

Technical report, IDE0950, November 2009

Ethernet Network Functionality Testing

Master’s Thesis in Computer Science and Engineering

Mirza Aamir Mehmood, Mohtashim Khan

School of Information Science, Computer and Electrical Engineering

Halmstad University

Ethernet Network Functionality Testing

Master’s thesis in Computer Science and Engineering

School of Information Science, Computer and Electrical Engineering
Halmstad University
Box 823, S-301 18 Halmstad, Sweden

November, 2009

Description of cover page picture: Ethernet Network Functionality Testing with NetBurst
Application.

 � ����� �

Preface

First and foremost I pay thanks to Almighty Allah who gave me strength to complete my Masters
degree. Afterwards I pay my sincere gratitude to my parent and family who supported me in all
possible aspects throughout my stay in Sweden. I do pay thanks to my friends and fellows for
making my stay in Sweden a wonderful experience. I do pay thanks to Halmstad University for
providing an amazing learning environment where I explored new technologies and research
methodologies.

Last but not least I dedicate this thesis to my younger sister without her support it was not
possible for me to accomplish this task.

Mirza Aamir Mehmood

Halmstad University, August 2009

First and foremost I pay thanks to Almighty Allah who gave me strength to complete my Masters
degree. I take this opportunity to express my sincere gratitude to my parent and family for their
support and help. I do pay thanks to my friends for helping me out in critical situations.

Last but not least I do pay thanks to Halmstad University for providing an amazing learning
environment where I explored new technologies and research methodologies.

Mohtashim Khan

Halmstad University, August 2009

9

 � ����� �

Abstract

Ethernet functionality testing as a generic term used for checking connectivity,
throughput and capability to transfer packets over the network. Especially in the packet-switch
environment, Ethernet testing has become an essential part for deploying a reliable network.
Over a long distance Ethernet testing parameter for analyzing network performance must have
two devices attached and synchronized.

Nowadays, computer networks and telecommunication systems use a wide range of applications.
Therefore, the power and complexity of computer networks are increasing every day which
enhances the possibilities of the end user, but also makes harder the work of those who have to
design, maintain and make a network efficient, optimized and secure.

Saab Microwave Systems is among the leading suppliers of radar systems developing ground-
based, naval and air-borne radar systems. To ensure the correct functionality, the developer
wants to verify the performance of computer network and looking for a suitable solution.

A software application is required to verify and test the functionality of the Ethernet network and
to verify the functionality and performance of the TCP/IP stack of newly added node. The
programs shall be easily ported to different operating systems and must not depend on specific
product properties.

A software application, “NetBurst”, is developed for Ethernet functionality testing. The
application is vendor and platform independent.

Key Words:

Communication, Networking, Performance, Load, Portability, Throughput, TCP, IP, Protocol,
Ethernet, Testing

11

 � ����� �

List of Figure

Figure 6-1 NetBurst Communication.. 29
Figure 6-2 Application Architecture .. 30
Figure 6-3 Configuration File ... 31
Figure 6-4 TCP File ... 32

Figure 6-5 IP File ... 32
Figure 7-1 TCP Packet Throughput Graph ... 35
Figure 7-2 Packet Latency .. 36
Figure 7-3 Packet Latency Histogram ... 36

Figure 7-4 Packet Loss Graph ... 37
Figure 7-5 Socket Options with Default Values .. 38
Figure 7-6 TCP Handshake ... 39
Figure 7-7 TCP Connection .. 39
Figure 7-8 TCP Connection .. 40

Figure 7-9 TCP Option Processing .. 41
Figure 7-10 Bad Option Processing ... 42
Figure 7-11 TCP Packet Urgent Pointer ... 43
Figure 7-12 Maximum Payload .. 44

Figure 7-13 Malformed Packet with SYN and FIN flags ... 45
Figure 7-14 IP Fragmentation ... 46
Figure 7-15 Fragmentation Test ... 47
Figure 7-16 Fragmentation Reassembled.. 48�

13

 � ����� �

 Contents
1� INTRODUCTION 17�

2� REQUIREMENT ANALYSIS SAAB MICROWAVE SYSTEMS 19 �

2.1� PROBLEM STATEMENT 19�
2.2� FUNCTIONAL AND SYSTEM REQUIREMENTS 19�
2.3� CURRENT NETWORK ENVIRONMENT 20�

3� TERMS, TECHNIQUES AND TECHNOLOGIES 21�

3.1� ETHERNET 21�
3.2� ETHERNET TESTING 21�
3.3� NETWORK PROTOCOL 21�

3.3.1� Transmission Control Protocol 21�
3.3.2� Internet protocol (IP) 22�

4� RELATED WORK 23�

4.1� SOFTWARE AND HARDWARE PRODUCTS 23�
4.2� RESEARCH WORK 24�
4.3� DISCUSSION 25�

5� APPLICATION DEVELOPMENT ENVIRONMENT 27�

5.1� LIBNET 27�
5.2� LIBPCAP 27�
5.3� ECLIPSE 27�

6� NETBURST ARCHITECTURE 29�

6.1� APPLICATION OVERVIEW 29�
6.2� COMMUNICATION MODE 30�
6.3� APPLICATION ARCHITECTURE 30�

6.3.1� NetBurst Configuration File 31�
6.3.2� NetBurst Packetizer 31�

6.3.2.1� TCP Configuration file 32�
6.3.2.2� IP Configuration File 32�
6.3.2.3� TCP Payload file 32�

6.3.3� NetBurst Sniffer 32�
6.4� APPLICATION EXECUTION 33�

7� RESULTS 35�

7.1� PERFORMANCE TESTING 35�
7.1.1� Test Case I: Throughput 35�
7.1.2� Test Case II: Latency 36�
7.1.3� Test Case III: Packet Loss 37�

7.2� LOAD TESTING 37�
7.2.1� Test Case I: Maximum MTU Length Packet 37�
7.2.2� Test Case II: Packet Burst for Time Period 38�
7.2.3� Test Case III: Packet per Second Burst for Time Period 38�
7.2.4� Test Case IV: Total Traffic Load of a Node for Certain Time Period. 38�

7.3� SOCKET SETTING AND SUPPORTED OPTIONS 38�
7.3.1� Test Case I: Default Values of Different Socket Options 38�

15

7.3.2� Test Case II: Supported Socket Options 39�
7.4� TCP FUNCTIONALITY TESTING 39�

7.4.1� TCP Handshake: 39�
7.4.2� Test Case I: Establishing Connection on Open Port 39�
7.4.3� Test Case II: Establishing Connection from Closed Port 39�

7.5� CONNECTION SETUP 40�
7.5.1� Test Case I: Sending Illegal Sequence and Acknowledgment Numbers 40�

7.6� TCP OPTION LIST 40�
7.6.1� Test Case I: Valid options with legal values 41�
7.6.2� Test Case II: Valid options with illegal and unusual values 41�
7.6.3� Test Case III: Options at various times during the connection 42�

7.7� TCP PACKETS 42�
7.7.1� Test Case I: Urgent pointer with non-zero value but URG bit not set 42�
7.7.2� Test Case II: Random window size packets 43�

7.8� TCP PAYLOAD 43�
7.8.1� Test Case I: Sending 0 payload 43�
7.8.2� Test Case II: Sending Maximum payload 44�
7.8.3� Test Case III: Sending Minimum payload 44�

7.9� TCP CONNECTION CLOSE 45�
7.9.1� Test Case I: Add options to the shutdown packets 45�
7.9.2� Test Case II: Throw SYN/FIN where the FIN is expected 45�

7.10� IP OPTIONS PROCESSING TESTS 45�
7.10.1� Test Case I: Unknown options 45�
7.10.2� Test Case II: Known options with wrong lengths 46�

7.11� IP FRAGMENTATION TESTS 46�
7.11.1� Test Case I: Fragmentation Test 46�
7.11.2� Test Case II: Fragmentation Reassemble Test 47�

8� NETBURST PORTABILITY 49�

9� CONCLUSION 51�

REFERENCES 53�

APPENDIX 57�

 � ����� �

Introduction

17

1 Introduction
In the late 1990s, the spectacular growth of the Internet dramatically affected the evolution

of computer networking. Numerous network techniques and technologies boomed, but quickly
faded into oblivion. Others have stood the test of time.

This growth is not possible without protocols and communications software. As a result, the end
user is greatly empowered with numerous choices available to them. Contrary to this, the large
number of transmission techniques and communication protocols had made it very difficult for
the network engineers, who have to design, develop and maintain the performance and
optimization of their network.

Thus, with the power and complexity of computer networks raised, the need for tools to measure,
analyze and test the functionality and performance of the network is greatly intensify.

Saab Microwave Systems is also looking for software that could be used in its heterogeneous
network environment. This report analyzes and discusses the problem, establishes the software
requirements and provides a solution for Saab Microwave Systems.

This report is divided into nine chapters. In chapter II, a current system analysis is provided. In
chapter III, terms and techniques used are described; an overview of related work is provided in
chapter IV. Application development environment is described in chapter V. NetBurst
architecture is discussed in chapter VI. Application test cases are provided in chapter VII.
Portability issue is discussed in chapter VIII and conclusion is provided in chapter IX.

Ethernet Network Functionality Testing

Requirement Analysis SAAB Microwave Systems

19

2 Requirement Analysis SAAB Microwave Systems
SAAB Microwave Systems is among one of the leading suppliers of radar systems,

developing ground-based, airborne and naval radar systems. To ensure the correct functionality,
the developer wants to verify the performance of their networks in order to develop optimized
software for SAAB Microwave Systems. In this section, the problem statement is provided along
with the functional requirements.

2.1 Problem Statement

A software application is required to verify and test the functionality of the Ethernet
network and to verify the functionality and performance of the TCP/IP stack of the network
nodes. The program shall be easily ported to different operating systems and must not depend on
specific product properties.

2.2 Functional and System Requirements

Following are the functional and system requirements provided by Saab Microwave
Systems.

Functionality

Different nodes should have full TCP/IP functionality and work correctly i.e. no errors in
the implementation and include all functions according to the TCP/IP specifications for example
fragmentation, option processing and handshake mechanism.

Load

The program shall measure the workload of the computer for different message lengths
and speeds. Dependent on hardware support for TCP/IP in the processor, and driver’s efficiency,
the load will vary with different implementations.

Performance

The program shall measure or provide the possibility to measure the latency for a
message transfer, for example:

· Time for sending a message (from call of send to the message appearance on the line)
· Time for receiving a message (from line to a waiting application)

Ethernet Network Functionality Testing

Portability

The programs shall be easily ported to different computers and must not depend on specific
product properties. The application should be able to run on following operating systems:

· Solaris
· Unix
· Linux
· VxWorks
· Windows NT / Windows 2000 / Windows XP

2.3 Current Network Environment

A typical radar system from Saab Microwave Systems is based on a switched network with
about 10 computer nodes connected to 1-3 Ethernet switches. The system is heterogeneous, with
different computer nodes and different OS including, but not limited to, Linux, Solaris and
VxWorks. Some of the computers have screens and keyboards for radar operators.

Terms, Techniques and Technologies

21

3 Terms, Techniques and Technologies
Terms and Technologies used in this report are discussed and elaborated in this section.

3.1 Ethernet

Ethernet technology is a packet-switching technology invented in early 1970s at Xerox
PARC. Ethernet technology has been standardized and is now referred to as ISO 802.3. Since
then it is widely used and successful LAN (Local Area Network) technology.

Ethernet is a high speed local area network. The twisted pair technique of Ethernet is
widely used to connect computer nodes, to form a local area network. The main advantage of
twisted pair wiring is low cost and efficient, end-to-end data transfer.

3.2 Ethernet Testing

Ethernet testing is a generic term used for checking connectivity, throughput and
capability to transmit packets over the network, especially in a packet-switching environment.
Ethernet testing has become an essential part for deploying a reliable network. Ethernet testing
parameters for analyzing network performance over a long distance must have two devices
attached and synchronized [1].

3.3 Network Protocol

Network protocol is defined as a convention that enables the connection to communicate
and transfer data between two computers. These protocols are used for synchronous
communication between computers. Most of the network protocols used in Internet generally use
packet-switching techniques. The commonly used protocols are IP (Internet Protocol), UDP
(User Datagram Protocol), TCP (Transmission Control Protocol), DHCP (Dynamic Host Control
Protocol), HTTP (Hypertext Transfer Protocol) and FTP (File Transfer Protocol) [2].

3.3.1 Transmission Control Protocol

Packets can be lost or destroyed during transmission. This could be a result of errors
appeared in link, hardware failure or heavy traffic on networks. To overcome these problems, a
reliable stream of data delivery is needed. TCP is typically used for applications that require
reliable data delivery. TCP establishes full duplex connection and is referred to as connection
orientated byte stream protocol. TCP establish connection through its handshake mechanism.
Client initiates communication by sending TCP packet with “SYN” flag. In response to this
request server reply with a TCP packet with control flags “SYN ACK”, acknowledging that it
has received the “SYN” request and ready to communicate. If the port at client machine which
initiated this “SYN”, somehow gets closed, on receiving “SYN ACK” will reply with a packet
having “RST” flag indicating that port is closed.

TCP uses a specialized sliding window mechanism for efficient transmission. TCP window is the
receiver's current buffer size. The TCP window mechanism makes it possible to send multiple

Ethernet Network Functionality Testing

segments before an acknowledgement arrives. This mechanism increases total throughput
because it keeps the network busy. TCP allows the window size to vary over time as it provides
flow control as well as reliable transfer by avoid to receive more data than it can store.

TCP also provide a way to send urgent data to notified receiving program of its arrival as quickly
as possible, regardless of its position in the stream. On receiving urgent data, the receiving TCP
notify application program to go into "urgent mode". After all urgent data has been consumed,
TCP tells the application program to return to normal operation.

3.3.2 Internet protocol (IP)

Internet Protocol is used for data communication on a packet switching network. IP
works as both network transport protocol and network addressing protocol. IP provides best
effort data packet delivery, and its services can be characterized as unreliable. IP uses a
technique called fragmentation to solve the problem of heterogeneous MTU’s. Whenever a
datagram is larger than the MTU of the network over which it must be sent, it is divided into
smaller fragments which are sent separately. Then, after fragmenting a datagram, a host or router
uses the MTU and the datagram header size to calculate how many fragments are required. The
header of the original datagram is then copied into the headers of each fragment. At receiving
end datagram are re-constructed. This process is called “reassembly”.

Internet Protocol version 6 (IPv6) is the next generation protocol for the packet switching
network. IPv6 has a 128-bit address, and uses the larger address space to create an additional
level of address hierarchy. It allows a datagram to include optional control information. IPv6
uses a completely new datagram format that includes a set of optional headers.

Related Work

23

4 Related Work
This chapter is further divided in 3 sections. An overview of available hardware and

software products is given in section 4.1, and research work done in the field of protocol testing
is given in section 4.2, while section 4.3 is for discussion.

4.1 Software and Hardware products

There are two main methods to capture data from a network; the first is based on the use of
dedicated hardware, while the second makes use of the hardware of a normal PC or workstation
connected to the communication channel. In the second method, the network adapter of the
computer is used to obtain the frames from the network, and the software performs packet
capturing process.

The software solution has usually the low performance as compare to hardware solution,
particularly on slow machines, but it is cheaper, and easier to modify and upgrade. For this
reason, it is widely adopted on the most used network architectures, where the performance of
dedicated hardware is not needed.

In network performance analyzing or Ethernet testing, ranges of different software and hardware
tools and products are available for packet capturing, packet filtering and network monitoring [4,
5]. Following are the software and hardware products for capturing and analyzing network
traffic.

· Tcpdump

Tcpdump is a simple packet sniffer that uses command line interface, and allows a user to
intercept and display TCP/IP and other packets being transmitted or received over a network. It
is a freeware software which works on most Unix-like operating systems (Linux, Solaris, BSD,
Mac OS X, HP-UX) and there is also a port of tcpdump for Windows called WinDump [6].

· Wireshark

Wireshark is similar to tcpdump, but it provides graphical user interface (GUI) and many
other options as well, like packet filtering and sorting. It is a free packet sniffing application. It
works for different protocols with deep inspection of packets and uses decryption options for
many protocols. It can run on Windows, Linux, Solaris, Mac OS and BSD [25]. Wireshark can
be used for data analysis captured by NetBurst.

· Snoop

Snoop is a freeware command line packet sniffer included as part of Sun Microsystems'
Solaris Operating System. It is dedicated for the Solaris system, on a data-link or IP interface.
Snoop captures packets and displays their contents. If the data-link or IP interface is not
specified, snoop picks the first non-loopback data-link it finds [7].

Ethernet Network Functionality Testing

· TPTEST

TPTEST is another application used for measuring performance on Internet connection;
TPTEST measures the throughput speed from various reference servers on the Internet. TPTEST
measures the throughput of TCP/UDP incoming and outgoing packets and packet loss. The
application is written in C++ and is portable for Windows, Mac OS, Linux and BSD [8].

· Maxwell Network Emulator

Maxwell network emulator is a hardware appliance that helps network managers, software
developers and testers learn how their products will perform in real-world production networks,
including satellites and the Internet. It has both graphical and command line interface and also
script driven interface for maximum flexibility. Moreover, it is fully customizable and
programmable using C++ [9].

· IxANVL™ - Automated Network Validation Library (ANV L)

Ixia's IxANVL (Automated Network Validation Library or ANVL) is another hardware device
that is also known as the industry standard for automated network/protocol validation. Software
developers and manufacturers of networking equipment and Internet devices use IxANVL to
validate protocol compliance and interoperability. [10]

4.2 Research Work

The later a software error is found, the costlier it is to correct [11]. Thus, software testing is
also initiated in earlier phases of development. The same applies on protocol testing. Many
researchers have worked on conformance, interoperability and functionality testing of protocols.
Some of them have suggested how to derive test sequences directly from Finite State Machine
Model (FSM is a model of behavior composed of a finite number of states, transitions between
those states, and actions) and Extended Finite State Model (In EFSM transition can be expressed
by an “if statement” consisting of a set of trigger conditions. If the trigger conditions are all
satisfied, the transition is fired, bringing the machine from the current state to the next state and
performing the specified data operations) [12,13,14] while others have suggested different
approaches for protocol testing [11,15].

Few researchers have used simulation-based systems to analyze different aspects of underlying
protocol stack [16]. Since our work has specific requirements and is focused on testing Ethernet
network functionality of nodes, which have a physical existence in a real life, we cannot use
simulation techniques.

Most of the research carried out in this field is focused on certain aspects of underlying protocol
stacks. Karl-Johan Grinnemo and Anna Brunstrom have shown the scalability of TCP servers
and the TCP stack’s ability to handle persistent connections [16]. Dikran Kassabian and
Alexander Albicki’s work is focused on Sliding Window Protocols on Networked UNIX

Related Work

25

Computers [17]. Xiaodong Xie has also worked on the designing and testing of a sliding-window
protocol [18]. One can clearly observe that the above stated work has certain goals to achieve,
and is either focused on a certain environment e.g. UNIX (but we have to provide portability to
operating system other than UNIX), or functionalities and protocols, e.g. sliding-window
protocol, whereas we do want to test IP which is not a sliding-window protocol. Thus, the above
stated works do not fulfill all the required functionalities we are looking for.

Yu-Ju Lin has developed a network benchmark suite which is not only able to provide real time
data visualization, but it has also proved to be much more accurate than TTCP. The main goal of
the program is to observe the network throughput visually in real time [19]. We do want to
observe throughput, but this is not the only functionality we want. This is just a fraction of our
desired functional requirements.

To develop the application, we need a well studied technique. Researchers have also worked on
this aspect, and identified and demonstrated different techniques and methodologies to test
underlying protocol stack. The work carried out by W. Hengeveld has shown how hardware
testing techniques can be used to test protocols and communication software[11]. On the other
hand, Douglas E. Comer and John C. Lin have discussed a technique called “active probing”[21].
Unlike other researchers, who assumed some sort of exposed interfaces [15] [20], active probing
treats a TCP implementation as a black box, and uses a set of methods to probe the black box. As
a result, TCP responds to the probes with different characteristics of the TCP implantation.
Active probe technique is useful when the source code is not available.

Active probing uses a software tool to capture TCP segments for a particular TCP
implementation, as well as segments the TCP implementation sends in response. Moreover, it
analyzes the trace data to find patterns that expose the characteristics of the TCP implementation
[21]. However, this technique could be used to test protocol functionalities and Douglas E.
Comer and John C. Lin’s work is focused only on RTO (retransmission time-out) estimation,
retransmission interval and keep-alive functionality, and does not test any other functionality
available in TCP [21].

4.3 Discussion

There are many software applications for packet sniffing for example TCPDump,
WireShark but they can only analyze traffic. They do not offer any option to inject customized
packets. Applications that can test TCP for example TTCP [22], can send TCP packets, but they
do not support custom packet creation. Applications like Snoop are platform dependent and can
run on a specific platform.

The research work done so far also focused on certain environments or functionalities. Not a
single research work provides us all the required functionalities that are sufficient to test an
Ethernet node in our desired way.

Ethernet Network Functionality Testing

Since existing applications and research work do not fulfill all the requirements, a new
application has to be developed that can fulfill all the requirements, and this is discussed in
chapter six. To carry out this task, we have adopted the technique that Douglas E. Comer and
John C. Lin have demonstrated [21], i.e. active probing technique, to develop our application
named “NetBurst”.

Application Development Environment

27

5 Application Development Environment
The application has been developed in ANSI C, using Eclipse IDE on Fedora core 10.

External libraries used are Libnet and Libpcap on Linux where, as on the Windows platform,
Winpcap and Libnet for Win32 are used, which are ported versions of early stated libraries.

5.1 Libnet

Libnet is a library for C programming used for packet construction and injection. Libnet is
used to control every field of every header of every packet; large number of programs goes
through a high-level interface in order to send traffic on the network. Occasionally, for security
or hacking reasons, a program needs to construct its own network headers. The existing TCP/IP
stack is unable to build these headers, and it must bypass it and go directly to the hardware
drivers. Libnet is a library that makes custom packet generation easier [23].

5.2 Libpcap

Libpcap gives a portable structure for low-level network monitoring. Libpcap can provide
network statistics collection, security monitoring and network debugging. Every system vendor
provides a different interface for packet capture. To overcome this problem, Libpcap was
developed. This system-independent API makes it easier to port and alleviates the need for
several system-dependent packet capture modules in each application [6].

5.3 Eclipse

Eclipse is an open source, integrated development environment. It comprises extensible
frameworks, tools and runtimes for building, deploying and managing software. It provides plug-
ins in order to provide all of its functionality on top of the runtime system; this is in contrast to
some other applications where functionality is typically hard coded. This plug-in mechanism is a
lightweight software component framework. Moreover, Eclipse allows extension using other
programming languages, such as C and Python. This plug-in setup allows Eclipse to work with
networking applications such as Telnet, and database management systems. The plug-in
architecture supports writing any desired extension to the environment, such as for configuration
management [24].

Ethernet Network Functionality Testing

NetBurst Architecture

29

6 NetBurst Architecture
NetBurst is developed for Ethernet functionality testing. It is a vendor independent, cross

platform application. It can be used to test load, performance and functionality of underlying
TCP/IP stack. Functionality testing includes throughput, packet loss, latency, fragmentation,
option processing etc.

6.1 Application Overview

The following figure provides an overall working model of NetBurst. The application
works by sending customized packets, capturing and observing the response by sniffing the
packets. The packet generator is sending packets to the machine whose protocol stack needs to
be tested. Sniffer is running on machine under test (MUT) to capture and observe the response of
MUT’s protocol stack.

Figure 6-1 NetBurst Communication

Communicating nodes are connected in LAN and protocol being used is TCP/IP. Supported
protocols are Internet Protocol and Transmission Control Protocol. NetBurst supports only
Ethernet technology. An error will be generated if any other technology is being used.

Ethernet Network Functionality Testing

6.2 Communication Mode

The application can be executed in two communication modes: synchronous and
asynchronous.

When executed in synchronous mode, the client is running on MUT, and the server is sending
TCP or UDP packets. This mode is recommended only for test case designing, since each and
every packet is processed to extract fields in the packet header. All incoming traffic displayed on
the terminal. Since all incoming packets are processed, it may result in slower packet capturing
and may lost many correctly received packets. Due to these reasons, this mode may produce
false results.

When executed in asynchronous mode, Packetizer and sniffer run independently. All captured
packets are stored in a file for future use. A list of applications that support pcap file format is
given in Appendix A.

6.3 Application Architecture

NetBurst has two main components: Packetizer and Sniffer. Packetizer has been built over
Libnet and is controlled through configuration files. Sniffer is built over pcap and Winpcap
libraries and is also controlled through configuration files. These configuration files are used to
control the packet transmission rate, packet construction, and various other properties.

Config
Files

LIBNET
Config
Files Packet Received

NetBurst

Packet Sent

Connection Establishment

· Customize Packets
· Synchronous or

Asynchronous mode

PCAP/

WinPcap

SNIFFER

· Print or Save Packets
· Synchronous or

Asynchronous mode

Figure 6-2 Application Architecture

PACKETIZER

NetBurst Architecture

31

As shown in the above figure, Packetezier can transmit random or fixed length packets. On the
other hand, Sniffer records all incoming traffic and the response generated by MUT. The above
figure depicts the application’s execution mode.

6.3.1 NetBurst Configuration File
A configuration file is designed to control the application behavior. Following is an

example of a configuration file containing different parameters. A user can interact with the
application through this file to control application behavior. The structure of the configuration
file is given in following figure.

Figure 6-3 Configuration File

The time parameter controls total execution time of the application. This parameter takes time in
seconds. The interval indicates the delay (in seconds) between two consecutive bursts. If the
interval is zero, then packets will be fired without any interval or delay. The count is used to
control the number of packets in a single burst. Fourth parameter ip_Ver controls the version of
Internet Protocol. It could be either 4 or 6. The random parameter is used to fire fixed or random
length packets. If the value of random is 1, then packets will be fired in random mode and, if
value is 0, it will fire fixed length packets. The protocol parameter accepts either zero or one.
The value 1 indicates TCP and 0 represents UDP.

A burst can be calculated by the following formula:

 ������ � ��	�
�����
�
����

When executed with the above given configuration, a total of two bursts, with three messages per
burst, are fired.

6.3.2 NetBurst Packetizer
This component is responsible for constructing and injecting packets. To inject a packet,

NetBurst reads the packet constructed that is values of different fields of packet header from a
specific file for each protocol header. The structure and purpose of these files are elaborated
below.

time, 2
interval, 1
count, 3
ip_Ver, 4
random, 1
cache, 0
protocol, 1

Ethernet Network Functionality Testing

������� ��	��
��
�����

���
����
The following diagram depicts tcp.opt file which is used in Packetizer. The record

parameter controls number of packet constructs provided in the file. The value of the source port
and destination port is given in sport and dport fields. The win takes the value for the window
size, whereas urg is used to take the value of the urgent flag which could be any numeric value.
Sequence and acknowledge values are provided through seq and ack, respectively. The user also
has to provide the control flags (for example th_syn , TCP use this flag in its header to initiate
communication) and this is done through providing the value in the control parameter.

Figure 6-4 TCP File

������� ��	��
��
�����

���
����
The structure of the ipv4.opt file is depicted in figure 6-5. The application uses this file to

construct a custom IPv4 packet. In id, the value of ID field of IP header is provided. The user
provides the source and destination address in sadder and daddr, respectively. TTL takes the
value for time to live, whereas tos takes value of type of service field of IPv4 header.

Figure 6-5 IP File

������� ������	
��	
������
 A simple ASCII file is used to load data in a packet. This file should not exceed

the supported MTU (maximum transmission unit) size of underlying Ethernet network.

6.3.3 NetBurst Sniffer
Sniffer is used to capture received packets. It can either print the extracted data on the

console, or dump it in a file. This file then can be used to analyze MUT’s stack behavior. This is

record, 1
sport, 1234
dport, 9876
win, 77
urg, 8
urg, 9
seq, 11
ack, 8
control,th_syn!

record, 1
id, 2
frag, 0
ttl, 123
saddr, 192.168.0.2
daddr, 192.168.0.1
tos,iptos_lowdelay | ipptos_throughput | iptos_reliablity | iptos_mincost!

NetBurst Architecture

33

a command line utility provided with NetBurst to facilitate user. For sniffer with GUI (graphic
user interface) Wireshark tool is recommended. NetBurst Sniffer reads the execution time value
from the configuration file elaborated in section 6.3.1.

6.4 Application Execution

To execute NetBurst, the user will have to enter a single command on terminal i.e.
NetBurst - Parameter . The following table lists the different command line parameters
and their purpose in detail.

Command Line
Parameter

Description

-server NetBurst Packetizer will be launched in synchronous mode.

-client NetBurst Sniffer will be launched in synchronous mode.

-packet NetBurst Packetizer will be launched in asynchronous mode.

-sniff NetBurst Sniffer will be launched in asynchronous mode.

-socket NetBurst will print socket options and default values.

Table 1: Commands and description to execute NetBurst

Ethernet Network Functionality Testing

Results

35

7 Results
In this section, test cases and results are discussed to analyze the TCP functionality. Test cases are

categorized in four groups: performance, load, socket settings and TCP functionality. For traffic analysis,
Wireshark is used, which is standard traffic analysis tool.

7.1 Performance Testing

The performance of any communication system can be measured based on three main factors i.e.
throughput, latency and packet loss. To analyze and measure these factors, a set of test cases are executed
through NetBurst, and the performance of the underlying TCP Stack is observed. Following are the
results of these test cases.

7.1.1 Test Case I: Throughput
To verify throughput, a burst of packets having packet size 1500 bytes is fired for 60 seconds.

The following graph depicts the throughput.

Figure 7-1 TCP Packet Throughput Graph

Throughput is defined as number of bytes received divided by the transmission time. The figure
7-1 shows a normal test with no throughput problem. It is observed that the level of "fuzziness"
of the throughput speed distribution is normal and may reflect a slight timing inaccuracy in the

Ethernet Network Functionality Testing

computer's clock. On analyzing the graph, a small gap is observed, which indicates a packet
delay after a retransmission.

7.1.2 Test Case II: Latency
 In continuation to test case I, a latency graph is also produced which is given
below. In figure 7-2, packet number is given on x-axis and time (in seconds) given on y-axis.

Figure 7-2 Packet Latency

Figure 7-3 Packet Latency Histogram

Packet Count

T
im

e (sec)

Results

37

The above graph shows latency during a burst of packet transmitted from NetBrust. We can deduce from
the figure 7-2 that the latency gradually increases with the time.

Likewise, in figure 7-3, latency histogram depicts the latency interval. It also shows that 7.8% packets
were affected with highest latency. On the other hand, 3.6% of packets were affected by lowest packet
latency, which occurred at the last packet transmitted. The variation of delay, known as jitter, occurred
during transmission as depicted in figure 7-3.

7.1.3 Test Case III: Packet Loss
Packet loss occurs due to several reasons including the network conjunction. For analyzing packet

loss, NetBurst has transmitted a total of 478861 packets. On the receiving node a total of 430550 packets
were received, which shows that 11% of the packets were lost. For statistical analysis, the following
graph shows the loss which occurred in the transmission.

Figure 7-4 Packet Loss Graph

From the figure 7-4, it is clear that a small number of packets are lost during the whole period of
packet transmission. In the above figure, small peaks depict packet loss with respect to packet
sequence number.

7.2 Load Testing

The objective of these test cases was to measure how the protocol stack of the machine
under test will perform in different communication environments that include, but are not limited
to, high traffic with packet size of supported MTU, high traffic with random packet size, and
varying speeds of traffic.

7.2.1 Test Case I: Maximum MTU Length Packet
By setting the “random” flag off in configuration file, the packet loads data from the

payload file. Packet lost is observed with MTU size packets and discussed in 7.3.1. The test
cases under section 7.1 are executed with maximum payload, a standard Ethernet support i.e.
1500 Bytes.

Ethernet Network Functionality Testing

7.2.2 Test Case II: Packet Burst for Time Period
 By setting the “interval” to 0 in the configuration file, a burst of packets fired for a

specified time period. In section 7.1 a fixed length i.e.1500 bytes long packets are fired for 60
seconds. Packet lost, jitter and latency is observed when a high traffic is generated over network,
a detailed analysis is provided along with the results in Section 7.1.

7.2.3 Test Case III: Packet per Second Burst for Time Period
To fire a certain number of packets per second, a value is set for the interval and time

period. This ensures that only specified numbers of packets are fired every one second for the
given time period.

7.2.4 Test Case IV: Total Traffic Load of a Node for Certain Time Period.
 To measure the total traffic load on a node, NetBurst is executed in asynchronous mode

to sniff all incoming packets. In Sections 7.1, all incoming packets were saved in a file for
further analysis.

7.3 Socket Setting and Supported Options

NetBurst also provides a feature to list supported socket options. NetBurst also lists the
default values of different socket options. The following two test cases cover this functionality of
NetBurst.

7.3.1 Test Case I: Default Values of Different Socket Options
 Figure 7-5, below, shows the output of NetBurst when the option to list default socket

settings is selected. All supported socket options, along with default values and descriptions, are
printed.

Figure 7-5 Socket Options with Default Values

Results

39

7.3.2 Test Case II: Supported Socket Options
As depicted in Test Case I, all supported socket options are listed. If an option is not

supported, a message, along with the option name and error, will be printed.

7.4 TCP Functionality Testing

The objective of these test cases is to test the functionality of the TCP stack. A set of
sample test cases were executed. These test cases, and their results, are discussed in this section.

7.4.1 TCP Handshake:
TCP provides a reliable means of communication through its handshake mechanism. The

following two test cases test this functionality.

7.4.2 Test Case I: Establishing Connection on Open Port
The following flow graph, shown in figure 7-6, describes how a “SYN” is acknowledged

from the machine under test with a “SYN ACK”.

Figure 7-6 TCP Handshake

The above figure depicts that client has sent a packet with “SYN” flag. Server has acknowledged
this “SYN” request through a TCP packet having control flags “SYN ACK”.

7.4.3 Test Case II: Establishing Connection from Closed Port
In this test case, a “SYN” is sent from the client and then the port is closed. The server

has acknowledged this “SYN” with a “SYN-ACK” packet. Since the port is closed from the

Figure 7-7 TCP Connection

Ethernet Network Functionality Testing

client, an “RST” will have been sent to the server to inform it that the port is closed. The
following graph in figure 7-7 depicts the same scenario.

7.5 Connection Setup

Once the connection is setup, a desirable test is to see how the TCP stack deals with legal
and illegal sequence numbers. Following test case verifies this functionality.

7.5.1 Test Case I: Sending Illegal Sequence and Acknowledgment Numbers
As shown in the below figure 7-8, the TCP stack should mark and ignore illegal SEQ and

ACK number packets as out-of-order packets.

Figure 7-8 TCP Connection

7.6 TCP Option List

How the TCP stack processes the different TCP options is validated here. A set of test
cases are executed to analyze different aspects of option processing.

Results

41

7.6.1 Test Case I: Valid options with legal values
An options byte string is sent with “SYN” packet. Option string is 20 bytes long and has

the value "\003\003\012\001\002\004\001\011\010\012\077\077\077\077\000\000\000\000\000\
00"

Figure 7-9 TCP Option Processing

The packet has been captured on the machine under test to establish how the options are
processed. The figure 7-9 depicts that all options are processed successfully.

7.6.2 Test Case II: Valid options with illegal and unusual values
An options byte string is sent with the “SYN” packet and the values
"\003\003\012\001\002\004”. As shown in the figure 7-10 invalid options are detected and an
error message “option goes past end of option” is displayed.

Ethernet Network Functionality Testing

Figure 7-10 Bad Option Processing

7.6.3 Test Case III: Options at various times during the connection
Every packet has its own options associated with it, thus the user can send options at

various times of connection. Test Case I depicts options at the handshake phase.

7.7 TCP Packets

How the TCP stack deals with different fields constructs of a packet is analyzed here.
Packets are sent with different values for each field, and captured to verify the behavior of the
TCP stack. A few test cases are listed here.

7.7.1 Test Case I: Urgent pointer with non-zero value but URG bit not set
A packet is sent with urgent pointer value 12 when the URGENT bit is not turned on. It is

observed that the TCP stack of the machine under test ignores the urgent pointer if the URGENT
bit is not sent. As shown in figure 7-11.

Results

43

Figure 7-11 TCP Packet Urgent Pointer

7.7.2 Test Case II: Random window size packets
Complete packet construct is defined in the text file. To send packets with random

window size, user can define multiple packet constructions with different value in “win”
parameter.

7.8 TCP Payload

TCP payload is the amount of data a TCP packet carries with it. A standard Ethernet can
consist of 1500 bytes, including headers and payload. The objective of these test cases is to
verify that how the TCP stack works with different boundary value size packets.

7.8.1 Test Case I: Sending 0 payload
 NetBurst uses a text file to use as payload. Providing a zero byte file will send a payload of
zero bytes. It is verified that the TCP stack is working fine with zero byte packets.

Ethernet Network Functionality Testing

7.8.2 Test Case II: Sending Maximum payload
The size of maximum transmission unit (MTU) can have an important impact on the

effectiveness and throughput of network traffic handling. A smaller packet size that has larger
packet per second rate places a high load on the system than lower packet per second rate with a
larger packet.

In the performance related test cases discussed above, a burst of the maximum allowed MTU
packets is fired. As shown in figure 7-12, it is verified that the TCP stack is working with the
maximum MTU size packet.

Figure 7-12 Maximum Payload

Using an MTU greater than 1500 bytes requires a network interface card and driver that both
support jumbo frames

7.8.3 Test Case III: Sending Minimum payload
Similar to Test Case I, a one byte packet was sent and it is verified that the TCP stack is

working with the minimum payload as well.

Results

45

7.9 TCP Connection Close

Closing an active connection is also a critical functionality of the TCP stack. Two
important test cases were selected to verify the TCP stack’s behavior. These test cases, and their
results, are discussed as follows.

7.9.1 Test Case I: Add options to the shutdown packets
As discussed above, every TCP packet can have its own options set. Thus, a packet with

options, having control flag FIN (which TCP use to terminate communication session) is sent to
verify the behavior of options processing.

7.9.2 Test Case II: Throw SYN/FIN where the FIN is expected
This test case uncovers the strange behavior of the TCP stack when a malformed packet,

with both “SYN” and “FIN” flag, is sent. The TCP stack of the machine under test sent six
“ACK” for this malformed packet, instead of just discarding this packet. As described in figure
7-13.

Figure 7-13 Malformed Packet with SYN and FIN flags

7.10 IP Options Processing Tests

Similar to TCP options, Internet Protocol also has options. These options are used for
debugging purposes. To test these options, a set of test cases are selected and executed. In this
section, the results of these test cases are discussed

7.10.1 Test Case I: Unknown options
The objective of this test case is to verify how the IP protocol stack works with the

invalid option. It is observed that Internet Protocol discards invalid options. It is observed that
invalid options are detected and ignored.

Ethernet Network Functionality Testing

7.10.2 Test Case II: Known options with wrong lengths
The objective of this test case is to verify how the IP protocol stack works with valid

options, but the wrong option length. It is observed that Internet Protocol ignores the wrong
options.

7.11 IP Fragmentation Tests

Internet Protocol provides a functionality called fragmentation to solve the problem of
heterogeneous MTU’s. Figure 7-14 depicts IP fragmentation. To verify this functionality, the
following two test cases are executed and their results are discussed in this section.

Figure 7-14 IP Fragmentation

7.11.1 Test Case I: Fragmentation Test
As explained above, fragmentation is a very important functionality that IP provides. The

following figure 7-15 shows that how a payload of more than 3000 bytes is fragmented in three
packets and sent by the machine under test.

IP Header Datagram Area

IP Header 1 DATA 1

IP Header 2 DATA 2

IP Header 3 DATA 3

First Fragmentation

Second Fragmentation

Third Fragmentation

Results

47

Figure 7-15 Fragmentation Test

7.11.2 Test Case II: Fragmentation Reassemble Test
Once it is verified that the fragmentation is working, it is also important to establish

whether they are properly reassembled on receiving end or not. The following figure 7-16 shows
that the packets sent from the client are received and reassembled properly on the machine under
test.

Ethernet Network Functionality Testing

Figure 7-16 Fragmentation Reassembled

NetBurst Portability

49

8 NetBurst Portability
Due to resource constraints, the application portability is tested only for Windows and Linux

systems. The application should work on VxWorks and Solaris, as the libraries used to develop
this application claim to work on the above mentioned operating systems[23].

To run the application on Windows, the user has to install Winpcap 3.0. The installation
instruction can be accessed from the website i.e. http://www.winpcap.org. The user has to
compile Libnet for Win32 as well.

To run the application on other platforms, the user has to install Libpcap and LibNet. Instructions
to install these libraries can also be found on their websites i.e. http://www.tcpdump.org/ and
http://www.packetfactory.net respectively.

Ethernet Network Functionality Testing

Conclusion

51

9 Conclusion
In our project work, we have developed a software application named “NetBurst”, for

examining TCP/IP stack functionality and network performance testing. With the help of the

NetBurst application, we analyzed TCP/IP functionality and its behavior under different

scenarios by sending customized packets. The goal of this project work was the portability of the

application, which is achieved by external libraries (Libnet and Libpcap for Linux and Winpcap,

Libnet for Win32 for Windows environment) that provide excellent flexibility in NetBurst. A

key factor in ensuring application availability and performance is having the tool to accurately

measure network performance and application performance, which is included in NetBurst. After

a survey of some hardware solutions for protocol testing, it is concluded that, comparatively, the

NetBurst application gives an efficient result and a cost effective solution for network

functionality testing.

Our test cases have tested TCP/IP stack functionality and results are discussed in this report.

It is also explained in the report that the number of packets per second, and the latency, are

directly proportional to each other. Latency will increase gradually as the number of packets

increase. NetBurst also gives an output result of the network performance testing, such as load,

packet loss, latency, and throughput.

Ethernet Network Functionality Testing

References

53

References

[1] S. Bradner & J. McQuaid, “Benchmarking Methodology for Network Interconnect
Devices”, RFC 2544, Available at: http://www.ietf.org/rfc/rfc2544.txt. (Last accessed
July 09, 2009).

[2] Douglas E. Comer, Internetworking with TCP/IP: Principles, Protocols, and

Architecture, Volume 1 (4th ed.), Upper Saddle River: Prentice Hall, 2000, ISBN:
0130183806 (International Ed.)

[3] “Resolve IP Fragmentation, MTU, MSS, and PMTUD Issues with GRE and IPSEC”,

Available at: http://www.cisco.com/en/US/tech/tk827/tk369/technologies_white_paper
09186a00800d6979.shtml. (Last accessed July 1, 2009)

[4] “Ethernet Testing Software’s” Available at :

http://www.allbusiness.com/technology/computer-networking/831290-1.html. (Last
accessed July 1, 2009)

[5] “Ethernet Testing Hardware” Available at: http://www.iol.unh.edu/services/
testing/ethernet/tools/. (Last accessed July 1, 2009).

[6] “TCP Dump”, Available at: http://www.tcpdump.org/. (Last accessed July 1, 2009).

[7] “Snoop (1M) - capture and inspect network packets (man pages section 1M: System

Administration Commands)”, Available at http://docs.sun.com/app/docs/doc/819-
2240/snoop-1m?&a=view&q=snoop. (Last accessed July 09, 2009).

[8] “TPTEST”, Available at http://tptest.sourceforge.net/about.php. (Last accessed July 09,
2009).

[9] “Maxwell Network Emulator Information”, Available at
http://www.maxwelltester.com. (Last accessed July 09, 2009).

[10] “IxANVL™ - Automated Network Validation Library (ANVL)”, Available at

http://www.ixiacom.com/products/display?skey=ixanvl#note1#note1, (Last accessed
July 1, 2009).

[11] W. Hengeveld, “Protocol Testing: Using hardware techniques for software”, Seventh
International Conference on Software Engineering for Telecommunication Switching
Systems, 1989. SETSS 89, July 1989

Ethernet Network Functionality Testing

[12] Chanson, S.T. and Zhu, J, “A Unified Approach to Protocol Test Sequence
Generation”, INFOCOM '93. Proceedings. Twelfth Annual Joint Conference of the
IEEE Computer and Communications Societies. Networking: Foundation for the
Future. 28 March-1 April 1993 Page(s):106 - 114 vol.1

[13] Huang,C.M., Lin, Y.C. and Jang, M.Y, “An Executable Protocol Test Sequence

Generation Method for EFSM Specified Protocols”. IWTCS 95, Evry, 4-6 September.

[14] C.Bourhfir,R.dssouli,E. Aboulhamid, PI.Rico, “Automatic executable test case

generation for extended finite state machine protocols”, l0th IFIP IWTCS, 1997.

[15] Wu; Wang, "Internet protocol conformance testing by using a TTCN based protocol

integrated test system," Communications, 1999. ICC '99. 1999 IEEE International
Conference, vol.1, pp.646-650, 1999

[16] K Shemyak , K Vehmanen , “Scalability of TCP servers, handling persistent

Connections”, Proceedings of the Sixth International Conference on Networking.22-28
April 2007 on page(s): 89-89

[17] D Kassabian, A Albicki, “A Protocol Test System for the Study of Sliding Window
Protocols on Networked UNIX Computers” IEEE Transactions On Education, Vol. 38,
No. 4. November 1995

[18] X Xie; M Zheng; Kassabian, D.; Albicki, A., "Design and testing of a sliding-window
protocol in a protocol testing system," Circuits and Systems, 1993., Proceedings of the
36th Midwest Symposium on , pp.1144-1147 vol.2, 16-18 Aug 1993

[19] Y Lin, R E. Newman, H Latchman “A New TCP and UDP Network Benchmark

Suite”, Proceeding of the 10th Communications and Networking Simulation
Symposium (CNS'07), March 2007.

[20] R J. Linn, Jr., “Conformance Evaluation Methodology And Protocol Testing”, IEEE
Journal on Selected Areas In Communications. Vol. 7. No. 7. September 1989

[21] D E. Comer , J C. Lin, “Probing TCP implementations”, Proceedings of the USENIX
Summer 1994 Technical Conference on USENIX Summer, p.17-17, June 06-10, 1994,
Boston, Massachusetts. Available at : http://www1.bell-labs.com/user/johnlin/probing-
TCP.pdf, (last accessed July 1, 2009)

[22] “Test TCP (TTCP) Benchmarking Tool for Measuring TCP and UDP Performance”,

Available at http://www.pcausa.com/Utilities/pcattcp.htm. (Last accessed July 09,
2009).

References

55

[23] “Libnet”, Available at: http://libnet.sourceforge.net/#whatis (Last accessed July 1,
2009)

[24] “Eclipse”, Available at: http://www.eclipse.org/ (Last accessed July 1, 2009)

[25] “Wireshark”, Available at http://www.wireshark.org. (Last accessed July 1, 2009).

[26] Eric Hall, Internet Core Protocols: The Definitive Guide Help for Network

Administrators (1st ed.), 1005 Gravenstein Highway North Sebastopol, CA: O'Reilly
Media, Inc., 2009, ISBN: 1565925726

[27] Douglas E. Comer, Internetworking with TCP/IP: Client-Server Programming and

Applications, Linux/Posix Sockets Version, Volume 3 (4th ed.), Upper Saddle River:
Prentice Hall, 2000, ISBN: 0130320714 (Paperback Ed.)

Ethernet Network Functionality Testing

Appendix

57

Appendix
Following table lists and describes applications that supports pcap file format.

Application Description Web Site

AimSniff A network sniffer specifically
designed to pick up messages
transmitted using the America On
Line

http://sourceforge.net/projects/aimsniff/

Bro Bro is an intrusion detection
system that works by passively
watching traffic seen on a network
link.

http://www.icir.org/vern/bro.html

dsniff dsniff was designed to audit
networks and to demonstrate the
insecurity of cleartext / weakly-
encrypted network protocols

http://www.packetfactory.net/projects/eg
ressor/

etherape EtherApe is a graphical network
monitor for Unix. Featuring link
layer, IP and TCP modes, it
displays network activity
graphically. It supports Ethernet,
FDDI, Token Ring, ISDN, PPP
and SLIP devices. It can filter
traffic to be shown, and can read
traffic from a file as well as live
from the network.

http://etherape.sourceforge.net/

Ipaudit
Ipaudit-web

Ipaudit can summarize and/or log
network activity down to the IP
address and port level, without
recording every packet.

http://ipaudit.sourceforge.net/
http://ipaudit.sourceforge.net/ipaudit-
web/

IPgrab IPgrab is a packet sniffer for UNIX
hosts.

http://ipgrab.sourceforge.net/

Ethernet Network Functionality Testing

