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Abstract

Utilizing Neural Networks To Adaptively De-
modulate And Decode Signals In An Impulsive
Environment

Andreas Andersson

Electromagnetic disturbance can be detrimental to the performance of
a radio communication system, and in today’s society where more and
more electronic devices are present in our everyday life it is increasingly
vital to consider man-made interference. A communication system can
take into consideration the noise characteristics and by doing so will
excel in such areas, however, this follows that the algorithms utilized in
such systems are more computationally complex and are therefore slow.
This master thesis aims to explore the possibility of a neural network-
based solution that reaches the same accuracy, as existing methods, but
more quickly. Numerous different existing model alternatives have been
explored and a plethora of different improvement techniques have been
outlined. Two models, Hannet and Lannet, have been designed and im-
proved to enable adaptive demodulation both including or excluding de-
coding at the receiver in an end-to-end communication system.
The evaluation results demonstrate that the proposed models are com-
parable and in some cases even more accurate than current standardized
methods. However, the models are unable to fully learn the decoding
algorithms present in the experiments. Thus even though demodulation
by itself thrives, performing decoding in conjunction with demodulation
is out of reach for these models.
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2 Introduction

2 Introduction

In modern vehicles, several coexisting electronic systems create electromagnetic inter-
ference which may impair the performance of wireless communication. A communica-
tion system’s performance largely depends on the noise characteristics, which in prac-
tice usually derives from other electric equipment [31]. Many communication systems
merely take into consideration additive white Gaussian noise (AWGN) [37], however,
impulse noise characteristics are prevalent in many situations [48, 52] and the AWGN
model does not account for every behavior [26]. By altering the demodulation or de-
coding in a communication system based on the noise characteristics it will hopefully
yield performance improvements.

Deep learning (DL) systems are a new way of rethinking the communication problem
and have seen a rise in popularity in recent years [46]. Neural networks are particularly
interesting when it comes to tailoring a system to a specific environment [37]. Most
algorithms for signal processing are proven optimal for tractable mathematical mod-
els, which are stationary, linear, and have Gaussian statistics. Since reality has many
non-linearities and imperfections a DL-based communication system is a reasonable al-
ternative since it can be optimized for specific hardware and channel configurations, and
does not require a mathematically tractable model.

The standard method of communication, where communication can be divided up into
multiple independent blocks with their isolated functionality, is not necessarily the clear
optimal method for end-to-end communication. Neural networks are shown to be uni-
versal function approximators and are thus a reasonable area to explore when it comes to
communication methods with their accuracy being comparable to state-of-the-art meth-
ods [37, 19].

This project explores using neural networks as an alternative to the traditional method of
end-to-end communication. In contrast to previous research that has focused on creating
a functioning machine learning system to adapt to AWGN, this project aims to experi-
ment with a different stochastic noise model representing a more realistic environment.
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2 Introduction

2.1 Purpose and Goals

The purpose of this project is to implement an adaptive demodulator either including
or excluding decoding using neural networks, for Hamming and low-density parity-
check encoding. In this setting, adaptiveness means that the model should adapt to the
symmetrical alpha-stable distribution, see section 3.1.3, with varying α values, or at
least not neglect any α values. This objective can further be divided into three different
goals:

Data Generation - Researching and implementing a method for synthesizing signal
data that has propagated an environment with present man-made interference.

Model - Define and improve a neural network model that utilizes the given synthesized
data and predicts the original message in that data.

Evaluation - Compare this project’s proposed neural network model to existing state-
of-the-art solutions, such as other neural networks, standardized demodulators
and decoders, to determine whether the solution using the proposed model can be
used in practice in a realistic communications environment.

The goals were completed in chronological order as they are dependent on each goal
before them. By achieving these goals the hope is to further expand the knowledge
regarding signal processing through machine learning.

2.2 Contribution

From the completion of the goals defined in section 2.1 a number of expansions within
the field of machine learning-based signal processing are extracted:

Machine learning receivers - Expanded on existing knowledge regarding the design
of machine learning-based implementations of demodulators, decoders, and choice
of encoding, to improve receiver message interpretation accuracy, by examining
their utilization in a scenario where man-made noise is present.

Adaptive communication - Furthered the research regarding adaptive demodulators
and decoders, in terms of increasing robustness, specifically in an environment
with impulsive noise where the system should adapt accordingly to the character-
istics of the noise.
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2 Introduction

2.3 Limitations

There is one limitation present in this work and that is the range of α, expanded on in
section 3.1.3, upon which the model is evaluated. Early on in development, it was found
that using low α values created numerical issues when calculating the loss function, as
a result, the optimizers were never able to lower the loss functions. This evolved into
the decision of only evaluating the models over the range of 1.0 ≤ α ≤ 2.0. A real
world example is seen in the city of Aalborg [15]; measurements from five different
locations show that heavy-tailed interference is present in IoT communications. The
α-stable distributions fitted to the findings yielded an α range of 0.9 ≤ α ≤ 1.9. By
confining the value of α to the interval [1,2], the edge-cases of the parameter range can
be achieved using closed-form expressions such as Cauchy and Gaussian distributions.
A few studies[25], [32] have found that a mixture of Cauchy and Gaussian distributions
best express the general distribution for α in this range.

2.4 Related Work

Prior to this project, many other researchers have investigated similar topics such as
demodulation and decoding through neural networks and a variety of different methods,
such as noise distribution estimation in combination with a standard demodulator, to
facilitate these features. Some of these, which are listed below, were the main inspiration
that led to, the research made in this project as well as how it was conducted.

Adaptive Demodulation in Symmetric Alpha-Stable Impulse Noise Channels writ-
ten by Kristoffer Hägglund and Erik Axell [27]. As the authors of this article are su-
pervisors for this project, understandably, they have delved into this research previous
to this project. In this article, an adaptive demodulator is proposed for an environment
where non-Gaussian interference more commonly occurs. The modulator produces,
from the received symbols, a vector of log-likelihood ratios (LLR) corresponding to all
the bits in the transmitted signal. The LLRs are based on an estimation of the interfer-
ence, from the channel, that the receiver experiences. The interference is estimated by
the demodulator through four different methods where it calculates an approximation of
the parameters used in a SaS-model to model the noise as close to the received signal in-
terference as possible. The demodulator is compared to other existing demodulators via
the Monte Carlo method and is seen to outperform these, in some more impulsive sce-
narios it outperforms upwards of 20dB. A drawback with the method proposed in [27]
is the time-intensive mathematical calculations being done, which is one of the main
reasons why a different approach is being explored in the work presented in this report.
This article highlights the need for research in scenarios where the noise is modelled
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2 Introduction

with another noise distribution.

On Deep Learning-Based Channel Decoding written by T. Gruber, S. Cammerer, J.
Hoydis and S. Brink [23]. In this article, the authors explore the possibility of neural
networks being able to perform decoding of different types of codes. They found that
neural networks were able to generalize for structured codes, which looks promising for
the possibility of neural network-based decoders being used in the future. Currently,
decoding suffers from a lack of parallelization and high complexity which results in an
unavoidable high latency. On the contrary neural network designs do not suffer from
the same deficits and are therefore a reasonable alternative given that they can reach
the same accuracy. The main takeaway from this article is that neural networks are
able to decode codewords, in some manner. The authors also mention a topic which
is further discussed in section 3.2.7, where an issue with neural networks is that they
must classify each input sequence as a specific output. This causes issues, in regards
to network complexity when the amount of bits in the codeword increases as this also
increases the amount of output by a power of two. The proposed neural network consists
of several dense layers stacked after one another.

DemodNet: Learning Soft Demodulation from Hard Information Using Convo-
lution Neural Network written by S. Zheng, X. Zhou, S. Chen, P. Qi, C. Lou and X.
Yang [56]. In contrast to what was attempted in [23], where the traditional decoding was
exchanged for a neural network solution, here the demodulation is constructed through
a neural network. In the same way that the received symbols were transformed into LLR
values in [26], so does the demodulator in this article however as Log probability ratios
(LPRs). The difference between work done in [26, 23] is that in [23] proposes a solution
based on neural networks and focuses on Gaussian noise rather than SaS. Under the dis-
turbance of additive white Gaussian noise, the model performs on par with traditional
methods, in terms of accuracy, however when the disturbance is of additive generalized
Gaussian noise the system surpasses traditional methods. The model architecture con-
sists of a deconvolution layer followed by several convolution layers, excluding batch
normalization and activation layers. Given the results presented in this article, it seems
highly likely that using neural networks to demodulate a signal is entirely possible.

MSK Demodulator and Impulsive Noise Depression Based on Convolutional Neu-
ral Network with Gated Layers written by Q. Tan and L. Zhao [49]. In this paper, the
authors found that most demodulators only consider Gaussian-distributed noise. This
demodulator is aimed towards more impulsive noise and has therefore been trained on
Symmetrical α-stable (SaS) noise much like that of the work done in [26], rather than
an implementation aimed towards Gaussian noise seen in [56], therefore the network
schematic differs from the model described in [56]. In the model, two convolution
layers are stacked on each other followed by a GatedNet and finally a global average
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2 Introduction

pooling layer feeds the information to the output. The proposed architecture outper-
forms other neural network architectures, consisting of convolutional layers followed
by dense layers, by approximately 2dB. This aspect, namely processing signals which
have been disrupted by SaS noise using neural networks, is a similarity between this
project and this article [49]. However, it is noteworthy to mention that the performance
of this method, in regards to accuracy, is not as great as that of the prior ones men-
tioned [26, 23, 56].
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3 Technical Background

3 Technical Background

First and foremost it is important to gather an understanding of the problem scenario it-
self and how previous solutions have aimed to tackle it. Even though there is a focus on
neural networks in this project, it is important to research the areas of communication
and noise distributions to better formulate a solution. There are many ways to build a
neural network, therefore, it is important to establish a good base for how to begin creat-
ing one for this scenario, and what consequences different choices in design ultimately
have. The research performed in this section will stand as a basis for the methodology
conducted.

3.1 Communication Techniques

Modern communication through electromagnetic waves is usually modelled into blocks,
see Fig. 1, of different procedures which have been perfected over the years. These
functionalities facilitate end-to-end communication, making it possible for a transmitter
and receiver to send information over a channel [40, p. 2]. The design of these block
diagrams differs depending on the design of the system, however, two different block
pairs seem almost mandatory for end-to-end communication to function properly. These
are Modulation/Demodulation and Encoding/Decoding for the transmitter and receiver
respectively.

Input
Source

Channel
Encoder Modulation

Channel

DemodulationChannel
Decoder

Source
Encoder

Source
Decoder

Output
Signal

Figure 1 Typical radio communication block diagram. The purpose of this project’s
proposed model is to replace the channel decoder and/or the demodulation blocks.
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3 Technical Background

3.1.1 Demodulation

The purpose of modulating a signal is to send data across a channel, i.e. associating the
signal to a frequency(s), in a cost-effective way. When the modulated signal has reached
its destination it is the duty of the receiver to convert the signal back into its previous
representation [40, p. 3], before modulation.

Since electromagnetic devices share the same frequency space it is important to divide
this space for the devices to be able to communicate without disturbing each other [13,
p. 187]. This has given rise to researching new innovative methods of representing mul-
tiple bits with a single frequency. One of the earliest modulation methods invented was
Amplitude modulation (AM), it functions by the transmitter increasing or decreasing
the amplitude of the frequency in the signal depending on if it is sending a low or high
bit. This method as well as Phase modulation (PM), where the phase is altered instead
of amplitude, is the basis for the modulation type which will be explored in this work.

By expanding on the method of representing different bits with different ”states” of the
frequency it is possible to instead represent different combinations of bits. By using
neural networks the hope is to be able to implement adaptive demodulation of one of
these techniques, namely quadrature phase shift keying (QPSK). QPSK, which shares
its constellations with four quadrature amplitude modulation [13, p. 217-219], utilizes
phase modulation to represent more bits see Fig. 2. QPSK has four different states, usu-
ally referred to as symbols, which means it can represent two bits at any given symbol.
When there is no noise present in the signal it is theoretically possible to keep increas-
ing the number of states. However, using more state representations will also make the
system more vulnerable to noise.

In certain scenarios, it is desired to have a probability related to the symbol, regarding
what bits it represented before channel propagation. When the demodulator outputs
such values it is called soft demodulation.

3.1.2 Decoding

The second communication blocks to consider are the encoding and decoding pairs.
When a message propagates through a channel there is a chance that data, due to noise,
is corrupted to some extent. Even though the demodulator may handle some minor
deviations in the original signal and the received signal, some errors may be too large
to be corrected. To prohibit this from deteriorating the communication, the signal is
first encoded before it is sent, by adding a few redundant bits. These redundant bits can
be used later on the receiving end to rebuild any corruption in the message [40, p. 2].
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3 Technical Background

00

01 11

10

Im

Re

Figure 2 An example of quadrature phase shift keying constellation locations, and their
corresponding bit sequence.

An important metric to consider when encoding a message is the code rate, defined
as R = k/n, where k is the message length and n is the codeword length produced
from encoding the message, as lowering the code rate may increase robustness but will
inevitably decrease throughput. There are many ways to accomplish this, in this work
the Hamming 7.4 and low-density parity-check (LDPC) encoding methods will be the
focus [34, p. 34, 634].

3.1.3 Noise

As mentioned earlier, the signal is corrupted while propagating through a channel. Such
alterations of the signal are due to the presence of noise, be it intentional disruptive
attacks or unintentional interference. To be able to properly test an end-to-end com-
munication method without deploying it one can model the noise, adhering to some
distribution, and alter the transmitted signal accordingly to simulate interference. The
most common way to simulate noise is to use the AWGN model [35, p. 1], however,
this distribution does not imitate reality in every scenario. Other distributions such as
the symmetric α-stable distribution are much more fitted for certain environments where
for example man-made noise is present.
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3 Technical Background

Gaussian

The Gaussian model has traditionally been prevalent when modelling noise in signal
processing. By using additive white Gaussian noise or additive generalized Gaussian
noise it is possible to greatly decrease the complexity of the design, and analysis, of
the system. The reason behind adding this to a signal when analyzing a system perfor-
mance is to examine how well the system functions an environment closer to reality [35,
p. 1]. The equation for calculating the probability density function, which can be seen
in Fig. 3, is shown in Eq (1) where µ is the mean and σ2 is the variance. The effect on a
signal’s constellation points can be seen in Fig. 4a.

f(x|µ, σ2) =
1√
2πσ2

e−
1
2
(x−µ

σ2 )2 (1)

Symmetrical Alpha-Stable

Unfortunately, not all scenarios of reality can be replicated with Gaussian noise, many
situations bring about a more impulsive noise. In areas where man-made noise is
present, it is better to model the noise after the α-stable model. The difference be-
tween the Gaussian and the α-stable distribution is that the α-stable distribution has
heavier tails the lower α is, see Fig. 3, which makes it more suitable for modelling a
more impulsive environment. The α-stable distribution is even modifiable by altering
the α parameter, which then also includes the Gaussian distribution if α is set to the
highest value of α = 2 [35, p. 2-3]. Besides the α parameter, the α-stable distribution
also has three additional parameters. The skewness of the distribution is determined by
−1 ≤ β ≤ 1, where a negative value implies skewness to the left whereas as a positive
value indicates a skewness to the right. δ ∈R indicates the mean of the distribution and
0 < γ indicates the scaling, which functions much like the variance in the Gaussian dis-
tribution. In Eq (2), (3), and (4) the probability density function can be seen, where sign
is the signum function. For the scope of this project only the α value will be alternated
as the distribution examined is intended to be symmetrical. The parameters will be set
to δ = 0, γ = 1, and β = 0. Below can also be seen the effect of simulating an impulse
channel by applying symmetric α-stable noise to signal symbols, see Fig. 4b. Notice
that the effect has thrown the symbols more off-course than that of the Gaussian noise.

f(x) =
1

2π

∫ ∞

−∞
φ(t)e−ixtdt (2)

φ(t;α, β, δ, γ) = exp(iδt− γ|t|a(1− iβsign(t)ϕ)) (3)
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ϕ =

{
tan(πα

2
), α ̸= 1

− 2
π
log |t|, α = 1

(4)
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Figure 3 Probability density function for the SaS noise model with varying α.
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Constellations after Gaussian noise has been added, SNRdb = 10

(a) Channel modelled with Gaussian noise.
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(b) Channel modelled with SaS noise.
Figure 4 The effect on the constellations after the signal has propagated through a chan-
nel.

Signal to noise ratio

Regardless of which way the noise is modelled, there is another factor to consider
namely signal-to-noise ratio (SNR). The SNR is a measurement of how strong the sig-
nal is compared to the noise [13, p. 160]. One can imagine that if the noise is as strong
as the signal then the slightest interference will cause heavy corruption in the message.
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3 Technical Background

This is also why it is difficult to use a sensitive modulation scheme in an environment
such as the one focused on in this paper, where the noise is highly prevalent. In this
report, SNR will be referred to in the scale of decibels (dB).

Training Bits

By adding a known sequence of bits at the beginning of the codeword it is possible to
relay some information to the receiver regarding the distribution of the channel noise.
This will in some regard lower the code rate but could give performance improvements.
An experiment was done in which it was found that adding a sequence equal to the size
of 20% of the original message lowered the bit error ratio [26]. However, it is worth
noting that this experiment was performed on a system that was not a neural network,
which follows that this does not guarantee an improvement in this project.

3.2 Neural Networks

Artificial neural networks are born from the notion of trying to emulate how the brain
functions. Much like the brain, neural networks can be seen as complex, nonlinear func-
tions that mostly can be run in parallel [18, p. 5]. The hope of creating neural networks
was to create a network that could memorize, learn and even generalize scenarios to
create an abstraction of functions which would otherwise seem impossible to define. In
essence, this is what a neural network is, a non-linear mapping from one real vector
space to another [18, p.15]. Even though computing power today is steadily increasing,
and neural networks are designed to mimic brain function, it will take years for neural
networks to reach the sheer size of a human cortex. However, for smaller tasks or rather
more narrowly defined tasks, neural networks are doing wonders. Some field examples
of where neural networks excel are pattern matching, optimization, data mining and
classification, among others.

3.2.1 Artificial Neurons (Perceptrons)

Artificial neurons, also known as perceptrons, are the fundamental building blocks that
make up all neural networks. Fig. 5 shows a neuron as a part of a neural network.
The inputs received X⃗ = [x1, x2, ...xn] by the neuron are either from the environment,
meaning the inputs we feed the neural network, or from other neurons.

All the inputs received by the neuron consist of the original input signal multiplied by
some weight W⃗ = [w1, w2, ...wn] associated with each specific signal xnwn = in [18,
p. 6, 17]. In Equation (5) the inputs I⃗ = X⃗ · W⃗ are then summed up and a bias is
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3 Technical Background

added[16, p. 50] by the neuron which processes the inputs and determines, through an
activation function f , how strongly to forward the signal. The sum of the inputs and the
bias is often referred to as the signal net sum.

o = f(
∑

xnwn + Bias) (5)

Output

Figure 5 A feedforward network with two hidden layers with a closer look at one of the
perceptrons within it.

The weights associated with the inputs are essentially the portion of the neural network
that changes for the network to learn. The output signal o from the neurons may either be
forwarded to other neurons or be considered as the output of the neural network. What
determines how strongly the neurons output ”fires” will be the activation function within
the neuron. There is always the possibility to define one’s own activation function,
however, there are some functions which are more commonly used in practice. See
section 3.3.10 for more information on these activation functions.
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3.2.2 Feed Forward Networks

On the left, in Fig. 5 a feed-forward network (FFNN) is shown, in this case, a multi-layer
perceptron (MLP) in contrast to a single layer perceptron which only contains one hid-
den layer. Though the network in the image shows a network consisting of two hidden
layers, there is no limit to how deep the network may go. The feed-forward network was
the first and simplest design of a neural network. Through backpropagation, elaborated
on in section 3.2.6, the FFNN can estimate any continuous function, with as little as
only one hidden layer given that the width of the layers is sufficient [18, p. 28]. As seen
in the Fig. 5 all the hidden layers consist of many fully connected neurons. What char-
acterizes a feed-forward network is the lack of cycles due to no feedback connections,
where the outputs of the layers are sent back to previous layers in the network.

3.2.3 Convolutional Neural Networks

Convolutional neural networks (CNN) function by using sparse interactions, parameter
sharing and projecting the gathered features on different channels [33, p. 147]. To un-
derstand how this is significant we must first understand what these different methods
are.

Sparse interactions signify that the nodes in the CNNs do not necessarily connect to all
the data available in the previous layer. As can be seen in Fig. 6 each resulting node
only connects to 4 × 2 nodes from the previous layer. The idea behind this is that in
some scenarios data closer to each other is more related than data further away. As the
window, referred to as a kernel, traverses the data the nodes are filled with information.
In the example in Fig. 6 the data is two-dimensional, however, the same concept of
CNNs can be applied to one or even three-dimensional space. This concept would
naturally overflow the number of weights needing to be trained very quickly if it were
not for parameter sharing.

Parameter sharing facilitates, as the name would suggest, sharing of kernels between
the nodes of the convolutions layer. Therefore, the kernel will look the same for each
node reading from the previous layer, such that the recorded data in the nodes will be
some feature belonging to the data in the previous layer. To be able to gather more
information from the previous layer more channels are added, each with its kernel of
weights. One can see it as every node in every channel containing one feature about a
certain segment of the output of the previous layer. The aim of these features is to find
some recognizable pattern in the data.
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3 Technical Background
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Figure 6 A fully convolutional neural network with a dense layer output. The first
convolutional layer performs 4 × 2 convolution and extracts three features whilst the
second performs 2× 2 convolution and extracts two features.

By default a convolution of some data will result in dimension reduction, in some cases,
this is unwanted for example in combination with residual networks. There are methods
to avoid dimension reduction, one such is called zero padding. Zero padding causes the
kernel to read the values zero outside of the border of the information, which allows it
to create a node space equal to the dimensions of the previous layer. Another parameter
of a convolution layer that can be employed is the strides. Previously reads from the
data from the previous layer would intersect, because the kernel only jumps one step in
the input for each node. By increasing strides we are able to increase this step length,
naturally, this will also lower the dimensions of the data further.

As previously mentioned convolutional layers are, optimally, able to track a different
feature for each of their channels. This creates a third dimension of the data, for the
layers that precede. If the next layer is another convolutional layer, then all nodes of
that layer will consider all features of the previous layer as can be seen in Fig. 6. The
deeper the network stacks convolutions, the higher complexity of features that will be
able to be learned by the network.

Closely related to the convolutional layer, and also commonly used in CNNs, is the
pooling layer. The pooling layer examines a portion of the data of the previous layer
and extracts a value dependent on that data, much like the convolutional layer. However
the pooling layer does not calculate any specific weights in its kernel, it simply performs
an algorithm on it such as average or maximum.

Both convolution and pooling have their reversed methods, which are referred to as
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deconvolution or transposed convolution and upsampling respectively. Where pooling
extracts a value from some set of nodes in the previous layer, upsampling will copy a
node from the previous layer [54], multiplying the number of nodes with that value. As
for deconvolution it is just as complex as a convolution however works in the reverse
direction [47]. Where convolution examines for example a 5 × 5 kernel and decides
upon a value dependent on that, a deconvolution will examine a single value and create
a 5× 5 grid based on a kernel.

3.2.4 Recurrent Neural Networks

Recurrent neural networks (RNN) are networks which have layers with feedback con-
nections. This facilitates memory for the layers with such connections [22], allowing
layers to retain information about past contexts. Given data where context is important,
such as speech recognition, RNNs can excel. There are different ways for these feedback
connections to be implemented, one such implementation is the long short-term mem-
ory (LSTM). The LSTM is part of a family of RNNs called gated RNNs. In practice the
memory that an RNN can hold is quite limited and suffers from the input of the layer
either decaying or blowing up between the network’s recurrent connections, a problem
referred to as exploding gradient problem vanishing gradient problem. Even though the
event of the gradient blowing up is solved quite simply with various clipping strategies,
the problem of vanishing gradient still remains [43, 38]. LSTMs attempt to address this
problem by adding connected subnets, which act as memory blocks or states, each with
a set of internal units activated using an input, forget and output gate. By creating such
a gate system the LSTM memory can avoid information being overwritten and is only
being accessed when necessary. Modern LSTMs also utilize peephole connections [44]
from their internal units to the same unit gates to learn the timing of the outputs.
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3.2.5 Residual Networks

A problem with stacking dense layers to learn more complex function approximations
is diminishing backpropagation. This causes the early layers of the model to not get
updated and will therefore not pass on any important information to the layers that are
able to learn, commonly referred to as the degradation problem [24]. In an attempt to
solve this problem, residual networks were introduced. The residual network achieves
this by implementing shortcut or skip connections, see Fig. 7. By doing so it is possible
to create deeper networks, yet still utilize the same backpropagation and optimization
method (SGD or such), therefore reducing the training error and increasing the test
accuracy in comparison to previous attempts of networks with the same depth.

Weighted layer

Weighted layer

x

f(x)

f(x) + x

+

Figure 7 Example of a skip connection which can be found in a residual neural network.

3.2.6 Network Learning

There are different ways in which a model may receive feedback and develop an un-
derstanding of the function it is attempting to approximate. These are reinforcement
learning, unsupervised learning and supervised learning [18, p. 21], the latter being
what will be used in this research. In supervised learning, the network is trained on
a dataset where the expected output is provided and thus already known by the net-
work [18, p. 27]. The goal is to train the network such that the weights minimize the
difference between the expected output and the actual output of the network. Once train-
ing has ended the hope is that if the network is given a sample of inputs, similar to that
of those in the training dataset, it will be able to correctly estimate the desired output.
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Backpropagation is the method which facilitates the entire learning process for a neu-
ral network. As previously mentioned, for the network to approximate the function the
weights therein must be tuned properly. This is done by examining the desired output of
the network and then tweaking the weights as to force them to give the desired output,
given the same input. In such a manner it is possible to move backwards in the net-
work and tweak each weight associated with a neuron, a so-called backward pass [39].
Because all neurons of a preceding layer have certain wishes for those of the prevision
layers, all these changes must be taken into account when changing the weights. Once
an idea of how the changes to be made should be realized the algorithm continues to
the next layer. Even though the inner layers may only have an estimation of error it is
usable as a reference to how they should expect their prior layer to fire.

3.2.7 The Curse of Dimensionality

In regards to constructing a neural network demodulator or decoder in an end-to-end
communication system, there arises a complexity issue [23]. The issue is referred to
as the curse of dimensionality and raises awareness of one of the limitations of neural
networks. Since whatever binary message is being sent from the transmitter must be
classified by the receiver, there must exist 2n classifications to be able to interpret all
messages. In modern communication systems, short error correcting codes (ECC) such
as Hamming 7.4 are not a viable option for transferring data, as they lack robustness.
However, creating a network which can classify high-bit-lengthed messages will be too
complex, have too many weights and thus be much too memory intensive for practical
use.

3.3 Designing and Training Models

Since neural networks often are considered a black box, albeit a box which one can peek
into, there is no textbook way to define a network or which parameters to use for the
best results. One can only speculate over, mimic and compare different networks to find
a solution that will handle the provided data and give the desired predictions. However,
there are a variety of topics to consider when attempting to optimize a neural network.
These can relate to changing the architecture of the model entirely or simply how much
or even how training is done. Many of these features have already been implemented in
the frameworks used today and are commonly referred to as hyperparameters.
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3.3.1 Scaling and Normalization

The first step to consider is if the data being used is properly defined for the model. If
the features being fed into the network are not of relevance or perhaps even corrupted
this must be handled before the learning process even begins. Because the data in this
project is completely synthesized many of these methods become redundant. However,
one such preprocessing method may be necessary to do, which is to simply scale the data
sent to the network. The goal is to scale the values in such a way that they are within
the range of all used activation functions see section 3.3.10, this method is referred to
as amplitude scaling [18, p. 102]. When utilizing supervised learning it may greatly
increase the performance of the algorithm if the output target data is scaled properly.

3.3.2 Data Splitting

A common practice when training networks is to perform a data split. Data splitting is
done by extracting a subset from the available data to train the model and discarding
it during training. Once training has been performed the subset is used to perform a
sort of cross-validation [29, p. 198]. The idea is that the subset should mimic the data
which the model has been trained on, however, it should also be data which the model
has never encountered before. The performance of the subset, often referred to as a test
set or hold-out set, will then be evaluated and compared to that of the training set.

How large of a percentage of the original data is used as a test set differs, depending on
how much data is available for training. However many neural network modellers find
themselves using around 10-30% of the entire dataset [36, 50]. The reasoning behind
this method is to examine if the model is being overfitted, see section 3.3.3, or is able
to further converge to a better solution. The goal of a model is usually not to exact a
function based on data but rather approximate, to capture features of the input data and
interpret it.

3.3.3 Overfitting

Further training a model on a dataset will indeed create a better fit for the data which is
present in the dataset. However, a better fit for the trained dataset does not necessarily
follow a better fit for the data seen in future predictions [14], see Fig. 8.

In section 3.3.2 it is explained that data is often split into a training and test set. By
examining the difference in loss between the two sets we can determine if the model has
been overfitted or not. If the loss during training is lower than the loss during testing it
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(a) Good fit (b) Overfitting (c) Underfitting
Figure 8 Three different degrees of data fitting in a classification problem, the line
represents the border of the decision.

is usually an indication that the model has been overfitted. What has occurred is that the
model has memorized the training set and lost the ability to generalize. Overfitting may
materialize due to a too-deep network, meaning too many weights to train and too many
redundant input data points. Another reason is that the model is trained for too long. As
a consequence, the model begins to memorize all the data, even the noise present in the
dataset. It is possible to determine how long is ”too long” for a model to be trained by
examining the loss of the training set compared to the test set between each epoch. Once
the loss of the test set begins to increase, whilst the training set loss is still decreasing,
it is evident that the model has begun to overfit [18, p. 96]. There are a couple of tools
which can be used such as regularization or dropout which attempt to lower the chance
of overfitting.

3.3.4 Regularization

Regularization is done by adding a penalty factor to the loss function, changing the
total error to Etotal = Eloss + λEpenalty where λ scales at which rate the penalty factor
contributes to the total error [18, p. 110]. The penalty term is meant to penalize a
complex network (large network), in an attempt to lower the chance of overfitting. There
are different ways to calculate the penalty factor, all with different intentions and ideas
on how to manipulate the weights. One such is weight decay Epenalty = 1

2

∑
w2

i , where
w are the weights in the network. The goal with weight decay is to force small weights
to be equal to zero. The regularizors used in this project will be L1, L2 and L1L2 [5].
Equations (6) and (7) below show how these are calculated, where L1L2 is simply
applying both penalty factors.

L1penalty = λ
∑

wi (6)
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L2penalty = λ
∑

w2
i (7)

3.3.5 Dropout

Because the performance of a neural network is stochastic in nature it is reasonable to
assume that given the same architecture and the same training data the weights will not
always converge to the same values. One way to combat this is to train several models
and then average the weights of the models [33, p. 155], to reduce the variance between
the models and by doing so also reduce overfitting. However, since training a single
model may take a substantial amount of time it is not always feasible to do so. Dropout
is a technique which allows for this to be done without the need to separately train
the networks. Instead, we use the original architecture and drop some of the units in
the network and train the network with a new iteration of these subnetworks for each
batch. It is worth noting that since the connections, and by extension their weights, for
some nodes have been removed they will not be updated during that batch. The dropout
technique can be used to the degree the modeller wishes, meaning it can be layer specific
or used on every layer in the entire network [1].

3.3.6 Learning Rate

This value dictates how greatly the weights are altered with each update. If the learning
take is too large then the update may overshoot the local or global minimum, on the
other hand, if it is too small the steps convergence may take an unnecessary amount of
steps [18, p. 107]. Smaller learning rates also run the risk of ending up in a local min-
imum, even though a better local minimum is close nearby. Since both magnitudes of
learning rate cause problematic behaviour it is common practice to dynamically change
the learning rate during training. The idea is to compare the loss of the current state and
the previous state. If the network is converging too slowly then increase the learning
rate and if the error is not decreasing fast enough or, perhaps is increasing, then lower
the learning rate. Some optimizers already take this into consideration inherently with
their own methods for altering the learning rate between epochs. The learning rate may
be applied in such a specific manner as to assign a learning rate for each weight. The
learning rate, therefore, gives the modeller a tool to change the impact of certain data
on the model when fitting the model to a dataset.
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3.3.7 Optimizers

The optimizers are used to decide what adjustments should be made to the weights of
the model and as such has a large impact on the performance of a model [18, p. 109]. It
is the method which defines how to move the weights in order to, hopefully, reach the
global minimum of the loss function. There is always the possibility to write ones own
optimization function, however in this work functions that are already defined will be
the focus such as those given by the Keras framework [4]

3.3.8 Loss Functions

The function which defined how near the predicted output is from the desired output
that is given f(y, ŷ). The goal is for ŷ → y, and the closer this is the smaller the loss
function is. From the loss function, a cost function is defined, which is the average loss
over all the training data [33, p .40]. The goal of training is then as simple as finding the
weights and biases which give the lowest value from the cost function. Naturally one
can define one’s own loss function, however, there are many predefined loss functions
which are available for use in most machine learning frameworks [2].

3.3.9 Epochs and Batches

A batch refers to a subset of the training set. During training, the model only updates
the weights and biases after an entire batch has been gone through [33, p. 125]. The
size of a batch can be chosen by the modeller to be as large as seen fit, this should be
experimented on to see what gives the best results. It is important that the batches are
balanced and represent the entire training set as close as possible. Once the model has
gone through every batch of the training set it is seen as completing one epoch. By
increasing the number of epochs we essentially fit the model repeatedly on the training
set, this is beneficial until the point of overfitting.

3.3.10 Activation Functions

As described in section 3.2.1, the activation function determines how the inputs of the
neuron are handled and how strong the output signal of the neuron will be [18, p 17-19].
The only requirement is that the activation function has to be everywhere differentiable,
otherwise one cannot perform back propagation [16]. For example, an activation func-
tion could be a simple linear function, a sigmoid function, a reLU function or perhaps
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a leaky reLU function. The definition for these can be seen below in Eq (8), (9), (10)
and (11), where λ is a scalar. By experimenting with different activation functions in
different layers we are able to add another parameter that can be modified to increase
the performance of the model.

flinear(x) = λx (8)

fsigmoid(x) =
1

1 + e−λx
(9)

frelu(x) =

{
x, x ≥ 0

0, x < 0
(10)

fleakyrelu(x) =

{
x, x ≥ 0

λx, x < 0
(11)

3.3.11 Adding Noise to a Data-set

Injecting noise into the data can help when trying to generalize the function of the
network. Especially when there are a limited number of patterns to train on since this
will generate new data for the network to be fit against [18, p .105]. As long as the noise
is of normal distribution, with a small variance and zero mean the effects on the output
should have little change. The result should be that the convergence of the network to
an optimal solution is faster.

However, in this project, the signals are already by default injected with noise as a
part of the data synthesizing. It has been is found that too heavy noise can disrupt the
network, causing it to learn something completely different than the intended objec-
tive [42]. It is therefore worth examining at which point increasing the range of SNR
or α is detrimental to the network, such that the noise is stronger in comparison to the
signal.
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3.3.12 Ordered Training

As previously mentioned in section 3.3.11, too much noise can negatively impact a
network even though it is part of the dataset which contains signals that the model can
typically expect to see. One method to iterate on the dataset, which is to be tested, is
to order the data when training and lower the learning rate, see section 3.3.6, during
training such that the noisier signals have less impact on what is learned by the network.
An example of this can be found in [21] where simply changing the ordering of how the
model was trained prompted an increase of accuracy on the entire dataset, including the
signals with higher noise presence.
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3.4 Signal Processing Model Background

As previously mentioned in section 3.3 there is no clear-cut way to develop a neural
network to get the optimal performance. Therefore, in this project, a study was con-
ducted to explore the design approaches used by others who have implemented similar
functionalities in their neural networks. As a result of this research, Table 1 was created
containing various implementations of network architectures as well as their accuracy.
The prospects of this table can be seen in Figs. 9 and 10. It is worth mentioning that
the different model alternatives explored goes beyond this table, however not all sources
provided sufficient performance metrics and thus have been excluded from the table.

Table 1: Review of the related neural network models.

Source Purpose Noise Type Network Type Performance
Metric

Year

[37] Channel estimation AWGN DNN BLER 2017
[53] Channel estimation AWGN DNN BER 2019
[23] Decoding AWGN DNN BER 2017
[28] Decoding AWGN DNN PER 2019
[36] Decoding AWGN CNN BER 2016
[17] Decoding AWGN DNN BLER 2018
[20] Decoding AWGN DNN BLER 2019
[45] Demodulation AWGN RNN BER 2020
[51] Demodulation AWGN CNN BER 2020
[56] Demodulation AWGN CNN BER 2020
[50] Demodulation AWGN ResNet(CNN) BER 2022
[55] Demodulation AWGN CNN BER 2018
[41] Demodulation SaS DNN SER 2019
[49] Demodulation SaS CNN/RNN BER 2019
[30] Demodulation AWGN CNN BER 2020
6.1 Demodulation SaS ResNet(CNN) BER 2023
6.1 Decoding SaS ResNet(CNN) BER 2023
6.2 Demodulation SaS CNN BER 2023
6.2 Decoding SaS CNN BER 2023
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Figure 9 Bit and Block Error Rates of Source Models.
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Figure 10 Symbol and Packet Error Rates of Source Models.

25



4 Methodology

4 Methodology

With all the new knowledge assembled from researching the topic of neural networks
a set of different tests were designed to attempt to create an enhanced solution, giving
neural networks a fair chance to compete with standardized methods. The tools utilized,
the data synthesizing process and which different tests were to be performed was fully
defined from the beginning of the testing phase.

4.1 Software Tools

The software used in this project has mainly been Python-based, with an exception
for encoding and decoding which is Matlab-based. Although the Matlab engine [9]
was utilized to encode the data it was always done from within Python code, which
facilitated the entire process of training and testing models. Keras [3], the python deep
learning API, facilitated the neural network creation and learning procedures. Scipy
was used to generate the α stable noise [11] as well as for Z-score normalization [12].

4.2 Synthesizing Data

In supervised learning, it is required that the model is provided with both the input data
and the expected output data. Since it is easy to mimic data that a demodulator within a
receiver typically would get it was decided that the data which the network would train
on was to be synthesized complex baseband in-phase and quadrature components (IQ)
data. This choice is reinforced by the fact that the comparison systems use the same
type of data, see section 4.3.3.

To create the signal message a random sequence of bits is created using the numpy
random number sequence generator [10], which is then fitted to either high or low bits.
The length of this sequence was chosen to be 120, as this value is suitable for both
encoding types. Initially, a python-based Hamming encoder was utilized, however as
this encoder lacked a decoder which took into consideration soft demodulation choices it
was decided to move over to a Matlab-based encoder [7]. To encode LDPC encoding, no
properly functioning python method was found, therefore a Matlab LDPC encoder [8]
was utilized instead. In order for the decoding and encoding to use the same parameters,
for every signal, the same Hamming and LDPC parity matrices were used at all times.
If training bits are added to the signal they are added as the next step after encoding and
are always sampled from the same sequence of bits, as new sequences would naturally
defeat the purpose of this method. This sequence of bits is generated beforehand by
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uniformly randomizing values of ones and zeroes.

As the purpose of this work is to explore the possibility of implementing an adaptive
demodulator including or excluding decoding for an environment with noise present it
is also reasonable to choose modulation types which are not as impacted by disruption
as others. This infers fewer nodes that are further apart from one another, therefore
QPSK was chosen. The modulation is done by converting each set of bit samples to an
IQ data sample, essentially performing QPSK. The manner for how this was done can
be seen in Eq (12), which shows the generation of each IQ data point IQp from a given
bit message sample B.

IQp = 2B2p − 1 + (2B2p+1 − 1)i (12)

The noise to be added onto the modulated signal was created by using the levy stable
randomized number sequence generator provided by Scipy [11]. Two sequences are
generated and added to the signal in order to simulate channel propagation, one for the
real portion and one for the imaginary portion. In order to ensure that this was the same
noise model studied by Kristoffer Hägglund and Erik Axell [26], which experimented
on the systems that this is to be compared to, the noise was generated using the same
method as that project. It was found that the probability density function of the different
methods [6, 11] were the same and that they therefore could be used interchangeably.
Given that they are equal and the workflow is mostly python-based it was decided to use
the Scipy version.

The original signals, either encoded or unencoded depending on the scenario, as well as
the signals to be demodulated or demodulated and decoded, are then sent to the model
for training. The final step of preparing the data is to normalize the values. This is done
as a pre-processing step as the receiver will most likely have to do this whenever the
signal is received if this system ever sees practical use.

4.3 Evaluation Methods

As this project proposes four different models it will also require four different methods,
one for each model, to interpret the predictions made by these models and evaluate
their performance. However, the data generated for these models will be done in the
same manner for all four evaluation methods where the target data generated will be
the original message. Two of the evaluation methods are quite similar, demodulation
including decoding for Hamming and LDPC. The signals from the generated data are
fed into the models and since the model prediction is always a soft prediction the values
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are rounded to be fit to either low or high. The rounded predictions are then compared
to the original message to evaluate the performance, the metrics of which are described
below in section 4.3.1.

The two remaining proposed models where the neural networks only perform demod-
ulation still require decoding to be evaluated. Both decoders expect to receive LLR
values and because the model outputs a likelihood that each bit is high, P (h = 1), we
must first convert these predictions to LLRs. This is done by using each prediction to
calculate the corresponding LLR value, as seen in Eq (13).

llri = log10(
1− (P (hi = 1))

P (hi = 1)
) (13)

Once converted the values are sent to either an LDPC decoder or a Hamming decoder
depending on which encoding is being used. The same Hamming and LDPC parity
matrices that were used when encoding are loaded and used to decode the messages.
The output from the decoders is compared to the target message to evaluate the model’s
performance according to the metrics described in section 4.3.1. For each test, 1000
iterations per SNR and per α were made in order to lower result bias.

Initially, the criteria for a functioning system was to consider a BER of 10−4 to be suffi-
cient for use. A system would be considered better at a certain α if it passed this criterion
at a lower SNR than another. However, during the preliminary testing, it was discov-
ered that achieving this criterion in early development was unlikely or even impossible
due to the poor performance of the models. Therefore, each curve was inspected in
regards to each other and not only evaluated after how quickly the model was able to
achieve a BER of 10−4. As the goal of the project is to create an adaptive demodulator
or adaptive demodulator and decoder it is important that the performance on one side
of the α spectrum not be neglected in order for the performance on the other to excel.
To ensure that this is not the case the entire 3D graphs, depicting the performance for
each individual α on every SNR, had to be inspected and evaluated against each other
to determine whether an improvement had been made with a certain change.
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4.3.1 Performance Metrics

Bit error ratio (BER) is the ratio at which errors occur within a message. Given a
message of length l where e errors have occurred the error rate can be calculated as
r = e

l
. The bit error ratio average is of importance when measuring the performance

of a system. The average ratio can be calculated as the sum of all error rates for each
message divided by the number of messages m, see Eq (14).

BER =

∑m
i=1 ri
m

(14)

4.3.2 Interpreting Graphs

It is common practice when evaluating a system to present a BER depending on the
SNR. This is because communication systems are often evaluated over different SNRs
and it is important to see the performance of the system depending on this ratio. Due
to this project containing another variable which alters the signal, namely the α param-
eter in the SaS distribution mentioned in section 3.1.3, the models must be evaluated in
regards to BER with alternating α value and SNR. In addition to the three dimensional
(3D) graph, a two-dimensional (2D) graph will be created in hopes of making the com-
parison of different model layouts simpler to convey. This 2D graph will contain the
mean of the performance of the models for 1.0 ≤ α ≤ 2.0, the performance of Gaussian
noise as well as the performance when α = 1.5.

4.3.3 Final Comparison Scenario

The solutions utilizing this project’s proposed models will be compared to five different
techniques. These are a residual convolution network [50], a dense neural network [41]
and the standard demodulator from the MathWorks communication toolbox, where the
standard demodulator is provided with either the exact noise distribution, an estimate of
the noise distribution based on the noise applied to the signal or the Gaussian distribu-
tion.

As this project proposed solution is a neural network-based solution, it stands to reason
that it is also compared to other neural network-based solutions. These models have
to be modified slightly to be used in this scenario, see section 5, but the architectural
design and flow of the models are the same. The models compared against are a dense
neural network and a residual convolutional network as they appeared to perform the
best out of those researched in section 5. In regards to data trained on, SNR range, and
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α range these models will be using the same parameters as this project’s proposed mod-
els. In addition, the solution will be compared to a Gaussian standard demodulator and
the Genie demodulator where in one scenario Genie is given the exact noise distribution
and in another, it is given an estimate of the distribution. The difference between these
cases is the demodulator’s understanding of the noise distribution. Given the exact dis-
tribution, which Genie is given, the demodulator has better conditions to demodulate the
message. This follows that the Gaussian standard demodulator, which assumes AWGN
noise, will have worse conditions for demodulation when α is varied.

It is anticipated that methods based on neural networks will outperform those that are
not based on neural networks in terms of demodulation and decoding time. Therefore,
the BER will be employed as an important metric to compare the methods. In regards
to the final evaluation and comparison with existing techniques, for demodulation or
demodulation and decoding, it is decided to evaluate the performance of each method
using Gaussian noise and SaS noise where the α value has been uniformly randomized
between the values one and two. This will create a similar graph to the 2D graph used
when comparing different models, excluding the curve displaying performance on strict
a = 1.5. This is done because, for some of the existing techniques, it is not feasible
to evaluate all α values separately as well as SNR, as this would take too long. The
iteration count was increased to 10000.
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5 Model Implementation

The process of developing a model architecture and tuning its hyperparameters to im-
prove performance with respect to BER will be described in the following.

Firstly the objective of the model had to be decided. Since it already had been decided
that the model should receive IQ data as input the next decision would be what the
output should be. Due to the curse of dimensionality, see section 3.2.7, it was attempted
to create a model where each output represented the probability that a bit is high. By
doing so it is possible to decrease the number of output nodes from n to 2n where n is
the length of the codeword or message, see Fig. 11. This in turn infers that the model is
expected to approximate the code structure.

Bit 1

Bit 2

Bit 4

Bit 3

0000

0001

1111

Figure 11 Output layer of two neural networks the one to the left has an output vector
of length n and the one to the right an output vector of length 2n.

The next step was to test the models mentioned in section 3.4 in this new scenario. Even
though the implementations were similar, meaning they accomplished demodulation or
decoding, their input data did not necessarily match that of this project. The models,
therefore, were modified to fit the parameters of this scenario. As the models were orig-
inally tested on a different scenario we must be aware that the same performance is not
guaranteed for the scenario set before them now. Once the models had been recreated
they were tested to figure out what neural network features could be considered useful
for this task. The most prominent model architectures, and their characteristics, were
then used as inspiration to create this project’s proposed models. These models were
iterated by adding or removing layers, dropout, tweaking layer parameters and adding
skip connections to improve them.

The final architectural solution, shown in section 6, differs depending on how the mes-
sage is encoded, through Hamming or LDPC, resulting in two different architectures,
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Hannet and Lannet. As can be seen in Figs. 12 and 13 it outperforms the replicas of the
best-performing neural networks gathered previously during the initial research. Once
the architecture was decided the possible improvement methods described in section 3.3
were evaluated.

In the case of LDPC encoding, the 2D graph in Fig. 13 would suffice to evaluate the
performance of this project’s proposed LDPC model, Lannet, compared to the other
models. However, to understand the choice in Hamming model architecture the 3D
graphs in Fig. 12 must be examined. The results show that the proposed Hamming
model, Hannet, outperforms the other models on average over all α values. Therefore,
Hannet was chosen as the model architecture to proceed with.

As the model architectures had now been decided the next step was to change various
aspects of training, such as tuning training data and altering hyperparameters. Numer-
ous tests were performed to determine which training solution made the models perform
best. Section 3.3 mentions a variety of different techniques for improving a model’s per-
formance. These are all, with the exclusion of dropout and activation functions which
already had been tested, explored in the tests below.
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(a) Best model architectures (b) DNN

(c) Hannet (d) ResNet CNN

Figure 12 Bit Error Rates of Best Model Architectures for Hamming Encoding

33



5 Model Implementation

-10 -5 0 5 10 15 20

SNR

10-4

10-3

10-2

10-1

100

B
E

R

Bit Error Rate

DNN, 1.0<= <=2.0
Lannet, 1.0<= <=2.0
Resnet CNN, 1.0<= <=2.0
DNN,  = 2
Lannet,  = 2
Resnet CNN,  = 2
DNN,  = 1.5
Lannet,  = 1.5
Resnet CNN,  = 1.5

Figure 13 Bit error rates of best model architectures for LDPC encoding.

5.1 Decision of SNR and Alpha Spectrum

As mentioned in section 3.3.11, too noisy input data may decrease the performance of
the model. Therefore it is important to limit the input spectrum in regards to SNR and
perhaps even α, as α dictates how impulsive the noise is. When testing, it was found that
for both Hannet and Lannet a range of 7-20dB in SNR performed the best. As for α, the
range differs where Hannet performed the best with the range [1.7, 2.0] and Lannet with
[1.8, 2.0], see Figs. 14, 15, 16 and 17. Even though the data can be deemed ”unseen”
by the model it still outperformed a model trained on only α = 1.5 or a range of values
close to 1.5 in regards to its accuracy on that α value.
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(b)
Figure 14 Bit error rates of Hannet for choice of SNR training range. Neural network
solutions in (a) perform only demodulation whereas in (b) they also perform decoding.

34



5 Model Implementation

-10 -5 0 5 10 15 20

SNR

10-4

10-3

10-2

10-1

100

B
E

R

Bit Error Rate

Alpha[1.5,2.0], 1.0<= <=2.0
Alpha[1.7,2.0], 1.0<= <=2.0
Alpha[1.9,2.0], 1.0<= <=2.0
Alpha[1.5,2.0],  = 2
Alpha[1.7,2.0],  = 2
Alpha[1.9,2.0],  = 2
Alpha[1.5,2.0],  = 1.5
Alpha[1.7,2.0],  = 1.5
Alpha[1.9,2.0],  = 1.5

(a)

-10 -5 0 5 10 15 20

SNR

10-4

10-3

10-2

10-1

100

B
E

R

Bit Error Rate

Alpha[1.5,2.0], 1.0<= <=2.0
Alpha[1.7,2.0], 1.0<= <=2.0
Alpha[1.9,2.0], 1.0<= <=2.0
Alpha[1.5,2.0],  = 2
Alpha[1.7,2.0],  = 2
Alpha[1.9,2.0],  = 2
Alpha[1.5,2.0],  = 1.5
Alpha[1.7,2.0],  = 1.5
Alpha[1.9,2.0],  = 1.5

(b)
Figure 15 Bit error rates of Hannet for choice of α training range. Neural network
solutions in (a) perform only demodulation whereas in (b) they also perform decoding.
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(b)
Figure 16 Bit error rates of Lannet for choice of SNR training range. Neural network
solutions in (a) perform only demodulation whereas in (b) they also perform decoding.
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(b)
Figure 17 Bit error rates of Lannet for choice of α training range. Neural network
solutions in (a) perform only demodulation whereas in (b) they also perform decoding.

5.2 Results of Ordering the Training on the Data-set

By ordering the SNR when training we can find performance improvements. What
is more curious is if the same can be said for ordering the α value. Based on what
was mentioned in section 3.3.12, an attempt was made to order the α value and SNR
combinations as well. The orderings were calculated by generating 107 samples of SaS-
modelled noise for each combination of SNR and α to estimate it’s impact on the signal.
The orderings were then realized by some definition disruptions, meaning how far away
from the original constellation the noise would push the symbol sample. The differ-
ent types were greatest disruption, number of disruptions with a magnitude of 0.5 and
above, number of disruptions with a magnitude of 1.0 and above, and the standard devi-
ation of all samples. The results can be seen in Figs. 18 and 19 where it was found that
no devised ordering schematic had any clear beneficial improvements. The orderings
were tested on the range of SNR 7-20dB and α ∈ [1.8, 2.0] or α ∈ [1.7, 2.0] based on
the previous test.
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(b)
Figure 18 Bit error rates of Hannet for choice of training order. Neural network solu-
tions in (a) perform only demodulation whereas in (b) they also perform decoding. The
orderings are based on the number of disruptions, caused by the noise in each data-set,
with a magnitude of over 1.0 and 0.5 respectively.
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(b)
Figure 19 Bit error rates of Lannet for choice of training order. Neural network solu-
tions in (a) perform only demodulation whereas in (b) they also perform decoding. The
orderings are based on the number of disruptions, caused by the noise in each data-set,
with a magnitude of over 1.0 and 0.5 respectively.
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5.3 Outcome of Lowering Learning Rate Between Fittings

On top of the already lowered learning rate done by most optimizers for each epoch, it
was also attempted to lower the learning rate between each fitting of the data. However,
as can be seen in Figs. 20 and 21 changing this had no clear improving effect, except for
in the case of Hannet performing only demodulation where weighted decay by a factor
of 0.9 seemed to be the best alternative. The learning rates were altered by a weighted
decay which essentially decreased the learning rate by a factor of 0.9 or 0.7 between
each data fitting.
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(b)
Figure 20 Bit error rates of Hannet for choice of learning rate decay, where lr is the
factor of which the learning rate decays between fittings. Neural network solutions in
(a) perform only demodulation whereas in (b) they also perform decoding.

5.4 Effect of Fitting the Output to the Sigmoid Function

Section 3.3.1 mentions that scaling the target data for a neural network is another way
to improve performance. Both models utilize the same output function, namely the sig-
moid function. The sigmoid function can output a value in the [0, 1] range, and reaches
these limits as x approaches infinity and negative infinity respectively. However, as
reaching a weight of infinity may create mathematical issues when training, it is reason-
able to lower the output target from the desired 0 and 1.0 to something more reasonably
achievable. The values are therefore altered to be 0.05 and 0.95 in order to facilitate
this for the sigmoid function. As can be seen in Fig. 22, Hannet performing demod-
ulation and decoding has decreased performance when scaling the output whilst when
performing only demodulating the performance is increased. On the contrary, Lannet
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(b)
Figure 21 Bit error rates of Lannet for choice of learning rate decay, where lr is the
factor of which the learning rate decays between fittings. Neural network solutions in
(a) perform only demodulation whereas in (b) they also perform decoding.

performing both demodulation and decoding in Fig. 23 has improved performance when
scaling the output whilst when only performing demodulation it has drastically lower
performance.
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(b)
Figure 22 Bit error rates of Hannet for choice of sigmoid fitting. Neural network solu-
tions in (a) perform only demodulation whereas in (b) they also perform decoding.
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(b)
Figure 23 Bit error rates of Lannet for choice of sigmoid fitting. Neural network solu-
tions in (a) perform only demodulation whereas in (b) they also perform decoding.
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5.5 Choice of Loss Function and Optimizer

Originally binary cross entropy (BCE) was used during the previous tests as this is con-
sidered a well-performing loss function in a multi-label classification problem. How-
ever, since no scientific evidence was found to support this fact a test was conducted
to evaluate a larger selection of loss functions. Most functions provided by Keras [2]
were able to provide a suitable fit, often performing on par with BCE. However, for
three of the four models BCE was beaten by a slight margin, as seen in Figs. 24 and 25.
The mean squared logarithmic error (MSLE), for Hannet and Lannet performing only
demodulation, and the Huber loss function, for Hannet also performing decoding, gave
the best results.

The performance of the optimizers differed depending on which encoding was used.
The Adam optimizer performed best when the message was encoded with LDPC en-
coding, see Fig. 27. However, for the Hamming encoded messages the RMSProp op-
timizer performed the best for Hannet when demodulating and decoding whilst Adam
performed best for Hannet when only demodulating, see Fig. 26.

-10 -5 0 5 10 15 20

SNR

10-4

10-3

10-2

10-1

100

B
E

R

Bit Error Rate

BCE, 1.0<= <=2.0
huber, , 1.0<= <=2.0
MSLE, , 1.0<= <=2.0
BCE,  = 2
huber,  = 2
MSLE,  = 2
BCE,  = 1.5
huber,  = 1.5
MSLE,  = 1.5

(a)

-10 -5 0 5 10 15 20

SNR

10-4

10-3

10-2

10-1

100

B
E

R

Bit Error Rate

BCE, 1.0<= <=2.0
huber, , 1.0<= <=2.0
MSLE, , 1.0<= <=2.0
BCE,  = 2
huber,  = 2
MSLE,  = 2
BCE,  = 1.5
huber,  = 1.5
MSLE,  = 1.5

(b)
Figure 24 Bit error rates of Hannet for choice of loss function. Neural network solutions
in (a) perform only demodulation whereas in (b) they also perform decoding.
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(b)
Figure 25 Bit error rates of Lannet for choice of loss function. Neural network solutions
in (a) perform only demodulation whereas in (b) they also perform decoding.
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(b)
Figure 26 Bit error rates of Hannet for the optimizer choice. Neural network solutions
in (a) perform only demodulation whereas in (b) they also perform decoding.
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(b)
Figure 27 Bit error rates of Lannet for the optimizer choice. Neural network solutions
in (a) perform only demodulation whereas in (b) they also perform decoding.

5.6 Normalization Results

The normalization used is provided by the Scipy library and is referred to as Z-score
normalization. The general idea is to update each value in the set such that Vnew = (V−µ)

σ
,

where V is a given value in the set, µ is the mean and σ the variance. By doing so the
goal is to give the dataset a mean of 0 and a variance of 1, which may ease the learning
process for the models. However, as can be seen in Figs. 28 and 29, it had no greater
effect on higher α values and decreased the performance over all other values for both
Lannet and Hannet. The same test was also done using L1 and L2 normalization which
ultimately gave the same results.

5.7 Effect of Regularizing the Layers

As for regularization choice, this method had already been iterated upon on a layer-
specific level during the architecture design phase without giving any beneficial results.
Nevertheless, a test was constructed where each layer of the model would be assigned
the same regularization method. Because regularization expects the mean of each fea-
ture to be 0 it was decided to be tested in combination with normalized data. This safety
precaution is rather redundant as the data should already have a mean of 0, therefore a
test was also conducted without normalizing the data and the results were found to be
similar to that of the test results presented in Figs. 28 and 29. It was found that utilizing
regularization caused the model to more often get stuck in a local minimum, as can be
seen in Fig. 29. If the model did not get stuck in a local minimum it performed worse or
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on par with a model which did not have regularization added to it, and therefore it was
decided to not utilize this neural network feature.
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(b)
Figure 28 Bit error rates of Hannet for choice of normalization and regularization. Neu-
ral network solutions in (a) perform only demodulation whereas in (b) they also perform
decoding.
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Figure 29 Bit error rates of Lannet for choice of normalization and regularization. Neu-
ral network solutions in (a) perform only demodulation whereas in (b) they also perform
decoding.
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5.8 Outcome of Adding Training Bits

In the comparison in Figs. 30 and 31 it can be seen that the training bits increase the
performance of the higher valued α but in return, since the mean does not change, the
lower α values performance is decreased. The length of the training bit sequence was
20% of the encoded message length. Adding training bits gave no concrete improve-
ments to the model, however, did inherently add more overhead data to the message
payload and in turn decreased the throughput of the system. Therefore, it was decided
to not add training bits to the data.
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(b)
Figure 30 Bit error rates of Hannet for choice of training bits. Neural network solutions
in (a) perform only demodulation whereas in (b) they also perform decoding.
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(b)
Figure 31 Bit error rates of Lannet for choice of training bits. Neural network solutions
in (a) perform only demodulation whereas in (b) they also perform decoding.
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(b)
Figure 32 Bit error rates of Hannet for choice of epochs, where Ep is the number of
epochs trained on each data-set. Neural network solutions in (a) perform only demodu-
lation whereas in (b) they also perform decoding.

5.9 Effect of Epochs, Batch Size and Data-set Size

Three different epoch counts were examined which can be seen in Figs. 32 and 33.
As the amount of data is very high the epoch values are also quite low since adding
more would only result in overfitting. For Hannet, it was found that 20 epochs for
demodulating and five epochs for demodulating and decoding gave the best results. As
for Lannet, ten epochs seemed to give the best performance regardless of whether the
model performed only demodulation or also decoding. However, in all cases, it would
seem that increasing the epoch count over ten has little to no effect on the model, as no
clear trend is found, and they all converge to the same local minimum regardless.

Lowering the batch size drastically increases the training time of the models, because
the number of times for which the model weights are updated is also increased. For
most models, it would seem a lower batch size value would increase performance all
around, see Figs. 34 and 35. However, for Lannet performing only demodulation, the
best batch size is 32. Even though the tests show a trend of better performance when
lowering the batch size it can also be argued, due to the results of the different iterations
of the models being so similar, that any of the three batch sizes would be sufficient.

Increasing the training data set size also increases the performance of the model, albeit
very slightly in the case of the Lannet performing demodulation and decoding, as can
be seen in Figs. 36 and 37. The measurement shown is the amount of data for each SNR
that the model is trained on.

46



5 Model Implementation

-10 -5 0 5 10 15 20

SNR

10-4

10-3

10-2

10-1

100

B
E

R

Bit Error Rate

Ep = 5, 1.0<= <=2.0
Ep = 10, 1.0<= <=2.0
Ep = 20, 1.0<= <=2.0
Ep = 5,  = 2
Ep = 10,  = 2
Ep = 20,  = 2
Ep = 5,  = 1.5
Ep = 10,  = 1.5
Ep = 20,  = 1.5

(a)

-10 -5 0 5 10 15 20

SNR

10-4

10-3

10-2

10-1

100

B
E

R

Bit Error Rate

Ep = 5, 1.0<= <=2.0
Ep = 10, 1.0<= <=2.0
Ep = 20, 1.0<= <=2.0
Ep = 5,  = 2
Ep = 10,  = 2
Ep = 20,  = 2
Ep = 5,  = 1.5
Ep = 10,  = 1.5
Ep = 20,  = 1.5

(b)
Figure 33 Bit error rates of Lannet for choice of epochs, where Ep is the number of
epochs trained on each data-set. Neural network solutions in (a) perform only demodu-
lation whereas in (b) they also perform decoding.
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(b)
Figure 34 Bit error rates of Hannet for choice of batch size. Neural network solutions
in (a) perform only demodulation whereas in (b) they also perform decoding.
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(b)
Figure 35 Bit error rates of Lannet for choice of batch size. Neural network solutions
in (a) perform only demodulation whereas in (b) they also perform decoding.
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(b)
Figure 36 Bit error rates of Hannet for choice of data set size, where dss is the size of
each data-set for each SNR trained on. Neural network solutions in (a) perform only
demodulation whereas in (b) they also perform decoding.
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(b)
Figure 37 Bit error rates of Lannet for choice of data set size, where dss is the size of
each data-set for each SNR trained on. Neural network solutions in (a) perform only
demodulation whereas in (b) they also perform decoding.

6 Model Architecture

Depending on whether the neural networks demodulate and exclude or include decod-
ing, as well as which encoding is used, the design of the models will differ. The largest
difference is the architectural design of the models which changes depending on which
type of encoding is used. In the following sections, the different types of model archi-
tectures will be outlined as well as which hyperparameters are used depending on if the
model is to perform only demodulation or also decoding. All the parameters are set in
a particular manner in accordance with the tests laid out in section 5, unless otherwise
specified. By changing the output and input of the models the hidden layers will be dy-
namically altered, however, there is no guarantee that the performance will be the same
if the models are trained with a different size than that used in this thesis. The mod-
els were trained on datasets with different SNRs, starting with the highest SNRs and
lowering it for each fitting. Table 2 lists the parameters used when training the models.

6.1 Hannet Model

This project proposes a model architecture for Hamming encoding that consists of four
blocks, the first and third being identical. The first block consists of an upsampling
layer followed by two convolutional layers, seen as the purple block in Fig. 38a, and the
second block consists of a skip connection preceding two convolutional layers, seen as
the blue block in Fig. 38a. The second convolution in the first and third blocks is used to
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Table 2: Proposed model parameters. Dataset size refers to the size of each dataset per
SNR trained on.

Demodulator Decoder
Encoding Hamming LDPC Hamming LDPC
Optimizer Adam Adam RMSProp Adam

Dataset size 40 000 40 000 40 000 40 000
Batch size 16 32 16 16

Epochs 20 10 5 10
Training Bits No No No No

Normalization No No No No
Regularization No No No No
Output fitting Yes No No Yes

Learning rate decay 0.9 1.0 1.0 1.0
SNR range 7-20dB 7-20dB 7-20dB 7-20dB
Alpha range [1.7, 2.0] [1.8, 2.0] [1.7, 2.0] [1.8, 2.0]

Loss function MSLE MSLE Huberloss BCE

summarize the features and make for a faster learning process as opposed to replacing
it with a dense layer which would create a lot more weights. Finally, the fourth block,
seen as the green block in Fig. 38a, is the output which flattens the data and uses a final
dense layer with a Sigmoid activation to manifest the multi-labeled classification. After
each convolution follows an activation layer which uses the function rectified linear unit
(ReLU) as well as a batch normalization layer. The output length differs depending
on whether the model is performing demodulation or also decoding. If the model is
performing demodulation the output will be of 210 nodes long, however, if decoding
is included then the length will be 120 nodes. The codeword length of the Hamming
model remains seven bits long although, each message sequence is 210 bits in length
meaning that for each transmission 30 Hamming codewords are sent.

6.2 Lannet Model

This project proposes a model architecture for LDPC encoding that consists of three
blocks. The first block is the same as the one used in the Hamming model, seen as the
purple block in Fig. 38b, whilst the second block flattens the data then follows with a
dense layer, a reshape and two convolutional layers, seen as the yellow block in Fig. 38b.
Finally, the model flattens the data yet again after the convolutions and outputs the data
using a final dense layer with Sigmoid activation, seen as the green block in Fig. 38b.
After each 2D Convolution (convolutions in purple blocks) follows an activation layer
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which uses the ReLU function as well as a batch normalization layer, precisely as that of
the Hamming model. The second block utilizes no specific activation function after each
layer and thus defaults to linear activation. The output of the model is 240 nodes when
the model performs only demodulation and 120 nodes when the model also performs
decoding. The codeword length for the LDPC model is 240 bits long, with a code rate
of 1
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Figure 38 Schematics for the two proposed model architectures designed for different
encodings.

7 Results and Discussion

In this section, the performance of this project’s proposed model solutions, described
in section 6, will be presented and discussed. They are compared to standardized tech-
niques used today such as the Gaussian and Genie demodulator in combination with a
respective decoder depending on the encoding type. Another comparison made is be-
tween other well-performing model architectures and that of the one suggested in this
paper. In both Fig. 39 and Fig. 40 the left-hand graph represents the model’s perfor-
mance when Gaussian noise is added to the signal whereas the right-hand graph repre-
sented the model’s performance when SaS modelled noise has been added to the signal.
The Genie demodulator is tested with both an estimated α as well as the known α. All
the tests on the different techniques were made using the same dataset.

The Genie demodulator with known α is hard to see in the graphs displaying BER
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curves for α = 2, this is because when Genie is presented with this α value it defaults
to the Gauss solution and is thus the same solution in that particular scenario.

When the noise is Gaussian and demodulation including decoding is performed through
neural networks, Hannet and Lannet outperform the other models, however, when only
demodulation is done through neural networks they are outperformed by the other mod-
els tested. The Gaussian demodulator, and in extension the Genie demodulator with
known α as it defualts to the Gaussian demodulator when the noise is Guassian, out-
performs all models. However, when the Genie demodulator is given an estimation of
the noise distribution it, in the case of LDPC encoding, is outperformed by one of the
neural network-based solutions, namely the residual convolution network.

When performing only demodulation, if the α value is varied, Hannet and Lannet yield
considerably better results than every solution except for Genie with known or estimated
α. However, when Hannet and Lannet perform decoding in addition to demodulation,
their performance is slightly inferior in all cases. In the case of Hamming encoding,
Hannet exhibits better performance than all solutions except for Genie with known and
estimated α, while for LDPC encoding, Lannet is unable to outperform the Gaussian
demodulator.
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(b)
Figure 39 Comparison of solution using the proposed model, Hannet, and existing tech-
niques using Hamming encoding. In (a) the performance on Gaussian modelled noise is
compared whereas in (b) the noise is instead modelled with the SaS distribution, with
1.0 ≤ α ≤ 2.0. Demodulation refers to a model performing only demodulation whilst
decoding means that they perform both demodulation and decoding.
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Figure 40 Comparison of solution using the proposed model, Lannet, and existing tech-
niques using LDPC encoding. In (a) the performance on Gaussian modelled noise is
compared whereas in (b) the noise is instead modelled with the SaS distribution, with
1.0 ≤ α ≤ 2.0. Demodulation refers to a model performing only demodulation whilst
decoding means that they perform both demodulation and decoding.

The results show a rather satisfactory performance, where Lannet performing only de-
modulation on LDPC code seems the most promising solution. It was always expected
that this project’s proposed models performing demodulation would outperform the
Gaussian demodulator when α is varied, as the Gaussian demodulator assumes the noise
to be AWGN. However, it is by a larger margin than expected. The models are able to
perform almost on par with that of the Gaussian demodulator when the noise is Gaus-
sian, though, it does have a slight edge. Whilst this is the case, when the α value is
random Hannet and Lannet outperform the Gaussian demodulator in all cases but one.
As for Lannet, it seems to struggle to decipher the LDPC encoding, perhaps because it is
more complicated to estimate the function of LDPC encoding as opposed to Hamming
encoding.

Another interesting remark is the difference in the performance of the Genie demodu-
lator with known and estimated α. The known α given to the demodulator is the same
value used when generating the signal that it is to demodulate, thus it should be optimal.
However in practise, the generated noise is finite and because of this, even though it was
generated with regard to one distribution, it may be better suited to belong to a differ-
ent one. This means that when the method instead estimates the α value it may give a
better representation than that of the actual α used. This was found after experiencing
that the estimated α method in some scenarios outperformed the known α method and
therefore the estimated method may perform almost on par with that of the known α.
Additionally, it is important to acknowledge that the Genie demodulator requires the α
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parameter to be known, which is impossible in practise, whilst the estimator requires a
set of training bits to assume the noise distribution. Neither of these are needed for the
solution utilizing a neural network demodulator.

It was not expected that this project’s proposed models would outperform the Genie
demodulator since the Genie demodulator possesses complete knowledge of the noise
distribution, which enables it to provide optimal demodulation. The goal was rather to
see how close to the performance of the Genie demodulator a model could achieve. The
reason is that neural networks, even though they have a larger overhead of training, have
a lot shorter execution time than the Genie demodulator.

Whether the performances shown in these results are adequate for use or not is for the
user to determine, it highly depends on the system’s requirements. If the system can
guarantee a higher SNR or the BER requirement allows for higher error rates, then the
neural network solution is a valid alternative due to it being faster than standardized
methods. Regardless, it seems as if machine learning, specifically a neural network,
based approach to demodulating is a good alternative to Gaussian demodulation, due to
the BER performance gain in an impulsive environment seen in Figs. 39 and 40.

Another topic which should be discussed is an interesting one regarding strictly demod-
ulation models. It was found, but not quite proven, that the models will in some way
take into account the encoding when demodulating. This follows that the models can
make assumptions based on the provided data that a standard demodulator cannot as
they have no concept of encoding. Whether this is a good or bad trait is uncertain as
the model’s encoding-based assumptions may be false and end up creating an output
which is inauspicious when forwarded to the standard decoder. Continuing on the topic
of demodulation models, it is worth mentioning that the architectural model design for
each encoding type was decided upon prior to that of the training method and hyperpa-
rameter tuning. What this in turn means is that Lannet may now be able to demodulate a
message encoded with Hamming code better than Hannet as it saw larger improvements
than Hannet, even though Lannet seems to make demodulation choices based on the
assumption that the message has an LDPC code structure. It might even be the case that
Lannet, when instead trained on Hamming code, is better at demodulation including
decoding than Hannet on a message encoded with Hamming code.

Even though many of the tests did not grant any particular groundbreaking BER reduc-
tions they are still valuable going forward regarding the knowledge of what to focus
on when designing a neural network. It is also worth noting that even though the best-
performing parameter was used in the final product, and each test moving forward, many
of them are considered equal and it may be the case that the parameter had no impact
yet the model coincidentally found a better local minimum.
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The tests that should be repeated and elaborated, as this research moves forward, are
that of the architecture in combination with loss function, SNR and α spectrum and
perhaps using a different output, meaning a new output fitting. These were also the
most time-intensive tests as designing the architecture of a neural network can branch
off in so many directions and honing in on the perfect spectrum of SNR and α may be
architecturally specific.

There is also one test which may need revisiting, namely training bits. In this test the
training bits length is meant to be part of a synchronization phase in practical use. This
means that the length of the training bits segment can be much larger, and should be in
order to find meaningful data, without losing too much throughput. However, in the tests
performed in this work they were designed to be 20% of the length of the transmitted
signals, this results in a segment of roughly 20 symbols of data as grounds for the noise
estimation and is perhaps not enough for the model to utilize it.

Recurrent neural networks performed a lot worse than anticipated. However, in practice,
recurrent layers may be a boon rather than what is seen in the tests in this work. The
reason behind this is that the data tested in this work consists of messages with no
inherent structure other than encoding, meaning the messages are randomized bits and
lack context. RNNs, due to their ability to keep track of state, may be of great use in a
practical setting if the messages sent are well-defined beforehand such that the network
may learn the patterns.
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8 Conclusions and Future Work

This thesis explores an alternative noise model to that of the AWGN model, namely
the SaS-model, which in theory more accurately reflects a channel in today’s society,
where more electronic devices are prevalent. The SaS-model contains a parameter, α,
which dictates how impulsive the noise is, the goal is to create a receiver that performs
well over all α. To implement this receiver, two different adaptive neural network-based
demodulators, one including decoding and the other excluding decoding, are proposed
for both encoding types, resulting in four different models.

Judging from the results it is possible to create an adaptive demodulator with the use
of neural networks. As it outperforms the Gaussian demodulator over most α and per-
forms on par with it when α = 2.0, it may be considered preferable to the Gaussian
demodulator. The impact of encoding choice is significant to the solution where Lan-
net performing only demodulation on an LDPC encoded message performs better than
Hannet doing the same on a Hamming encoded message. As for an adaptive demod-
ulator and decoder, it is not as successful, where the models fails to keep up with the
Gaussian demodulator in regards to α = 2.0 and only Hannet outperforms the Gaussian
demodulator when Hamming encoding has been used. This leads to the assumption that
the models are not able to fully learn the decoding pattern of LDPC encoding.

Even though the models are not able to fully learn the decoding algorithms required
for LDPC and Hamming encoding there is definitely an attempt being made to learn
the encoding. Because the LDPC encoding is more robust than the Hamming encoding
it follows that the Genie demodulator, as well as this project’s proposed model, per-
forms better when the coding is LDPC. However, since the LDPC encoding is also more
complex the reversed effect can be witnessed when examining demodulation including
decoding for Hannet and Lannet.

The Genie demodulator with known or estimated α outperforms this project’s proposed
models. However not by a very large margin in the case of the demodulation mod-
els and depending on what BER requirements and SNR expectations a system has the
neural network solutions are a viable alternative when searching for a faster algorithm,
especially since they require less knowledge of the noise distribution.

Another valuable insight is that tailoring a model towards a specific objective gives
tremendous performance improvements and should therefore be a process that the model
designer dedicates a great portion of their time towards, should this experiment be elab-
orated upon.
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8 Conclusions and Future Work

8.1 Future Work

There are many different branches this work can take if elaborated, below are listed a
couple of examples that could be tested in the future.

When examining the difference in the performance of the LDPC encoded results contra
the Hamming encoded results it is clear that the robustness of the system correlates to
the the encoding chosen. It would be interesting to examine if decreasing the code rate
but also increasing the order of modulation, such that the throughput remains the same,
could yield performance improvements. Experiments were made where simply dupli-
cating the signal sent gave performance improvements as the impulses were unlikely to
disrupt the same bit sequence twice. Increasing the order of modulation would also give
valuable insight into how capable a neural network demodulator may be. Another av-
enue this research can take is a fully adaptive model. This means that the model should
be defined for a given amount of encodings and not changed depending on which en-
coding is used in the scenario. In practice, the encoding and modulation type is often
defined beforehand but it would be interesting to see if neural networks can dynam-
ically detect what encoding and modulation type is being used and make predictions
accordingly.

During this work, two different encoding techniques were used, LDPC and Hamming.
The performance of these differed greatly and therefore exploring other alternative en-
codings is a great next step, such as Turbo code. To expand on encoding one could also
train the demodulators in the same manner as in this work but then also feed those LLR
outputs into a new network which is trained to take those LLR outputs as inputs and
predict what the original message sent was. This would in essence create two different
networks, one demodulator and one decoder.

In regards to the shorter codewords used, namely the Hamming 7.4 codeword, it would
be of interest to alter the output such that each output is a realization of the codeword
instead of a classification of each bit individually. As the code word is rather short this
would only require 27 classes and would also transfer the problem from a multilabel
classification problem to a simple classification problem.

Sorting the training sequence by SNR was found to aid the model in the learning pro-
cess, however, no α sorting schematic was found. This process was quite briefly glanced
over and tested with some basic scenarios but it might possibly exist some sorting defi-
nition which would improve the learning process of the model and increase robustness.
Another rather simple elaboration, on training data-set modifications, is to expand on
the SNR range. The test used an upper limit of 20dB SNR, however, it is quite possible
that increasing this limit may help decrease the BER further.
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8 Conclusions and Future Work

Certain loss functions are specifically tailored to the Sigmoid function which can be
found in the Keras library, namely Sigmoid cross entropy and Sigmoid cross entropy
with logits. These were not found until the results were already finalized and as such
have not been experimented with, but as the output activation function is a Sigmoid
function it would stand to reason to try this loss function.
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