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Verona is a concurrent object-oriented programming language that organises all the objects in a program
into a forest of isolated regions. Memory is managed locally for each region, so programmers can control
a program’s memory use by adjusting objects’ partition into regions, and by setting each region’s memory
management strategy. A thread can only mutate (allocate, deallocate) objects within one active region — its
“window of mutability”. Memory management costs are localised to the active region, ensuring overheads
can be predicted and controlled. Moving the mutability window between regions is explicit, so code can be
executed wherever it is required, yet programs remain in control of memory use. An ownership type system
based on reference capabilities enforces region isolation, controlling aliasing within and between regions,
yet supporting objects moving between regions and threads. Data accesses never need expensive atomic
operations, and are always thread-safe.
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1 INTRODUCTION

Memory management has always been challenging, and programmers and programming language
designers have developed a wide range of techniques and patterns to deal with it [Noble and Weir
2000]. Most early languages like FORTRAN and COBOL supported only �xed memory allocation,
where memory was allocated before a program began to execute. Algol-60 popularised stack
allocation, enabling recursive procedures to be expressed clearly, and then languages like C and
Pascal popularised heap allocation, where programmers could manually request memory from the
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runtime system, and manually return that memory when it was no longer required. LISP introduced
the �rst automatic memory management system—a garbage collector—which relieved programmers
from the need to explicitly free memory, rather memory will be automatically reclaimed once
it is no longer needed [Jones et al. 2016]. As well as reducing the amount of bookkeeping code
programmers have to write, garbage collection typically provides “memory safety” which prevents
a number of characteristic errors common to manual memory management, such as failing to free
objects that are no longer needed, or accidentally freeing objects that are still in use.
While there is now a 60+ year history of research in garbage collection algorithms and imple-

mentations, many programmers seem resistant to using garbage collection, despite the pitfalls of
manual memory management. According to the TIOBE index of programming languages [Tiobe
2022], about half out of the top twenty programming languages eschew garbage collection, and
rely on various forms of manual memory management. The 1st and 3rd of the top 25 Common
Weaknesses in CWE 2020–2022 are writing and reading outside of allocated memory and using
memory after freeing it is 7th. Memory leaks come in at 32nd and race conditions 33rd [CWE 2022].
In short, manual memory management (e.g., C/C++) is unsafe and prone to errors but allows

programmers to leverage domain knowledge to optimise memory management. Some compile-time
memory management (e.g., Rust) and automatic GC (e.g., Java/C#) avoids the memory unsafety,
but instead leads programmers to write unsafe code for a variety of reasons. In Rust, programmers
must use unsafe code to construct well-known data structures, and object topologies without clear
domination. In Java, programmers use unsafe code [Mastrangelo et al. 2015] to leverage domain
knowledge to optimise memory management and to make GC performance more predictable. In
general, reasoning about the performance of automatic GC is made di�cult by the systemic e�ects
of GC on program performance and the heuristics which control when and how GC is run.

Contributions. This paper introduces Verona’s region system—Reggio—and its accompanying type
system. Reggio gives programmers control over memory management costs by dividing a program’s
heap into a �exible forest of independent regions. Programmers can pick a suitable strategy for how
memory in each region is managed, irrespective of what other regions do. Within each thread, the
programmer explicitly moves a single “window of mutability” through the region forest. The single
window of mutability makes clear which region each part of a program is working within, and how
the program a�ects that region, in particular with respect to object liveness, and also permits a
�exible aliasing. As a region can only be made accessible through a single pointer, programs become
free of data-races by design, and cheap ownership transfer to support recon�guring the region
topology is easy. Memory management overheads (e.g., tracing, and reference count manipulations)
are likewise localised to just the mutable region.

2 BACKGROUND

The continuing appeal of manual memory management highlights the research problem we aim
to solve: how can languages give programmers the level of control o�ered by manual memory
management, while maintaining memory safety? Two broad research streams tackle this problem,
one based on regions and one based on ownership.

Regions. Gay and Aiken [1998] introduced explicit regions for managing memory in C-like lan-
guages: objects are allocated in regions; and entire regions of objects are deleted in one operation,
rather than deleting objects individually. A later version of this scheme added annotations to
indicate that a pointer refers to an object in the same region, in an enclosing region, or is not
allocated via the region system [Gay and Aiken 2001]. Utting [1995] had previously shown how
regions could help local reasoning, based on the “collections” or “local stores” used to di�erentiate
pointers in Euclid [Lampson et al. 1977].
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Rather than using explicit, programmer-visible regions, Tofte and Talpin [2004; 1997] demon-
strated how Milner-style inference [Baker 1990] could be extended to implicitly allocate objects
to regions, and allocate and deallocate those regions, without either explicit �rst-class regions, or
additional annotations on programs or types. Their MLKit [Tofte et al. 2021] runs ML programs
using stack allocation, as the regions are allocated last-in, �rst-out. Because these inferred regions
are implicit, the region structure does not capture a programmer’s intent about how and where
memory should be allocated and freed. MLKit remains under continuous development, in particular
showing how regions can be supported in a straightforward monadic style [Fluet and Morrisett
2006], and integrating generational-style GC within regions [Elsman and Hallenberg 2021].

Safe region allocation was then tested at scale in Cyclone [Grossman et al. 2002] an extension of
C with an explicit region construct, rather than using inference. Like the MLKit, Cyclone regions
were originally stack based; later versions also adopted support for unique pointers and reference
counted objects to permit deallocation of individual objects inside a region, at the cost or introducing
memory leaks due to cycles or failure to deallocate a dropped unique pointer [Hicks et al. 2004]. Both
MLKit style implicit / inferred regions, and Cyclone explicit / annotated regions can be modelled by
a common core calculus based on linear references to explicit, �rst-class regions [Fluet et al. 2006].

Ownership. Work on object ownership e�ectively begins with Hogg’s Islands [1991] and a general
recognition of the need to control topologies of programs [Hogg et al. 1992] in languages where
object identity (i.e., dynamic allocation, mutable state), encapsulation, and even “automatic storage
management” are taken as essential design principles, rather than accidental optimisations [Ingalls
1981; Lehrmann Madsen et al. 1993; Lieberherr and Holland 1989].

Based on “Flexible Alias Protection” [Noble et al. 1998], ownership types [Clarke 2001; Clarke et al.
1998] o�er compile-time enforcement of pointer encapsulation, including the property that, consid-
ering paths through the object graph, an “owner” object should dominate all other objects that pro-
grammers intend to encapsulate “inside” it [Potter et al. 1998]. Leveraging “owners-as-dominators”,
extensions to ownership types have been applied to encapsulate object invariants [Müller and
Poetzsch-He�ter 1999], record conformance to software architecture [Aldrich and Chambers 2004],
localise program e�ects [Clarke and Drossopoulou 2002], scope object cloning [Li et al. 2012], ensure
actor isolation [Clarke et al. 2008; Gruber and Boyer 2013; Srinivasan and Mycroft 2008], prevent
data races [Boyapati and Rinard 2001; Gonnord et al. 2023], support safe parallelisation [Bocchino
2011; Francis-Landau et al. 2016] or ensure data is only accessed under a mediating lock [Flanagan
and Freund 2000]—the �rst �fteen years of these e�orts are surveyed in [Clarke et al. 2013]. Owners-
as-dominators leads directly to applications in memory management, as deleting a dominating node
from a graph, by de�nition, must also delete every node it dominates. This was �rst demonstrated
in SafeJava [Boyapati et al. 2003] using ownership types to compile straightforwardly annotated
programs to the Real-Time Speci�cation for Java [Bollella et al. 2003], which supports �ne-grained
control over memory via explicit dynamically-scoped regions.

Distinguishing between the inside and outside of an encapsulated object lets languages generalise
traditional pointer-based uniqueness to external uniqueness [Clarke and Wrigstad 2003], where an
object may have only one pointer from the outside, but any number of pointers from its inside.
As with regions for unique objects, an externally unique object can be represented as the sole
object in a region; however for external uniqueness, the object’s region can also contain one or
more enclosed subregions in turn containing the object’s insides. External uniqueness is almost as
strong as regular uniqueness [Wrigstad 2006], and in particular makes it easier to change objects’
ownership, or dually, to transfer objects between actors or independent threads [Clarke et al. 2008;
Gordon et al. 2012; Haller and Loiko 2016; Haller and Odersky 2010].
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Rust. Regions and ownership have been brought together recently in the design of Rust, combining
control of memory use, safe concurrency, and excellent compiler error messages [Hu 2020; Klabnik
and Nichols 2019; Krill 2021; Turon 2015]. Rust essentially inherits Cyclone’s and MLKit’s regions,
but strongly integrated with uniqueness. In particular, only values which are uniquely referenced
or passed by copy are mutable. Nested uniqueness brings nested ownership: a unique value is
owned by its storage location, ensuring that when an owner is deallocated, all the memory owned
by that owner can also be deallocated.
To make programming in Rust practical, Rust allows unique values to be borrowed without

nullifying their source: a unique mutable reference can be passed up the stack without losing
uniqueness [Boyland 2001] or traded for multiple read-only borrowed references [Wadler 1990].
To ensure absence of dangling pointers, Rust tracks lifetimes of borrowed references and ensure
that a “longer-lived” (or enclosing) object can never point to a “shorter-lived” (or encapsulated)
object. This borrowing semantics is reminiscent of fractional permissions [Boyland 2013]. Through
uniqueness, Rust imposes a multiple-reader/single-writer concurrency model [Lea 1998].
The strict rules surrounding ownership and borrowing, and compilers’ inability to accept safe

programs that they “cannot understand”, make Rust hard to learn and to use correctly [Abtahi and
Dietz 2020; Blaser 2019; Coblenz et al. 2022; Jung et al. 2020; Qin et al. 2020; Spencer 2020]—to the
point where the di�culty of implementing �rst-year data structures (such as doubly-linked lists)
has now become an Internet trope [Beingessner 2019; Cameron 2015; Cohen 2018; ndrewxie 2019].
When faced with these problems in practice, Rust programmers either escape into unsafe Rust or
revert to the birthplace of aliasing, using integer array indices, FORTRAN style [Bendersky 2021].

3 REGGIO REGIONS

In this section we describe the central concepts of the Reggio region system: regions, the region
topology, operations on regions, the single window of mutability, and the properties of the region
system. But �rst, let us overview the goals of this work.

3.1 Motivation

The design decisions in this paper are motivated by our primary goal:

(G1) Controllable and Predictable MemoryManagement Costs. It should be possible for a programmer
to reason about and control the impact of memory management on performance.

Our approach is to divide a program’s heap into isolated regions and make each region an isolated
unit of memory management. Concretely, we set the following �ve sub-goals:

(G2) Mix-and-Match Memory Management. A region is free to manage its own memory however it
likes, irrespective of any other regions in the program. Thus, a programmer is free to pick a
memory management strategy suited to the needs of particular operations.

(G3) Incremental Memory Management. Performance of memory management in one region should
not be a�ected by activities in another region. Thus, �ne-grained partitioning gives �ner
cost-control.

(G4) Zero-Copy Ownership Transfer. Ownership transfer between regions must be possible without
copying objects. Thus, �ne-grained partitioning does not have a hidden expensive cost, and
heap topology can be modi�ed cheaply.

(G5) Concurrent Memory Management. Timing of memory management in one region should not
be contingent by activities in another region. Thus, a programmer can initiate an operation—
memory management or not—without having to wait, or forcing a wait upon any other part
of the program.
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(G6) Safe Concurrency. A thread that has access to a datum may access it freely without any need
for synchronisation, and with a guarantee of data-race freedom.

Because this paper does not deal explicitly with concurrency, we will refrain from discussing the
last two goals until §8.1.

3.2 High-Level Overview

We distinguish between mutable and immutable objects. In this paper, we are mostly concerned
with the former. Immutable objects do not live in regions, and can be accessed freely in a program.
In contrast, every mutable object belongs to a particular region. In certain circumstances, mutable
objects may be made temporarily immutable. To avoid confusion, we will sometimes use the phrase
permanently immutable to denote objects whose mutability is irretrievably lost.

3.2.1 Regions and Region Topology. A region is a set of objects whose memory is managed together.
At any moment, one of these objects is designated as the bridge object. A region can be opened
or closed. Closed regions are isolated from the rest of the program which means that with the
exception of the bridge object, objects in a closed region are only referenced from within the region.
Bridge objects are externally unique [Clarke and Wrigstad 2003] so they may have an additional,
single external incoming reference.

The only outgoing references from objects in a region are either to immutable objects or to bridge
objects of other (nested) regions. Thus, a program’s region topology forms a forest, and moving the
external reference to the bridge object changes the topology. The topology of references within
regions is unrestricted: any object can point to any other within the same region.

o

a

i m

e

n

c

R

R’

immutable

mutable

OK

Not OK

Fig. 1. Region isolation of
two closed regions.

Fig. 1 illustrates the isolation of the region ' (bean-shaped boundary).
Object 0 is the current bridge object of the region, denoted by drawing
it on the boundary. Also 2 and 4 could serve as the bridge object. Ref-
erences 4→= and<→ 4 are not permitted as they break isolation. The
reference from 0→ 8 is permitted as 8 is immutable. The reference<→0

is permitted because 0 is the current bridge object. Immutable objects
do not live in regions and may only refer to other immutable objects.
Therefore, the reference >→0 is not allowed. Last, bridge objects may
only have one incoming reference from outside the region, so no more
references to 0 are allowed from outside of ', regardless of their origin.

3.2.2 Regions and Memory Management. Every region manages the
memory of its objects in isolation, and according to a strategy picked by
the programmer speci�cally for that region at the time of its creation.
Code inside of a region is agnostic to how memory is managed, meaning that a library can leave
such decisions to its users.
When an external reference to a bridge object is dropped, the entire corresponding region can

be free’d along with any nested regions. In Fig. 1, dropping<→0 makes all objects in region '

unreachable as external references to its objects (e.g.,<→ 4) are not permitted. Thus, they can be
collected immediately.

3.2.3 Single Window of Mutability. A region must be explicitly opened to be accessed, and must
be closed before it can be opened again. The open regions form a LIFO stack. The top region is
active and the remaining regions on the stack are suspended. An active region permits allocation,
deallocation andmutation of its objects. When a region is suspended, neither allocation, deallocation
nor mutation is permitted in it.
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Table 1. Allowed actions depending on a region’s state. Incoming and outgoing denote references to mutable
objects from and to other regions respectively. Bridge means only to bridge objects; any∗ means to any object
of a previously (outgoing) or subsequently (incoming) opened region. Free object denotes ability to free
individual objects inside of a region. Free region denotes the ability to free an entire region.

Encapsulation E�ects Memory Management Nested
State Incoming Outgoing Mutate Read Alloc object Free object Free region Regions

active bridge any∗ yes yes yes yes no yes
suspended any∗ any∗ no yes no no no yes

closed bridge bridge no no no no yes yes

Making a region active temporarily weakens its outgoing encapsulation: its objects are permitted
to reference objects in the suspended regions further down the stack. Suspending a region conversely
weakens its incoming encapsulation: its objects can be referenced by the regions further up the
stack. Table 1 overviews the allowed actions depending on a whether a region is active, suspended
or closed. When the active region is closed, it is popped from the stack, and the new top region
goes from suspended to active. Because closed regions are not permitted outgoing refereces, any
references to objects in open regions must be invalidated.
To the active region, the suspended regions appear as a single temporarily immutable region

whose objects can be referenced as long as the active region remains on the stack. Programmers can
thus trade mutability for access, and any object can be temporarily accessed from anywhere, provided

the containing regions are opened on the stack in a permitting order.

In Fig. 1, to open ' we must �rst open '′ to access the reference<→0. Opening ' through this
reference suspends '′, making< and = temporarily immutable, 0, 2 , and 4 mutable, and permitting
4→=. With the topology of Fig. 1, we cannot open ' and '′ in a way that permits the creation of
<→ 4 as< is immutable when '′ is suspended, and 4 is not accessible when ' is closed. To do so,
we must change the topology by moving<→0 out of '′, e.g., to a stack variable or other region.

In combination, the design decision to only permit mutation in one region at a time, the LIFO
order of the region stack and the inaccessibility of closed regions facilitates reasoning about side-
e�ects. The main motivation, however, is to control the costs of memory management. As we shall
see, direct overheads related to memory management such as maintaining reference counts or
tracing object structures are only applicable to active regions.

o
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i m

ec

R

R’

m

o

a

i m

ec

R

R’

m

y z

Fig. 2. Le�: '′ is active and ' is closed. Right: we
opened ' making it active and suspending '′.

3.2.4 Navigating Through the Region Forest. Due to
the single window of mutability, programs require
explicit navigation through the region forest. The
left sub�gure of Fig. 2 shows Fig. 1, denoting regions’
states by colour when '′ is active and ' is closed.
The white box denotes the stack frame of '′ with
its local variable(s). If we proceed by opening ' we
arrive at the right sub�gure of Fig. 2: a new top frame
is created inside ' containing its own local variables,
with y holding a reference to 0; '′ is suspended and
' active, and the window of mutability is moved
from '′ to '. The reference I→< shows the weakened isolation allowing outgoing references
from ' and incoming references to '′. To continue, we may close ' or open any reachable region
'′′. The former will invalidate any references from ' to '′ since these would violate isolation. The
latter gives mutable access to '′′ and suspends ', and permits references from '′′ to both ' and '′.
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3.2.5 Swapping the Bridge Object. Any object in a region can serve as the bridge object. While a
region is open, any object can be designated as the new bridge object, and we make this choice
visible when the region closes. Thus, it is possible to e.g., create a region with a stack where the
bridge object is always the top link. If we wish to create an external iterator to the stack, we can
create an iterator inside the region, and make the iterator the bridge object for the duration of the
iteration, and then switch back again. Fig. 3 shows the situation pictorially.

3.2.6 Merging and Freezing Regions. A closed region’s contents may be merged into another region
by dropping the uniqueness of the bridge object. For clarity, we use an explicit merge operation.
Fig. 4 shows merging '′ into ', which moves the objects in '′ into ' and creating the (now legal)
0→1 reference from the variable x, after which '′ ceases to exist. Merging a region (source) into
another (sink) moves all regions directly nested in the source to the sink, but does not merge those
regions into the sink (see '′′ in Fig. 4).

Permanently immutable structures are created by constructing a mutable region and then turning
its entire contents immutable through an explicit freeze operation that operates on closed regions.
In contrast to merging, freezing a region also freezes its nested regions (see Fig. 4). This preserves
the property that immutable objects may only reference other immutable objects. Freezing dissolves
region boundaries, making the frozen objects freely accessible to objects in all regions.

4 REFERENCE CAPABILITIES FOR STATICALLY ENFORCING REGION ISOLATION

We now introduce a type system that statically enforces region isolation according to the encapsu-
lation and e�ects columns of Table 1. A region is opened through an enter operation that takes a
reference to bridge object and a lambda, executes the lambda inside the region passing it the bridge
object as argument, and then closes the region. Its companion operation explore opens a region in
a suspended state (while still suspending the former active region).
Our type system uses reference capabilities which decorate all types g in a program:

– mut g denotes an intra-regional reference to an object of type g (r, c, e, and m in Listing 1);
– tmp g is like mut g , but the lifetime of the object is bound to the enter/explore scope;
– imm g denotes a reference to a permanently immutable object of type g (i and o);
– iso g denotes an externally unique reference to a bridge object of type g of a closed region (a);
– paused g denotes a reference to an immutable object in a suspended region (z in Fig. 2).

On assignment, the lhs capability and the rhs capability must be the same. merge has the signature
iso→mut and freeze has the signature iso→imm. To enter or explore, an iso is needed.

All expressions are typed from the point of view of the currently active region. A �eld f declared
with amut capability will only appear as such when the object > containing f is in the active region.
If >’s containing region is suspended, f will also appear as suspended; if >’s containing region is
closed, f is not even visible to the program. This is handled by viewpoint adaptation (c.f., §4.1).

a b c i

a b
a

a

c
b

x x x x

i
a

c
b

x

i a

c

x

a c

x

i

Fig. 3. Examples of bridge swapping. Time moves le�; we use di�erent shades of blue for clarity. Subfigures
1–3 construct the cyclic linked list [0, 1, 2], using the most recently added link as the bridge object. Subfigures
4–6 construct an iterator, for the list, and make it the bridge object. We subsequently use the iterator to
iterate to the 1 link and unlink it, before dropping the iterator and making 0 the bridge object (and with a
garbage iterator whose removal is determined by the region’s memory management strategy).
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b
R’

R
a b

R
a

R

merge R’ into R — R’’ is unaffected freeze R’ also freezes R’’

R’’ R’’

x x x

Fig. 4. Le�: Three nested regions ', '′, and '′′. Centre: Merging region '′ into '. Right: Freezing '′.

An invariant in our system is that aliases to an object that are accessible simultaneously have
the same capability. This design is motivated in-part by region isolation and in-part by a desire
to keep complexity down in this presentation. For example: If a mut and paused could alias, the
immutability of the latter would be weakened to read-only. If paused and imm could alias, it would
violate the temporary vs. permanent nature of their immutability. (This restriction could be relaxed
to permit some aliasing across the mutable capabilities and aliasing across immutable capabilities.)

1// Freeze creates immutable objects, c.f. §3.2.6
2let i = freeze new iso Cell(42)

3let o = freeze new iso Cell(i)

4let a = new iso Link // creates R
5// { r ⇒ ... } is a lambda with argument r
6enter a { r ⇒

let c = new mut Link
7let e = new mut Link

8r.elem := i

9r.next := c

10c.next := e

11e.next := r }

12let m = new mut Cell(a) // buries a

Listing 1. Code creating the region' from
'′ as depicted in Fig. 1.

Constructing Fig. 1. Listing 1 shows code that creates the
regions, objects, and (permitted) references of Fig. 1. Line 4
creates the ' region. On Line 2, the immutable object 8 is
constructed by creating a region and freezing it. The object
> is created similarly. Its reference to 8 does not break region
isolation as 8 is immutable. We could get rid of the freeze

on Line 2 since Line 3 moves 8 into >’s region and then
freezes the entire structure.

When a region is created, it is closed and empty, except
for its bridge object. To populate ' as in Fig. 1, it must �rst
be made active. The enter keyword is used to open a region
and making it active. It takes a unique reference to a bridge
object as its argument. Lines 6–11 of Listing 1 show the
use of an enter block to open the ' region to allocate and
mutate its objects. (The code executes with region ' active and region '′ suspended.)
Entering a region moves control inside it and places a mut reference to its bridge object in a

variable on the stack (r) that can be used to call methods, or obtain and store references to other
objects in the region. Exiting the enter block (after Line 11) closes the region, and moves control
back to the previous region. While a region is open, the external reference to its bridge object is
buried [Boyland 2001], meaning it is not accessible to the program.
Upon exiting the enter block, all variables referencing objects in the now-closed region (c, e,

and r) are invalidated, save for the reference to the bridge object in a. Any temporarily permitted
references to objects in suspended regions, such as 4→= in Fig. 1, will be invalidated as well. (We
will show how this is enforced statically in §4.3.)

4.1 Controlling E�ects through Viewpoint Adaptation

We rely on viewpoint adaptation [Dietl et al. 2007] to capture how a reference’s type changes
depending on its enclosing region’s relation to the active region. Viewpoint adaptation means that
the type of an object may appear di�erently depending on from where it is accessed. For example,
when accessed through a variable of type imm, a �eld declared with type mut appears as imm.
(This particular case ensures that turning a unique reference to a bridge object immutable will
propagate the immutability to the entire region and nested regions.)
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Table 2. Viewpoint adaptation. If the capabilities of x
and f are U and V , then the capability of x.f is U ⊙ V =

W , which we read as “U sees V as W .” For †, c.f., §4.3. The
meaning of ⊥ is inaccessible; For ⊥/iso see text.

Capabil- Capability on f

ity on x mut tmp imm iso paused

mut mut ⊥† imm ⊥/iso ⊥†

tmp mut tmp imm ⊥/iso paused
imm imm imm imm imm imm
iso ⊥ ⊥ ⊥ ⊥ ⊥

paused paused paused imm ⊥/iso paused

Viewpoint adaptation also changes the types
of variables captured by an enter or explore

block to propagate suspension. Captured isos
retain their iso-ness rather than become paused.
Table 2 shows the viewpoint adaptation rules.
The meaning of ⊥/iso is that an iso location is
inaccessible through a mut, tmp or paused, un-
less it is swapped, buried or borrowed (c.f., §4.2).

To illustrate viewpoint adaptation, consider
A enter x { y ⇒ B }. In scope A, let the
variables x and v have the types iso g1 and : g2
respectively. In scope B, x is unde�ned and y is
introduced with typemut g1. This re�ects the region pointed to by x going from closed (denoted by
x being iso) to active (denoted by y being mut). Moving control from A to B suspends the region
active in A (denoted there by mut and tmp). Thus, in scope B, the type of v is (paused ⊙ :) g2.
Through a paused reference, objects in the same region are paused. paused and imm references stay
paused and imm respectively (permanently immutable is stronger than temporarily immutable).
iso references stay iso. This permits opening nested regions of a suspended region.

If : = iso, then v.f is not typeable in neither A nor B as iso ⊙ : ′
= ⊥, regardless of what : ′ (the

capability of f) is. This is as expected, as iso’s cannot be dereferenced (they must be enter’d).

4.2 Region Isolation and Bridge Object External Uniqueness

Regions which are closed or active only have a single incoming reference, which goes to the bridge
object. Thus, when a region is closed, it can be moved in and out of other regions by moving its
single incoming reference. When a region is opened, its containing region is suspended, which
means that the object containing �eld holding the reference to the bridge object is paused so
the �eld cannot be reassigned. Thus, regions cannot move while open. Finally, when a region is
suspended, incoming references are permitted from the stack and heap of subsequently opened
regions (c.f., §4.3). As regions are opened using a lexically scoped construct (enter or explore),
regions are opened and closed in LIFO order. This means that when a suspended region becomes
active again, the permitted incoming aliases that could be declared in the block have gone out of
scope, and the region’s bridge object is again the only incoming alias.
As shown in Table 3 uniqueness of bridge object references is maintained by a combination of

swapping, burying, and borrowing.

Table 3. Maintaining uniqueness of bridge object references.

Swap
[Harms and
Weide 1991]

Reading a mutable variable containing an iso requires that its contents is replaced. For
example, y = x is not permitted when x is iso. However, y = x = E is, which replaces the
value of x by the value E and moves the previous value of x into y.

Bury
[Boyland 2001]

Reading a let-bound variable with an iso invalidates the variable. For example, foo(x, x)

is not permitted when x is iso as the second use of x cannot be typed.

Borrow
[Wadler 1990]

Dereferencing an iso requires opening its region, where aliasing of the bridge object is
unrestricted, and region isolation protects aliases to the bridge object from escaping.

Entering a region borrows and/or buries the variable or �eld referencing the bridge object. In the
case of a stack variable, the variable is buried to prevent the region from being multiply opened. In
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the case of a �eld, we instead resort to a dynamic check of the region’s state. If the region is closed,
it may be opened. If the region is already open, an exception is thrown.

4.3 Temporary Objects Allow References to Suspended Regions on the Heap

As exempli�ed already, we permit local variables to store references to objects in a suspended
region (e.g., z in Fig. 2). This is sound as objects in suspended regions are immutable, and because
local variables in the active region are guaranteed to go out of scope before a region opened by an
enclosing enter or explore becomes active (and thus mutable), as explained above.
Because objects with tmp capability are created in, and bounded by, a lexical scope, they have

the same lifetimes as local variables declared therein. Therefore, we can grant the same permissions
to store references to suspended regions to tmp objects. We permit accessing paused and tmp �elds
through a tmp, but not through a mut (as shown in Table 2). Permitting a mut object to store a
suspended reference could lead to a breach of region isolation (see §4.5 for an example). Thus from
:1 ⊙ :2 = tmp it follows that :1 = tmp.

In terms of Fig. 1, making 4 a temporary object allows its �elds to store references with tmp
capability. This permits the reference 4→= when ' is active and '′ is suspended. However, 2→ 4

would no longer be permitted unless 2 is also tmp, etc.

4.4 Storage Locations, Strong Updates and Bridge Object Swapping

We unify the treatment of mutable variables (denoted var as opposed to let) and �elds through a
storage location abstraction (similar to a pointer to a variable or �eld in C).
Storage locations are typed : Store[: ′ g] where : is the capability of the frame or object

containing the location and : ′ is the capability of the value stored at the location.
We add a new capability that we call var for use in mutable local variables. var di�ers from tmp

in that it supports strong updates. Its viewpoint adaptation rule is var ⊙ : = : (“var sees : as :”).
As shown in Listing 2, a mutable local variable x holding a g-typed value has the type var Store[g].

Storage locations are subject to the normal rules for viewpoint adaptation, so opening another
region when x is already in scope will change the type of x to paused Store[g]. We introduce a
dereference operator * and an update operator := to access the contents of a storage location. A
storage location must be mut, tmp, or var to be updated. We apply viewpoint adaptation to type
the result of dereferencing. On Line 7, *x has type (paused ⊙mut) Cell, i.e., paused Cell.

1var u = new iso Cell(42) // var Store[iso Cell]

2var x = new Cell(4711) // var Store[mut Cell]

3enter u { y ⇒

4// y has type var Store[mut Cell]

5// x has type paused Store[mut Cell]

6y := new Foo(*y) // changes bridge object('s type)
7y := *x // rejected: ∗x is paused Cell, not mut Cell
8x := ... // rejected: the x storage location is paused
9} // change to u becomes visible

Listing 2. Storage locations example.

We support changing the bridge object of a
region—including changing it for an object of
a di�erent type—by presenting the borrowed
bridge object reference internally in the enter

block as a var storage location. (Note that it is
not possible to update the bridge object in an
explore as it opens the region as suspended.)

Line 6 shows that changing the bridge object
to an object of another type is possible by sim-
ply assigning to y. Strong updates of �elds are
not possible, and this is handled by using tmp Store[. . .] instead of var Store[. . .] to type a bridge
object reference borrowed from a �eld as opposed to a stack variable.

4.5 Types Enforce Region Isolation and the Single Window of Mutability

Region isolation means no references into active or closed regions from other regions (modulo
unique references to bridge objects) or from immutable objects, and no outgoing references from
closed regions to open regions. Let’s see how our types enforce this, by looking at ' in Listing 1.
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The newly created region ' (Line 4) is isolated as iso constructors only accept iso’s and imm’s as
arguments. Right after creation, ' is closed, and its only external reference is iso. Since iso’s cannot
be the receivers of method calls or �eld accesses, we cannot read or write internal objects in ', so
we cannot create the illegal references<→ 4 or 4→=.

When ' is active (Line 6–11), all previously suspended regions stay suspended (none in Listing 1),
and are joined by the current region ('′). This is captured by viewpoint adaptation which changes
all variables which are mut, tmp, or var in the enclosing region to paused. This prevents these
variables from being updated, and reading them yields paused references. Field updates via paused
or imm references are not allowed, and method calls on such references require that the method’s
self type matches the external view, meaning any callable method cannot perform a �eld update on
self (or call such a method). Thus, we cannot create<→ 4 or >→0.

As permitted by our de�nition of region isolation, we may store paused references in the �elds
of tmp objects in ' while ' is active (e.g., 4→= if 4 is created as tmp on Line 7). These references
will be invalidated when ' closes as tmp references can only be stored in variables local to the
enter block (since mutable variables in the enclosing scope have been suspended), or in other tmp
objects (i.e., 0 → 2 → 4 is an impossible path if 4 is tmp, as the 0 object is mut by de�nition).
If we did not invalidate references into suspended regions such as 4→=, we could circumvent

region encapsulation. For example, imagine closing ' (without invalidating 4→=), then closing '′

while moving ' out of '′. Then reopen ' without �rst opening '′. Now 4→= would constitute a
reference into the internals of a closed region, thereby breaking region isolation.

Inside an enter or explore block the enclosing scope is immutable. Together with region isolation
this gives that only one region at a time is mutable, i.e., a “single window of mutability”.

Last, region isolation means that reassigning the pointer to the externally unique bridge object
e�ectively changes the region topology of the heap (G4).

5 THE USE OF REGIONS FOR MANAGING LIVENESS

Wehave sketched how our type system enforces region isolation and the single window ofmutability.
In this section, we will show how this translates to costs for managing liveness when considering
memory management in isolated regions.

Fig. 5 shows a heap consisting of regions'1 to'6. Presently, the program has entered'1,'2,'3 and
'4 in that order. Ignoring method call indirections, we can imagine a corresponding program shape
starting in '1: R1 enter x { d ⇒ R2 enter e.f { f ⇒ R3 enter e.g { g ⇒ R4 } } }.

The region stack is thus ['4, '3, '2, '1] where '4 is active. Region isolation prevents references
from objects in region 8 to objects in region 9 if 8 < 9 with the exception of the bridge object
references: x→3 , 4→ 5 , and 4→6. The �rst of these is made inaccessible right after the �rst
enter by making x unde�ned in R2 and nested scopes. While '4 is open, '2 and '3 are suspended,
meaning the �elds holding 4→ 5 and 4→6 cannot be reassigned (static check). Furthermore, they
cannot be dereferenced (i.e., opened) since the regions are already open (dynamic check). Thus,
while '4 is open, the incoming references to the bridge objects will remain the same, i.e., the path
that holds the region alive is stable.1

Because of this, as long as '4 remains active, liveness of objects in regions '1–'3 and '5 is
invariant as no activity in '4 can cause objects in these regions to become garbage.2 This does not
hold for '6, as '4 could drop ℎ→ 8 to make the entire region '6 garbage. It does hold for 1→ 2

however, since 1 is in a suspended region (1 is temporarily immutable).

1Since an enter block can change the bridge object on exit, the incoming reference does not a�ect liveness. We can think of

the incoming bridge object reference as being invisibly nulli�ed during the enter, and reinstated at the exit.
2Every reference in '4 to an object in '1–'3 is a copy of a reference inside one of those (immutable) regions that still exists.
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d g
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b e h
R1 R2

R4

R5
R3 R6

paused ref

mut/iso ref

paused (R1,2,3)

active (R4)

closed (R5,6)

enter block scope

region LIFO order

Buried

Fig. 5. Program with 4 open and 2 closed regions.

Furthermore, because of the absence of refer-
ences from '1–'3 into '4—with the exceptions
of the stable bridge object references that are ei-
ther buried or cannot be re-opened, objects in
'1–'3 cannot a�ect the liveness of objects in '4
(this is also true for '5 and '6 as they are closed).
Thus, we can safely ignore references to objects
in suspended regions when managing liveness.
For example, if objects in '1, '2 or '3 are man-
aged by reference counting, we do not need to
increment or decrement reference counts when
manipulating paused references in '4. Similarly,
if objects in '1, '2 or '3 are managed by a tracing
GC, tracing in '4 does not need to follow paused
references. Thus, when managing memory in the active region, we can safely ignore any outgoing
references, and so it is possible for '1–'3 to use di�erent strategies, unbeknownst to '4 and irre-
spective of how '4 manages its memory (G2). The only references to objects in '5 and '6 that are
possible (given that the regions are closed) are to the bridge objects 2 and 8 . Aliases of 2 are not
possible in '4 as iso references are unique, and we cannot transfer references out of an immutable
1. However, we do need to track liveness of the reference to 8 , which is possible to do statically e.g.,
as in Rust.

From the reasoning above it follows that liveness of objects in '4 can be determined by looking at
objects in '4 alone, meaning that the costs of memory management are determined by the contents
of and activity in '4 (G1). This makes it possible to collect garbage in just '4 (G3).

6 PROGRAMMING WITH REGGIO REGIONS

As an example of how regions enable predictable memory management performance, consider the
server application “Po” with the following key characteristics (see Listing 3 for skeleton code):

(1) The server serves incoming requests. Tasks that process requests are short-lived and their
side-e�ects are typically in the form of data stored in a database.

(2) Responses to requests are served from data in an in-memory key–value store implemented as a
skip list. This storage will shrink and grow continuously during execution.

(3) Values in the store can have a complicated graph-like structure (e.g., they may contain cycles).

We now explain how we can express this, and compare with Cyclone, MLKit, Pony, and Rust.

Processing Requests. To manage allocations necessary to process a request, each request is wrapped
in a region (Line 16, Line 49). These regions use arena allocation: allocations in the region persist
until the region itself is deallocated. This gives cheap bump-pointer allocation and fast deallocation
of the entire region once the response has been computed. If a request must be processed by
di�erent threads, this can be done cheaply due to the transferability of iso’s. If some requests turn
out to require considerable processing time, their corresponding regions might switch away from
arena allocation at the small cost of changing one annotation at the creation site of the region(s).

Comparison. Cyclone’s LIFO regions are perfect for this purpose (as are MLKit’s, provided that
the inference engine infers according to intentions, or better). While Cyclone does not support
switching from arena allocation, it does permit manually managed reference counts or unique
objects that can be manually deallocated during the arena’s lifetime. Pony only supports memory
management on a per-actor level, (using tracing GC). We could make each request an actor, but
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1 type_alias KV = Skiplist[imm Id, iso Value] // To shorten code horisontally for this presentation
2 type_alias Response = UpdateOK | InsertOK | DeleteOK | Failure

3

4 def start_po(fn : imm String, server_socket : iso ServerSocket) : Unit {

5 let kv : iso KV = new iso<RC> KV // create empty key−value store; <RC>=reference counting, see §8.3
6 enter kv { list => // Populate key−value store from persistent storage
7 let data : tmp File = open(fn, "r")

8 ... list.insert(...) ... // read contents from data and add to list
9 } // data goes out of scope, so get's free'd and closed

10

11 enter server_socket { ss =>

12 while (ss.is_open()) {

13 let socket : mut Socket = ss.accept() // new connection
14 let raw_request : imm String = socket.read_request() // get incoming request
15

16 let r : iso Response = enter new iso<Arena> Unit { _ => // arena−managed region for tmp allocations
17 let work : mut List[mut Tasks] = RequestParser::parse(raw_request) // parse request
18 let response = new mut List[mut Response] // holds all responses to tasks in request
19

20 while (!work.empty()) {

21 response.append(merge match work.pop() { // merge iso result of match into r since append expects mut
22 case mut StopTask => return // stop service, no response to client
23 case mut UpdateTask(id) => explore kv { kv' => update(kv', id) }

24 case mut InsertTask(id, payload) => enter kv { kv' => insert(kv', id, payload) }

25 case mut DeleteTask(id) => enter kv { kv' => delete(kv', id) }

26 })

27 }

28 response.accumulate(new iso Message) // chained through accumuator, moves out of arena
29 } // arena e�ectively goes out of scope, allocs on line 17, 18 + any tmp objects are freed
30 socket.respond(r); // render response object
31 }}}

32

33 def update(kv : paused KV, id : imm Id) : iso Response // process UpdateTasks, inside suspended kv
34 let value : paused Store[iso Value] = kv.get(id) // reference to a link's reference to a Value
35 enter *value { v => // Requires a dynamic check − because of aliasing cannot rule out v is already open
36 v.add_log_entry() // adds surviving object to v's region
37 v.remove_some_token() // makes object in v's region garbage
38 return new iso UpdateOK(v) // moves out of ∗value and kv regions and merged into r on line 21
39 }}

40

41 def insert(kv : mut KV, id : imm Id, p : imm Payload) : iso Response // process InsertTasks, inside kv
42 let new_value = Factory::create(id, p) // decides memory management for new_value dynamically
43 enter new_value { v => v.tokens = new mut List; v.log = new mut List }

44 kv.insert(id, new_value) // buries new_value
45 return new iso InsertOK() // moves out of kv region and merged into r on line 21
46 }

47

48 def delete(kv : mut KV, id : imm Id) : iso Response // process DeleteTasks, inside kv
49 enter new iso<Arena> Unit { _ => // create new tmp region, the one created on Line 16 is not accessible here
50 let q : mut SQL_Query = Factory::make_can_delete_query(id) // q cannot refer to kv because it is mut
51 let r : tmp SQL_Result = Backend::execute_query(q) // because it is tmp, r could refer to kv if it needed to
52 if (!r.OK) return new iso Failure(...) // moves out of tmp and kv regions and merged into r on line 21
53 } // arena goes out of scope, allocs on lines 50, 51 are free'd
54 return enter kv.remove(id) { v => new iso DeleteOK(v) } // Creates garbage in kv, drops a Value region
55 }

Listing 3. Skeleton code for Po. To save space, we permit constructor arguments to iso objects to take mut

arguments (Lines 38, 45, 52, and 54). This is safe and can desugar to an extra enter. These lines all create an
object that escapes the active region and is merged into the enclosing region, making them mut in r (append
expects a mut argument). The ServerSocket is created elsewhere. It likely does not use arena allocation since it
allocates on each turn of the loop (Line 13). If it did, those allocations would only be free’d on Line 31. The
default annotation on new iso is <Arena> (c.f., §8.3). Notice how code is agnostic to how memory is managed.
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it would have to communicate asynchronously with all surrounding state. Rust does not support
regions, but could e.g., build a unique object holding unique values and thread this object through
computation. While more complicated, Rust’s values would have individual lifetimes.

Key–Value Store. The key–value store is implemented as a single region containing a skip list (Line
5, could as well be a hash table, B-tree, etc.). As it is a large long-living data structure of objects with
di�erent lifetimes, arena allocation is not a suitable strategy. Furthermore, if the resources (values)
stored in the skip list are costly, reference counting is a good choice as it allows the resources in the
list to be recycled immediately when they become garbage. Alternatively (the path we chose) is to
make each element a region of its own, with independently managed memory (Line 1).
If the store is large enough to warrant parallel accesses, it can be divided into several smaller

regions with one list each. For a compile-time guarantee that no reference count manipulations in
the skip list are needed during lookups, lookups can be implemented using explore rather than
enter as the former opens the skip list region directly as paused (Line 23, and its dynamic extent
foo()). Note that since the elements in the skip list are regions of their own, these can be entered
separately and thus mutated, even if the list structure is immutable (Line 35).

Comparison. Cyclone’s dynamic regions are a good �t for the key–value store. The objects that
make up the skip list would require manual reference counting, which can be laborious. Failure to
properly manage reference counts in Cyclone will also lead to “memory leaks” which will not be
reclaimed until the region holding the store is (manually) destroyed. Pony can wrap the skip list
inside an actor with an asynchronous interface, and manage its memory using tracing of the entire
list leading to more time spent tracing memory and more �oating garbage. Skip lists (hash tables,
B-trees, etc.) cannot be constructed in Rust without judicious use of unsafe. Safe Rust’s reference
counting does not relax its ownership rules, so mutation of aliased values is not permitted.

Values in the Store. Finally, the elements in the store are suitable for either reference counting
or tracing GC because of their graph-like structure (Line 42 delegates this decision to a factory
method). GC is especially favoured in the (possible) presence of cycles which are expensive to
detect with reference counting [Jones et al. 2016].

Comparison. Later versions of Cyclone and MLKit support a global arena where memory is
managed using tracing GC. Thus, all elements in the store contribute to pressure on the same GC,
and GC requires tracing through all elements to free garbage objects in one element. MLKit’s region
propagation requires all elements to be put in a single region. Pony can handle this pattern bymaking
each element an actor, which makes each element aliasable, and use an asynchronous interface.
Finally, Rust will not be able to express and manage lifetimes of these structures automatically. A
combination of unsafe and manual memory management is needed.

Design Thoughts on Explore vs. Enter—And Invariants. The explore construct is essentially syntactic
sugar for two nested enter blocks, the outermost entering the region to be explored and the
innermost entering a fresh region:

explore x { y => . . . } desugars to enter x { y => { enter (new iso Unit) { _ => . . . } }

The �rst enter activates the region, and the second suspends it. The new region (new iso Unit) is
independent from the rest of the program. As it is active, it serves all allocations that appear inside
the explore block (as suspended regions do not permit allocation or deallocation, Table 1). What
explore guarantees that unprincipled nesting of enters does not, is that the explored region was
not mutated before suspended. Conceptually, this is a big di�erence as we will explain next.

Similar to object invariants, we expect invariants of a closed region to hold at the time of opening.
While active, invariants may temporarily be broken and then restablished before the region is closed.
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As a nested enter can reference any enclosing region, it will be able to observe any invariants
broken by mutation following the opening of the enclosing regions. By opening regions directly
in a suspended state, explore ensures that region invariants continue to hold. We are considering
using a separate capability to capture this statically. We are also considering an “eager” explore
construct that opens a region along with all its subregions as suspended in one fell swoop. This
would avoid the need for explicit opening of subregions thus further simplifying working with
immutable objects. The cost is more complexity in the type system. Time will tell whether this
complexity is warranted or not.
With respect to memory management, explore allows opening a region for reading, and navi-

gating through it, without any memory management overhead as the region’s object structure is
invariant and there are neither allocations nor deallocations in the region.

1let staff : iso List[imm Employee] = ...

2let reviews : iso List[imm Review] = ...

3var zip = new iso List[imm (String, Int)]

4

5explore staff { s => // open as immutable
6explore reviews { r => // open as immutable
7enter zip { z => // open as mutable
8let si = s.iterator() // si is tmp
9let ri = r.iterator() // ri is tmp
10while (si.has_more() && ri.has_more()) {

11z.append(new imm Pair(si.next().name(),

12ri.next().calculate_salary()))

13}}}}

Listing 4. Opening two non-nested regions, computing a
result in an active region. [ ] is type parameters.

Navigating Regions. Listing 4 shows a zip com-
putation involving three unrelated regions.
Using explore, we open the sta� and reviews
regions to make them temporarily immutable
and their contents accessible. Finally, we open
the zip region using enter. This makes the re-
gion active which allows allocation of the two
iterators on Lines 8 and 9 and any allocation
needed by the call to append on Line 11 to
extend the list. It also allows the mutation in
the next() calls to advance the iterators, and
the mutation necessary to add the new pair to
the zip list. Allocating the iterators inside the
same region as their corresponding list is not
useful as it would make the iterators immutable on Lines 11 and 12. This would cause the program
to not typecheck—as the next() method needs to update the iterator, it needs to be called on a mut
or tmp receiver. Since the iterators need to store paused references, they must be tmp (c.f., Table 2).
This can be handled in iterator() by overloading on the self type, letting the implementation with
paused self-type return a tmp reference. Elements are immutable so e.g., next() returns imm.

var x = new iso Cell // x : var Store[iso Cell]
enter y { => _ // now x : paused Store[iso Cell]
enter *x { => z

... // Can still mutate z!
}

}

Reggio’s Borrowing Capabilities. Traditional borrow-
ing as originally introduced by Wadler [1990], ex-
plored deeply by e.g., Boyland [2001] and Boyland
et al. [2001], and popularised by Rust relaxes unique-
ness of a value in a well-de�ned lexical scope. We
can express a similar form of borrowing through the
type paused Store[iso T], i.e., a reference to a storage location in a suspended region storing a
reference to a closed region. Such a reference (e.g., x) can be shared freely inside a single thread,
allowing it to �ow to a place where it can be opened (enter *x) with mutation rights, including
swapping the bridge object (as long as the new bridge object is a subtype of T).

7 FORMALISING REGGIO

We formalise Reggio through two interacting languages: region and command, and their respective
semantics. The former controls all accesses to memory (loads and stores), allocation of objects
in regions, creating, merging, freezing—and importantly entering and exiting—regions. The most
important properties of the region language is expressed as a topology invariant (c.f., §7.5). The
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command language is essentially “what the programmer wrote”. This separation makes it possible
to specify e.g., under what conditions a store is valid, irrespective of what caused the store.

During execution, the command language emits e�ects which the region language performs. The
static semantics of the command language ensures, modulo one dynamic check, that the topology
invariant is preserved. We present most of the rules of the region language and key type system
rules. Additional details are available in a technical report [Arvidsson et al. 2023].

7.1 Dynamic Semantics of the Region Language

rcfg ::= ⟨RS;� ;� ;� ⟩

RS ::= RF :: RS | n

RF ::= (A, (, � )

� ::= ' | � ∗ � | n

Fig. 6. Configuration in re-
gion language (1/2)

A con�guration in the region language has four components: a LIFO
region stack RS and the sub-heaps of open regions �op, closed regions
�cl , and frozen regions �fr . The latter is an unimportant simpli�cation
(conceptually, only mutable objects live in regions). A heap � is a col-
lection of disjoint regions '. Opening a closed region moves it from �cl

to �op and pushes a new stack frame on top of RS. Closing the top-most
region in RS returns it back to �cl . Freezing a region moves it, and all
regions reachable from it, permanently to�fr . As an example, consider the region topology depicted
in Fig. 5. We can write down the corresponding con�guration as ⟨RS, �op, �cl, �fr⟩ where

RS = RF4 :: RF3 :: RF2 :: RF1 :: n

�op = '1 ∗ '2 ∗ '3 ∗ '4
�cl = '5 ∗ '6
�fr = n

For the region sub-heap '8 , if '8 is open (i.e., part of �op), RF8 is its region frame (depicted in Fig. 5
as a white box) that holds the stack variables created in the scope of the corresponding enter block.
Opening the closed region '6 would push a new frame RF6 above RF4 in RS, and move '6 from �cl

to �op. Similarly we could freeze (merge) '6, which would move it from �cl to �fr (remove it from
�cl and merge it into '4).

( ::= ] ↦→ >, ( | n

� ::= 5 ↦→ E?, � | n

E? ::= E | undef

E ::= (:, ])

' ::= (A, ()

> ::= (#�!, � )

Fig. 7. Configuration in re-
gion language (2/2)

In this model, an inter-region reference into an open region is per-
missible i� it points downwards in the region stack (from left to right
according to RS), or it is the unique (iso) reference through which the
region was opened. The LIFO region stack constitutes a “path” through
the region forest that corresponds to the opening order of enter blocks
(c.f., the region LIFO order in Fig. 5). Thus, in Fig. 5, any reference from
'4 to '3 is permissible (as long as we do not close '4), while a reference
from '2 to '3 must necessarily be the reference from object 4 to object
5 . We model explore as nested enters.
A region stack frame RF contains a region identi�er A , a temporary store ( for objects whose

lifetimes are bounded by the scope of the region’s enter block (values with capability tmp), and a
map � from variable names 5 to values E , representing the local variables in that enter block (we
model destructive reads of a variable G by remapping it to undef, at which point reading G again
will lead to the program getting stuck). A region ' is a tuple of a (unique) region identi�er A and a
store ( containing the objects in that region.
Objects are identi�ed by ]. Values E are object identi�ers ] tagged with a capability : . Stores (

map object ids ] to objects > which store their class tag #�! and �elds (for simplicity we reuse the
same � as for local variables, although a �eld will never contain undef).
The command language communicates with the region language via e�ects. The relation

rcfg
E�
−−−→ rcfg′ should be understood as performing the e�ect E� in rcfg, resulting in rcfg′. E�ects

include entering and exiting a region, loading a value from an object store, writing (swapping) a
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value for another in an object store, merging or freezing a region, etc. We now describe a selection
of rules for these e�ects.

region-load

x fresh F (y) = (k, ])

cfg_load( (r, S, F) :: RS, �op ∗�fr , ]) = o [f ↦→ v ]

F′ = F, x ↦→ (k ⊙ v)

⟨(r, S, F) :: RS;�op ;�cl ;�fr ⟩
load (x,y.f )
−−−−−−−−−→ ⟨(r, S, F′) :: RS;�op ;�cl ;�fr ⟩

In every e�ect, the �rst parameter should be understood as the name of the variable where the
results should be stored. For example, the e�ect load (G,~.5 ) is handled in rule region-load by
binding the value of �eld ~.5 to variable G . First, the value of ~ is looked up in the top stack frame
as (:, ]). The object id ] is used to �nd the corresponding object > in the con�guration—it may be
stored in the subheap of an open or frozen region, or in one of the temporary stores on the region
stack. The capability : is used for viewpoint adaptation of the (capability of the) value E of �eld 5

in > before it is inserted into the top frame.

region-swap-temp

x fresh get (F, use) = (v, F′) F′ (y) = (k, ]) load(S, ]) = o [f ↦→ v′]

o′ = o [f ↦→ v ] store(S, ], o′) = S′ F′′ = F′, x ↦→ v′

⟨(r, S, F) :: RS;�op ;�cl ;�fr ⟩
swap (x,y.f ,use)
−−−−−−−−−−−−→ ⟨(r, S′, F′′) :: RS;�op ;�cl ;�fr ⟩

region-swap-heap

x fresh get (F, use) = (v, F′) F′ (y) = (k, ]) load(S′, ]) = o [f ↦→ v′]

o′ = o [f ↦→ v ] store(S′, ], o′) = S′′ F′′ = F′, x ↦→ v′

⟨(r, S, F) :: RS; (r, S′) ∗�op ;�cl ;�fr ⟩
swap (x,y.f ,use)
−−−−−−−−−−−−→ ⟨(r, S′, F′′) :: RS; (r, S′′) ∗�op ;�cl ;�fr ⟩

get(� [G ↦→ E], drop G) =

(E, � [G ↦→ undef])

get(� [G ↦→ (:, ])], G) =

((:, ]), � [G ↦→ (:, ])])

if : ≠ var ∧ : ≠ iso

Fig. 8. (Non-)destructive reads

Field assignments are caused by the e�ect swap(G,~.5 , use), which
writes the value of use to ~.5 and binds the old value of ~.5 to G .
A use is a potentially destructive variable access (I or drop I, see
Fig. 9). Rules region-swap-temp and region-swap-heap handle
the cases where the object being assigned to is in the temporary
store or on the heap. In both cases, we perform the use (which may
make a variable invalid) with the helper function get (see Fig. 8).
We then proceed just as when loading a �eld, but �nish by updating
the object being assigned to and update its containing store ( . Note that assigning and loading
mutable variables are special cases of the swap and load e�ects since we model mutable variables
as single-�eld objects.

region-alloc-heap-mut

x fresh ∀i ∈ [1, n] . get (Fi, usei) = (vi, �8+1) �elds (C) = f1, ... , fn
o = (#C, [f1 ↦→ v1, ... , fn ↦→ vn ]) ] fresh S′′ = S′, ] ↦→ o F′ = �=+1, x ↦→ (mut, ])

⟨(r, S, F1) :: RS; (r, S
′) ∗�op ;�cl ;�fr ⟩

halloc(x,mut,#C,use1 ... usen )
−−−−−−−−−−−−−−−−−−−−−−→ ⟨(r, S, F′) :: RS; (r, S′′) ∗�op ;�cl ;�fr ⟩

region-alloc-heap-iso

x fresh ∀i ∈ [1, n] . get (Fi, usei) = (vi, �8+1) �elds (C) = f1, ... , fn
o = (#C, [f1 ↦→ v1, ... , fn ↦→ vn ]) ] fresh r′ fresh F′ = �=+1, x ↦→ (iso, ])

⟨(r, S, F1) :: RS;�op ;�cl ;�fr ⟩
halloc(x,iso,#C,use1 ... usen )
−−−−−−−−−−−−−−−−−−−−−→ ⟨(r, S, F′) :: RS;�op ; (r

′
, [] ↦→ o]) ∗�cl ;�fr ⟩

Allocation on the heap is caused by the e�ect halloc(G, :,�, use1...use=), which instructs the region
language to heap allocate a new � object with �elds initialized according to use1...use= and bind it
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to the name G . The capability : denotes whether to allocate in the current region (region-alloc-
heap-mut) or in a new region (region-alloc-heap-iso). Since each use is a possibly destructive
variable access the ordering matters. We begin by performing these one by one with the local
variables �1. Each value E8 is paired up with the corresponding �eld 58 of the class and put into
an object > . We then add > at location ] to the subheap of the currently active region, or add a
new region A ′ in the closed regions containing only the object > at location ]. Finally we bind the
object to G in the top frame with capabilitymut or iso. We omit the rule region-alloc-temp which
allocates objects with capabilities tmp or var in the temporary store ( of the currently active region
frame.
The key rules of the region language govern entering and exiting a region.

region-enter-ok

w fresh ∀i ∈ [1, n] . zi fresh ∀i ∈ [1, n] . get (Fi, usei) = ( (ki, ]i), �8+1)

∀i ∈ [1, n] . v′i =

{
(ki, ]i) if ki = iso

(paused ⊙ ki, ]i) otherwise

F = [zi ↦→ v′i | i ∈ [1, n] ] �=+1 (y) = ( _ , ]) cfg_load( (r, S, F1) :: RS, �op, ]) = o [f ↦→ ( _ , ]′) ]

]
′ ∈ dom (S′) ]

′′ fresh F′ = F,w ↦→ (k, ]′′) RF = (r′, []′′ ↦→ (#Cell, [val ↦→ (mut, ]′) ]) ], F′)

⟨(r, S, F1) :: RS;�op ; (r
′
, S′) ∗�cl ;�fr ⟩

enter (w,k,y.f ,z1=use1, ... ,zn=usen )
−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ⟨RF ::(r, S, �=+1) :: RS; (r

′
, S′) ∗�op ;�cl ;�fr ⟩

region-enter-fail

∀i ∈ [1, n] . get (Fi, usei) = ( (ki, ]i), �8+1) �=+1 (y) = ( _ , ])

cfg_load( (r, S, F) :: RS, �op, ]) = o [f ↦→ ( _ , ]′) ] ∀R′ ∈ �cl . ]
′
∉ dom (R′.S)

⟨(r, S, F) :: RS;�op ;�cl ;�fr ⟩
badenter(y.f )
−−−−−−−−−−−→ ⟨(r, S, F) :: RS;�op ;�cl ;�fr ⟩

region-enter-ok shows successfully entering a region A ′ through its bridge object ] ′ stored in the
�eld 5 of the variable ~. (This operation can fail if '′ is already opened. This will not change the
state in the region language, as seen in region-enter-fail, and it is up to the command language to
choose how to handle this: by exception, having a construct like if-enter-else, etc. For simplicity,
the command language steps to a failure state.) The enter e�ect supplies four things: the nameF
and capability : of the parameter of the enter block, the �eld ~.5 through which we are entering,
and a list of bindings I = use denoting the block’s captured variables. Going back to Listing 1, the
enter block captures i, so the corresponding e�ect would include I = i. Note that I is chosen by
the command language and due to variable renaming is not necessarily i. Considering the rule
again, we �rst use the get helper function to perform the uses. For each resulting value (:8 , ]8 ),
we apply the paused viewpoint adaptation when :8 is not iso and create a new mapping � of the
captured variables. We then get the value ] of ~, load its corresponding object > and extract the
value ] ′ of �eld 5 (our bridge object). On the last line of the premises we check that ] ′ is an object in
a closed region A ′; this region will be moved into the collection of open regions. We extend � with
a mapping fromF to a fresh location ] ′′, and �nally install this extended � into a region frame RF
where ] ′′ is the identi�er of a ref cell object pointing to our bridge object ] ′. We push this region
frame onto the region stack.
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region-exit-heap

x fresh get (F′, use) = (v, F′′) F′′ (z) = ( _ , ]′)

load(S′, ]′) = o′ [f ′ ↦→ ( _ , ]′′) ]

F (y) = ( _ , ]) heap_load(�op, ]) = o [f ↦→ (k, _ ) ]

heap_store(�op, ], o [f ↦→ (k, ]′′) ]) = �
′
op F′′′ = F, x ↦→ v

⟨(r′, S′, F′) ::(r, S, F) :: RS; (r′, Sop) ∗�op ;�cl ;�fr ⟩
exit (x,use,y.f ,z.f ′)
−−−−−−−−−−−−−−−→ ⟨(r, S, F′′′) :: RS;� ′

op ; (r
′
, Sop) ∗�cl ;�fr ⟩

region-exit-temp

x fresh get (F′, use) = (v, F′′) F′′ (z) = ( _ , ]′)

load(S′, ]′) = o′ [f ′ ↦→ ( _ , ]′′) ]

F (y) = ( _ , ]) stack_load( (r, S, F) :: RS, ]) = o [f ↦→ (k, _ ) ]

stack_store( (r, S, F) :: RS, ], o [f ↦→ (k, ]′′) ]) = (r, S′′, F) :: RS′ F′′′ = F, x ↦→ v

⟨(r′, S′, F′) ::(r, S, F) :: RS; (r, Sop) ∗�op ;�cl ;�fr ⟩
exit (x,use,y.f ,z.f ′)
−−−−−−−−−−−−−−−→ ⟨(r, S′′, F′′′) :: RS′;�op ; (r, Sop) ∗�cl ;�fr ⟩

region-exit-heap and region-exit-temp describe exiting the region A ′, popping its region frame
from the top of the region frame stack. After exiting, the region frame corresponding to A will be
on the top of the stack and thus active. The exit e�ect provides use and G which correspond to the
return value and the variable to which this will be bound (in the stack frame of A ). I.5 ′ speci�es
a location in A ′ where a reference to the new bridge object can be found. Finally, ~.5 speci�es a
location where this reference will be written. The only di�erence between region-exit-heap and
region-exit-temp is where the object pointed to by ~ is located. In the former it is on the heap of
some open region, while for the latter it is in a temporary store in the region stack.

For simplicity, we do not implicitly reinstate iso variables captured from the previous region even
if they are still valid upon exit from a region (this would be sound, c.f., Listing 4 where variables
reviews and zip are reinstated in the top-level scope after line 13). This is without loss of generality
as we can return them in an object together with the result E and reinstate them manually.

region-freeze

x fresh get (F, use) = ( (k, ]), F′) ] ∈ dom (R.S)

� = reachable_regions(R, (� ∗�cl) ∗�op) F′′ = F′, x ↦→ (imm, ])

⟨(r, S, F) :: RS;�op ; R ∗ (� ∗�cl) ;�fr ⟩
freeze(x,use)
−−−−−−−−−−→ ⟨(r, S, F′′) :: RS;�op ;�cl ; (R ∗� ) ∗�fr ⟩

region-merge

x fresh get (F, use) = ( (k, ]), F′) ] ∈ dom (R.S)

R′ = (r, S′ ⊎ R.S) F′′ = F′, x ↦→ (mut, ])

⟨(r, S, F) :: RS; (r, S′) ∗�op ; R ∗�cl ;�fr ⟩
merge(x,use)
−−−−−−−−−−→ ⟨(r, S, F′′) :: RS; R′ ∗�op ;�cl ;�fr ⟩

The rules for merging (region-merge) and freezing (region-freeze) are similar. Both perform
a use to get an object identi�er ] and �nd its containing region ' among the closed regions.

4 ::= use | let G = 1 in 4

| if typetest(use, C){~ => 4}{~ => 4}

use ::= G | drop G

1 ::= ∗lval | lval := use | fnc(DB4) | var use

| new : � (DB4) | freeze use | merge use

| enter lval [~ = use]{I => 4} | 4

lval ::= G | G .5

C ::= : �! | C | C

Fig. 9. Syntax of the command language

For merges, the subheap of' is merged with the
subheap of the currently active region, and ] is
bound to G asmut. For freezes, all the reachable
regions of ' are moved from the closed to the
frozen regions together with ', and ] is bound
to G as imm.
In addition to allocation in the temporary

store, we have omitted the rules for type casts
and rebinding of variables.
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7.2 Static Semantics of the Command Language

The command language is an imperative language in A-normal form. The syntax is shown in Fig. 9.
We encode mutable variables of type C as ref cells. For uniformity we model these as objects of type
Cell[C] with a single �eld val. The if typetest expression is a dynamic type test similar to Java 16
style pattern matching, drop G denotes a destructive read, *lval dereferences a �eld or ref cell, and
var allocates a new ref cell with the capability var and initializes its value from use. For simplicity
we provide enter blocks with an explicit capture list, but this could also be inferred from variable
use. Types C are unions C1 | C2 or : �!, where : is a capability and �! is Cell or a class name � .
The static semantics is a �ow-sensitive type system producing judgements of the form

Γ1 ⊢ A : C ⊣ Γ2 (A ∈ 4 ∪ 1 ∪ use). Thus it statically tracks destructive reads and strong updates of
unique variables. We discuss a few of the rules below.

cmd-ty-use-keep

⊢ Γ1 Γ1 (x) = k CL

k ≠ iso k ≠ var

Γ1 ⊢ x : k CL ⊣ Γ1

cmd-ty-use-drop

⊢ Γ1 Γ1 = Γ [x : t ]

Γ2 = Γ [x : undef ]

Γ1 ⊢ drop x : t ⊣ Γ2

cmd-ty-deref-field

Γ (x) = k CL

ftype (CL, f ) = t

⊢ k ⊙ t

Γ ⊢ ∗x .f : (k ⊙ t) ⊣ Γ

cmd-ty-assign

Γ1 ⊢ use : t ⊣ Γ2 Γ2 (x) = k CL

ftype (CL, f ) = t k ∈ {mut, tmp}

Γ1 ⊢ x .f := use : t ⊣ Γ2

cmd-ty-assign-var

Γ1 ⊢ use : t1 ⊣ Γ2 [x : var Cell[t2 ] ]

Γ1 ⊢ x := use : t2 ⊣ Γ2 [x : var Cell[t1 ] ]

Reading a variable G that is not a var or iso is straightforward and introduces an alias (cmd-ty-
use-keep). When G is var or iso, cmd-ty-use-drop allows reading the variable but unde�nes it
in the environment as a side-e�ect to ensure its single use. When accessing a �eld G .5 (cmd-ty-
deref-field), its type is subject to viewpoint adaptation : ⊙ C where : is the capability of G and
C the type of 5 . Note that viewpoint adaptation disallows reading an iso �eld unless : is imm,
expressing the fact that freezing a region is deep (all nested regions will be frozen as well). A �eld
G .5 can be updated through assignment (cmd-ty-assign) when the capability of G is mut or tmp,
i.e., internal references in the currently active region (note that assignment returns the old value of
the �eld). Viewpoint adaptation is not needed as we are moving values rather than copying them,
allowing swapping of iso references. Local variables allow strong updates (cmd-ty-assign-var).
As we model them as ref cells we update the type parameter for G after assignment.

cmd-ty-enter

∀i ∈ [1, n] . Γi ⊢ usei : ti ⊣ Γ8+1 Γ=+1 (x) = k CL

open(k) ftype (CL, f ) = t cap(iso, t)

Γ
′
= y1 : t

′
1, ... , yn : t′n where t

′
i =

{
ti if cap(iso, ti)

paused ⊙ ti otherwise

t′ = make_mut (t) Γ
′
, z : tmp Cell[t′] ⊢ e : t′′ ⊣ Γ

′′
, z : tmp Cell[t′] cap( {iso, imm}, t′′)

Γ1 ⊢ enter x .f [y1 = use1, ... , yn = usen ] {z => e} : t
′′ ⊣ Γ=+1

cmd-ty-enter-var

∀i ∈ [1, n] . Γi ⊢ usei : ti ⊣ Γ8+1 Γ [x : var Cell[t ] ] = Γ=+1 cap(iso, t)

Γ
′
= y1 : t

′
1, ... , yn : t′n where t

′
i =

{
ti if cap(iso, ti)

paused ⊙ ti otherwise

Γ
′
, z : var Cell[make_mut (t) ] ⊢ e : t′′ ⊣ Γ

′′
, z : var Cell[t′]

cap(mut, t′) cap( {iso, imm}, t′′)

Γ1 ⊢ enter x [y1 = use1, ... , yn = usen ] {z => e} : t′′ ⊣ Γ [x : var Cell[make_iso(t′) ] ]
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The predicate cap(:, C) asserts that the type C has capability : ; the predicate open(:) is true if the
capability denotes an open region, i.e., : is mut, tmp, var or paused. Finally, make_mut (C) and
make_iso(C) return a C whose iso capabilities have been replaced by mut and vice versa.
Opening a region through a �eld G .5 (cmd-ty-enter) requires that G ’s capability is open, and

5 ’s capability is iso. We create a new environment Γ′ with the captured variables ~1, ..., ~= , using
viewpoint adaptation to suspend the types of all non-iso variables, as well as a tmp ref cell holding
the bridge object. We use make_mut (C) to change the type of the bridge from iso to mut as control
is moving inside the opened region. Finally, the enter block may only return iso’s and imm’s. (Note
that entering a region through a �eld incurs a dynamic check to see if the region is already open. )

Opening a region through a var ref cell (cmd-ty-enter-var) is similar to a �eld (cmd-ty-enter),
but allows strong updates of the ref cell holding the bridge object by retaining its var capability.
This allows changing the bridge object’s type from within the enter block.

cmd-ty-merge

Γ1 ⊢ use : iso CL ⊣ Γ2

Γ1 ⊢ merge use : mut CL ⊣ Γ2

cmd-ty-freeze

Γ1 ⊢ use : iso CL ⊣ Γ2

Γ1 ⊢ freeze use : imm CL ⊣ Γ2

The rules for merging and freezing a region (cmd-ty-merge and cmd-ty-freeze) are straightforward.
Both demand that the value that we operate on is an iso reference (i.e., bridge object to a closed
region), and produce either a mut or imm depending on the operation.

7.3 Dynamic Semantics of the Command Language

A con�guration {34} in the command language is a dynamic expression 34 , which is an extension
of 4 by “entered blocks” that propagates syntactically the nesting structure of enters and exits, and
thus dynamically tracks the nesting of open regions, and Failure, used to report failed dynamic
checks when entering an already open region. The dynamic semantics steps a con�guration and
produces an e�ect of the same kind consumed by the region language. For example, the expression
let G = *~.5 in 4 produces the e�ect load(G,~.5 ), which tells the region language to load the �eld
5 from the object stored in ~ and store it in G .

7.4 Interaction Between the Region and Command Languages

A complete con�guration is a product of the con�gurations of the region and command languages.
It steps if there is an e�ect that steps both of them in tandem:

tandem-step

de
E�
−−→ de′ rcfg

E�
−−→ rcfg′

⟨ { de } rcfg⟩ → ⟨ { de′ } rcfg′⟩

A dynamic expression is typed under a stack of typing contexts Γ, corresponding to the nesting of
entered blocks. We lift the static semantics of the command language to de�ne well-formed e�ects:

the relation Γ ⊢ E� ⊣ Γ
′
statically describes the e�ect E� and how it changes the typing context.

For example, the static description of the e�ect load (G,~.5 ) states that the type of ~ in the top-most
entered block is : �!, that �! has a �eld 5 of type C , and that the viewpoint adapted type : ⊙ C is
well-formed (c.f., cmd-ty-deref-field).

In order to reason about soundness, we de�ne well-formedness of a con�guration in the region

language as the relation Γ ⊢ ⟨RS;�op;�cl ;�fr⟩. A well-formed con�guration ensures four things.

First, the stack of environments Γ mirrors the region stack RS so that each environment describes
the local variables of a region frame in RS. Second, each �eld of every object in the con�guration
contains a value that corresponds to its static type. Third, we have invariants about the reference
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capabilities: var references are unique, objects in frozen regions only refer to other references in
frozen regions, mut references point within the same region and to the heap, tmp and var point
within the same region and to the temporary store, paused references point downwards in the
region stack, etc. Finally, we have the invariant that the object graph and its regions have the
expected topology. We describe this invariant in detail in the following section.

7.5 The Topology Invariant

The most important properties of the object (and region) graph are captured in a single invariant
that we call the topology invariant (Fig. 10). We express this as a property that holds for any pair of
references ref1 and ref2 in a well-formed con�guration. The helper functions src() and dst() denote
the storage location and referee of a reference respectively; reg() denotes the region of an object
(or variable); regions() projects the region identi�ers out of a set of regions � .

For all references ref1 and ref2, either: they are the same reference, e.g., both are stored in the
same ].5 or variable G (1); both refer to objects in di�erent regions (2); or at least one of them is an
intra-region reference (3); refers to a permanently immutable object (4); or is a reference outwards
in the nesting hierarchy, downwards in the region stack (5). The relation RS ⊢ dst(ref) ⪯ src(ref)
holds if dst(ref) is higher up in RS than src(ref) and ref originates from the temporary store. In
other words, we allow temporary references into suspended regions from open regions.

∀ref1, ref2 ∈ references(⟨RS;�op ;�cl ;�fr ⟩) .

∨




ref1 = ref2 (1)

reg(dst(ref1)) ≠ reg(dst(ref2)) (2)

reg(src(ref1)) = reg(dst(ref1)) ∨
reg(src(ref2)) = reg(dst(ref2)) (3)

reg(dst(ref1)) ∈ regions(�fr ) ∨

reg(dst(ref2)) ∈ regions(�fr ) (4)

RS ⊢ dst(ref1) ⪯ src(ref1) ∨
RS ⊢ dst(ref2) ⪯ src(ref2) (5)

Fig. 10. The topology invariant

The topology invariant has several important
implications: The object graph inside a region is
unconstrained (3). The object graph of the per-
manently immutable objects is unconstrained (4).
Temporary objects in an open region ' are al-
lowed to refer to objects in an open region '′

as long as '′ was opened before ' (5). Finally,
considering the whole invariant, if we have two
external references ((3) does not hold) pointing
into the same non-frozen region ((2) and (4) do
not hold), and neither of them points downwards
in the region stack ((5) does not hold), then they
must be the same reference ((1) holds). In particular, this means that there is at most one external
reference into any closed region, implying that the region graph of closed regions forms a forest.

The Topology Invariant and Fig. 1. Applying the topology invariant to all pairs of references in Fig. 1,
assuming ' was opened after '′, the reference 4→= is allowed to co-exist with any other alias
of = since RS ⊢ = ⪯ 4 (5). The reference<→ 4 is not allowed to co-exist with<→0 since there
would be two external references into the same region (1–5). However, 4→0 can co-exist with
<→0 since the former stays within its region (3). The references 0→ 8 and >→ 8 are allowed to
co-exist because i is in a frozen region (4). Finally, >→0 is illegal both because it cannot co-exist
with<→0, and since references in frozen regions cannot point to non-frozen regions.

7.6 Reggio is Sound

We prove soundness of our system by proving variants of progress and preservation for the
respective language. (The full proofs are available in a technical report [Arvidsson et al. 2023].)

Lemma 7.1. Command Language Progress A well-formed command con�guration is done, has

failed or can step: Γ ⊢ {34} =⇒ 34 = use ∨ 34 = Failed ∨ ∃E� , 34 ′. {34}
E�
−−−→ {34 ′}.
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Lemma 7.2. CommandLanguage Preservation The command language preserves well-formedness

and produces well-formed e�ects: Γ ⊢ {34} ∧ {34}
E�
−−−→ {34 ′} =⇒ ∃Γ

′
. Γ

′
⊢ {34 ′} ∧ Γ ⊢ E� ⊣ Γ

′
.

The command language is more permissive than the region language, since it has no way of
inspecting the state of the global con�guration. For example, an enter can always both fail and
succeed in the command language, whereas the region language always permits exactly one of the
behaviours. This a�ects the formulation of progress:

Lemma 7.3. Region Language Progress In a well-formed con�guration where the command

con�guration can step, there is some e�ect which steps both con�gurations: ⊢ ⟨{34} rcfg⟩ ∧ {34}
E�
−−−→

{34 ′} =⇒ ∃E� ′, 34 ′′, rcfg′.{34}
E� ′

−−−−→ {34 ′′} ∧ rcfg
E� ′

−−−−→ rcfg′.

Lemma 7.4. Region Language Preservation The region language preserves well-formedness for

well-formed e�ects: Γ ⊢ rcfg ∧ rcfg
E�
−−−→ rcfg′ ∧ Γ ⊢ E� ⊣ Γ

′
=⇒ Γ

′
⊢ rcfg′.

Note that Lemma 7.4 includes preservation of the topology invariant. Together, these lemmas
prove the �nal soundness theorem:

Theorem 7.5. Soundness A program never gets stuck and it preserves well-formedness:

⊢ ⟨{34} rcfg⟩ =⇒ 34 = use ∨ 34 = Failed ∨ ∃34 ′, rcfg′.⟨{34} rcfg⟩ → ⟨{34 ′} rcfg′⟩ ∧

⊢ ⟨{34 ′} rcfg′⟩.

8 REGGIO IN VERONA

While Reggio regions are a stand-alone language design component, they were developed speci�-
cally for the Verona programming language, from where the overarching goal (G1) stems. In this
section, we describe Verona-speci�c aspects and revisit concurrency-related goals (G5) and (G6).

8.1 Safe Concurrency

While regions and isolation can form the backbone of a “safe concurrency” story for a language,
concurrency is an orthogonal aspect to our region design. Reggio regions can be integrated with
di�erent concurrency models. The necessary feature missing from this paper is a way to share
regions across threads of control.
Verona uses a concurrency model based on behaviours (tasks that do not join or have a return

value) that operate on cowns, short for concurrent owners. A cown is a wrapper around an iso that
permits regions to be indirectly shared across multiple threads of control, but importantly does
not permit direct access to its contents. Cowns and iso’s are similar in that an explicit operation
is needed to access their contents. In the case of iso’s, access is immediate and synchronous as
exclusivity is already established. In the case of cowns, access is asynchronous and will only
commence after exclusive access has been established dynamically. This check requires region
isolation for soundness [Cheeseman et al. 2023] and as a result, any mutable reference accessible to
a thread of control is safe to access synchronously (G6).

For a complete introduction to Verona’s concurrency model, see work by Cheeseman et al. [2023].

8.2 Concurrent Memory Management

As memory management must only consider objects inside the active region (G3) when determining
liveness (c.f., §5), and regions are always exclusive to one thread, reference count manipulations do
not need atomic instructions, tracing GC does not need barriers, and there is no need to momentarily
stop all threads as in concurrent GC’s [Click et al. 2005; Flood et al. 2016; Lidén and Karlsson 2018].

By extension, a thread in Verona is free to mediate between program work or memory manage-
ment work without informing or synchronising with other threads. Thus, we achieve concurrent
memory management (G5).
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8.3 Support for Di�erent Memory Management Strategies

Verona currently supports three di�erent memory management strategies for regions: arena alloca-
tion, reference counting, and tracing GC. How a region manages its memory is decided at use-site at
creation time using a quali�er on the new keyword: new iso<Arena>, new iso<RC> and new iso<GC>.
As liveness is a local property, di�erent regions’ memory management does not interact, so we do
not need to e.g., propagate this information further in the program.
Selecting memory management at use-site is desirable since it lets a programmer implement a

data structure or library without having to commit to decisions that could limit its future use. Such
a design also allows straightforward support for libraries that consist of multiple nested regions
whose memory management can be controlled when the library is instantiated by programmatic
means, e.g., through a strategy pattern or equivalent.

8.4 Memory Management of Immutable Objects

Note that the memory management o�ered by regions does not extend to immutable objects, at least
not conceptually. One option for implementation is going the way of Erlang and let a region have
a copy of each immutable object it references. This may facilitate fast reclamation, but increases
memory pressure. Furthermore, it introduces a $ (=) copying overhead for transferring immutable
objects across region boundaries, in sharp contrast with (G4).

In the Verona run-time, we permit immutable objects to be shared between regions. Thus, when
a region is collected, we must detect its implications for liveness of immutable objects. Immutable
objects must also consider roots across multiple threads. On the other hand, tracing immutable
objects is easy and e�cient as the structures are guaranteed not to change underfoot [Clebsch et al.
2017]. How Verona manages immutable objects is out of scope of this paper.

8.5 Propagating Capabilities Through Self Typing

1class Cell {

2var value : I64 // mut Store[mut I64]

3def set_value(self:mut, v:I64) {

4// value : (mut ⊙mut) Store[mut I64]

5value := v

6}

7def set_value(self:paused, v:I64) {

8// value : (paused ⊙mut) Store[mut I64]

9value := v // does not typecheck!
10}

11def get_value(self:mut) = value

12def get_value(self:paused) = value

13}

Listing 5. Self typing in Cell.

Verona is a class-based programming language. As an
instance’s capability is determined at use-site, meth-
ods declare an explicit self-capability, e.g., self :mut
to propagate the external view of the instance into
the instance. A class may provide several di�erent
implementations of a method overloaded on the self-
capability.

A method can only be called on a receiver if its self-
capability matches the receiver’s static type, which
means that the object’s treatment of itself internally
will match the external view, both in terms of re-
strictions and abilities. For example, a method whose
self-capability is paused can only be called when the
receiver’s region is paused. Notably, it is not permitted to call a paused method on a mut receiver
because this would lead to aliasing between mut and paused (which would weaken paused from
temporarily immutable to read-only).

Methods that are polymorphic in their self capability can be used to avoid multiple near-identical
versions of a single method like in Listing 5. For brevity, we refrain from discussing this further.

9 RELATED WORK

We started out by describing related work leading up to Rust. We now extend this picture by going
beyond Rust and also relating our work to garbage collection work before revisiting novelty.
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Beyond Rust. In addition to what we have already covered, there is continuing research into Rust to
alleviate its restrictions, including incorporating a garbage collector [Coblenz et al. 2022], careful
library design [Beingessner 2015], phantom types [Yanovski et al. 2021], or proving unsafe Rust
code correct [Jung et al. 2019, 2017; Noble et al. 2022].

Recent research has focused on techniques for “post-Rust languages”, building on Rust’s use of
ownership types, but supporting more �exible program topologies (and hopefully more e�cient
execution), typically by increasing the complexity of the type system. This remains an active
research area: the tradeo�s between regions, ownership, types, capabilities, e�ects, topologies,
restrictions etc are complex and multifaceted [Brachthäuser et al. 2022; Gordon 2020].

Pony [Clebsch et al. 2017; Franco et al. 2018] employs implicit regions, external uniqueness and
ownership to o�er high performance for actor programs by concurrent execution on multicore
CPUs, while maintaining data-race and memory safety. Building on capabilities used to describe
what programs can do with particular references [Boyland et al. 2001] Pony o�ers at least six
“reference capabilities”: unique, thread-local, read-only, write-only, and identity-only, (globally)
immutable, plus type modi�ers for ephemeral (Hogg’s “free”) and aliased references. Reading or
writing a �eld depends on the capabilities of both the reference to the object, and of the �eld within
the object: there are 43 valid cases from 72 possible combinations of capabilities.
Fernandez-Reyes et al. [2021] design Dala as a simpli�ed alternative to Pony, based on three

di�erent kinds of objects—immutable, unique (aka isolated), and thread-local—rather than six
di�erent kinds of references. Dala programs are also data-race free, however this guarantee may be
provided by a race detector at runtime, or by an optional/gradual type system.

Milano et al.’s [2022] Gallifrey aims to be more �exible than Rust, by relying at least as much on
MLKit style region inference as on ownership annotations. Rather than an explicit global ownership
model, Gallifrey programmers have to annotate unique (aka isolated) object �elds, and identify
parameters that will be consumed by a method invocation or that should be in the same region
as other parameters or the method result. A dynamic “if disconnected” predicate searches the
program’s heap at runtime to determine of two references are mutually disjoint.
Cogent [O’Connor et al. 2021] is a derivative of Haskell for systems programming. It adopts a

Rust-like discipline, permitting either multiple read-only references to objects, or a single read-
write reference. Cogent uses annotations to support both a formally de�ned operational semantics,
generation of executable C source code, and a proof certi�cate proving that the generated code
accurately implements the semantics.

Garbage Collection. Of the GC design goals, (G3) and (G5) can be met to some extent without
region isolation. Here, Reggio’s contribution is trading additional work to manage regions (at
development time) for reduced overheads of managing memory (at run-time) due to avoiding
GC techniques like remembered sets, barrier synchronisation, and stop-the-world pauses. Region
isolation guarantees that a region’s remembered set will always be empty. Thus, there is no cost
associated with additional region partitioning due to tracking of inter-region references.
With respect to (G3), generational GC’s (e.g., G1 [Detlefs et al. 2004]) and thread-local GC’s

(e.g., [Domani et al. 2002]) support collecting only a portion of the heap (e.g., just the young
generation or one particular thread), but the shape and size of this heap is beyond programmer
control (e.g., all young or thread-local objects will take part of GC, not just particular data structures).
Furthermore, in the absence of (something like) region isolation, inter-region aliases must be tracked
dynamically to be able to correctly compute liveness. Actor GC’s that rely on actor isolation using
types (e.g., Pony [Clebsch et al. 2017; Franco et al. 2018]) or copying (e.g., Erlang [Armstrong
2007]) are close as they allow individual actor-local heaps to be collected. This is similar to Reggio’s
regions, but Reggio supports partitioning of the heap without an imposed asynchronous indirection.
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With respect to (G2), while it may be possible to run di�erent GC’s in di�erent generations
(or threads, actors, etc.), GC’s typically use the same algorithm for the entire heap, with minor
tweaks (e.g., to account for di�erent object characteristics due to age) as do actor GC’s. HRTGC is a
real-time GC for mixed-criticality work-loads [Pizlo et al. 2007] that hierarchically decomposes
the heap into regions that each run a di�erent tracing GC, tuned di�erently and with di�erent
collection frequency. HRTGC permits inter-region references and tracks them dynamically. In the
actor world, Isolde [Yang and Wrigstad 2017] permits actors implemented using type-enforced
actor isolation [Castegren and Tobias Wrigstad 2016; Castegren and Wrigstad 2017] to manage
their memory concurrent with their execution, using a reference-counting based scheme.

With respect to (G5), garbage collectors like C4 [Tene et al. 2011], Shenandoah [Flood et al. 2016]
and ZGC [Lidén and Karlsson 2018] provide concurrent collection with brief stop-the-world pauses
to coordinate phase changes, with pause times invariant of heap sizes. Their heaps have unrestricted
references, and instead rely on dynamic checks in read and write barriers. The aforementioned
actor GC’s [Armstrong 2007; Clebsch et al. 2017; Franco et al. 2018] support “fully concurrent”
collection: an actor can choose to collect its local garbage without synchronising with any other
concurrent activity. Reggio’s regions additionally allow us to statically detect when an entire region
is invalidated, without the need for a speci�c actor collector to eventually detect the �oating garbage
(e.g., [Clebsch and Drossopoulou 2013]). Explicitly killing an actor to instantly free its heap is a
common pattern in Erlang where it is made possible by copying objects on transfer, giving up (G4).

10 DISCUSSION

First, we place Verona’s design concepts into the context of all related work. Almost any ownership
system paired with external uniqueness will support region isolation and dynamic recon�guration.
Verona’s key contribution here is a negative contribution, but important nonetheless. Almost all
other systems provide one or more top, global, or shared heap region, and in various ways permit
references from inner/encapsulated/shorter-lived regions back to outer/enclosing/longer-lived
regions. (Generational garbage collection works on a very similar principle [Jones et al. 2016]).
Verona does not, and this enhanced decoupling of regions is critical to achieving many of our goals,
especially about concurrency, and independent GC.

Verona’s dynamic mutability and relaxed isolation is novel and di�ers from other ownership and
region systems. Inasmuch as region systems like the MLKit are based on inference, and are sound for
all legal programs, questions of mutability and isolation don’t apply—if the program is type-correct,
the inference system can always place objects into regions such that no region errors will arise at
runtime. Programming with more explicit regions, or with ownership and capability annotations,
either lack polymorphism (e.g., Dala) or require complex resolution or viewpoint adaptation rules,
or asynchronous indirections (e.g., Pony). In a way, Verona’s region system trades precision for
simplicity. It cannot construct data structures that consist of several morally overlapping regions,
as is possible in e.g., C++ or Rust. We believe all programs written in e.g., C++ or Rust pay the price
for that precision—even though most programs do not need it.

Verona’s “single window of mutability” is probably its most novel concept. In pretty much every
language, from FORTRAN to LISP to ML to Haskell to C++ to Pony to Gallifrey, if some code can
�nagle a mutable reference to an object, the program can always update the object through that
reference. In Rust for example, programs can collect up “mutable borrows” (&mut) of any number
of objects, pass them around as method arguments to anywhere in the program, and then mutate
all the borrowed objects. Rust’s “interior mutability” (aka C++’s const-cast) just increases the scope
for potential mutation. This kind of indiscriminate mutation is exactly what the “single window
of mutability” in Verona prevents. Once a program departs—even temporarily—from the scope of
an opened region, (e.g., by opening some other closed region) the program can no longer modify
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anything in that �rst opened region, no matter what kind of objects are in the region, nor what kind
of capability or reference the program has to those objects. Perhaps a single window of mutability
will prove too restrictive in practice, which may be why no other system has yet adopted it. Verona
demonstrates that it is possible to build a system with a single mutability window as a core design
concept; exploring that concept further must necessarily be further work.
The single window of mutability is key to simplicity, both with respect to the type system that

enforces region isolation and our invariants for memory management. We need only distinguish
objects in the active region, from objects in suspended regions and objects in closed regions. As
suspended regions are immutable and closed regions inaccessible, we do not need to distinguish
objects belonging to di�erent regions as nothing can be done to them that a�ects or is a�ected by
their region membership. By having only a single mutable region at a time, non-local operations
cannot e�ect object liveness in the active region, or the liveness of an entire active region. This
permits optimisations at the implementation level and simpli�es the task of the programmer
wishing to reason about—and control—memory management performance.

In contrast to other works which use types to enforce (or impose) a structure on the heap, we
let the path of the program through the heap dictate the permissible pointer structure—not the
other way around. For example, Verona allows a single point in the program to access the contents
of two mutually isolated regions � and �, simply by virtue of opening them in a nested fashion.
The key insight is the decoupling of accessing from mutating, implemented through the movable
window of mutability. Rather than alternating between accessing � and �, we can gain access to
�rst � and then � without giving up access to �, just the rights to mutate it. Opening � after �
allows references to objects in � from � to be created freely, but these references may only persist
as long as � remains open. When � is closed, the references to � are invalidated. This retains the
�exibility of navigating heap structures in any order, e.g., we could close � then � and open them
immediately in the opposite order, allowing pointers from � to �. It also ensures that an object is
either mutable or immutable at any moment in time.

11 CONCLUSION

We have presented Reggio, a region system enforced by reference capabilities that partitions a
program’s heap into a forest of isolated regions. Memory in di�erent regions can be managed
di�erently (G2), incrementally (G3) and concurrently (G5). The single external reference to each
region plus their full encapsulation enable cheap ownership transfer (G4) and guarantees freedom
from data races (G6). The ability to temporarily trade mutability for access on the region stack allows
any region to (temporarily) reference any other region, and also allows “external code” to operate
inside a region, which is crucial for libraries and reuse—not all uses of a region can be predicted
and supplied in its interface. In combination with the region isolation and the single window of
mutability this allows the formulation of topological invariants which are useful for a programmer
to control and reason about object liveness and implications of memory management (G1) and can
be leveraged for e�cient implementation of memory management. Memory management costs are
only incurred by the active region (one per thread), and data accesses within that region—whether
reading, writing, tracing, or reference counting—never need atomic operations to coordinate with
other threads.
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