalmar using, as
needed, a relaxed model by relaxing constraint W8.

4.2 Testing System

The testing computer has the following properties:

– Processor: Turion 64 x2 Mobile Technology TL-58 (1.9 GHz, 2*512 KB L2
Cache)

– Memory: 2 GB DDR2 RAM

17

4.3. Variable Orders 18

– Operating System: Windows Vista

– Java version: 1.6.0 07

– Gecode/J version: 2.2.0

4.3 Variable Orders

The different variable orders tested are:
MAX MAX - Branches on the variable with the largest maximum value in its
domain. Before the systematic testing it seemed to be the generally best one.
REGRET MAX MAX - Branches on the variable with the largest max-regret.
Max-regret is the difference between the largest and the second-largest value still in
the domain. Before systematic testing it seemed to often be faster than MAX MAX
but with fewer runs that finished in less than 20 min.

These results motivated testing a combination of the heuristics above that starts
with REGRET MAX MAX stops it after 10 seconds if no solution is found before
that. Then a new search using MAX MAX starts, that runs until a solution is
found.
Figure 4.1 shows a generated schedule with random pre-assignments using MAX MAX.

4.4 Results

Using the combination of variable orders, 500 runs were made with randomised
pre-assignments, the following results were obtained:

– average run-time: 10.8 s

– standard deviation: 20,6 s

– longest run: 2 m 52.5 s

– REGRET MAX MAX found solution 67% of the runs (within 10s).

The average and longest run-times are acceptable. Remember that the randomisa-
tion of pre-assignments does not correspond to real pre-assignments and thus real
instances might have a lot longer run-times.

Figure 4.2 shows a generated schedule with real pre-assignments from the sched-
ule in figure 3.1, using as needed, relaxation of constraint W8. Note when comparing
with figure 3.1 that Dr. K seems to be on vacation when he/she was in fact part
time available to satisfy some of the constraints adaptively, but this is not seen in
the schedule. In the generated schedule Dr. K is treated as available at all times.
The pre-assignments are the vacations and most of the miscellaneous tasks, some

4.4. Results 19

of the miscellaneous tasks are not pre-assigned as they can be post-refined instead.
This schedule is found in 13.2 s using the combined variable order.

4.4. Results 20

Week 1 Week 2 Week 3 Week 4
x x x x x x x W O O W O B B x x x x x x x O O O O O x x

Dr. A x x x x x x x W O O W O B B x x x x x x x O O O O O x x
x x x x x x x A A A A O B B x x x x x x x A A A A O x x
x x x x x x x x x x x x x x A O O O O B B O O O O x x x

Dr. B x x x x x x x x x x x x x x A O O O O B B O O O O x x x
x x x x x x x x x x x x x x O A A A O B B A A A A x x x
A O O O O B B O O O O x x x x x x x x x x x x x x x x x

Dr. C A O O O O B B O O O O x x x x x x x x x x x x x x x x x
O A A A O B B A A A A x x x x x x x x x x x x x x x x x
W A A W A x x W O O W O x x O O O O O x x x x x x x x x

Dr. D W A A W A x x W O O W O x x O O O O O x x x x x x x x x
A O O A O x x A A A A O x x A A A A O x x x x x x x x x
W A A W A x x A A A A O x x W A O W O x x O O O O O B B

Dr. E W A A W A x x A A A A O x x W A O W O x x O O O O O B B
A O O A O x x O O O O O x x A O A A O x x A A A A O B B
A A A O O x x O O O O A x x W O O W A x x x x x x x x x

Dr. F A A A O O x x O O O O A x x W O O W A x x x x x x x x x
O O O A x x A A A A x x A A A A x x x x x x x x x
O O O O O x x x x x x x x x x x x x x x x W O O W O x x

Dr. G O O O O O x x x x x x x x x x x x x x x x W O O W O x x
A A A O x x x x x x x x x x x x x x x x A A A A O x x
x W A A W A x x

Dr. H x W A A W A x x
x O O O O x x
A A A A x

Dr. I A A A A x
O O O O x
x x x x x x x A A A A x x O O O O A x x O O O O A x x

Dr. J x x x x x x x A A A A x x O O O O A x x O O O O A x x
x x x x x x x O O O O x x A A O O x x O O O O x x
x x x x x x x x x x x x x x A A A A x x x x x x x x x

Dr. K x x x x x x x x x x x x x x A A A A x x x x x x x x x
x x x x x x x x x x x x x x O O O O x x x x x x x x x
P x O A A P x P x A A A x x P x A A A x x P x A A A x x

Dr. L P x O A A P x P x A A A x x P x A A A x x P x A A A x x
P x A O P x P x O O x x P x O O x x P x O O x x
x x x x x x x A P x A A P x x x x x x x x A P x A A x x

Dr. M x x x x x x x A P x A A P x x x x x x x x A P x A A x x
x x x x x x x O P x O P x x x x x x x x O P x O x x
A P x A A x x A A P x x x A P x A A P x A A P x x x

Dr. N A P x A A x x A A P x x x A P x A A P x A A P x x x
O P x O x x O O P x x x O P x O P x O O P x x x
O O P x x x x x x x x x x A A P x x x W W W W W P x

Dr. O O O P x x x x x x x x x x A A P x x x W W W W W P x
O O P x x x x x x x x x x O O P x x x O O O P x
O O O P x x x W W W W W x x W W W W W x x A A A A P x P

Dr. P O O O P x x x W W W W W x x W W W W W x x A A A A P x P
O O O P x x x O O O x x O O O x x O O O P x P
O O O O P x P x O O P x x x W W W W W x x x x x x x x x

Dr. Q O O O O P x P x O O P x x x W W W W W x x x x x x x x x
 O O P x P x O O P x x x O O O x x x x x x x x x

W W W W W x x O O O O P x P x A O P x x x W W W W W x x
Dr. R W W W W W x x O O O O P x P x A O P x x x W W W W W x x
Uph x x O O O P x P x O O P x x x O O x x

W W W W W x x W W W W W x x O O O P x P x A O P x x x
Dr. S W W W W W x x W W W W W x x O O O P x P x A O P x x x

 x x O x x O P x P x O P x x x

Cph

Cph

Cph

Cph

Cph

Cph

Cph

Cph

Cph

Cph

Cph

Uph

Uph

Uph

Uph

Uph

Uph

Uph

Figure 4.1: Generated schedule with randomly pre-assigned vacations using
MAX MAX.

4.4. Results 21

Week 1 Week 2 Week 3 Week 4
x x

Dr. A x
x x
W O O W x x x x x x x x x x x x x O A x x O O O O O x x

Dr. B W O O W x x x x x x x x x x x x x O - x x O O O O O x x
A A - A x x x x x x x x x x x x x - O x x - - A A O x x
W A A W A x x W A O W x x x O O O O x x x x O O O x x x

Dr. C W A A W A x x W A O W x x x O O O O x x x x O O O x x x
- O - A O x x - - A A x x x - A A A x x x x - A - x x x
A A A A x x x W A A W A x x W O O W O x x O O O O O x x

Dr. D A A A A x x x W A - W A x x W O O W O x x O O O O O x x
O O - O x x x A O A - O x x A A - - O x x A - A - O x x
A O - - - x x O O - - - x x - O - O x x x W O O W O x x

Dr. E A O - - - x x O O - - - x x - O - O x x x W O O W O x x
O A - - - x x A - - - - x x - A A A x x x A A A A O x x
x x

Dr. F x
x x
A A A A O x x A - - O O x x W O O W O x x W O O W x x x

Dr. G A A A A O x x A - A O O x x W O O W O x x W O O W x x x
O O O - O x x - - O - - x x A A A - O x x A A - - x x x
A A A A x x x x x x x x x x O O O O x x x O O O O x x x

Dr. H A A A A x x x x x x x x x x O O O O x x x O O O O x x x
O O O O x x x x x x x x x x A O A A x x x A A - A x x x
O O O O A x x A A A A - x x A A A A O x x O O A O A x x

Dr. I O O O O A x x A A A A x x A A A A O x x O O A O A x x
A A A - O x x O O - - - x x O O O O x x O A O A x x
x x x x x x x A A A O O x x O O O O A x x O A A O A x x

Dr. J x x x x x x x A A A O O x x O O O O A x x O A A O A x x
x x x x x x x - O O - O x x - O - - x x - O - - x x
O O O O A x x A O O A A x x A O O A A x x A A A A x x

Dr. K O O O O A x x A O O A A x x A O O A A x x A A A A x x
A A A A x x O A A O O x x O O O O x x O O O O x x
 W O P x x x W O A P x x x W W W W P x P x W W W W x x

Dr. L - W O P x x x W O - P x x x W W W W P x P x W W W W x x
- O A P x x x A - - P x x x A O - O P x P x - O - x x
x x x x x x x W W W W P x P x A A P x x x W A A P x x x

Dr. M x x x x x x x W W W W P x P x A A P x x x W A - P x x x
x x x x x x x - - A A P x P x O - P x x x O O O P x x x
O P x O - P x O P x A W x x P x W W W x x A P x A W x x

Dr. N O P x O - P x O P x A W x x P x W W W x x - P x A W x x
A P x O - P x A P x O - x x P x - - - x x - P x O - x x
x x x x x x x O O - - - P x A P x A A x x P x A A x x

Dr. O x x x x x x x O O - - - P x A P x A A x x P x A A A x x
x x x x x x x O A - - - P x - P x - - x x P x O - - x x
O P x W x x P x O O A x x x x x x x x x x - - A A P x

Dr. P O - P x W x x P x O O A x x x x x x x x x x A - A P x
O O P x - x x P x - A - x x x x x x x x x x O - - - P x
W W W W P x P x W W W W x x W W P x W x x x x x x x x x

Dr. Q W W W W P x P x W W W W x x W W P x W x x x x x x x x x
O O O O P x P x A - O - x x O O P x - x x x x x x x x x
W O W W W x x O O P x A x x A A A - - P x A P x x x

Dr. R W O W W W x x O O P x x x A A A - - P x P x x x
 O - x x O O P x - x x O - - - P x O O P x - x x
P x x x x x x x x x x x x x x x x x x x W W W W P x P

Dr. S P x - x x x x x x x x x x x x x x x x x x W W W W P x P
P x O x x x x x x x x x x x x x x x x x x O O O O P x P

Cph

Cph

Cph

Cph

Cph

Cph

Cph

Cph

Cph

Cph

Cph

Uph

Uph

Uph

Uph

Uph

Uph

Uph

Uph

Figure 4.2: Generated schedule with real pre-assignments.

Chapter 5

Conclusions

This thesis discussed constraint programming for scheduling and presents a model
for a clinic in Sweden. The starting point was that the clinic expressed interest in
using software for their needs and from this, many aspects comes up. The model that
I tried to implement in the beginning was HIBISCUS [1], which uses many global
constraints and has been successfully implemented to several different contexts.
However, in the Kalmar case, the rules were not as sophisticated and the main topic
in the problem here seems to be a quite large instance.

Extensive tests with random pre-assignments were carried out that gave guidance
to what variable order is good for this type of model. The only global constraints
that were used in the non-relaxed model are: count and logic constraints. The
scheduling software is able to generate schedules for the tested instance from Kalmar
in 13.2 s.

5.1 Restrictions and Delimitations

The model is based on pre-assignments that need to be given by a doctor and
the number of instances tested are small. All doctors have been divided into two
different groups, in reality the constraints differ more than that and constraints on
individuals would be useful. Like with the pre-assignments the definition of such
constraints is to be given by a user and for this, a good graphical interface is needed.

Since there are no precise general rules in constraint programming that state
what model gives the best performance, it is important to test several different
ones empirically. Since both constraints, pre-assignments, variable and value order
and schedule model all can be altered, the number of combinations of tests is big.
Changing the value order might give better performance for some instances.

The scheduling horizon is one month, even though the manually constructed
schedules are done with a 2 month horizon. It is possible to search for the schedule
one month at a time, since the constraints only span over that horizon. It is prefer-
able to use the whole horizon however, since it leaves open for more flexibility and
more constraints, should they occur.

22

5.2. Future Directions 23

The schedule model uses a 3D-matrix which yields a large number of variables.
Changing to assigning one value for each day, as described in 3.1, yields a model
with: 560 variables and 19 values (38 with the back-up on-call included in the main
schedule), compared to 1608 variables and 6 values in the current model. Using day
variables could give a lot better performance and is indeed interesting to test. It
will however make the constraints less intuitive and the model will be less dynamic
when it comes to changing constraints, since more constraints are implied by the
model.

5.2 Future Directions

No optimisation techniques have been considered in this paper. However, looking
at the Kalmar case, the set of constraints that were given, were not satisfiable
when using the real sets of pre-assignments. A common way is to optimise a linear
objective function on the number of satisfied soft constraints. These weights must
somehow be specified by the clinic.

An attempt to find implied constraints in the model was made, but none was
found. Tie-breaking in the variable order as well as local search are other techniques
that have not been used.

Acknowledgements

I would like to thank my supervisor, professor Pierre Flener, for all the help and
support during the work of this thesis and for being an inspiring lecturer in the
Constraint technology course that got me interested in the subject. I also thank Pa-
trik Bernestr̊a, doctor and scheduler at the orthopaedics department in Kalmar, for
providing data and constraints for this topic and for his continuous help explaining
how physicians work and the difficulties of scheduling.

24

References

[1] Stéphane Bourdais, Philippe Galinier, and Gilles Pesant. Hibiscus: A constraint
programming application to staff scheduling in health care. In Proceedings of
CP’03, pages 153–167. Springer-Verlag, 2003.

[2] P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-Based Scheduling: Apply-
ing Constraint Programming to Scheduling Problems. Kluwer Academic Pub-
lishers, 2001.

[3] G. Laporte. The art and science of designing rotating schedules. In Proceedings
of the Journal of the Operational Research Society, volume 50, pages 1011–1017,
October 1999.

[4] Nicolas Beldiceanu, Mats Carlsson, and Jean-Xavier Rampon. Global
constraint catalog. Technical Report T2005-08, Swedish Institute
of Computer Science, February 2008. See http://www.emn.fr/x-
info/sdemasse/gccat/index.html.

[5] Slim Abdennadher and Hans Schlenker. Interdip - an interactive constraint
based nurse scheduler. In Proceedings of The First International Conference
and Exhibition on The Practical Application of Constraint Technologies and
Logic Programming, PACLP, 1999.

[6] Michael W. Carter and Sophie D. Lapierre. Scheduling emergency room physi-
cians. In Proceedings of Health Care Management Science 4, pages 347–360,
2001.

[7] Gecode Team. Gecode: Generic constraint development environment, 2008.
Available from http://www.gecode.org.

[8] S. J. Darmoni, A. Fajner, N. Mahe, A. Leforestier, M. Vondracek, O. Stelian,
and M. Baldenweck. Horoplan: computer-assisted nurse scheduling using con-
straintbased programming. In Proceedings of Journal of the Society for Health
Systems, pages 5:41–54, 1995.

[9] Harald Meyer Auf’m Hofe. Nurse rostering as constraint satisfaction with fuzzy
constraints and inferred control strategies. In Proceedings of DIMACS workshop

25

REFERENCES 26

on Constraint programming and large scale discrete optimization, pages 67–100,
Boston, MA, USA, 2001. American Mathematical Society.

[10] M. Kelishani and G. Lindmark. Time care – schemaläggningsprogram med
individuella och flexibla arbetstider: en vinn-vinn situation för arbetsgivare
och anställda? Master’s thesis, Lule̊a University of Technology, Department of
Human Work Sciences, 2005.

