Technical report, IDE0950, November 2009

Ethernet Network Functionality Testing

Master’s Thesis in Computer Science and Engineering

Mirza Aamir Mehmood, Mohtashim Khan

MetBurst MetBurst
Sepvear Client

Communication
Protocol

éoC’SKof«% School of Information Science, Computer and Electrical Engineering
) . Halmstad University
MSTH

Ethernet Network Functionality Testing

Master’s thesis in Computer Science and Engineering

School of Information Science, Computer and EleatrEngineering
Halmstad University

Box 823, S-301 18 Halmstad, Sweden

November, 2009

Description of cover page picture: Ethernet Netwdflnctionality Testing with NetBurst
Application.

Preface

First and foremost | pay thanks to Almighty Allalnavgave me strength to complete my Masters
degree. Afterwards | pay my sincere gratitude topasent and family who supported me in all
possible aspects throughout my stay in Sweden plagahanks to my friends and fellows for
making my stay in Sweden a wonderful experiende. pay thanks to Halmstad University for
providing an amazing learning environment wheregl@ered new technologies and research
methodologies.

Last but not least | dedicate this thesis to myngmur sister without her support it was not
possible for me to accomplish this task.

Mirza Aamir Mehmood

Halmstad University, August 2009

First and foremost | pay thanks to Almighty Allalnevgave me strength to complete my Masters
degree. | take this opportunity to express my smgeatitude to my parent and family for their
support and help. | do pay thanks to my friendshilping me out in critical situations.

Last but not least | do pay thanks to Halmstad Brsity for providing an amazing learning
environment where | explored new technologies asedarch methodologies.

Mohtashim Khan

Halmstad University, August 2009

Abstract

Ethernet functionality testing as a generic termedudor checking connectivity,
throughput and capability to transfer packets dliernetwork. Especially in the packet-switch
environment, Ethernet testing has become an eakguait for deploying a reliable network.
Over a long distance Ethernet testing parameteanatyzing network performance must have
two devices attached and synchronized.

Nowadays, computer networks and telecommunicatstems use a wide range of applications.
Therefore, the power and complexity of computemoeks are increasing every day which
enhances the possibilities of the end user, bot ralskes harder the work of those who have to
design, maintain and make a network efficient,roed and secure.

Saab Microwave Systems is among the leading suppbieradar systems developing ground-
based, naval and air-borne radar systems. To erieareorrect functionality, the developer
wants to verify the performance of computer netwammd looking for a suitable solution.

A software application is required to verify andttthe functionality of the Ethernet network and
to verify the functionality and performance of tR€P/IP stack of newly added node. The
programs shall be easily ported to different opegasystems and must not depend on specific
product properties.

A software application, “NetBurst”, is developedr f&thernet functionality testing. The
application is vendor and platform independent.

Key Words:

Communication, Networking, Performance, Load, Rwlitg, Throughput, TCP, IP, Protocol,
Ethernet, Testing

11

List of Figure

Figure 6-1 NetBurst CoOmMMUNICALION.t ceeeeerieie e e e e eee et erreens s e e e e e e e e e e eeees 29
Figure 6-2 Application ArChItECIULE............ooiii ettt 30
Figure 6-3 Configuration File............ccooiiiiiii ettt aeene e 31
FIQUIE B-4 TCP FilE.. .ottt st e eeennesaa e e eaaeeaaeenae e 32
FIQUIE B-5 TP FHl... ..ottt sttt e e e me e me e e nneeeneeeneee e 32
Figure 7-1 TCP Packet Throughput Graph...........ccoooi oo 35
FIgure 7-2 PacCKet Lat@NCY........ccuioiiiiie ettt emeene e aneas 36
Figure 7-3 Packet Latency HiStOGram...........c.ooiiiiiriie et 6.3
Figure 7-4 Packet LOSS Graphl.........cooviiiiiiieicic ettt sne e 37
Figure 7-5 Socket Options with Default Values..............ccoooviiiiiii e, 38
Figure 7-6 TCP HaNAShaKEe...........c.c.oooiiiiieii ettt 39
FIQUIE 7-7 TCP CONNECHION.......cciiieiit ettt ettt st et e st e e s e e stee s beennnansaeanneens 39
FIQUrE 7-8 TCP CONNECHION........cciiiiit ettt eeee ettt s et eesbee s beennnaesaeanneens 40
Figure 7-9 TCP Option ProCESSING.......ccuveiiieeiieiieeiieesieeesieeemeneeeseeeseeeeneeesneeesneeenneeenneesneennn A1
Figure 7-10 Bad OptioN ProCESSING.........cciuieiiieiieeiie i siieeseeeeee e sieeseeeneeeeeeesneeenneeeneeeenen 42
Figure 7-11 TCP Packet Urgent POINLEL...........cooiiiiiie e eeeee e 43
Figure 7-12 Maximum PaYlOad............cooiiiiieiiieie et eene e 44
Figure 7-13 Malformed Packet with SYN and FIN flags..........cccccooieiiiiicii e 45
Figure 7-14 [P FragmMentation...........cc.coiuieiiieiie e eeeee ettt snae et e e seennanne e 46
Figure 7-15 Fragmentation TeSL.........ccoviiiiiiieiie et eee et aeeeae e eeennns 47

Figure 7-16 Fragmentation Reassembled...............coooiiiii it 48

13

1
2

3

4

5

6

Contents
INTRODUCTION
REQUIREMENT ANALYSIS SAAB MICROWAVE SYSTEMS

21 PROBLEM STATEMENT
2.2 FUNCTIONAL AND SYSTEM REQUIREMENTS
2.3 CURRENTNETWORK ENVIRONMENT

TERMS, TECHNIQUES AND TECHNOLOGIES

3.1 ETHERNET

3.2 ETHERNETTESTING

3.3 NETWORK PROTOCOL
3.3.1 Transmission Control Protocol
3.3.2 Internet protocol (IP)

RELATED WORK

4.1 SOFTWARE AND HARDWARE PRODUCTS
4.2 RESEARCHWORK
4.3 DiscussioN

APPLICATION DEVELOPMENT ENVIRONMENT

5.1 LIBNET
5.2 LIBPCAP
53 EcLIPSE

NETBURST ARCHITECTURE

6.1 APPLICATION OVERVIEW
6.2 COMMUNICATION MODE
6.3 APPLICATION ARCHITECTURE
6.3.1 NetBurst Configuration File
6.3.2 NetBurst Packetizer
6.3.2.1 TCP Configuration file
6.3.2.2 IP Configuration File
6.3.2.3 TCP Payload file
6.3.3 NetBurst Sniffer
6.4 APPLICATION EXECUTION

RESULTS

7.1 PERFORMANCETESTING
7.1.1 Test Case I: Throughput
7.1.2 Test Case Il: Latency
7.1.3 Test Case lll: Packet Loss
7.2 LOAD TESTING
7.2.1 Test Case |I: Maximum MTU Length Packet
7.2.2 Test Case II: Packet Burst for Time Period
7.2.3 Test Case lll: Packet per Second Burst for Timadeer

7.2.4 Test Case IV: Total Traffic Load of a Node for GaémtTime Period.

7.3 SOCKET SETTING AND SUPPORTEDOPTIONS
7.3.1 Test Case I: Default Values of Different Socket iOm

17
19

19
19
20

21

21
21
21
21
22

23

23
24
25

27

27
27
27

29

29
30
30
31
31
32
32
32
32
33

35

35
35
36
37
37
37
38
38
38
38
38

8
9

7.3.2 Test Case II: Supported Socket Options
7.4 TCPFUNCTIONALITY TESTING

7.4.1 TCP Handshake:

7.4.2 Test Case I: Establishing Connection on Open Port

7.4.3 Test Case II: Establishing Connection from Closed P
7.5 CONNECTIONSETUP

7.5.1 Test Case |: Sending lllegal Sequence and Acknaymeght Numbers
7.6 TCPOPTIONLIST

7.6.1 Test Case I: Valid options with legal values

7.6.2 Test Case II: Valid options with illegal and unusualues

7.6.3 Test Case lll: Options at various times duringdbenection
7.7 TCPPACKETS

7.7.1 Test Case I: Urgent pointer with non-zero valuelR{G bit not set

7.7.2 Test Case Il: Random window size packets
7.8 TCPPAYLOAD

7.8.1 Test Case |: Sending 0 payload

7.8.2 Test Case II: Sending Maximum payload

7.8.3 Test Case lll: Sending Minimum payload
7.9 TCPCONNECTIONCLOSE

7.9.1 Test Case |: Add options to the shutdown packets

7.9.2 Test Case II: Throw SYN/FIN where the FIN is exjgelct
7.10 IP OPTIONSPROCESSINGIESTS

7.10.1 Test Case I: Unknown options

7.10.2 Test Case Il: Known options with wrong lengths
7.11 IP FRAGMENTATION TESTS

7.11.1 Test Case |: Fragmentation Test

7.11.2 Test Case Il: Fragmentation Reassemble Test

NETBURST PORTABILITY
CONCLUSION

REFERENCES

APPENDIX

15

39
39
39
39
39
40
40
40
41
41
42
42
42
43
43
43
44
44
45
45
45
45
45
46
46
46
47

49
51
53
57

Introduction

1 Introduction

In the late 1990s, the spectacular growth of theriet dramatically affected the evolution
of computer networking. Numerous network technigaed technologies boomed, but quickly
faded into oblivion. Others have stood the tegtroé.

This growth is not possible without protocols ameneunications software. As a result, the end
user is greatly empowered with numerous choicedadla to them. Contrary to thishe large
number of transmission techniques and communicatiotocols had made it very difficult for
the network engineers, who have to desigevelop and maintain the performance and
optimization of their network.

Thus, with the power and complexity of computemmeks raisedthe need for tools to measure,
analyze and test the functionality and performasfdée network is greatly intensify.

Saab Microwave Systems is also looking for softwiig could be used in its heterogeneous
network environment. This report analyzes and dises the problem, establishes the software
requirements and provides a solution for Saab Miexe Systems

This report is divided into nine chapters. In cleapt, a current system analysis is provided. In
chapter Ill, terms and techniques used are deskrdreoverview of related work is provided in

chapter 1V. Application development environment described in chapter V. NetBurst

architecture is discussed in chapter VI. Applicatiest cases are provided in chapter VII.
Portability issue is discussed in chapter VIII aodclusion is provided in chapter IX.

17

Ethernet Network Functionality Testing

Requirement Analysis SAAB Microwave Systems

2 Requirement Analysis SAAB Microwave Systems

SAAB Microwave Systems is among one of the leadsuppliers of radar systems,
developing ground-based, airborne and naval ragdemms. To ensure the correct functionality,
the developer wants to verify the performance eirthetworks in order to develop optimized
software for SAAB Microwave Systems. In this seatithe problem statement is provided along
with the functional requirements.

2.1 Problem Statement

A software application is required to verify andsttehe functionality of the Ethernet
network and to verify the functionality and perf@nte of the TCP/IP stack of the network
nodes. The program shall be easily ported to diffeoperating systems and must not depend on
specific product properties.

2.2 Functional and System Requirements

Following are the functional and system requirermeptovided by Saab Microwave
Systems.

Functionality

Different nodes should have full TCP/IP functiohaknd work correctly i.e. no errors in
the implementation and include all functions aceuydo the TCP/IP specifications for example
fragmentation, option processing and handshake amésin.

Load

The program shall measure the workload of the caendor different message lengths
and speeds. Dependent on hardware support for P@#®the processpand driver’s efficiency,
the load will vary with different implementations.

Performance

The program shall measure or provide the possibilit measure the latency for a
message transfer, for example:

Time for sending a message (from call of sendthéomessage appearance on the line)
Time for receiving a message (from line to a waitapplication)

19

Ethernet Network Functionality Testing

Portability

The programs shall be easily ported to differemhpoters and must not depend on specific
product properties. The application should be &blein on following operating systems:

Solaris

Unix

Linux

VxWorks

Windows NT / Windows 2000 / Windows XP

2.3 Current Network Environment

A typical radar system from Saab Microwave Syst&rzased on a switched network with
about 10 computer nodes connected to 1-3 Ethemtthes. The system is heterogeneaush
different computer nodes and different OS includibgt not limited to Linux, Solaris and
VxWorks. Some of the computers have screens anobleegts for radar operators.

Terms, Techniques and Technologies

3 Terms, Techniques and Technologies
Terms and Technologies used in this report areudgsd and elaborated in this section.

3.1 Ethernet

Ethernet technology is a packet-switching technplowyented in early 1970s at Xerox
PARC. Ethernet technology has been standardizedsandw referred to as ISO 802.3. Since
then it is widely used and successful LAN (LocaéAmNetwork) technology.

Ethernet is a high speed local area network. Thsted pair technique of Ethernet is
widely used to connect computer nodes, to formcallarea network. The main advantage of
twisted pair wiring is low cost and efficient, etalend data transfer.

3.2 Ethernet Testing

Ethernet testing is a generic term used for checldonnectivity, throughput and
capability to transmit packets over the networlpeesally in a packet-switching environment.
Ethernet testing has become an essential partejploging a reliable network. Ethernet testing
parameters for analyzing network performance ovéong distance must have two devices
attached and synchronized [1].

3.3 Network Protocol

Network protocol is defined as a convention thatldes the connection to communicate
and transfer data between two computers. Theseoqmist are used for synchronous
communication between computers. Most of the nétyootocols used in Internet generally use
packet-switching techniques. The commonly usedopd$s are IP (Internet Protocol), UDP
(User Datagram Protocol), TCP (Transmission CorRrotocol), DHCP (Dynamic Host Control
Protocol), HTTP (Hypertext Transfer Protocol) anidPHFile Transfer Protocol) [2].

3.3.1 Transmission Control Protocol

Packets can be lost or destroyed during transnmisdibis could be a result of errors
appeared in link, hardware failure or heavy traffit networks. To overcome these problems, a
reliable stream of data delivery is needed. TCBymscally used for applications that require
reliable data delivery. TCP establishes full duptexinection and is referred to as connection
orientated byte stream protocol. TCP establish ection through its handshake mechanism.
Client initiates communication by sending TCP packéh “SYN” flag. In response to this
request server reply with a TCP packet with conflieds “SYN ACK”, acknowledging that it
has received the “SYN” request and ready to comoatei If the port at client machine which
initiated this “SYN”, somehow gets closed, on reoeg “SYN ACK” will reply with a packet
having “RST” flag indicating that port is closed.

TCP uses a specialized sliding window mechanisnefiiicient transmission. TCP window is the
receiver's current buffer size. The TCP window na@i$m makes it possible to send multiple

21

Ethernet Network Functionality Testing

segments before an acknowledgement arrives. Thishamésm increases total throughput
because it keeps the network busy. TCP allows ihdow size to vary over time as it provides
flow control as well as reliable transfer by avtdeceive more data than it can store.

TCP also provide a way to send urgent data toiadtieceiving program of its arrival as quickly
as possible, regardless of its position in theastreOn receiving urgent data, the receiving TCP
notify application program to go into "urgent modafter all urgent data has been consumed,
TCP tells the application program to return to naroperation.

3.3.2 Internet protocol (IP)

Internet Protocol is used for data communicationaopacket switching network. IP
works as both network transport protocol and netwexidressing protocol. IP provides best
effort data packet delivery, and its services ca&ncharacterized as unreliable. IP uses a
technique called fragmentation to solve the problefimheterogeneous MTU’s. Whenever a
datagram is larger than the MTU of the network owéich it must be sent, it is divided into
smaller fragments which are sent separately. Thieer, fragmenting a datagram, a host or router
uses the MTU and the datagram header size to atdchbw many fragments are required. The
header of the original datagram is then copied theoheaders of each fragment. At receiving
end datagram are re-constructed. This procesdlési Ceeassembly”.

Internet Protocol version 6 (IPv6) is the next gatien protocol for the packet switching
network. IPv6 has a 128-bit address, and usesatiger address space to create an additional
level of address hierarchy. It allows a datagramntdude optional control information. IPv6
uses a completely new datagram format that incladest of optional headers.

Related Work

4 Related Work

This chapter is further divided in 3 sections. Amerview of available hardware and
software products is given in section 4.1, andaegework done in the field of protocol testing
is given in section 4.2, while section 4.3 is fesagission.

4.1 Software and Hardware products

There are two main methods to capture data fromtaark; the first is based on the use of
dedicated hardware, while the second makes udeedidrdware of a normal PC or workstation
connected to the communication channel. In the rekguethod, the network adapter of the
computer is used to obtain the frames from the odtwand the software performs packet
capturing process.

The software solution has usually the low perforogarms compare to hardware solution,
particularly on slow machines, but it is cheaperd @asier to modify and upgrade. For this
reason, it is widely adopted on the most used ndtwaochitectures, where the performance of
dedicated hardware is not needed.

In network performance analyzing or Ethernet tgstranges of different software and hardware
tools and products are available for packet capgpacket filtering and network monitoring [4,
5]. Following are the software and hardware prosidor capturing and analyzing network
traffic.

Tcpdump

Tcpdump is a simple packet sniffer that uses conamisne interface, and allows a user to
intercept and display TCP/IP and other packetsgogansmitted or received over a netwoik
is a freeware software which works on most Unieldperating systems (Linux, Solaris, BSD,
Mac OS X, HP-UX) and there is also a port of tcp@guior Windows called WinDump [6].

Wireshark

Wireshark is similar to tcpdump, but it providesgnical user interface (GUI) and many
other options as well, like packet filtering andtsw. It is a free packet sniffing application. It
works for different protocols with deep inspectiohpackets and uses decryption options for
many protocols. It can run on Windows, Linux, S@laMac OS and BSD [25]. Wireshark can
be used for data analysis captured by NetBurst.

Snoop

Snoop is a freeware command line packet sniffeluded as part of Sun Microsystems'
Solaris Operating System. It is dedicated for tb&a$ss system, on a data-link or IP interface.
Snoop captures packets and displays their contdéinthie data-link or IP interface is not
specified, snoop picks the first non-loopback datiait finds [7].

23

Ethernet Network Functionality Testing

TPTEST

TPTEST is another application used for measurindopgance on Internet connection;
TPTEST measures the throughput speed from varefasence servers on the Internet. TPTEST
measures the throughput of TCP/UDP incoming andjondg) packets and packet loss. The
application is written in C++ and is portable fointfows, Mac OS, Linux and BSD [8].

Maxwell Network Emulator

Maxwell network emulator is a hardware appliancat thelps network managers, software
developers and testers learn how their productsp&iform in real-world production networks,
including satellites and the Internét has both graphical and command line interface also
script driven interface for maximum flexibilityMoreover, it is fully customizable and
programmable using C++ [9].

IXANVL™ - Automated Network Validation Library (ANV L)

Ixia's IXANVL (Automated Network Validation Librargr ANVL) is another hardware device
that is also known as the industry standard foormated network/protocol validation. Software
developers and manufacturers of networking equipraed Internet devices use IXANVL to
validate protocol compliance and interoperabilify0]

4.2 Research Work

The later a software error is found, the costliés to correct [11]. Thus, software testing is
also initiated in earlier phases of developmente Bame applies on protocol testing. Many
researchers have worked on conformance, interogigraind functionality testing of protocols.
Some of them have suggested how to derive tesiesega directly from Finite State Machine
Model (FSM is a model of behavior composed oingdinumber of states, transitions between
those states, and actions) and Extended Finite Statlel (In EFSM transition can be expressed
by an “if statement” consisting of a set of triggemditions. If the trigger conditions are all
satisfied, the transition is fired, bringing theahee from the current state to the next state and
performing the specified data operations) [12,4Bxhile others have suggested different
approaches for protocol testing [11,15].

Few researchers have used simulation-based systeamalyze different aspects of underlying
protocol stack [16] Since our work has specific requirements anddsised on testing Ethernet

network functionality of nodes, which have a phgkiexistence in a real life, we cannot use
simulation techniques.

Most of the research carried out in this fieldasused on certain aspects of underlying protocol
stacks. Karl-Johan Grinnemo and Anna Brunstrom tshn@vn the scalability of TCP servers
and the TCP stack’s ability to handle persisteninections [16]. Dikran Kassabian and
Alexander Albicki’'s work is focused on Sliding Wiomd Protocols on Networked UNIX

Related Work

Computers [17]. Xiaodong Xie has also worked ondégigning and testing of a sliding-window
protocol [18]. One can clearly observe that thevabstated work has certain goals to achieve,
and is either focused on a certain environmentléJX (but we have to provide portability to
operating system other than UNIX), or functionabtiand protocols, e.g. sliding-window
protocol, whereas we do want to test IP which isansliding-window protocol. Thus, the above
stated works do not fulfill all the required furartalities we are looking for.

Yu-Ju Lin has developed a network benchmark sultehvis not only able to provide real time
data visualization, but it has also proved to be&lmmore accurate than TTCP. The main goal of
the program is to observe the network throughpstially in real time [19]. We do want to
observe throughput, but this is not the only fumdility we want. This is just a fraction of our
desired functional requirements.

To develop the applicationve need a well studied technique. Researchers dlasenvorked on
this aspect, and identified and demonstrated diffetechniques and methodologies to test
underlying protocol stack. The work carried out Wy Hengeveld has shown how hardware
testing techniques can be used to test protocalscammunication software[11]. On the other
hand, Douglas E. Comer and John C. Lin have discuggechnique called “active probing”[21].
Unlike other researchers, who assumed some sewpufsed interfaces [15] [20], active probing
treats a TCP implementation as a black box, andg aset of methods to probe the black box. As
a result, TCP responds to the probes with diffedrdracteristics of the TCP implantation.
Active probe technique is useful when the sourakeds not available.

Active probing uses a software tool to capture T&Egments for a particular TCP
implementation, as well as segments the TCP impigien sends in response. Moreover, it
analyzes the trace data to find patterns that exfies characteristics of the TCP implementation
[21]. However, this technique could be used to fastocol functionalities and Douglas E.
Comer and John C. Lin’s work is focused only on R{f€ransmission time-out) estimation,
retransmission interval and keep-alive functioyaland does not test any other functionality
available in TCP [21].

4.3 Discussion

There are many software applications for packeffisgi for example TCPDump,
WireShark but they can only analyze traffic. Theyrt offer any option to inject customized
packets. Applications that can test TCP for examl€P [22], can send TCP packébsit they
do not support custom packet creation. Applicatildies Snoop are platform dependent and can
run on a specific platform.

The research work done so far also focused onigegtavironments or functionalities. Not a
single research work provides us all the requingactionalities that are sufficient to test an
Ethernet node in our desired way.

25

Ethernet Network Functionality Testing

Since existing applications and research work do fodfill all the requirements, a new
application has to be developed that can fulfilltak requirements, and this is discussed in
chapter six. To carry out this task, we have adbphe technique that Douglas E. Comer and
John C. Lin have demonstrated [21], i.e. activebpmmg technique, to develop our application
named “NetBurst”.

Application Development Environment

5 Application Development Environment

The application has been developed in ANSI C, ugtctipse IDE on Fedora core 10.
External libraries used are Libnet and Libpcap amuk where, as on the Windows platform,
Winpcap and Libnet for Win32 are used, which argqubversions of early stated libraries.

5.1 Libnet

Libnet is a library for C programming used for packonstruction and injection. Libnet is
used to control every field of every header of gveacket; large number of programs goes
through a high-level interface in order to sendficaon the network. Occasionally, for security
or hacking reasons, a program needs to constsiowih network headers. The existing TCP/IP
stack is unable to build these headers, and it roysass it and go directly to the hardware
drivers. Libnet is a library that makes custom gadagleneration easier [23].

5.2 Libpcap

Libpcap gives a portable structure for low-levetwark monitoring. Libpcap can provide
network statistics collection, security monitoriagd network debugging. Every system vendor
provides a different interface for packet captufe. overcome this problem, Libpcap was
developed. This system-independent APl makes iee#&s port and alleviates the need for
several system-dependent packet capture modutscnapplication [6].

5.3 Eclipse

Eclipse is an open source, integrated developmevitaament. It comprises extensible
frameworks, tools and runtimes for building, dephgyand managing software. It provides plug-
ins in order to provide all of its functionality dap of the runtime system; this is in contrast to
some other applications where functionality is ¢gtly hard coded. This plug-in mechanism is a
lightweight software component framework. MoreovEclipse allows extension using other
programming languagesuch as C and Python. This plug-in setup allowgp&e to work with
networking applications such as Telnet, and dawbasnagement systems. The plug-in
architecture supports writing any desired extensiothe environment, such as for configuration
management [24].

27

Ethernet Network Functionality Testing

NetBurst Architecture

6 NetBurst Architecture

NetBurst is developed for Ethernet functionalitgtieg. It is a vendor independent, cross
platform application. It can be used to test lopeliformance and functionality of underlying
TCP/IP stack. Functionality testing includes thrimogt, packet loss, latency, fragmentation,
option processing etc.

6.1 Application Overview

The following figure provides an overall working ded of NetBurst. The application
works by sending customized packetapturing and observing the response by sniffimg t
packets. The packet generator is sending packdtsetmachine whose protocol stack needs to
be tested. Sniffer is running on machine under(dd&iT) to capture and observe the response of
MUT’s protocol stack.

/ NetBurst Communication \

MetBurst MetBurst
Server Client

— LARN L

Communication

\ Protocol /

Figure 6-1 NetBurst Communication

Communicating nodes are connected in LAN and podtbeing used is TCP/IP. Supported
protocols are Internet Protocol and Transmissiomtf@b Protocol. NetBurst supports only
Ethernet technology. An error will be generatedny other technology is being used.

29

Ethernet Network Functionality Testing

6.2 Communication Mode

The application can be executed in two communioatinodes: synchronous and
asynchronous.

When executed in synchronous mode, the clientnsing on MUT, and the server is sending
TCP or UDP packets. This mode is recommended anlyefst case designingince each and
every packet is processed to extract fields inptieket header. All incoming traffic displayed on
the terminal. Since all incoming packets are preedsit may result in slower packet capturing
and may lost many correctly received packets. uéheése reasons, this mode may produce
false results.

When executed in asynchronous mode, Packetizesaiffér run independently. All captured
packets are stored in a file for future use. A difapplications that support pcap file format is
given in Appendix A.

6.3 Application Architecture

NetBurst has two main componen®acketizer and Sniffer. Packetizer has been bwdt o
Libnet and is controlled through configuration $ileSniffer is built over pcap and Winpcap
libraries and is also controlled through configimatfiles. These configuration files are used to
control the packet transmission rate, packet caostm, and various other properties.

PACKETIZ

Connection Establishment> SNIFFER ‘

“ | Packet Se > PCAR
|

LIBNET
Config
/_F"y Packet Receive

= > 9

- Print or Save Packetq
- Synchronous or
Asynchronous mode

WinPcap

- Customize Packets
- Synchronous or
Asynchronous mode

Figure 6-2 Application Architecture

NetBurst Architecture

As shown in the above figure, Packetezier can tnadnsndom or fixed length packets. On the
other hand, Sniffer records all incoming trafficdaihe response generated by MUT. The above
figure depicts the application’s execution mode.

6.3.1 NetBurst Configuration File

A configuration file is designed to control the &pgtion behavior. Following is an
example of a configuration file containing diffetgmarameters. A user can interact with the
application through this file to control applicatitbehavior. The structure of the configuration
file is given in following figure.

time, 2
interval, 1
count, 3
ip_Ver, 4
random, 1
cache, O
protocol, 1

Figure 6-3 Configuration File

The time parameter controls total execution timéhefapplication. This parameter takes time in
seconds. Thenterval indicates the delay (in seconds) between two cutse bursts. If the
interval is zero, then packets will be fired witha@ny interval or delay. Theountis used to
control the number of packets in a single burstirfFoparameteip_Ver controls the version of
Internet Protocol. It could be either 4 or 6. TaRedomparameter is used to fire fixed or random
length packets. If the value of random is 1, thankets will be fired in random mode and, if
value is 0, it will fire fixed length packets. Tipeotocol parameter accepts either zero or one.
The value 1 indicates TCP and 0O represents UDP.

A burst can be calculated by the following formula

When executed with the above given configuratioital of two bursts, with three messages per
burst, are fired.

6.3.2 NetBurst Packetizer

This component is responsible for constructing isetting packets. To inject a packet,
NetBurst reads the packet constructed that is sabdalifferent fields of packet header from a
specific file for each protocol header. The stroetand purpose of these files are elaborated
below.

31

Ethernet Network Functionality Testing

The following diagram depict$écp.opt file which is used in Packetizer. The record
parameter controls number of packet constructsigeovin the file. The value of the source port
and destination port is given sport anddport fields. Thewin takes the value for the window
size, whereasrg is used to take the value of the urgent flag whictld be any numeric value.
Sequence and acknowledge values are provided thsmgandack respectively. The user also
has to provide the control flags (for example tim sTCP use this flag in its header to initiate
communication) and this is done through providimg value in theontrol parameter.

record, 1
sport, 1234
dport, 9876
win, 77

urg, 8

urg, 9

seq, 11

ack, 8
control,th_syn!

Figure 6-4 TCP File

The structure of thgov4.optfile is depicted in figure 6-5. The applicatioreaghis file to
construct a custom IPv4 packet.ith the value of ID field of IP header is providedeTluser
provides the source and destination addressadderand daddr, respectively. TTL takes the
value for time to live, wheredsstakes value of type of service field of IPv4 heade

record, 1

id, 2

frag, O

ttl, 123

saddr, 192.168.0.2

daddr, 192.168.0.1

tos,iptos_lowdelay | ipptos_throughput | iptos atalty | iptos_mincost!

Figure 6-5 IP File

A simple ASCII file is used to load dataa packet. This file should not exceed
the supported MTU (maximum transmission unit) sikanderlying Ethernet network.

6.3.3 NetBurst Sniffer
Sniffer is used to capture received packets. It @#mer print the extracted data on the
console, or dump it in a file. This file then cam lised to analyze MUT’s stack behavior. This is

NetBurst Architecture

a command line utility provided with NetBurst taciidate user. For sniffer with GUI (graphic
user interface) Wireshark tool is recommended. NetBSniffer reads the execution time value
from the configuration file elaborated in sectiaB..

6.4 Application Execution

To execute NetBurst, the user will have to enteingle command on terminal i.e.
NetBurst - Parameter . The following table lists the different commairtkl parameters
and their purpose in detalil.

Command Line Description
Parameter
-server NetBurst Packetizer will be launched inckéyonous mode.
-client NetBurst Sniffer will be launched in synohous mode.
-packet NetBurst Packetizer will be launched imnasyonous mode.
-sniff NetBurst Sniffer will be launched in asynohous mode.
-socket NetBurst will print socket options and ddffaalues.

Table 1: Commands and description to execute NetBur

33

Ethernet Network Functionality Testing

Results

7 Results

In this section, test cases and results are diedussanalyze the TCP functionality. Test cases are
categorized in four groups: performance, load, sbskttings and TCP functionality. For traffic arsad,
Wireshark is used, which is stand#&affic analysis tool.

7.1 Performance Testing

The performance of any communication system can be medsased on three main factors i.e.
throughput, latency and packet loss. To analyzena@asure these factors, a set of test casesevated
through NetBurst, anthe performance othe underlying TCP Stack is observed. Following the
results of these test cases.

7.1.1 Test Case |: Throughput
To verify throughput, a burst of packets havingketicsize 1500 bytes is fired for 60 seconds.
The following graph depicts the throughput.

Throughout
[8fs]

B D OCSRRRY ==

ot
i

f
S0] l
§
!

& W w

P v
R T o

PACKET
RETRANSMISSION

4000005 — .+ "TPACKET DELAY

S I 0 N 6L A IS U e) O S D L S R D Rt L RN M A LN G [WAL |
& (1] 15 et 5 = 5 40 5 50] il

Timels]

Figure 7-1 TCP Packet Throughput Graph

Throughput is defined as number of bytes receivedled by the transmission time. The figure
7-1 shows a normal test with no throughput problgns observed that the level of "fuzziness"
of the throughput speed distribution is normal amaly reflect a slight timing inaccuracy in the

35

Ethernet Network Functionality Testing

computer's clock. On analyzing the graph, a smai observed, which indicates a packet
delay after a retransmission.

7.1.2 Test Case Il: Latency
In continuation to test case |, a&maly graph is also produced which is given
below. In figure 7-2, packet number is given onxisaand time (in seconds) given on y-axis.

AAE T XD
(R RIS STRTR] RIS TETR TR BOEREIE A RN STETRTE] & ATILILREY o EREREIL CIRTRTETR TN

o L SR L
Fraycil=ark L ataericy CGhrapsby
fhthy O rclas e COLprvas 1SR
-
i a 3
®
~~
(7]
®
(@]
=l a
l:ll'!-l-'icll..llub E i J‘l'.l-l.'li LI} o L !|:|.I:III1] =1 |:I-|.HJU x4 |.l-l.Jl'.!I.. _rJ'I.l-rJ.I.'II:J .Il'.ll;l':':":!
Packet Count
Figure 7-2 Packet Latency
24000 — ——— — . . .
f o
21000

18000

15000

12000

Packet Count

9000

6000

3000

0 5 10 16 20 25 30 35 40 45 50 55 60 65 70
Latency (sec)

Figure 7-3 Packet Latency Histogram

Results

The above graph shows latency during a burst dfgigcansmitted from NetBrust. We can deduce from
the figure 7-2 that the latency gradually increasiis the time.

Likewise, in figure 7-3, latency histogram depite latency interval. It also shows that 7.8% p&ke
were affected with highest latency. On the otherdna.6% of packets were affected by lowest packet
latency, which occurred at the last packet trartechitThe variation of delay, known as jitter, ocedr
during transmission as depicted in figure 7-3.

7.1.3 Test Case lll: Packet Loss

Packet loss occurs due to several reasons inclukégetwork conjunction. For analyzing packet
loss, NetBurst has transmitted a total of 47886kets. On the receiving node a total of 430550 etsck
were received, which shows that 11% of the pachkesfe lost. For statistical analysis, the following
graph shows the loss which occurred in the trarsgaris

s Packets

T | T I T | T T | T I T 1 T I T

| |
4.0= &.0= &.0s 10,0 12.0=

Time [5]

Figure 7-4 Packet Loss Graph

From the figure 7-4, it is clear that a small numblepackets are lost during the whole period of
packet transmission. In the above figure, smalkpadepict packet loss with respect to packet
sequence number.

7.2 Load Testing

The objective of these test cases was to measuwvethe protocol stack of the machine
under test will perform in different communicatienvironments that include, but are not limited
to, high traffic with packet size of supported MThigh traffic with random packet size, and
varying speeds of traffic.

7.2.1 Test Case I: Maximum MTU Length Packet

By setting the fandoni flag off in configuration file, the packet load#ata from the
payload file. Packet lost is observed with MTU spackets and discussed in 7.3.1. The test
cases under section 7.1 are executed with maximaytogd, a standard Ethernet support i.e.
1500 Bytes.

37

Ethernet Network Functionality Testing

7.2.2 Test Case II: Packet Burst for Time Period

By setting the ihterval’ to 0 in the configuration file, a burst of packdired for a
specified time period. In section 7.1 a fixed lédnge.1500 bytes long packets are fired for 60
seconds. Packet lost, jitter and latency is obskewlgen a high traffic is generated over network,
a detailed analysis is provided along with the ltesn Section 7.1.

7.2.3 Test Case lll: Packet per Second Burst for Time Peod

To fire a certain number of packets per secondalaevis set for the interval and time
period. This ensures that only specified humberpaukets are fired every one second for the
given time period.

7.2.4 Test Case IV: Total Traffic Load of a Node for Cerain Time Period.

To measure the total traffic load on a node Buedt is executed in asynchronous mode
to sniff all incoming packets. In Sections 7.1,ialoming packets were saved in a file for
further analysis.

7.3 Socket Setting and Supported Options

NetBurst also provides a feature to list suppodedket options. NetBurst also lists the
default values of different socket options. Thédwing two test cases cover this functionality of
NetBurst.

7.3.1 Test Case I: Default Values of Different Socket Opbns

Figure 7-5, below, shows the output of NetBursiew the option to list default socket
settings is selected. All supported socket optiatang with default values and descriptions, are
printed.

ogrions value Descriprion

S DOKTROUTES
= RCVLOWAT .
{0 RCVEIHED:
{50 SHDLOWAT :
{500 _SNDTIHED:

Regorts whethar outguing messages Bypass the standard routing facilities, Int Option
keports the minimim nusber of bytes to pracess for sacket input operations. The default valug for 90 ROVLOMRT 15 1
Regorts the timeoun value for ngut operatfons. The default for this porion is 2ers
regnrts the mindmm rumber of bytes to process for Socker sutput operations.
é"m; the amount of time that an cutput function blocks because Flow contro) preven

150 DERLE: | & Repores whether dsbugging information &5 being recorded, A Biolean option,
S0 ACCEPTEONN: [0 Repoens whether sacker Tistening s enabled. & gonlean cption,
{3_BROADCAST [0 eepores whether transmission of broadcast meéssages 45 sugported. 4 Boolean optian.
150 SEUSEALR: | 0 Repores whether the rules used in validating addresses supplied to bind(). A gaolean ogtion.
S0_HEEPALIVES [0 Reports whether connections are kept active with periodic transeission of messages.A Brolean optien.
S0 LINGERT) ingerd:s | 0 Regores whether the socker Tingers on close().until it can transmit the data or wrtil the end of the interva] ingd
S-E_LEr.GEE{L-:n:%f: [0 this value of 1_onoff varisble
S0 OOBERLINE ! | 0 repores whether the socker Teaves recelved out-of-band data: & Boalean apriom,
S SNDBUER: | 16384 reporTs semd buffer size information.
S0_RCVRLE | 81380 Regorts receive buffer size informatfon,
0 ERROR; | 0 Beports information about error status and clears i1, Int opnicn
o.TiFE; i 1 Regorts the socket Typs,
1

|

I

|

I

e s

Beacrrs the timeour value spec

Figure 7-5 Socket Options with Default Values

Results

7.3.2 Test Case Il: Supported Socket Options
As depicted in Test Case |, all supported sockdibop are listed. If an option is not
supported, a message, along with the option namiemar, will be printed.

7.4 TCP Functionality Testing

The objective of these test cases is to test thetifunality of the TCP stack. A set of
sample test cases were executed. These test anddabgeir results, are discussed in this section.

7.4.1 TCP Handshake:
TCP provides a reliable means of communicationupinats handshake mechanism. The
following two test cases test this functionality.

7.4.2 Test Case I: Establishing Connection on Open Port
The following flow graph, shown in figure 7-6, debes how a “SYN” is acknowledged
from the machine under test with a “SYN ACK”.

4 {Untitled) - Graph Analysis

Tirne 192,168.0,2 192.168.0.1 Comment
0,000 Seq = 4204067205 fck = TEOBTI261
0,000 Seq=D2ck=0

1 1

Figure 7-6 TCP Handshake

The above figure depicts that client has sent &giagith “SYN” flag. Server has acknowledged
this “SYN” request through a TCP packet having oairftags “SYN ACK”.

7.4.3 Test Case Il: Establishing Connection from Closed &t
In this test case, a “SYN” is sent from the cliand then the port is closed. The server
has acknowledged this “SYN” with a “SYN-ACK” packe®ince the port is closed from the

/1 {Untitled) - Graph fAnalysis

Tirme 192,168.0.2 192.168.0. 1 Comment

0,000 mm@fﬂ__dﬂ.,m Seq = 4704067295 Ack = TE0GT 1261

0,000 sapaoy— SO | Sea=04ck=0
0,000 mq 4 ﬂm Seq = 0 Aok = 780671260

Figure 7-7 TCP Connection

39

Ethernet Network Functionality Testing

client, an “RST” will have been sent to the sert@rinform it that the port is closed. The
following graph in figure 7-7 depicts the same sten

7.5 Connection Setup

Once the connection is setup, a desirable testse¢ how the TCP stack deals with legal
and illegal sequence numbers. Following test casiéies this functionality.

7.5.1 Test Case I: Sending lllegal Sequence and Acknowlgohent Numbers
As shown in the below figure 7-8, the TCP stackusthonark and ignore illegal SEQ and

ACK number packets as ocof-order packets.

etho: Capturing - Wireshark

B o & & | da T+ BB A EE -
E}Elter: tep |+ p Expression... fglear_\?_';:"gpply
No. Time Source Destini Protocol .| Info

P Frame 103 (781 Eytes on wire, 781 bytes cap{ured?
0000 BO B B ca ed aa B Od 56 T3 58 ca 08 80 45 le V.X...E.
0010 02 ff 00 02 00 80 7b 06 e9 31 c2 2f of 7b dl 84

0020 bo 78 1d bl 04 bl 19 49 5c ff 00 @0 51 082 a0 10

0030 00 4d fa 74 B0 08 03 03 0a 01 02 D4 01 09 0B Oa
o040 3f 3f 3f 3f 00 00 00 00 00 0O 30 31 32 33 34 35

Figure 7-8 TCP Connection

7.6 TCP Option List

How the TCP stack processes the different TCP ogtis validated here. A set of test
cases are executed to analyze different aspeoistioh processing.

Results

7.6.1 Test Case I: Valid options with legal values

An options byte string is sent with “SYN” packetpin string is 20 bytes long and has
the value "\003\003\012\001\002\004\001\011\010M22077\077\077\000\000\000\000\000\
00"

i Intel{R] PRO/1000 MT Network Connection (Microsoft's Packet Scheduler) : Capturing - Wireshark

File Edit “ew Go Capture Analyza Statistics Help
@%@ﬂ& %@%@é Qe TR IEIB Qe f @MERBx O

Filter: Ecp ' Expression... Clear Apply

Dest\natlon Prokaocal Info

§}=Frame 1 (74 bytes onh wire, 74 bytes captured)
|@m Ethernet II, Src: Dell_dl:1b:b¥ (00:15:c5:d1:1b:b¥7), Dst: DellPcha_f3:58:ca (00:0d:56:f3:58:ca)
|® Internet Protocol, Src: 192.168.0.2 (192.168.0.2), Dst: 192.168.0.1 (192.168.0.1)
& Transmission Control Protocol, Src Port: isoipsigport-1 (1106), Dst Port: blackjack (1025), Seq: 1,
Source port: isoipsigport-1 (1106)
Destination port: blackjack (1025)
Sequence number: 1 (relative sequence number)
Acknowledgement number: 1 (relative ack number)
Header Tength: 40 bytes
® Flags: Ox10 (ACK)
window size: 91136 (scaled)
@ Checksum: Ox3fla [correct]
= options: (20 bytes)
wWindow scale: 10 (multiply by 1024)
MOP
Maximum segment size: 265 bytes
Timestamps: TSval 1061109567, TSecr O
ECOL

Figure 7-9 TCP Option Processing

The packet has been captured on the machine uedend establish how the options are
processed. The figure 7-9 depicts that all optemesprocessed successfully.

7.6.2 Test Case II: Valid options with illegal and unusuévalues

An options byte string is sent with the “SYN” patkeand the values
"\003\003\012\001\002\004'As shown in the figure 7-10 invalid options ardedéed and an
error message “option goes past end of optionfsglayed.

41

Ethernet Network Functionality Testing

Frame 1 (1514 bytes on wire, 1514 bytes captured)
Ethermiet II, ‘Sres Gel1odl;1b:b7 (00;15:¢h:d1;1b:07), Dst: Dellrcha f3i58:ca (00:0d:56,F3 58 ca)
Internet Protacol, Sec: 192.168.0.2 (192,168 0.2, Dst: 1492.168.0.1 €192.168.0.13
Transmission Contriol Protocol, Src Port: isoipsigport-1€1106), DSt Fort: blackjack CLO25), Seg: O,
source port: isoipsigport-1-(1106)
Destination port: blackjack (10253
Sequence number; O (relative sequence mumber)
[Hexr sequence number: 1440 (relacive saquence rumber)]
Acknowledgment number: Broken TCP, The acknowledge field 15 nonzero while the ACK Flag i not set
Header length: 40 bytes
¢ Flags s 002 (5YN)
Window $iz78; %
Checksum: (wiled [corract]
Options: (20 Dytes)
Unknowr (0ed3) Coption length = 104 bytes savs option goes past end of options)

Do Laee Ty

Figure 7-10 Bad Option Processing

7.6.3 Test Case lll: Options at various times during theconnection
Every packet has its own options associated wijtlhits the user can send options at
various times of connection. Test Case | depicteong at the handshake phase.

7.7 TCP Packets

How the TCP stack deals with different fields consts of a packet is analyzed here.
Packets are sent with different values for eacl fiend captured to verify the behavior of the
TCPstack. A few test cases are listed here.

7.7.1 Test Case I: Urgent pointer with non-zero value butJRG bit not set

A packet is sent with urgent pointer value 12 wttenURGENT bit is not turned on. It is
observed that the TCP stack of the machine undergeores the urgent pointer if the URGENT
bit is not sent. As shown in figure 7-11.

Results

'T':P_"_‘-,Tﬂp-:i'l n‘pn:nr":ja s i ackrack ; ; . .

Ackriowledgment number; Broken TCP, The acknowledge field 35 nomzero while the Ak Flag is not set
Hegder Tength: 40 bytes
s Flags; Ux00 0)
Bovy vpee = Congestion Window Reduced (CW): Mot gat
Misovios = ECH=Echo: Mot set
iy oyo. = Urgent: Hot set
o0 .o, = Acknowledgment: Not set
. 0., = Push: Not set
e ol = Resets Not set
crer oo =SYT NOT 56T
....... = Fin: Mot set
window size: 91136 {sealed)
o Checksum: Oxld3d [correct]
3 priens: (20 byres)
window scale: 10 (multiply by 1024)
{x'
Maximum segment size: 165 bytes
Timestamps: Toval 1061109567, Tsece O
ECL
Data (1440 bytes)

Figure 7-11 TCP Packet Urgent Pointer

7.7.2 Test Case Il: Random window size packets

Complete packet construct is defined in the teld. filo send packets with random
window size, user can define multiple packet cammstons with different value inwin”
parameter.

7.8 TCP Payload

TCP payload is the amount of data a TCP packetesawith it. A standard Ethernet can
consist of 1500 bytes, including headers and payld&e objective of these test cases is to
verify that how the TCP stack works with differdidtundary value size packets.

7.8.1 Test Case I: Sending 0 payload
NetBurst uses a text file to use as payl®adviding a zero byte file will send a payload of
zero bytes. It is verified that the TCP stack isking fine with zero byte packets.

43

Ethernet Network Functionality Testing

7.8.2 Test Case II: Sending Maximum payload

The size of maximum transmission unit (MTU) can dan important impact on the
effectiveness and throughput of network traffic diarg. A smaller packet size that has larger
packet per second rate places a high load on 8teraythan lower packet per second rate with a
larger packet.

In the performanceelated test cases discussed above, a burst ghavenum allowed MTU
packets is fired. As shown in figure 7-12, it igified that the TCP stack is working with the
maximum MTU size packet.

CK) Se0=0 Atk =T Winshss 35 L ..
¥

(1ime delta Trom previous captured frame: 0, 000000000 seconds]
[rime delta from previous. displayed Trame: 0. Q00000000 seconds)
(Time since refersnce-or First frame: O 000DDUDUY seconds]

aps
Frame Length: 1414 bytes
Capture Length: 1514 bytes

L Lo oy o e g

fProtocals fo Frame: ethiip tep darad "

1000
2014

Fiama (lrnmal. §514 Frohet

v Mad it

Figure 7-12 Maximum Payload

Using an MTU greater than 1500 bytes requires waordt interface card and driver that both
support jumbo frames

7.8.3 Test Case lll: Sending Minimum payload
Similar to Test Case |, a one byte packet was @eatit is verified that the TCP stack is
working with the minimum payload as well.

Results

7.9 TCP Connection Close

Closing an active connection is also a critical chionality of the TCP stack. Two
important test cases were selected to verify thE $tack’s behavior. These test cases, and their
results, are discussed as follows.

7.9.1 Test Case I: Add options to the shutdown packets

As discussed above, every TCP packet can havevitsoptions set. Thus, a packet with
options, having control flag FIN (which TCP usetéominate communication session) is sent to
verify the behavior of options processing.

7.9.2 Test Case Il: Throw SYN/FIN where the FIN is expead

This test case uncovers the strange behavior of @ stack when a malformed packet,
with both “SYN” and “FIN” flag, is sent. The TCPask of the machine under test sent six
“ACK” for this malformed packet, instead of justsdarding this packet. As described in figure
7-13.

Tk 19216802 19216201 Conmnént

0,0 Im:?;u vl L .'m} S TATHRETION Aok = TR
i, um}-,.—"f@fg#-}-:m; el ek

0,00 .[ﬁ,ﬁﬁ"—";&.e“m T s JHIIEIEND i n

B e
2.0 (s L g iy Ty M o

By Il11’i?.2i:"—rﬂ""‘;“"—-{('l;.#l} B el kel

B, 020 ﬁﬂl'ui—m—"ﬁllnh S0 VTR Rz e]

beg i ks

Figure 7-13 Malformed Packet with SYN and FIN flags

7.10 IP Options Processing Tests

Similar to TCP options, Internet Protocol also logions. These options are used for
debugging purposes. To test these options, a desbtases are selected and executed. In this
section, the results of these test cases are dsgdus

7.10.1 Test Case I: Unknown options

The objective of this test case is to verify hovwe I protocol stack works with the
invalid option. It is observed that Internet Pratbdiscards invalid options. It is observed that
invalid options are detected and ignored.

45

Ethernet Network Functionality Testing

7.10.2 Test Case IIl: Known options with wrong lengths
The objective of this test case is to verify how 1R protocol stack works with valid
options, but the wrong option length. It is obseéntkat Internet Protocol ignores the wrong

options.

7.11 IP Fragmentation Tests

Internet Protocol provides a functionality callecagmentation to solve the problem of
heterogeneous MTU'’s. Figure 7-14 depicts IP fragateon. To verify this functionality, the
following two test cases are executed and theult®are discussed in this section.

IP Header Datagram Area

IP Header 1 DATA 1 First Fragmentation

IP Header 2 DATA 2 Second Fragmentation
IP Header 3 DATA 3 Third Fragmentation

Figure 7-14 IP Fragmentation

7.11.1 Test Case |: Fragmentation Test
As explained above, fragmentation is a very impurtanctionality that IP provides. The

following figure 7-15 shows that how a payload admethan 3000 bytes is fragmented in three
packets and sent by the machine under test.

Results

eth0: Capturing - Wireshark

Fragmented IP protocel (proto=ICMP 0x81, off=1480)
Fragmented IP protocol (proto=ICMP 0x81, off=2960)
chio {ping) reply

Fragmented IP protocel (prote=ICMP 0x81, off=1480)
Fragmented IP protocel (proto=ICMP 0x81, off=2960)

ik

P Frame 1 (1514 hytes on wire, 1514 hytes captured)
I Ethernet II, Src: DellPcba f3:5B:ca (00:8d:56:13:58:ca), Dst: Dell d1:1b:b7 (80:15:c5:d1:1b:bT)
— Internet Protocol, Src: 192.168.8.1 (192.168.0.1), Dst: 102.168.0.2 (192.168.0.2)
Version: 4
Header length: 20 bytes
[Differentiated Services Field: Ox80 (DSCP Gx08: Default; ECN: Bx06)
Total Length: 1500
Identification: @x4ba5s (19365)
P Flags: 0x02 (More Fragments)
Fragment offset: @
Time to live: 255
Protocol: ICHP (BxB1)
P Header checksum: 8xc927 [correct]
Source: 192, 168.0.1 (192.168.0.1)
Destination: 192.16%.08.2 (192.168.0.2)
| P ‘Internet Control Message Protocol

5006 00 15 c5 dl 1b b7 BB 8d 56 3 58 ca 03 00 45 08
0016 ©5 dc 4b a5 20 08 ff 61 c9 27 cB a3 00 01 cO a8
0620 00 B2 B8 00 d4 de 2f df 00 01 da T8 6d 17 e8 3b
0030 34 8c a5 75 dd 69 f2 50 92 09 ae c2 79 85 5F 98 4..u.i.]y._.
0046 3 €7 21do 9f 9e 97 7a 17 65 11 68 41 ¢5 <...!.,. .z....A

eth0: <live capture in progress> Fle: ﬁfﬁﬁf'émér)'()'()'()(jd\érkﬁ' 6474 B... -'Pac'ket's:-s.[')isﬁlayéﬁ: & Marked: 0

Figure 7-15 Fragmentation Test

7.11.2 Test Case II: Fragmentation Reassemble Test

Once it is verified that the fragmentation is waouki it is also important to establish
whether they are properly reassembled on recemmagor not. The following figure 7-16 shows
that the packets sent from the client are recearetireassembled properly on the machine under
test.

47

Ethernet Network Functionality Testing

Figure 7-16 Fragmentation Reassembled

NetBurst Portability

8 NetBurst Portability

Due to resource constraintse application portability is tested only for Wows and Linux
systems. The application should work on VxWorks &athris, as the libraries used to develop
this application claim to work on the above mengidmperating systems[23].

To run the application on Windows, the user hasngiall Winpcap 3.0. The installation
instruction can be accessed from the website t#./kvww.winpcap.org. The user has to
compile Libnet for Win32 as well.

To run the application on other platforms, the uss to install Libpcap and LibNet. Instructions
to install these libraries can also be found onrthwebsites i.e. http://www.tcpdump.org/ and
http://www.packetfactory.net respectively.

49

Ethernet Network Functionality Testing

Conclusion

9 Conclusion
In our project work, we have developed a softwagppliaation named “NetBurst’for

examining TCP/IP stack functionality and networkfpemance testing. With the help of the
NetBurst application, we analyzed TCP/IP functidgaland its behavior under different
scenarios by sending customized packets. The dalisoproject work was the portability of the
application, which is achieved by external librar{gibnet and Libpcap for Linux and Winpcap,
Libnet for Win32 for Windows environment) that prde excellent flexibility in NetBurst. A
key factor in ensuring application availability apdrformance is having the tool to accurately
measure network performance and application pedoo®, which is included in NetBurst. After
a survey of some hardware solutions for protocstirig, it is concluded that, comparatively, the
NetBurst application gives an efficient result aadcost effective solution for network

functionality testing.

Our test cases have tested TCP/IP stack functtgreaid results are discussed in this report
It is also explained in the report that the numbkpackets per second, and the latency, are
directly proportional to each othelatency will increase gradually as the number atkets
increase. NetBurst also gives an output resulhefrtetwork performance testing, such as load,

packet loss, latency, and throughput.

51

Ethernet Network Functionality Testing

References

References

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

S. Bradner & J. McQuaid, “Benchmarking Methoalgy for Network Interconnect
Devices”,RFC 2544 Available at: http://www.ietf.org/rfc/rfc2544.tx(Last accessed
July 09, 2009).

Douglas E. Comer, Internetworking with TCP/IRrinciples, Protocols, and
Architecture, Volume 1 (4th ed.), Upper Saddle Riverentice Hall, 2000, ISBN:
0130183806 (International Ed.)

“Resolve IP Fragmentation, MTU, MSS, and PMTUHd3ues with GRE and IPSEC”,
Available at: http://www.cisco.com/en/US/tech/tkR369/technologies_white paper
09186a00800d6979.shtml. (Last accessed July 1,)2009

“Ethernet Testing Software’s” Available at :
http://www.allbusiness.com/technology/computer-rating/831290-1.html (Last
accessed July 1, 2009)

“Ethernet Testing Hardware” Available at: hffpiww.iol.unh.edu/services/
testing/ethernet/tools(Last accessed July 1, 2009).

“TCP Dump”, Available at: http://www.tcpdumpght (Last accessed July 1, 2009).

“Snoop (1M) - capture and inspect network pask@nan pages section 1M: System
Administration Commands)”, Available at http://das.com/app/docs/doc/819-
2240/snoop-1m?&a=view&g=snoop. (Last accessed@ly009).

“TPTEST”, Available at http://tptest.sourceferget/about.php. (Last accessed July 09,
2009).

“Maxwell Network Emulator Information”, Availde at
http://www.maxwelltester.com. (Last accessed JAly2D09).

“IKANVL™ - Automated Network Validation Libny (ANVL)”, Available at
http://www.ixiacom.com/products/display?skey=ixafnwtel#notel, (Last accessed
July 1, 2009).

W. Hengeveld, “Protocol Testing: Using hardevdechniques for softwareSeventh
International Conference on Software Engineering Telecommunication Switching
Systems]989. SETSS 89, July 1989

53

Ethernet Network Functionality Testing

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Chanson, S.T. and Zhu, J, “A Unified Approath Protocol Test Sequence
Generatioly, INFOCOM '93. Proceedings. Twelfth Annual Joinbr@erence of the

IEEE Computer and Communications Societies. NeiwgrkFoundation for the

Future 28 March-1 April 1993 Page(s):106 - 114 vol.1

Huang,C.M., Lin, Y.C. and Jang, M.Y, “An Exdable Protocol Test Sequence
Generation Method for EFSM Specified Protocol$VTICS 95, Evry, 4-6 September.

C.Bourhfir,R.dssouli,E. Aboulhamid, PIl.Rico,Atitomatic executable test case
generation for extended finite state machine pa&iclOth IFIP IWTCS, 1997.

Wu; Wang, "Internet protocol conformance tegtby using a TTCN based protocol
integrated test systemCommunications, 1999. ICC '99. 1999 IEEE Internasio
Conferencevol.l, pp.646-650, 1999

K Shemyak , K Vehmanen , “Scalability of TCRngers, handling persistent
Connections”Proceedingof the Sixth International Conference on Network22g28
April 2007 on page(s): 89-89

D Kassabian, A Albicki, “A Protocol Test Sgst for the Study of Sliding Window
Protocols on Networked UNIX Computer2EE Transactions On Education, Vol. 38,
No. 4. November 1995

X Xie; M Zheng; Kassabian, D.; Albicki, A., '&ign and testing of a sliding-window
protocol in a protocol testing systén€ircuits and Systems, 1993., Proceedings of the
36th Midwest Symposiuan , pp.1144-1147 vol.2, 16-18 Aug 1993

Y Lin, R E. Newman, H Latchman “A New TCP amdDP Network Benchmark
Suité’, Proceeding of the 10th Communications and Nekivg Simulation
SymposiunfCNS'07), March 2007.

R J. Linn, Jr., “Conformance Evaluation Metbézjyy And Protocol Testing”|EEE
Journal on Selected Areas In Communicatiofd. 7. No. 7. September 1989

D E. Comer , J C. Lin, “Probing TCP implemdrias”, Proceedings of the USENIX
Summer 1994 Technical Conference on USEBUKmerp.17-17, June 06-10, 1994,
Boston, Massachusetts. Available at : http://wwell-labs.com/user/johnlin/probing-
TCP.pdf, (last accessed July 1, 2009)

“Test TCP (TTCP) Benchmarking Tool for MeasigyiTCP and UDP Performance”,
Available at http://www.pcausa.com/Utilities/pcattetm. (Last accessed July 09,
2009).

References

[23]

[24]

[25]

[26]

[27]

“Libnet”, Available at: http://libnet.sourcefge.net/#whatis (Last accessed July 1,
2009)

“Eclipse”, Available at: http://www.eclipse @f (Last accessed July 1, 2009)

“Wireshark”, Available at http://www.wireshakkg. (Last accessed July 1, 2009).

Eric Hall, Internet Core Protocols: The Defime Guide Help for Network
Administrators (1st ed.), 1005 Gravenstein Highwérth Sebastopol, CA: O'Reilly
Media, Inc., 2009, ISBN: 1565925726

Douglas E. Comer, Internetworking with TCP/IBlient-Server Programming and
Applications, Linux/Posix Sockets Version, Volumg4h ed.), Upper Saddle River:
Prentice Hall, 2000, ISBN: 0130320714 (Paperback Ed

55

Ethernet Network Functionality Testing

Appendix

Appendix

Following table lists and describes applicatioreg Bupports pcap file format.

Application

Description

Web Site

AimSniff

A network sniffer specifically

designed to pick up messages
transmitted using the America Or
Line

http://sourceforge.net/projects/aimsniff

Bro

Bro is an intrusion detection

system that works by passively
watching traffic seen on a networ,
link.

http://www.icir.org/vern/bro.html

dsniff

dsniff was designed to audit
networks and to demonstrate the
insecurity of cleartext / weakly-
encrypted network protocols

http://www.packetfactory.net/projects/e
ressor/

etherape

EtherApe is a graphical network
monitor for Unix. Featuring link
layer, IP and TCP modes, it
displays network activity
graphically. It supports Ethernet,
FDDI, Token Ring, ISDN, PPP
and SLIP devices. It can filter
traffic to be shown, and can read
traffic from a file as well as live
from the network.

http://etherape.sourceforge.net/

Ipaudit
Ipaudit-web

Ipaudit can summarize and/or log
network activity down to the IP
address and port level, without
recording every packet.

http://ipaudit.sourceforge.net/
http://ipaudit.sourceforge.net/ipaudit-
web/

IPgrab

IPgrab is a packet sniffer for UN
hosts.

attp://ipgrab.sourceforge.net/

57

Ethernet Network Functionality Testing

