UPTEC IT 23027
Examensarbete 30 hp
June 2023

UNIVERSITET

Using Requirement-Driven
Symbolic Execution to Test
Implementations of the CoAP
and EDHOC Network Protocols

Sabor Amini

Civilingenjorsprogrammet i informationsteknologi

Using Requirement-Driven Symbolic Execution to Test
Implementations of the CoAP and EDHOC Network Protocols

UNIVERSITET Sabor Amini

Abstract

As the number of Internet of Things devices is increasing rapidly, it is of utmost significance that
the implementations of protocols for constrained devices are bug-free. In general implementations
of network protocols are error-prone due to their complex nature and ambiguities in the protocol
specification. Implementations of network protocols often contain critical errors which could be
exploited. To avoid bugs and vulnerabilities, the implementation of network protocols has to
adhere to their specifications. The objective of this thesis is to use symbolic execution to test one
implementation of the Ephemeral Diffie-Hellman Over COSE (EDHOC) protocol and one
implementation of the Constrained Application Protocol (CoAP) against their specifications. The
goal is to identify bugs such as crashes, non-conformances, memory errors, and security
vulnerabilities that may occur if the implementations are not adhering to their specifications. The
methodology to do this consists of three steps: 1) extracting requirements from the protocols
Request For Comments and expressing them as formulas, 2) preparing the system under test for
symbolic execution and applying the formulas during symbolic execution to detect any paths that
violate a requirement, 3) for every path which violates a requirement, the concrete value that the
symbolic execution engine provided is used in the unmodified implementation to validate the bug.
In total seven non-conformances were found which have been reported to developers. One non-
conformance was found in the EDHOC implementation and six were found in the CoAP
implementation

Teknisk-naturvetenskapliga fakulteten

Uppsala universitet, Utgivningsort Uppsala/Visby

Handledare: Hooman Asadian, Paul Fiterau-Brostean, Bengt Jonsson Amnesgranskare: Konstantinos Sagonas

Examinator: Lars-Ake Nordén

Sammanfattning

Eftersom antalet Internet of Things enheter 6kar snabbt dr det av yttersta vikt att imple-
menteringarna av natverksprotokoll for Internet of Things enheter dr korrekta. Generellt
sett dr implementeringar av ndtverksprotokoll felbendgna pa grund av deras komplexa
natur och oklarheter i protokollspecifikationen. Implementeringar av natverksprotokoll
innehaller ofta kritiska buggar som kan utnyttjas. For att undvika buggar och sdr-
barheter maste implementeringar av nédtverksprotokoll folja sina specifikationer. Mélet
med detta examensarbete dr att anvanda symbolisk exekvering for att testa en implemen-
tation av protokollet Ephemeral Diffie-Hellman Over COSE (Ephemeral Diffie-Hellman
Over COSE (EDHOC)) och en implementation av protokollet Constrained Applica-
tion Protocol (Constrained Application Protocol (CoAP)) mot deras specifikationer.
Syftet dr att identifiera buggar sdsom krascher, icke-konformiteter, minnesfel och sédker-
hetssarbarheter som kan uppstd om implementeringarna inte foljer sina specifikationer.
Metodiken for att uppna detta bestdr av tre steg: 1) extrahera krav fran protokollens
specifikationer och uttrycka dem som formler, 2) forbereda systemet som ska testas for
symbolisk exekvering och tillimpa formlerna under symbolisk exekvering for att upp-
tacka eventuella vigar som bryter mot ett krav, 3) for varje vdg som bryter mot ett krav
anvands det konkreta viarde som den symboliska exekveringsmotorn tillhandahaller
i den ofdrandrade implementationen for att validera buggen. Totalt sett hittades sju
icke-konformiteter. En icke-konformitet hittades i EDHOC implementeringen och sex

hittades i CoAP implementeringen.

Uppsala University

I

Acknowledgements

First and foremost, I want to express my appreciation to Bengt Jonsson, my supervisor,
for granting me the opportunity to undertake this thesis and for providing feedback
on the report. I would also like to extend my gratitude to Hooman Asadian and Paul
Fiterau Brostean from the Department of Information Technology at Uppsala University
for their guidance and for assisting with technical issues throughout this project. Lastly,
I am thankful to Konstantinos Sagonas, my reviewer, for providing feedback on the
report.

Uppsala University

Table of Contents 1
Table of Contents
Abstract I
Acknowledgements IT
List of Tables Vv
List of Figures VI
List of Acronyms VII
1 Introduction 1
2 Background 3
2.1 Symbolic Execution o oo 3
22 EDHOC e 5
221 Error Handling & Error Messages 7
23 CoAP e 9
231 CoAPProtocol DataUnit 9
3 Methodology 11
3.1 Extracting Requirements 11
3.2 Preparing the System Under Test & Inserting Instrumentation 12
3.3 Validating the Non-Conformances 13
34 Example 14
4 Requirements 15
41 EDHOC e 15
42 CoAP . . . e 16
5 Implementation & Experimentation 20
5.1 Preparing the System Under Test for Symbolic Execution 20
5.2 Instrumentation & Symbolic Execution. 20
5.3 Test Case Construction and Validation 22
6 Results 23
6.1 Non-Conformancesin EDHOC 23
6.2 Non-Conformancesin CoAP 25

Uppsala University

Table of Contents v
7 Literature Review 27
8 Discussion & Analysis 30
8.1 Symbolic Execution 30
8.2 Problems Encountered 31
9 Conclusion & Future Work 32
9.1 Future Work e 32
Literature 33

Uppsala University

List of Tables |4
List of Tables

Table 6.1: Results testing EDHOC 23
Table 6.2: Results testing CoAP 25

Uppsala University

List of Figures

VI

List of Figures

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:

Function foobar [11]
Symbolic execution tree of function foobar [11]
EDHOC handshake
External Authorization Data (EAD)item
Errormessage
CoAPmessageformat.

O o O Ul &= W

Uppsala University

List of Acronyms VII

List of Acronyms

IoT Internet of Things

RFC Request For Comments

EDHOC Ephemeral Diffie-Hellman Over COSE
CoAP Constrained Application Protocol
SMT Satisfiability Modulo Theories

CBOR Concise Binary Object Representation
PDU Protocol Data Unit

uDP User Datagram Protocol

SUT System under test

ECDH Elliptic-curve Diffie-Hellman

HTTP Hypertext Transfer Protocol

TCP Transmission Control Protocol

EAD External Authorization Data

DTLS Datagram Transport Layer Security
TLS Transport Layer Security

MQTT Message Queuing Telemetry Transport

Uppsala University

Introduction 1

1 Introduction

According to IoT Analytics, the number of connected Internet of Things (IoT) devices is
estimated to be 27 billion in 2025 [1]. The Research and Development community has
predicted that the impact of IoT will be more than the internet, leading to improvement
in the well-being of society and industries [2]. As the number of IoT devices is increasing
rapidly, it is of utmost significance that the implementations of network protocols for
constrained devices are bug-free.

Implementations of network protocols are error-prone due to their complex nature
and ambiguities in the protocol specifications [3], [4]. Implementations of network
protocols often contain critical errors which could be exploited, IoT devices are resource
constrained and have limited protection against exploitation, therefore it is important
that errors are detected before deployment [3].

To prevent bugs and vulnerabilities, it is crucial for the implementation of network
protocols to adhere to their specifications. Even minor deviations from the specifica-
tions can have serious consequences [4]. A prominent illustration is the Heartbleed
vulnerability in OpenSSL, where a memory block was mistakenly returned based on
the stated payload size rather than the actual size, resulting in unauthorized access to
unrelated data [5]. Numerous other examples highlight how implementation errors have
led to security vulnerabilities, including the TLS POODLE downgrade vulnerability [6]
and logical vulnerabilities in the Wi-Fi handshake [7]. These incidents underscore the
importance of rigorous adherence to protocol specifications to ensure robustness and
security.

Additionally, testing network protocols is a difficult task because network protocols are
stateful, which means that they can be in different states depending on the sequence of
packets received. Consequently, in order to effectively test a specific requirement, first a
specific sequence of packets has to be sent enabling it to reach the apporiate state before
the requirement can be tested [4].

Uppsala University

Introduction 2

Security protocols are a key building block in IoT systems. One quite new lightweight
security protocol for IoT devices is Ephemeral Diffie-Hellman Over COSE (EDHOC).
EDHOC is a key exchange protocol that is used between two endpoints to compute
symmetric keys to protect application data. EDHOC is at the time of writing an Internet
Draft and its current version is 19. EDHOC can use the Constrained Application Protocol
(CoAP) for the transport of the messages in an EDHOC session [8].

CoAP is a web transfer protocol similar to the Hypertext Transfer Protocol (HTTP),
but designed for constrained devices and networks. CoAP is based on a client-server
architecture developed for machine-to-machine applications. The CoAP protocol is an
Internet Standard and is referred to as RFC 7252 [9].

The objective of this thesis is to test one implementation of the EDHOC protocol and one
implementation of the CoAP protocol against their specifications. The goal is to identify
bugs such as crashes, non-conformances, memory errors, and security vulnerabilities
that may occur if the implementations are not adhering to their specifications.

The methodology to do so will be that in the paper by Asadian et al. [4]. This method-
ology involves several steps. Firstly, requirements are extracted from the protocols
Request For Comments (RFC)s. These requirements are then incorporated as assertions
and assumptions within the source code. Symbolic execution is then utilized to analyse
the code and identify packet sequences and paths that violate these requirements. Any
packet sequences or paths that violate a requirement will be validated by using the
corresponding packets that caused the violation in the unmodified implementation.

Research Question

The methodology presented in the paper by Asadian et al. [4] has only been used to
test implementations of the Datagram Transport Layer Security (DTLS) protocol. The

question this thesis aims to answer is:

e Is the methodology as efficient in testing other network protocols in the IoT do-
main?

Outline

This thesis comprises a total of eight chapters following this chapter. Chapter 2 provides
a theoretical background on symbolic execution, EDHOC, and CoAP. In Chapter 3, the
methodology employed in this study is described. Chapter 4 presents the extracted
requirements in the form of formulas. Chapter 5 provides a detailed description of the
implementation and experiments. The findings are presented in Chapter 6. In Chapter 7
related works are discussed. In Chapter 8 the results and methodology are discussed. In
the final chapter, conclusions and future work are presented.

Uppsala University

Background 3

2 Background

This section presents background information on EDHOC, CoAP, and symbolic execu-
tion. We begin by illustrating the process of symbolic execution through an example.
Next, we delve into the description of the different messages sent in an EDHOC session.

Finally, we present the message format of the CoAP protocol.

2.1 Symbolic Execution

Symbolic execution is a program analysis technique introduced in the mid-70s. It was
the first time presented in the paper by King [10]. In symbolic execution, symbolic values
are used instead of concrete values as input to a program. The program is executed with
the symbolic inputs and when the symbolic execution engine encounters a conditional
branch the execution is forked and the conditions in the conditional statement are stored
and referred to as path constraints.

A Satisfiability Modulo Theories (SMT) solver is eventually used to evaluate the path
constraints for every explored path. SMT solver is a tool used to determine whether a
mathematical formula is satisfiable. The SMT solver will check if the path constraint for
each explored path can be satisfied by assigning some concrete values to the program’s
symbolic input. These concrete values form a test case that follows the exact path [11].
To understand how symbolic execution works, an example is presented. In Figure 2.1,
the goal is to find all the inputs that lead to the failure of the assertion.

1 void foobar(int a, int b){
2 int x =1, y =0;
3 if(a != 0){

4 y =3 + Xx;
5 if(b == 0){
6 x =2 =% (a+b);
7

8 }

9 assert(x —y != 0);

10 }

Figure 2.1: Function foobar [11]

Uppsala University

Background 4

In order to facilitate comprehension of the symbolic execution, a symbolic execution tree
is employed. In Figure 2.2 the symbolic execution tree of the code snippet in Figure 2.1
is presented.

Symbolic Execution Tree

A [o={ara, b o} ‘W—frm«J
2.int x =1, y=20 J

g #0 o ={ar ag, b ap,x 1,y 0} 7 = true 1 a, =0
[T]3 i -0

Cl(f:{u»)[1,,.II>)[I'ﬁ,‘L‘?)1,;/')[)} W=(1,,#U| ‘ |fr={n>—>ﬂu.b>—r0n,-'Hl.y»—)()} ’rrzn..20|

| 4y = 3+x [8. assert(x-y != 0)

(.\b:U‘E|{y:{n»—)n",bl—;(hb..’l‘HJ,iﬁ—r‘l} T=aa#0| ay#£0 [1-0=0Aa, =0+ false j

L[5 it =0 |

F ‘U={a>—>a,,.b—»uf,.:1:—)l.u»—}-l] 7T=ll,,#U/\(k;,=U‘ |C o={a— ag b ap x> 1,y 4} W:(IQ#[]/\”U#U‘

[6. x = 2x(arb) \

,l 8 assert(x-y != 0)

i |(;: {uH;L((L.hH‘ub.(;;ﬁ%n“+m,).y»—>4} ﬁ:()n#l)/\nb:[li [1= 4= 0Aag#0A a0+ false)
. assert(x-y !=

(Q(GH +ap)—4=0Aa, #0Aa,=0(if o, =2Aa, =0 HRROR)j

Figure 2.2: Symbolic execution tree of function foobar [11]

The symbolic execution engine maintains a state for a program executing symbolically.
The execution state (stmt, o, 7) is defined by the three variables stmt, ¢ and 7r. Stmt
is the next statement to execute, ¢ is the symbolic store that maps program variables
to expressions over concrete values or symbolic values and 7 is representing the path
constraints. The path constraint is a formula that is based on the conditional branches to
reach a specific path. Initially 77 is true.

In Figure 2.2 we can see that in state A, arguments a and b are associated with symbolic
values, and the path constraint is initially set to true. In line two in Figure 2.1, the
symbolic store is updated by associating the variables x and y to the concrete values
0 and 1 respectively and the program moves to execution state B. In line three which
is a conditional branch, the execution is forked and two execution states are created.
Depending on the branch, different assumptions are made on the symbolic variable a.
Arithmetic expressions in the program manipulate the symbolic values. When every
execution state has reached the assert statement in line eight, it is possible to see that
only state H can make the assertion fail. The path constraint in state H is defining the set
of inputs that can lead the assertion to fail. A SMT solver can be used to solve the path
constraint and find concrete values for the symbolic arguments a and b. In this example,
the values a=2 and b=0 would make the assertion fail.

Uppsala University

Background

2.2 EDHOC

EDHOC is a compact, lightweight, and authenticated key exchange protocol which
is intended for usage in constrained devices. In EDHOC there are three mandatory
messages and an optional fourth message that are sent between an initiator and a
responder to derive a shared secret session key. The shared secret session key is then
used to derive application keys to protect application data. EDHOC incorporates an
error message mechanism to handle potential errors that may arise during an EDHOC
session. All the messages in EDHOC are deterministically encoded in Concise Binary

Object Representation (CBOR) sequences [8].

In Figure 2.3, an EDHOC session which includes the optional fourth message is pre-

sented.

Initiator

Method, SINTES_I, G_X, C_|. EAD_1

Responder

message_1

G_Y, Enc(ID_CRED_R, Signature_or_MAC_2 EAD_2), C_R

hd

i
-

message_2

AEAD(ID_CRED_|, Signature_or_MAC_3, EAD_3)

message_3

AEAD(EAD_4)

hd

A

message_4

Figure 2.3: EDHOC handshake

Uppsala University

Background 6

EDHOC Message_1

In the first message which is sent by the initiator, the Method field is an integer that
specifies the authentication method. The responder and initiator can choose to use either
a signature key or a static Diffie-Hellman key to authenticate themselves, so the Method
field can have four different values such as:

e (: Both initiator and responder authenticate with signature keys.

e 1: Initiator authenticates with a signature key and responder authenticates with a
Static DH key.

e 2: Initiator authenticates with a static DH key and responder authenticates with a

signature key.
e 3: Both initiator and responder authenticate with static DH keys.

The SUITES_I field is a list of cipher suites supported by the initiator. The cipher suites
in the list are encoded as integers and this field is used in the cipher suite negotiation.
The cipher suites supported by the initiator are listed in the order of preference, where
the first cipher suite in the list is the most preferred one and the last suite in the list is the
selected one. All cipher suites that are more preferred by the initiator over the selected
one must be included in the list. When SUITES_I contains only one cipher suite, it is
encoded as an integer and not a list.

G_Xis the ephemeral public key of the initiator, which is used to derive the Elliptic-curve
Diffie-Hellman (ECDH) shared secret.

The connection identifier C_I is a byte string used for distinguishing between different
connections. It can also be used to correlate messages and keep track of the protocol
state during an EDHOC session. The connection identifiers C_I and C_R are chosen by
the responder and initiator respectively.

EAD_1, which stands for external authorization data can be used by external security
applications to transport external authorization data to reduce round trips and numbers
of messages sent [8]. The EAD may comprise multiple ead items. An ead item is
represented as a CBOR sequence consisting of an ead_label and an optional ead_value.
An ead item is formatted as in Figure 2.4 where ? indicates that the field is optional.

ead = (
ead_label : int

? ead_value: bstr,

)

Figure 2.4: EAD item

Uppsala University

Background 7

An ead item can be critical or non-critical. A critical ead item has a negative ead_label.
If a critical ead item is not recognized or cannot be processed by the receiver then the
receiver must discontinue the protocol and send an error message. A non-critical item
has a non-negative ead_label and can be ignored when it cannot be processed. The
security application which registers a new ead item has to specify how the ead item

should be processed and under what conditions the ead item is critical or non-critical.

EDHOC Message_2

In message 2, the ID_CRED_R field contains information that is necessary to obtain
the authentication credentials of the responder. The authentication credentials of the
responder CRED_R contain the public authentication key of the responder. In EDHOC,
the authentication credentials CRED_R and CRED_I of the responder and initiator
respectively serve two purposes. The authentication key within the credentials is utilized
in conjunction with the Signature_or_Mac field to verify the proof of possession of the
private key. Additionally, it is employed as input for integrity verification through the
MAC fields.

EDHOC Message_3

The third message sent by the initiator contains the EAD_3 and Signature_or_MAC_3
that has to be verified by the initiator using either a signature key or a static DH key. If
a signature key is used as the authentication method, then the Signature_or_MAC_3
field contains a signature generated by the private key of the authenticating party. The
signature is computed over the concatenated values of the preceding messages. The
recipient can verify the signature using the public key associated with the authenticating
party to ensure the integrity and authenticity of the message.

EDHOC Message_4

The optional fourth message is used to give key confirmation to the initiator in cases
where no protected application data is sent from the responder to the initiator.

2.2.1 Error Handling & Error Messages

In EDHOC an error message can be sent by the initiator or responder in case an error
occurs. An error could for instance occur during the processing of a message. An error
message is fatal, which means that the sender must discontinue the session after sending
an error message. An error message is a CBOR sequence formatted in the following
way:

Uppsala University

Background 8

error = (

ERR CODE : int,
ERR_INFO : any,
)

Figure 2.5: Error message

In Figure 2.5 ERR_CODE is an integer and ERR_INFO is information about the error.

The currently defined error codes are:

e (: Indicates Success, this error code can be used internally in an application.

e 1: Indicates an unspecified error, this code is used for errors that do not have an

error code defined.

e 2: Indicates wrong selected cipher suite, this code can only be used when replying
to message_1 in case the selected cipher suite by the initiator is not supported by
the responder or if the responder supports a cipher suite more preferred by the

initiator than the selected cipher suite.

Uppsala University

Background 9

2.3 CoAP

CoAP is a web transfer protocol for constrained devices and networks. It is mainly
designed for machine-to-machine applications. Similarly to HTTP, CoAP is based on
a client-server architecture, where the client sends a request and the server replies
with a response. Unlike HTTP, CoAP messages are transported over User Datagram
Protocol (UDP) and not the Transmission Control Protocol (TCP), moreover the messages

are encoded in a simple binary format [9].

2.3.1 CoAP Protocol Data Unit

@ 1 2 3
B1234567898123456789012345678901
L oo e +
IVer| T | TKL | Code | Message ID |
L oo e +
| Token (if any, TKL bytes) ... |
o +
| Options (if any) ... |
L o +
| 11111111 | Payload (if any) ... |
L o +

Figure 2.6: CoAP message format

The CoAP Protocol Data Unit (PDU) consists of a fixed 4-byte header, followed by the
token, options, and payload [9].

Header

The first two bits in the header are the version, currently CoAP only supports one
version, so this field must be set to 1. The subsequent two bits represent the message
type, the message types are used in different scenarios and for different purposes. A
message in CoAP can be of four types:

e Confirmable: A message of type Confirmable requires an Acknowledgment from
the receiver. This is a reliable way of sending a message.

e Non-confirmable: A message of type Non-confirmable requires no Acknowledge-
ment from the receiver thus this is an unreliable way of sending a message.

e Acknowledgment: Used to indicate to the sender that a specific message was
received.

e Reset: Sent as a response when a specific message has been received but some
context is missing to properly process it.

Uppsala University

Background 10

The remaining four bits in the first byte are the Token Length field which indicates the
length of the token. The second byte in the header is the Code field. It can be set to
a method code or a response code. The code field is an 8-bit unsigned integer that is
split into two parts. The three most significant bits are called the class and the five least
significant bits are the detail. The class can have four different values:

e (: indicates a request.
e 2: indicates success response.
e 4: indicates client error response.

e 5: indicates server error response.

The remaining class values are reserved. The detail is providing additional information
to the class. For instance, the response code 2.01 means "Created" successfully.

The last field in the header is the Message_ID which is a 16-bit unsigned integer. The
message_id is used to match messages of types confirmable and non-confirmable to
messages of types reset and acknowledgment. Following the header, the subsequent
tield is the Token which is used to match a request to a response. After the token is the
Options that can be used in a request or response [9]. For instance, the following options
can be used to specify a target resource for a request to a server:

e Uri-Host
e Uri-port
e Uri-path

e Uri-Query

The last field in the PDU is the optional payload. If the payload is of non-zero length
then it is prefixed by a fixed, one-byte Payload Marker (OxFF) which indicates the end of
options and the start of the payload. The payload data extends from after the marker to
the end of the UDP datagram.

Uppsala University

Methodology 11

3 Methodology

The methodology is divided into three separate parts, 1) requirements are extracted
from the protocols RFCs and translated into constraint formulas, 2) in the next step,
the system under test is being prepared for symbolic execution and the formulas are
incorporated as assumptions and assertions in the source code. The system under test is
then executed symbolically to identify potential bugs, 3) in the final step, test cases for
the bugs are created and validated in the unmodified implementation.

The primary focus of this thesis is on testing the server side, where symbolic inputs are
exclusively sent to the server. The symbolic execution engine that is used in this project
is called KLEE, KLEE was developed by a team of researchers at Stanford University.
It is described in the paper by Cadar et al. [12]. KLEE is open-source and is currently
maintained by the Software Reliability Group in London.

The EDHOC implementation to be tested is uUOSCORE-uEDHOC, version v2.1.3. The
CoAP implementation to be tested is cantcoap, commit cce97e5. This particular imple-
mentation is utilized as an external library within the EDHOC implementation. The last
commit in the CoAP implementation was in December 2021.

3.1 Extracting Requirements

The first step is to extract requirements from the protocols RFCs. Two types of require-
ments are of interest, input validity requirements and input-output requirements. Input
validity requirements refer to requirements that check the validity of the inputs, whereas
input-output requirements refer to requirements that check the validity of the outputs
in response to a valid input. During the process of extracting requirements from the
RFCs keywords such as "MUST", "SHOULD", "MUST NOT" and "SHALL NOT" is used.
These keywords are used in most of the RFCs and indicate how important a certain re-
quirement is [4]. The keyword "MUST" indicates that the requirement is very important
to follow in the protocol whereas the keyword "SHOULD" indicates that it is not an
absolute necessity to follow the requirement. For instance a requirement from the CoAP
RFC can be regarding the version number indicating the version of CoAP. In the RFC
([8], p. 16) it is stated:

Implementations of this specification MUST set this field to 1 (01 binary). Other
values are reserved for future versions. Messages with unknown version numbers
MUST be silently ignored.

Uppsala University

https://github.com/eriptic/uoscore-uedhoc/releases/tag/v2.1.3
https://github.com/staropram/cantcoap/tree/cce97e570bfc918583ee7f2a3baf17ce9b754754

Methodology 12

For a set of messages M during an EDHOC session, it is possible to represent this

requirement as a formula. The formula for this requirement can be expressed as:

VYm € M : m.version = 1

3.2 Preparing the System Under Test & Inserting

Instrumentation

To prepare the system under test for symbolic execution, it is necessary to do modi-
fications to the implementation. The implementation has to be de-randomized so it
responds in the same way when running symbolically as during the time messages
are recorded. Encryption and decryption of the messages and function call to external
libraries has to be replaced, this is done to avoid complicated code used for encryption
and decryption when running the code symbolically. Cryptographic primitives such as
encryption and decryption generate complex symbolic expressions that are difficult for
the SMT solver to handle [3].

When the System under test (SUT) is executing deterministically and encryption and
decryption are disabled, the messages of an EDHOC session are recorded and stored in
separate files to be used during the symbolic execution of the program.

The next step is to insert instrumentation for each requirement into the source code. The
overall strategy consists of two steps. In the first step, for a given requirement, input
constraints for which a requirement can be violated are inserted in the source code as
assumptions. In the second step, it is checked if the program would perform an action
that violates a requirement by using an assert statement. The assert statement is used at
the place where the program is about to finish the session, this is a way of indicating
that the system under test is completing the session with an invalid packet.

In the case of an input validity requirement, the negation of the formula is used in a
assume statement, and an assert statement is used to check that invalid packets are not
handled in a forbidden way.

In the case of an input-out requirement, an assume statement is used first to ensure
the validity of the input, and the formula is used in an assert statement to check the
correctness of the output.

When instrumentation in the source code is done the system under test is executed
symbolically to find paths that satisfy the assumptions and trigger an assertion violation,

crash, etc.

Uppsala University

Methodology 13

3.3 Validating the Non-Conformances

The last step is to construct test cases and use them to validate the bugs in the unmodified
implementation. When the system under test is executed symbolically the symbolic
execution engine will for every explored path generate corresponding values for the
symbolic inputs. For every path that triggers an assertion or crash, the concrete value
for the symbolic input is then used in the original implementation.

If the program crashes, it is considered a bug, while the triggering of an assertion is

interpreted as a non-conformance.

Uppsala University

Methodology 14

3.4 Example

An example of the process is described below. In this example, we are testing an input-
output requirement regarding the message_id. In the RFC ([8], p. 16) of CoAP it is
specified that:

The Message ID MUST be echoed in the Acknowledgment or Reset message by the
recipient.

This means that the recipient must use the same message_id without modifying it when
replying to a confirmable message with an acknowledgment or reset message.

Considering a set of messages M used in an EDHOC session, then it is possible to
formulate constraints over the fields in the messages. In this case, the field is message_id
and if resp(m,i) represent the i-th output generated in response to input message m, this

requirement can be formulated as:

Vm € M :resp(m,1).type € {Reset, Acknowledgment} =

resp(m,1).message_id = m.message_id

In this formula, if the type of the response message is reset or acknowledgment then the
response must have the same message_id as the received message.

Instrumentations are inserted into the source code based on the logical formula. First, the
specific fields relevant to the requirement are made symbolic, in this case, the message_id.
In the case of an input-out requirement, the input must be valid therefore an assume
statement is used to ensure the validity of the input, and an assertion is used on the
output to check if it violates the requirement. In the case of the message_id, an assert
statement will be as follows:

klee_assert (txPDU->getMessagelID() == symbolic_message_id);

In this example, if the message_id of the acknowledgment or reset message is not the
same as the message_id of the request then this assertion will fail, indicating there exists
at least one message_id value for which the response doesn’t have the same message_id
as the request.

If the assertion is triggered, then the symbolic execution engine will provide a concrete
value for the symbolic message_id. The concrete value will then be used in the unmodi-
tied implementation to check whether the system behaves in the same way. For instance,
if the symbolic execution engine provides the value zero as the message_id, then in the
unmodified implementation the message_id in the appropriate input message will be

set to zero to check if the output will have a different value.

Uppsala University

Requirements 15

4 Requirements

The requirements that were found from the EDHOC and CoAP RFCs are presented in
this chapter.

4.1 EDHOC

From the EDHOC RFC two input validity requirements were extracted.

Considering the four messages message_1, message_2, message_3, and the optional
message_4 in an EDHOC session then it is possible to formulate constraints over the
fields in the messages.

1.) Method: The method field in the first message is an integer that determines what
kind of keys are used for authentication. In the RFC ([8], p. 14) it is stated:

The authentication key (i.e., the public key used for authentication) MUST be a
signature key or static Diffie-Hellman key.

The formula for this requirement can be expressed as:

message_1.method € {0,1,2,3}

2.) Supported cipher suite: In the RFC ([8], p31) it is described how the responder should
process message one:

Process message_1, in particular, verify that the selected cipher suite is supported
and that no prior cipher suite in SUITES_I is supported.

It is also stated in the RFC:

If any processing step fails, then the Responder MUST send an EDHOC error
message back as defined in Section 6, and the protocol MUST be discontinued.

This means if the selected cipher suite by the initiator is not supported by the responder,
then the responder must send an error message and discontinue the protocol.

The field SUITES_I in message_1 contains the supported and selected cipher suite by the
initiator. SUITES_R contains the cipher suites supported by the responder. The formula
for this requirement can be written as:

message_1.SUITES_I.selected € SUITES_R

Uppsala University

Requirements 16

4.2 CoAP

From the CoAP RFC eleven requirements were extracted, nine input validity require-
ments, and two input-output requirements.

To express the requirements as formulas we consider that the function num_bytes()
returns the number of bytes of its argument, resp(m) represents the output generated in
response to the input message m, and resp(m,i) represents the i-th output generated in
response to input message m. Considering a set of messages M used in a CoAP session
and using and m and =’ to iterate over individual messages it is possible to formulate

constraints over the fields in the messages.

1.) Version: The RFC specifies one version for CoAP, in the REC ([8], p. 16) it is specified:

Version (Ver): 2-bit unsigned integer. Indicates the CoAP version number. Imple-
mentations of this specification MUST set this field to 1 (01 binary). Other values
are reserved for future versions. Messages with unknown version numbers MUST
be silently ignored.

The formula for this requirement can be formulated as follow:

Vm e M : m.version =1

2.) Type: CoAP supports four type of messages, in the RFC ([8], p. 16) it is specified:

Type (T): 2-bit unsigned integer. Indicates if this message is of type Confirmable (0),
Non-confirmable (1), Acknowledgement (2), or Reset (3).

It is also described how the different types are used. Regarding the reset message it is
specified RFC ([9], p. 8):

A Reset message indicates that a specific message (Confirmable or Non-confirmable)

was received, but some context is missing to properly process it.
It is also specified ([9], p. 21):

The Reset message MUST echo the Message ID of the Confirmable message and
MUST be Empty.

Regarding the messages of type non-confirmable it is stated in the RFC ([9], p. 23) :

A Non-confirmable message always carries either a request or response and MUST
NOT be Empty.

Regarding messages of type acknowledgment it is stated in the RFC ([9], p. 21) :

The Acknowledgement message MUST echo the Message 1D of the Confirmable
message and MUST carry a response or be Empty (see Sections 5.2.1 and 5.2.2).

Uppsala University

Requirements 17

To summarize, different message types are used for different purposes. Messages of
type confirmable can contain a request, response or be empty. Messages of type non-
confirmable can contain a request or a response. Messages of type acknowledgment
can contain a response or be empty. Messages of type reset must always be empty. This
requirement can be formulated using the code field as follow:

Vm € M : (m.type = Con firmable = m.code € {0.00 — 0.31, 2.00 —5.31}) A
m.type = Non_con firmable = m.code € {0.01 — 0.31, 2.00 —5.31}) A

m.type = Acknowledgment = m.code € {0.00, 2.00 — 5.31}) A

~—~~ ~~ —~

m.type = Reset = m.code = 0.00)

3.) Message ID: An input-out requirement is regarding the message_id, in the RFC ([8],
p. 24) it is specified:

The Message ID MUST be echoed in the Acknowledgement or Reset message by the
recipient.

It means that the message_id in the acknowledgment or reset message must be the same
as the message_id in the request without any modifications. This requirement can be
captured with the help of the message type in the following way:

Vm € M :resp(m,1).type € {Reset, Acknowledgment} =

resp(m,1).message_id = m.message_id
4. Message ID unique: Another requirement regarding the message_id is its uniqueness.
In the RFC ([8], p. 24) it is specified:

The same Message ID MUST NOT be reused (in communicating with the same
endpoint) within the EXCHANGE_LIFETIME (Section 4.8.2).

This means that during a session every request must have a unique id and using the

code field the formula for this requirement can be expressed as:

Vm,m € M : (m.code = request) A (m' .code = request) A (m=m') =

. / .
m;.message_id # m .message_id

This formula indicates that two requests cannot have the same message_id during the
exchange lifetime.

5. Token: It is specified in the RFC ([8], p. 34) that:

Every request carries a client-generated token that the server MUST echo (without

modification) in any resulting response.

Uppsala University

Requirements 18

This means that the token value in the response should be the same as the token value

in the request. This requirement can be formulated in the following way:

Vm € M : resp(m).token = m.token

This formula indicates that the response to message m which has a payload must have
the same token value.

6. Token unique: Another requirement regarding the token is its uniqueness.
In the RFC ([8], p. 35) it is specified that:

The client SHOULD generate tokens in such a way that tokens currently in use for
a given source/destination endpoint pair are unique.

This means that the token values should be different for every request sent to the same
endpoint during an CoAP session. This requirement can be captured with the following

formula:

Vm,m" € M: (m.code = request) A (m'.code = request) A (m=m') =

m.token = m .token

7. Token length: In the RFC ([8], p. 16) it is specified that:

Token Length (TKL): 4-bit unsigned integer. Indicates the length of the variable-
length Token field (0-8 bytes). Lengths 9-15 are reserved, MUST NOT be sent and
MUST be processed as a message format error.

Regarding the token length field, two requirements were extracted, the first requirement
is about valid values for the token length field:
Vm € M : m.token_length € {0,1,2,3,4,5,6,7,8}

8. Token length correlation:
The second requirement checks if the token length field represents the actual token
length:

Vm € M : m.token_length = num_bytes(m.token)

9. Payload marker: Another requirement is regarding the payload marker. In the RFC [8],
p- 17 it is stated:

The absence of the Payload Marker denotes a zero-length payload. The presence of a
marker followed by a zero-length payload MUST be processed as a message format

error.

Uppsala University

Requirements 19

This means that if there is a payload marker then there should be a payload and vice
versa, otherwise, the message must be processed as a message format error. The value

of the payload marker must be 255.

Vm eM:
(m.payload_marker = 255 = num_bytes(m.payload) =0) A
(m.payload_marker = 255 = num_bytes(m.payload) = 0)

10. Empty message: In the RFC ([9], p. 21) it is specified that:

An Empty message has the Code field set to 0.00. The Token Length field MUST be
set to 0 and bytes of data MUST NOT be present after the Message ID field. If there
are any bytes, they MUST be processed as a message format error.

This means that an empty message must only contain the 4-byte header. This requirement

can be formulated as follow:
Vm € M : m.code = empty = num_bytes(m) = 4

11. Code: In the REC ([9], p. 16) it is stated:

A recipient MUST either (a) acknowledge a Confirmable message with an Acknowl-
edgement message or (b) reject the message if the recipient lacks context to process the
message properly, including situations where the message is Empty, uses a code with
a reserved class (1, 6, or 7), or has a message format error. Rejecting a Confirmable
message is effected by sending a matching Reset message and otherwise ignoring it.

The code is as mentioned earlier split into two parts, the three most significant bits
are called class for which only values 0, 2, 4, and 5 are valid, and all other values are
reserved. In case a message is received with a reserved class value, the recipient must
ignore it and send a matching reset message. The formula for this requirement can be
expressed as follow:

Vm € M : m.code_class € {0,2,4,5}

Uppsala University

Implementation & Experimentation 20

5 Implementation & Experimentation

In this chapter, the implementation is described, divided into three parts. It includes
Preparing the System Under Test for Symbolic Execution, Instrumentation & Sym-

bolic Execution, and Test Case Construction and Validation.

5.1 Preparing the System Under Test for Symbolic Execution

As mentioned earlier the SUT had to be de-randomized to execute deterministically so it
responds in the same way when capturing the messages as during executing the system
under test symbolically. To de-randomize the SUT for symbolic execution the function
sign which is responsible for the signature had to be modified. It was modified to return
the same signature every time.

To avoid cryptographic operations encryption and decryption of the second and third
messages had to be disabled. To disable encryption and decryption of the second
and third message the functions xor_arrays and aead had to be modified, xor_arrays
was encrypting and decrypting message_2 and aead was encrypting and decrypting
message_3. The functions were modified to do nothing except for copying the content
of the plaintext buffer into the ciphertext buffer and vice versa.

The functions shared_secret_derive, hash, hkdf extract, verify and cert_x509_verify
belonged to external libraries and were related to cryptographic and authentication
operations. They had to be modified similarly.

When the SUT was executing deterministically and cryptographic operations and func-
tion calls to external libraries were modified it was time to run a session of the EDHOC
handshake and record the messages in separate files. Functions were developed that
loaded the messages from the files and stored them in the correct EDHOC structure to
be further processed by the system under test. For instance, for the first CoAP message

this function was created:

void read_first_coap_message_from_file(char xbuffer);

5.2 Instrumentation & Symbolic Execution

To run the system under test symbolically and test the requirements a specific function
was developed for each requirement. Every function made a specific field symbolic
depending on the requirement being tested. The functions were also responsible for

Uppsala University

Implementation & Experimentation 21

assuming the negation of the input validity constraints in the case of an input valid-
ity requirement and ensuring the validity of the input in the case of an input-output
requirement.

For instance to test the requirement regarding the code field. The first step was to make
the code field, or more specifically the three most significant bits of the code field which
represent the class, symbolic. A function has been developed, which takes as input a
reference to the original code field and returns a symbolic code field. The signature of

the function is:

uint8_t klee_make_code_class_symbolic(uint8_t x*code);

To create a symbolic variable with the same size and type as the code field the following
function was used:

klee_make_symbolic (&symbolic_code, sizeof(symbolic_code),

"symbolic_code");

In the case of the code field, only the three most significant bits have to be made symbolic,
to only make these bits symbolic and not the whole code field symbolic it is necessary to

perform bit masking in the following way:

klee_assume((symbolic_code & 0b00011111) == (*code & 0b00011111));

The result of the function above is a byte where only the three most significant bits are
symbolic and the rest of the bits keep their original values.

To assume negotiation of the input validity constraint formulated for the code field this
function is used:

klee_assume ((((symbolic_code & 0b11100000) >> 5) != 0) &
(((symbolic_code & 0b11100000) >> 5) != 2) &

)
(((symbolic_code & 0b11100000) >> 5) != 4) &
(((symbolic_code & 0b11100000) >> 5) != 5));

The result of this function is a code field that has a symbolic class that cannot have a
valid value for the three most significant bits, which in this case are 0, 2, 4, and 5.

To check if the implementation will proceed with an invalid argument an assertion is
being used at the end of the main function. If this assertion is triggered, it indicates that
the implementation has finished the EDHOC session with invalid input.

When dealing with an input-output requirement, the implemented function initially
verifies the validity of the input before assessing the validity of the output. As an exam-
ple, to evaluate requirement three concerning the message_id, where the message_id
of the acknowledgment or reset message should match the request, a function with the
following signature was developed:

uint16_t klee_make_message_id_symbolic(uintl16_t message_id);

This function receives the message_id as input and checks the validity of the input using

an assume statement in the following way :

Uppsala University

Implementation & Experimentation 22

klee_assume ((O<=message_id) & (message_id <= 65536));
Secondly, the message_id is made symbolic using this function:

klee_make_symbolic (&symbolic_message_id,

sizeof (symbolic_message_id), "symbolic_message_id");

Finally, an assertion is used as shown below:
assert (txPDU->getMessageID() == symbolic_message_id);

This assertion is being used when the output (txPDU) has been created. The assertion
checks if the output can have a message_id that differs from the input message_id. If
this assertion is triggered, it indicates a violation of requirement three concerning the

message_id

5.3 Test Case Construction and Validation

The final part of the implementation is to validate possible bugs in the unmodified im-
plementation. To do this, test cases have to be created for every input that triggers some
assertion violation. When the program is executed symbolically the symbolic execution
engine will for every explored path generate corresponding values for the symbolic
variables. For every path that triggered the assertion, the concrete value provided by
the symbolic execution engine was used in the unmodified implementation to validate
if the same behavior could be observed. The message in the original implementation,
which includes the specific field, is modified by assigning it the concrete value provided
by the symbolic execution engine. The implementation is then executed with this value

and it is observed if the original implementation violates a requirement.

Uppsala University

Results 23

6 Results

This chapter presents the non-conformances that were found in the implementations.
First a description of what non-conformances were found in the EDHOC implementation

followed by the non-conformances found in the CoAP implementation.

6.1 Non-Conformances in EDHOC

Table 6.1: Results testing EDHOC
Requirement = Bug Paths Time(s) Status

1. Method X 1 3 Fixed
2. Cipher suite 3 1

Table 6.1 provides the results of testing the EDHOC implementation, where each row
corresponds to a specific requirement being examined and the X symbol indicates the
presence of a non-conformance. Additionally, the table includes information regarding
the number of executed paths, the corresponding time duration, and the current status of
each bug, indicating whether it has been reported, confirmed, or fixed by the developers.
The table in the next section is structured in the same way.

In EDHOC one non-conformance was found concerning the method field. In the
EDHOC implementation, it was possible to set the method field to an invalid value, for
instance, 8 and the handshake was still finishing successfully. The non-conformance
issue regarding the method field in the EDHOC implementation stemmed from the
absence of adequate checks. When the responder in EDHOC received message_1, the
method field was utilized in a switch statement to determine the authentication process
for both the responder and initiator. However, in the event of an invalid method field,
the program defaulted to the switch’s default case, which merely exited the switch func-
tion. As a result, the program variables static_dh_i and static_dh_r were not updated
according to the method field. These variables are used to indicate how the responder
and initiator will authenticate themselves.

In the program, the variable static_dh_i is initialized to zero and the variable static_dh_r

is only declared. The value assigned to static_dh_r during program execution varied.

Uppsala University

Results 24

In some cases, the compiler assigned it a value of zero, and the program proceeded
as expected since the sample program was configured to use signature keys for au-
thentication. However, when the compiler assigned a value of one to static_dh_r, the
server attempted to authenticate itself using a static-DH key. This caused the program
to terminate with an error code, because the sample program was designed to utilize
signature keys for authentication.

Uppsala University

Results 25

6.2 Non-Conformances in CoAP

Table 6.2: Results testing CoAP

Requirement Bug Paths Time(s) Status

1. Version 1 1

2. Type X 1 17 Reported
3. Message ID (echo) 1 5

4. Message ID (uniqueness) X 1 6 Reported
5. Code 2 6 Reported
6. Token (echo) 1 5

7. Token (uniqueness) X 1 6 Reported
8. Token length 2 0

9. Token length (correlation) X 3 14434 Reported
10. Payload marker 38 1203

11. Empty message X 2 6 Reported

Table 6.2 provides the results of testing the CoAP implementation. In the context of
CoAP, eleven requirements were extracted. Two input-output requirements (3 and 6)

and eight input validity requirements. Six instances of non-conformance were identified:

e 4. Message ID (uniqueness)- The same message_id could be used for multiple

requests.

e 7. Token (uniqueness)- A similar instance of non-conformance was also identified
with the token field. It was possible to use the same token value for multiple

requests.
e 5. Code- Reserved code classes such as one and three could be used.

e 2. Type- The message type field could be used incorrectly. For instance, a message

of type reset could contain a request.
e 11. Empty message- An empty message with code 0.00 could contain data.

e 9. Token length field (correlation)- The token length field did not accurately
represent the length of the token. For example, an actual token length of four bytes

could be represented with a token length field value of two.

Uppsala University

Results 26

The non-conformances related to the message_id (4) and token (7) fields occurred due to
the sender’s inability to adequately track and manage these identifiers. As a result, the
same message_id and token could be reused for multiple requests, leading to potential is-
sues. This flaw can result in incorrect responses being sent by the CoAP implementation
in response to received requests. Moreover, if the token values are used in the EDHOC
implementation to correlate EDHOC messages, it can lead to incorrect correlation of
these messages.

The non-conformance related to the token length field (9), where it does not accurately
represent the actual token length, is a significant issue. In this scenario, the client sends
a request with a token to match it with the corresponding response. The server, upon
receiving the message, echoes the token from the request. However, it is possible to
manipulate the token length field by setting it to the maximum value of eight while
setting the subsequent options and payload fields to zero. As a result, the server will
respond with an eight-byte token, even if the actual token is only one byte. This means
that seven unrelated bytes can be retrieved.

In the implementation of EDHOC, where CoAP is used as an external library, exploiting
this non-conformance would cause the implementation to terminate. The program
terminates because of the tag length of the cipher suite. The tag length is eight bytes and
the payload has to be bigger which means that the payload has to be at least nine bytes,
and therefore it is not possible to retain something else except for the EDHOC message.
However, it is important to note that this non-conformance can potentially be exploited
in other settings.

The non-conformance issue in the CoAP implementation related to the code field (5)
occurred due to a lack of proper checks. It was possible to use invalid code values that
were reserved. Although a check was in place to ensure that the code class falls within
the acceptable range of zero to five, it failed to prevent the use of reserved classes one
and three.

The non-conformance concerning empty messages (11) emerged because of a lack of
verification that a message with code 0.00 should strictly consist of four bytes. The client
had the ability to send a message with code 0.00, indicating an empty message, but the
actual message could still contain data. The implementation only checked the validity of

the code field, neglecting to verify its correlation with the rest of the protocol data unit.

Uppsala University

Literature Review 27

7 Literature Review

There exist several techniques to test network protocols. One technique is fuzzing,
there are different variations of fuzz testing. For instance, Fiterau-Brostean et al. [13]
have used protocol state fuzzing to test different implementations of the DTLS protocol.
Somorovsky [14] used a two-stage fuzzing approach to evaluate Transport Layer Security
(TLS) server behavior.

Sagonas and Typaldos [15] created a protocol state fuzzer, EDHOC-Fuzzer, to test
implementations of the EDHOC protocol. This tool uses model learning to create a state
machine model of the implementation. The model can be used to find non-conformances,
bugs, and security vulnerabilities. They used this tool on three EDHOC implementations,
uOSCORE-uEDHOC, RISE, and EDHOC-RS. The uOSCORE-uEDHOC (commit fbaa96c)
implementation is the same as in this project. In this particular implementation, it was
identified that the client is not waiting for a response to message_3 but terminates
immediately after sending message_3, which is non-conforming to the EDHOC protocol
specification.

Fuzzing in general is a testing technique that involves sending random or invalid data to
the protocol implementation to test its ability to handle unexpected inputs. This can help
identify bugs and vulnerabilities that may not be apparent during normal testing. The
process of fuzzing starts with choosing some inputs. These inputs are then repeatedly
mutated taking into consideration the observations of the program, the mutated input is
evaluated by sending it to the program, and if any "interesting" observation is observed
the mutated input and the observation are stored. An "interesting" observation is defined
differently for different fuzzers. In a black-box fuzzer, the only observation which is
interesting is input that leads a program to a crash. In grey-box testing, observations
can also be information about the execution such as which branches were executed, etc.
The output from a fuzzer is some concrete input and configuration information such as
the inputs to start with and the duration of execution. This information can be used to

reproduce the observation [16].

Uppsala University

Literature Review 28

Another technique is model-based testing, which has for instance been used to test
implementations of Message Queuing Telemetry Transport (MQTT) servers [17]. In
model-based testing, a formal model of the system is created from requirements spec-
ifications. A model is created to represent the behavior, structure, or functionality of
the system. From the model test cases are generated automatically by applying specific
algorithms or techniques to explore the different paths or states in the model. When
test cases have been derived, the input value of the test case is provided to the system
under test and the output from the system is compared to the model’s output. Model-
based testing can help ensure that the protocol implementation adheres to the protocol
specification [18].

There has also been an extensive amount of research involving testing protocols with
symbolic execution [3], [4], [19]-[24].

The overall methodology in this project has been following the methodology in the paper
by Asadian et al. [4]. Asadian et al. [4] tested four different implementations of the DTLS
protocol. The implementations were OpenSSL, Mbed TLS, and two variants of TinyDTLS
which is a lightweight DTLS implementation targeting IoT devices. Numerous bugs
and vulnerabilities were detected. The methodology described in this paper consisted of
three steps, first requirements were extracted from the protocols RFC and turned into
input validity formulas. In the next step, the formulas were inserted as assumptions
and assertions in the source code, and the code was executed symbolically to find paths
that violate a requirement. Finally, test cases were constructed and validated in the
unmodified implementation.

Song et al. [20] used symbolic execution in a rule-based approach for the verification
of network protocols. The methodology of Song et al. [20] consisted of four steps. The
tirst step was to formulate rules from the protocol specification, secondly, the code was
executed symbolically to collect a set of test inputs that gives a high code coverage. In
the third step, the test packets were replayed on the original implementation, and the
output packets from the daemon were stored together with the input. In the final step,
the stored input and output packets are checked against the rules that were formulated
in step one. This is done by translating the rules into a set of non-deterministic finite
automata (NFAs) and then an analyzer matches all captured replay packets against
each NFA to detect rule violations. Implementations of the protocols Zeroconf (Avahi,
Bonjour, JmDNS) and DHCP (isc-dhcp, udhcp) was tested. Bugs were detected in all the
implementations.

Tempel et al. [3] presented a specification-based symbolic execution approach for stateful
network protocol implementations. SYMEX-VP which is an open-source symbolic
execution framework for RISC-V embedded software was used. In this paper, the aim
was to reach high code coverage in stateful network protocols and to test sequences
of packets instead of only a single packet. The approach was to increase the number
of packets incrementally, so first the system under test is tested up to a certain depth,
and software execution was suspended and the system under test was explored in

Uppsala University

Literature Review 29

its breadth first and then the packet sequence length was incremented to explore its
depth again. By executing the system under test symbolically to a certain depth, the
initial state space was reduced and the complexity of the generated SMT queries was
simpler. Four benchmark applications were tested. From the RIOT operating system, the
DHCPv6 implementation and two MQTT-SN implementations (emcute and asymcute)
were tested. From Zephyr, the DHCPv4 implementation was tested. The code coverage
for the MQTT-SN implementations emcute and asymcute was increased by 33% and
19% respectively. For RIOT’s DHCPv6 the code coverage was increased by 25% and for
Zephyr’s DHCPv4 the code coverage was increased by 7%. Bugs were detected in the
DHCPv6 and asymcute implementations.

Song et al. [25] used symbolic execution to enhance conformance testing. The symbolic
execution engine KLEE was used. A conformance testing suite consists of a set of
packet sequences, including inputs and expected outputs. Every sequence of packets
corresponds to a specific path in the program. Inputs were from an existing conformance
test suite and the selected inputs were made symbolic and the system under test was
executed symbolically. This way high quality test input packets were generated and
recorded and used as inputs to the original SUT. Running the system under tests with
the high quality inputs, the outputs were recorded. Finally, the high quality inputs with
the corresponding outputs were validated against the conformance testing rules. The
methodology was evaluated on two protocols, the Kerberos Telnet protocol (telnetd)
and the DHCP protocol (udhcp). The results were 83,2% code coverage and detecting
two critical security flaws in telnetd and five previously detected memory bugs with

76,3% source code coverage for udhcp.

Uppsala University

Discussion & Analysis 30

8 Discussion & Analysis

In this section, symbolic execution as a testing technique is discussed. Also, the problems

that were encountered during this project are presented.

8.1 Symbolic Execution

One challenge with symbolic execution is path explosion, for every conditional branch
the execution is forked for each possible and yet realizable path [11]. To avoid time-
consuming symbolic execution, in this project only a specific field that was relevant
to a specific requirement was made symbolic, instead of making the whole message
symbolic. With the exception of the token length requirement, which involved testing
the correlation between the token length field and the actual token length, and the
experiment regarding the payload marker, the majority of the experiments took a few
seconds.

When testing a requirement related to, for example, the message_id, it is unlikely that
other fields such as token length and code will impact the processing of the message_id.
Therefore, these fields kept their concrete values. It is also more difficult for a constraint
solver to solve a constraint involving two symbolic variables at the same time rather
than one [11]. The disadvantage of this approach is that it can miss inputs and possible
bugs that can only be detected when multiple fields are made symbolic simultaneously.
Another challenge with symbolic execution is the interaction with the environment
such as external function calls and cryptographic primitives. Executing cryptographic
primitives symbolically leads to complex symbolic expressions that are difficult for the
SMT solver to handle [7]. To avoid cryptographic primitives, modifications were made
to the system under test where the cryptographic primitives did nothing except for
copying the content of the plaintext buffer into the ciphertext buffer and vice versa. The
downside of this approach is that the unexecuted parts are not being tested.

Another challenge with stateful protocols lies in testing the deeper parts of the implemen-
tation. Sending just a single packet is inadequate when dealing with stateful protocols,
as reaching the deeper layers of the implementation typically requires the transmission
of multiple packets [4]. The approach employed in this project successfully addresses
the testing of stateful protocols. Despite using a single message for each requirement,
the recorded messages correspond to different protocol states. As a result, the testing

process encompasses the examination of the implementation’s deeper layers.

Uppsala University

Discussion & Analysis 31

8.2 Problems Encountered

In EDHOC only the method field and the cipher suite field were tested. One reason was
that the implementation of EDHOC was incomplete, for instance, cipher negotiation
and error messages were not implemented and the EAD field was not used. As a result,
these aspects could not be tested.

Moreover, EDHOC incorporates cryptographic primitives and fields within the mes-
sages that are not well-suited for testing through symbolic execution. For example,
the ephemeral public keys and authentication parameters ID_CRED_I, CRED_I, and
Signature_or_MAC are all associated with cryptographic and authentication operations.
Additionally, message correlation, fragmentation, duplication, reordering, and flow
control are the responsibility of the transport layer and not EDHOC [27]. Consequently,
potential requirements pertaining to these properties were not applicable in this context.

Uppsala University

Conclusion & Future Work 32

9 Conclusion & Future Work

This study utilizes symbolic execution to test one implementation of the EDHOC proto-
col and one implementation of the CoAP protocol. The methodology involved extracting
requirements from the RFCs and translating them into formulas. These formulas were
then applied during symbolic execution to detect any paths that violate a requirement.
This project investigated if the methodology presented in the paper by Asadian et al. [4]
could be used to test other protocols. This approach uncovered non-conformances in
both implementations. However, symbolic execution is not ideal for testing protocols
with numerous cryptographic primitives and parameters as it results in complicated
symbolic expressions that the SMT solver cannot manage. Modifications are required
to enable symbolic execution to effectively test protocols that have numerous crypto-
graphic primitives. The methodology outlined in this thesis is well-suited for testing the
CoAP protocol. Unlike EDHOC, CoAP does not involve cryptographic primitives and
encompasses several fields within the messages that can be effectively tested using the
approach described in this thesis.

9.1 Future Work

Due to time constraints, only one implementation of each protocol was tested in this
project. However, future work could involve testing additional implementations of the
CoAP protocol, which would provide valuable insights. Certain aspects of the work
conducted in this project could be leveraged for such testing. Notably, this project
primarily focused on testing the server side, making it worthwhile to explore testing the

client side as well.

Uppsala University

Literature 33

Literature

(1]

(6]

[7]

[10]

[11]

M. Hasan, State of IoT 2022: Number of connected IoT devices growing 18% to 14.4
billion globally, IOT ANALYTICS,

https:/ /iot-analytics.com /number-connected-iot-devices/, [Accessed: May 4,
2023].

S.N. Swamy and S. R. Kota, “An Empirical Study on System Level Aspects of
Internet of Things (IoT),” IEEE Access, vol. 8, pp. 188 082-188 134, 2020.

Tempel, Soren and Herdt, Vladimir and Drechsler, Rolf, “Specification-based
Symbolic Execution for Stateful Network Protocol Implementations in the IoT,”
IEEE Internet of Things Journal, pp. 1-1, 2023.

H. Asadian, P. Fiterau-Brostean, B. Jonsson, and K. Sagonas, “Applying Symbolic
Execution to Test Implementations of a Network Protocol Against its
Specification,” in 2022 IEEE Conference on Software Testing, Verification and
Validation (ICST), 2022, pp. 70-81.

M. Carvalho, J. DeMott, R. Ford, and D. A. Wheeler, “Heartbleed 101,” IEEE
Security & Privacy, vol. 12, no. 4, pp. 63-67, 2014.

B. Moller, T. Duong, and K. Kotowicz, “This POODLE Bites: Exploiting The SSL
3.0 Fallback,” Security Advisory, vol. 21, pp. 34-58, 2014.

M. Vanhoef, “WiFuzz: detecting and exploiting logical flaws in the Wi-Fi
cryptographic handshake,” Blackhat, 2017.

G. Selander, J. P. Mattsson, and F. Palombini, “Ephemeral Diffie-Hellman Over
COSE (EDHOC),” Internet Engineering Task Force, Internet-Draft
draft-ietf-lake-edhoc-19, February 2023, Work in Progress, 108 pp.

Z. Shelby, K. Hartke, and C. Bormann, The Constrained Application Protocol (CoAP),
RFEC 7252, Jun. 2014.

J. C. King, “Symbolic Execution and Program Testing,” Commun. ACM, vol. 19,
no. 7, pp. 385-394, Jul. 1976.

R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi, “A Survey of
Symbolic Execution Techniques,” ACM Comput. Surv., vol. 51, no. 3, 2018.

Uppsala University

https://iot-analytics.com/number-connected-iot-devices/

Literature 34

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs.,” in OSDI,
vol. 8, 2008, pp. 209-224.

P. Fiterau-Brostean, B. Jonsson, R. Merget, J. de Ruiter, K. Sagonas, and
J. Somorovsky, “Analysis of DTLS Implementations Using Protocol State
Fuzzing,” in USENIX Security Symposium, 2020.

J. Somorovsky, “Systematic fuzzing and testing of TLS libraries,” in Proceedings of
the 2016 ACM SIGSAC conference on computer and communications security, 2016,
pp- 1492-1504.

K. Sagonas and T. Typaldos, “EDHOC-Fuzzer: An EDHOC Protocol State
Fuzzer,” in Proceedings of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA "23, New York, NY, USA: ACM, Jul. 2023.

G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating Fuzz Testing,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS "18, Toronto, Canada: Association for Computing Machinery,
2018, pp. 2123-2138.

M. Tappler, B. K. Aichernig, and R. Bloem, “Model-Based Testing IoT
Communication via Active Automata Learning,” in 2017 IEEE International
Conference on Software Testing, Verification and Validation (ICST), 2017, pp. 276-287.

M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner, Model-Based
Testing of Reactive Systems. Springer Science & Business Media, 2005, vol. 3472.

M. Aizatulin, A. D. Gordon, and J. Jiirjens, “Extracting and Verifying
Cryptographic Models from C Protocol Code by Symbolic Execution,” in
Proceedings of the 18th ACM conference on Computer and communications security,
2011, pp. 331-340.

J. Song, C. Cadar, and P. Pietzuch, “SymbexNet: Testing Network Protocol
Implementations with Symbolic Execution and Rule-Based Specifications,” IEEE
Transactions on Software Engineering, vol. 40, no. 7, pp. 695-709, 2014.

M. Aizatulin, A. D. Gordon, and J. Jiirjens, “Computational verification of C
protocol implementations by symbolic execution,” in Proceedings of the 2012 ACM
conference on Computer and communications security, 2012, pp. 712-723.

D. Brand and W. H. Joyner Jr, “Verification of protocols using symbolic
execution,” Computer Networks (1976), vol. 2, no. 4-5, pp. 351-360, 1978.

R. Corin and F. A. Manzano, “Efficient Symbolic Execution for Analysing
Cryptographic Protocol Implementations,” in Engineering Secure Software and

Uppsala University

Literature 35

Systems: Third International Symposium, ESSoS 2011, Madrid, Spain, February 9-10,
2011. Proceedings 3, Springer, 2011, pp. 58-72.

[24]].Song, T. Ma, C. Cadar, and P. Pietzuch, “Rule-Based Verification of Network
Protocol Implementations Using Symbolic Execution,” in 2011 Proceedings of 20th
International Conference on Computer Communications and Networks (ICCCN), IEEE,
2011, pp. 1-8.

[25]].Song, H. Kim, and S. Park, “Enhancing Conformance Testing Using Symbolic
Execution for Network Protocols,” IEEE Transactions on Reliability, vol. 64, no. 3,
pp- 1024-1037, 2015.

Uppsala University

	23e3e906-bab8-4097-b6e5-3001eea4d9be.pdf
	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Background
	Symbolic Execution
	EDHOC
	Error Handling & Error Messages

	CoAP
	CoAP Protocol Data Unit

	Methodology
	Extracting Requirements
	Preparing the System Under Test & Inserting Instrumentation
	Validating the Non-Conformances
	Example

	Requirements
	EDHOC
	CoAP

	Implementation & Experimentation
	Preparing the System Under Test for Symbolic Execution
	Instrumentation & Symbolic Execution
	Test Case Construction and Validation

	Results
	Non-Conformances in EDHOC
	Non-Conformances in CoAP

	Literature Review
	Discussion & Analysis
	Symbolic Execution
	Problems Encountered

	Conclusion & Future Work
	Future Work

	Literature

