Möjligheter med Supply Chain Management i produktionen av Active Pharmaceutical Ingredient
– en utvärdering och empirisk fallstudie av Demand Driven Supply inom AstraZeneca AB

Författare
Anders Gustafsson 810712
Johanna Wenngren 820115
Sammanfattning av uppsatsen

Titel: Möjligheter med Supply Chain Management i produktionen av Active Pharmaceutical Ingredient – en utvärdering och empirisk fallstudie av Demand Driven Supply AstraZeneca AB

Författare: Anders Gustafsson och Johanna Wenngren

Handledare: Karl Gratzer Södertörns Högskola, Martin Henriksson AstraZeneca AB och Bo Olsson AstraZeneca AB

Nyckelord: Ledtid, läkemedelsproduktion, Active Pharmaceutical Ingredient, Demand Driven Supply, Produktion

Problem: Förändrade förutsättningar inom läkemedelsbranschen har tvingat läkemedelsföretagen till att utveckla och kostnadseffektivisera sina försörjningskedjor. AstraZeneca är ett av världens största läkemedelsföretag och på grund av dessa förändrade förutsättningar har företaget sedan slutet av 1990-talet implementerat nya verktyg och metoder inom produktionen av den aktiva ingrediensen i respektive läkemedel, den så kallade Active Pharmaceutical Ingredient (API). Dessa nya verktyg och metoder benämns som Demand Driven Supply och är ett nytt arbetssätt för företaget att optimera och effektivisera hela sin varuförsörjningskedja. Från att tidigare ha tillverkat mot prognoser och lagernivåer har AstraZeneca nu gått över till att producera på initierat behov där den verkliga efterfrågan påverkar produktionsnivåerna.

Syfte: Syftet med uppsatsen är att definiera Demand Driven Supply och att svara på frågan om det var rätt val att välja den specifika sammansättningen av verktyg och modeller. Vilka effekter fick den och valde man rätt sätt att genomföra förändringen på?

Metod: För att svara på uppsatsens syfte har vi genomfört tre intervjuer med berörda personer inom AstraZeneca vad gäller implementeringen av Demand Driven Supply. Författarna har även analyserat dokument och rapporter från genomförandet.
Sammanfattning

Innehållsförteckning

KAPITEL 1 - INLEDNING ... 5
1.1 BAKGRUND FÖRETAGET .. 5
1.2 LÄKEMEDELSBRANSEN ... 5
 1.2.1 Forsknings- och utvecklingskostnader ... 5
 1.2.2 Patent .. 6
 1.2.3 Generika ... 7
1.3 PROBLEMATISERING ... 8
1.4 SYFTE .. 9

KAPITEL 2 – TILLVÄGAGÅNGSSÄTT .. 10
2.1 STUDIENS DISPOSITION .. 10
2.2 METOD ... 11
2.3 AVGRÄNSNINGAR .. 11

KAPITEL 3 – TEORETISK REFERENSRAM .. 13
3.1 SUPPLY CHAIN MANAGEMENT ... 13
 3.1.1 Supply chain/försörjningskedja ... 13
3.2 LEAN PRODUCTION ... 14
3.3 PUSH OCH PULL .. 14
3.4 KANBAN .. 15
3.5 LAGER ... 16
 3.5.1 Säkerhetslager .. 16
 3.5.2 Lageromsättningshastighet ... 16
3.6 JAPANSKA SJÖN ... 17
3.7 LEVERANSSERVICE .. 17
 3.7.1 Ledtid .. 19
 3.7.2 Leveranspålitlighet ... 20
 3.7.3 Leveranssäkerhet ... 20
 3.7.4 Flexibilitet ... 20
 3.7.5 Information .. 20

KAPITEL 4 – FALLBESKRIVNING ... 21
4.1 ORGANISATIONSUPPBYGNAD ... 21
4.2 DEMAND DRIVEN SUPPLY .. 21
 4.2.1 Bakgrund ... 21
 4.2.2 Specialprojekt – att reducera ledtid ... 23
 4.2.3 Läget innan Demand Driven Supply ... 27
 4.2.4 Förklaring Demand Driven Supply .. 28
 4.2.5 Demand Driven Supply Principer .. 33
 4.2.6 Efter Demand Driven Supply Supply - resultat ... 34

KAPITEL 5– AVSLUTANDE DISKUSSION ... 36
5.1 ANALYS OCH SLUTSATS ... 36
5.2 DISKUSSION ... 38

ORDLISTA ... 40

KÄLLFÖRTECKNING .. 41
 PUBLICERADE KÄLLOR ... 41
 ELEKTRONISKA KÄLLOR .. 42
 DOKUMENT ... 42
 INTERVJUEER .. 42

FRÅGEMALL ... 43

INTERVJU MED MARTIN HENRIKSSON ... 44
INTERVJU MED JOHAN FORSGÅRD

51
Kapitel 1 - Inledning

I detta kapitel ges en bakgrundsbeskrivning av läkemedelsbranschens natur och dess aktörer. Här ges även en inblick i uppsatsens syfte, problemformulering och varför detta ämne känns aktuellt och intressant i dagsläget

1.1 Bakgrund företaget

1.2 Läkemedelsbranschen

1.2.1 Forsknings- och utvecklingskostnader

AstraZeneca har som tidigare nämnt investerat cirka 3,9 miljarder USD per år i forskning och utveckling av nya läkemedel. Forsknings- och utvecklingsinvesteringarna för ett läkemedel har ökat drastiskt under en tioårsperiod. 1993 låg genomsnittet per läkemedel på 359 miljoner USD men hade till år 2003 ökat till 897 miljoner USD vilket är en ökning på cirka 150 % (Läkemedelsindustriföreningen, 2008).
En forskningsprocess brukar ta mellan 8-12 år och investeringarna som görs under denna period börjar inte generera intäkter förrän läkemedlet i fråga kommer ut på marknaden. Själva forskningsprocessen är mycket komplex med många olika delmoment som styrs av yttre kontroller, processen ställs inför mycket höga säkerhetskrav och andra yttre regleringar som kan göra att framställningen av det potentiella läkemedlet inte längre kan fortsätta (AstraZeneca, 2008).

1.2.2 Patent

Patentet ansöks som sagt tidigt i forskningsprocessen så när ett nytt läkemedel lanseras återstår mellan 8-15 år på patentskyddet innan det släpps och andra tillverkare kan gå in och
tillverka generiska kopior. Detta är som sagt en kritisk faktor då dessa generiska tillverkare kan erbjuda ett lägre pris då de ej behöver bära de höga utvecklingskostnaderna som uppstått i forskningsprocessen (IBID.).

1.2.3 Generika

Generika är ett läkemedel som är producerat av en annan tillverkare än det företag som har forskat och utvecklat fram originalläkemedlet. När läkemedlets patent går ut så kan andra tillverkare gå in och producerar liknande läkemedel till ett lägre pris då de har väsentligt lägre forsknings- och utvecklingskostnader att täcka (Forsgårdh, 2007).
1.3 Problematisering

År 2004 ställde tidningen SUPPLY CHAIN EUROPE frågan “Why have pharmaceutical companies been slower to make their supply chains more efficient than companies in industries such as automotive and retail?” Frågan ställdes till experter inom ämnesområdena logistik och Supply Chain Management i Europa och USA. Luk Van Roy, Supply Chain Director, Calgon Carbon, Bryssel, Belgien svarade bland annat:

Dr. John Langley, professor i Supply Chain Management, Georgia Institute of Technology, USA svarade bland annat:

Läkemedelsföretag har traditionellt satsat mer på produktutveckling och marknadsföring av de nya produkterna. Allteftersom mer och mer produktutveckling har blivit outsourcad till specialister har mer uppmärksamhet riktats mot problem kring försörjningskedjor.

På grund av förändrade förutsättningar inom läkemedelsbranschen så har det uppstått krav på företagen att effektivisera sina organisationer för att upprätthålla de höga marginalerna. Allt eftersom läkemedelsindustrins omvärld blir värre kommer kostnadsbesparinger genom förbättringar i försörjningskedjor, efterfrågeplanering och ökat samarbete inom försörjningskedjan att bli viktigare (Keily, 2004).

1.4 Syfte

Som framgått av tidigare avsnitt har alltså trycket på läkemedelsföretagen ökat att se över deras kostnadsbild i produktionen av läkemedel. AstraZeneca tog beslutet i slutet av 1990-talet att implementera en ny strategi vad gäller deras försörjningskedja i produktionen. De tog hjälp av en extern konsultfirma för att implementera nya verktyg och metoder i deras produktion för att i sin tur sänka kostnaderna. Dessa samlade verktyg och metoder gick under benämningen Demand Driven Supply och hade som utgångspunkt i att produktionen skulle ske på initiativ av given efterfråga. De skulle alltså övergå från att tillverka mot lagernivåer och försäljningsprognoser till att nu producera mot efterfrågan. Syftet med denna uppsats är att definiera Demand Driven Supply och att utvärdera om denna implementering gett de resultat som eftersträvades. Har AstraZenecas varuförsörjningskedja blivit effektivare och gett kostnadseffektivitetsvinster? Har de metoder och verktyg som AstraZeneca implementerat gett rätt förutsättningar inför framtiden att hålla sig konkurrenskraftiga gentemot konkurrenserna av generika?
Kapitel 2 – Tillvägagångssätt

2.1 Studiens disposition

I det andra kapitlet får läsaren en bild av hur uppsatsens har tagits fram. Här redogörs för de metoder som har använts vid informationsinsamlingen via intervjuer och dokumentanalyser för att ge läsaren en inblick i fallstudiens empiri. Uppsatsens ansats är inom ett omfattande område och därför kan läsaren i detta kapitel även läsa om de avgränsningar som gjorts i denna uppsats.

I de tre första kapitlen har läsaren den bakgrundsinformation som behövs för att ta till sig den fallbeskrivning som kommer i kapitel fyra. I kapitel fyra får läsaren en grundlig redogörelse över den fallbeskrivning som uppsatsen och problemformuleringen bygger på. Läsaren får en inblick över företagets organisationsuppbyggnad, en förklaring över Demand Driven Supply, enligt AstraZeneca, och hur det såg ut innan implementeringen och efter.
I det sista kapitlet, kapitel fem knyts uppsatsens ansats ihop i en avslutande diskussion. Här analyseras och diskuteras den fallbeskrivning som beskrivits i kapitel fem. Med den bakgrunden som finns i beskriven i uppsatsen dras det slutsatser om hur implementeringen har gått tillväga, andra alternativ och reflektioner över den empiriska datan.

2.2 Metod

2.3 Avgränsningar

Kapitel 3 – Teoretisk referensram

Kapitel tre redogör för den teoretiska referensramen som behövs för att få en förståelse över de metoder och verktyg som används inom Demand Driven Supply. Dessa teorier har utgjort grunden för den implementering som skett hos AstraZeneca.

3.1 Supply Chain Management

Mattsson (2002) definierar Supply Chain Management som

"Med Supply Chain Management menas planering, utveckling, samordning, organisation, styrning och kontroll av intra- och interorganisatoriska processer från ett helhetssynsätt och avseende flöden av material, tjänster, information och betalningar i försörjningskedjor från ursprunglig råvaruleverantör till slutgiltig förbrukare. Det står för samverkan och integration mellan företag och dess fokus är den konsumerande slutkunden."

Fokus får inte vara enkelriktat mot slutgiltig konsument, det är lika viktigt att information flödar i båda riktningarna. Leverantörer och deras leverantörer är också en integrerad del av försörjningskedjan, och informationen ska inte bara gå genom försäljnings- och inköpsfunktioner. Till exempel bör produktionsavdelningarna ha ett väl fungerande kontaktmåt genom hela ledet för att effektivisering av flödeskedjan ska bli möjlig (Leenders, Nollet & Ellram, 1994)

3.1.1 Supply chain/försörjningskedja

En försörjningskedja består allmänt av aktörer som står i ett visst beroendeförhållande till varandra och genom vilka material, betalningar och information flödar (Mattsson, 2002).

Teorierna om Supply chain (försörjningskedjor) utgör en helhetssyn där slutkonsumentens roll är i fokus. Det är för kunden som alla i försörjningskedjan avser att skapa värden, det är endast denna som tillför externa betalningsströmmar till försörjningskedjan. För att försörjningskedjan ska vara effektiv krävs det koordination och styrning genom hela ledet, styrning av försörjningskedjan – Supply Chain Management (SCM) (IBID.).
3.2 **Lean production**

En produktionsfilosofi som innebär resurssnålhet, att utifrån kundens behov styra behovet av resurser (Lumsden, 1998).

Lean är ett tätt sammankopplat flexibelt system centrerat kring Just In Time leveranser (JIT) och låga lagnivåer. För att nå detta krävs eliminering av allt slöseri, problem i leverantörers produktion och fel i produktens försörjningskedja. Det krävs också hög grad av mottaglighet av efterfrågan från kunder. Vidare krävs kontinuerlig förbättring av nödvändiga komponenter, kontroll av produktion, reducering av ledtider. För att Lean production ska fungera effektivt behövs väl fungerande försörjningskedjor, nära koordination mellan leverantörer och kunder samt ett snabbt flöde av material och information (Kippenberger, 1997).

3.3 **Push och pull**

![Diagramma av push-system](image)

Figur 3.3.1 Push-system
(Storhagen, 2003)

I ett Pull-system, sugande system, ges tillverkningsorder endast till det sista förädlingssteget i försörjningskedjan. Därför hämtas sedan de artiklar som ska bearbetas eller monteras från föregående led och så vidare. Resultatet blir en kedjeeffekt där varje produktionsstation kontinuerligt tillverkar och återställer exakt den mängd som hämtas av framförvarande tillverkningsled (IBID.).
3.4 Kanban

3.5 Lager
Anledningen att bygga upp lager är att tillverkningen skall ges en hög funktionssäkerhet och att kunderna skall ha tillgång till artiklar vid behov. Kostnader liksom kundrelationer är avgörande parametrar för att undvika lager eller att ha lager. Att ha lager i sig är inte felaktigt under förutsättning att storleken är dimensionerad utifrån fastlagda behov och kriterier (Lumsden, 1998).

3.5.1 Säkerhetslager
Den säkerhetsmarginal som mellan å ena sidan den nivån där påfyllning normalt sker i lagret och å andra sidan ett helt tomt lager (Storhagen, 2003).

3.5.2 Lageromsättningshastighet
Ett mått för hur stor del av företagets kapital som är bundet i lager av artiklar i jämförelse med företagets omsättning. För att få fram lageromsättningshastigheten tas omsättningen gör en viss period dividerat med det genomsnittliga lagervärdet för samma period (Lumsden, 1998).
3.5.3 Vendor Managed Inventory (VMI)/Leverantörsstyrda lager

Traditionellt har ägande, fysiskt innehav och kontroll av lager legat inom samma organisation. Leverantörsstyrda lager innebär en förändring av detta, det innebär att dessa tre funktioner delas upp organisatoriskt och ligger i olika juridiska enheter (Mattsson, 2002).

Leverantörens ansvar kan sträcka sig olika långt i de tre funktionerna, i det enklaste fallet kontrollerar och styr leverantören kundens lager baserat på saldo- och efterfrågeinformation. Leverantören lägger inköpsorder i sin kunds system och när ordern har godkänts av kunden ansvarar leverantören för att lagret fylls på. I nästa steg tas kravet på godkännande av kunden bort, lagernivåerna regleras istället av överenskommelser kring nivå och servicegrad. Steget efter det blir att leverantören även tar över ägandet av lagret som fysiskt finns hos kunden. Leverantörsstyrda lager kräver stort förtroende och stor öppenhet, men det gynnar förutsättningarna för en väl fungerande och rationell försörjningskedja (Storhagen, 2003).

3.5.4 Produkter i arbete (PIA)

3.6 Japanska sjön

3.7 Leveransservice

3.7.1 Ledtid

Ledtid definieras här som tiden från beställning till leverans, innefattar tid för aktiviteter som ordermottagning, orderbehandling, planering, eventuell konstruktion och tillverkning samt distributionen. Ledtid utgår från kunden, det viktiga för kunden är ledtidens totala längd. Kort ledtid kan uppnås genom korta tillverkningstider eller genom leveranser från färdigvarulager (IBID.).

En del av ledtiden består av ställtid, detta är den tid det tar för att ställa om en maskin från att producera produkt 1 till produkt 2. Det är normalt en fast tid per ordertillfälle, oavsett antalet tillverkade enheter. Kortare ställtider gör det möjligt att producera i kortare serier, produkter i lager och i arbete kan minskas, flexibiliteten ökas och det ökar förutsättningarna att producera exakt det kunden vill ha. Korta ställtider är dessutom en förutsättning för att uppnå utjämnad produktion (Storhagen, 2003).
3.7.2 Leveranspålitlighet

3.7.3 Leveranssäkerhet

3.7.4 Flexibilitet

3.7.5 Information

Informationsutbyte mellan leverantör och kund är idag av central betydelse. Det är mycket viktigt att informationen är dubbelriktad. I och med att djupare samarbetsformer skapas mellan företag ställs också krav på att informationssystem integreras eller åtminstone kan kommunicera med varandra (IBID.).
Kapitel 4 – Fallbeskrivning

Det här kapitlet går igenom bakgrunden för Demand Driven Supply, redogör för ett projekt som gjorts inom AstraZeneca för att sänka ledtider och kostnader. Vidare visas hur Demand Driven Supply används inom AstraZeneca och vad detta har lett till.

4.1 Organisationsuppbyggnad

4.2 Demand Driven Supply

De teorier som det redogjorts för är de verktyg som AstraZeneca har använts sig av för att reducera ledtider och effektivisera sin varuförsörjning. Företaget såg över sina delprocesser och bröt ner sin produktion i mindre överskådligare delar och använde sig sedan av dessa teorier som verktyg för att uppnå de mål företaget ville uppnå.

4.2.1 Bakgrund

Demand Driven Supply innehåller en verktygslåda vid namn Demand Flow Technology som innehåller matematiska förmler där man med olika parametrar kan komma fram till hur ens produktionslinna bör se ut (Forsgårdh, 2007).

En stor anledning till att det tog sådan lång tid, i jämförelse med andra branscher för AstraZeneca att börja med produktionsstyrning/produktionsoptimering var för att produktionskostnaderna är en sådan liten del av totalkostnaderna som till störst del består av forsknings- och utvecklingskostnader. Men i slutet av 1990-talet/början av 2000 började man se att flera patent var på väg att gå ut och att de då skulle bli utsatta för en allt större generisk konkurrens. Detta skulle i sin tur leda till att de inte längre skulle ha lika goda marginaler som de haft tidigare, vilket fick dem att inse att de behövde effektivisera hela försörjningskedjan (Henriksson, 2007).

AstraZenecas marknadsbolag, som är de bolagen som sköter försäljningen ut till marknaden (Forsgårdh, 2007, Henriksson, 2007).

4.2.2 Specialprojekt – att reducera ledtid

interna avdelningarna, de arbetade inte så nära varandra som de hade potential till att göra och det fanns stora kulturskillnader. Genom arbetet med att minska ledtiderna krävdes det av avdelningarna att de skulle arbeta mycket mer tillsammans (IBID.).

Drivkrafterna till att just titta på detta läkemedel som projekt i att minska ledtiden var att den passade bra ur produkt livscykelsynpunkt. Seloken ZOC var klassificerad som en så kallad ”defender” där efterfrågan börjar tonas ut och det blir viktigare att konkurrera med priset. Läkemedlet presenterades på marknaden i slutet av 1990-talet och med dess innovativa specifika egenskaper hade läkemedlet hög tillväxt tack vare patentet. Men år 2005 gick patentet på Europamarknaden ut och år 2008 går patentet ut på den amerikanska marknaden. Eftersom den amerikanska marknaden var den marknad där läkemedlet hade störst marknadsandelar så ansåg AstraZeneca att det var ett läkemedel det var aktuellt att kostnadseffektivisera produktionen på, för att sedan kunna sänka priset och behålla marknadsandelar när generika introduceras på marknaden. Man gjorde en så kallad ”Tollgate 5 review” under 2004 cirka fem år innan patenten släpps på den amerikanska marknaden och denna visade på möjligheterna som fanns i kostnadsreduceringar i produktionen av detta läkemedel och vilka förberedelser som behövdes göras inför att patentet gick ut (IBID.).

Möjligheter:
- Reducera ledtider
- Minska komplexiteten
- Minimera Cost of Goods (COGS)
- Se över lagnivåerna och lageromsättningen

Förberedelser:
- Bibehålla kostnadseffektivitet
- Se över riskerna vid tidigare släpp av patentskydd
- Få effekt på produktionsanläggningarna

Resultatet visade på att företaget skulle bibehålla den redan existerande försörjningskedjan till att patentet gått ut och att inga steg i att förändra kostnaden för varor behövdes göras i förhand. Den största vinsten skulle komma med att minska lagervärdet (IBID.). Lageromsättningen för Seloken ZOC/Toprol XL var 1,3 i slutet av 2003. Eftersom Tollgate review 5 visade på att inga fokuseringar behövde göras på lageromsättningen utan
fokus skulle ligga i att reducera lagervärdet som sedan i sin tur skulle öka lageromsättningen. Genom att minska lagervärdet så skulle lageromsättningen att öka. Men för att minska lagervärdet så var ledtiderna tvungna att reduceras drastiskt i försörjningskedjan av Seloken ZOC/Toprol XL (IBID.).

Den övergripande försörjningskedjan av Seloken ZOC/Toprol XL:

![Diagram](image)

Figur 4.2.2.1, försörjningskedjan av Seloken ZOC/Toprol XL (IBID.)

Den interna försörjningskedjan för Seloken ZOC/Toprol Xl inom Drug Substance Supply ser ut som nedan:

![Diagram](image)

Figur 4.2.2.2, försörjningskedjan av Seloken ZOC/Toprol XL (IBID.)

Methoxy Ethyl Phenol (MEP) är den grundläggande råvaran i Metroprorol som levereras från Japan, när denna levereras till produktionen läggs på den på lager och efter den slutgiltiga analysen och släppandet av batchen så stannar Metroprorolen i Drug Substance Supplies lager (API stock) tills Drug Product Supply behöver den. Målet med detta projekt var att reducera lagernivån i hela API:lagret, alltså både Drug Substance Supply lagret och Drug Product Supply lagret. Produktionsplanerare fick ha det övergripande ansvaret över hela varuförsörjningskedjan och skulle ta emot en förhandsberäkning av Drug Product Supply och omvandla detta till en order på MEP och se till att kvalitetskontrollen låg i nivå med att hålla de 15 dagarna i API kedjan så att kunden fick vad de förväntade sig (IBID.).

Siffrorna från Drug Product Supply om förväntad efterfrågan var en mycket kritisk del i detta projekt, vilket krävde att Drug Substance Supply hade stor förståelse för Drug Product Supply. Integrationen och kommunikationen var tvungen att öka och effektiviseras mellan avdelningarna. För att Drug Substance Supply skall kunna vara flexibla till Drug Product
Supply var de tvungna att ha en stor förståelse över hur deras försäljning gick till, därför satte man in så kallade Sales & Operations Planning möten där Drug Substance Supply fick tillgång till de aktuella försäljningssiffrorna och annan viktig information som kan ha inflytande på produktionen (IBID.).

För att hitta de konkreta åtgärderna som behövde göras så tittade AstraZeneca på alla delprocesser med hjälp av teorin med den japanska sjön som förklarar vad som kommer att hända om lagernivåerna reduceras. Synliga problem kommer att visa sig genom att minska lagernivåerna, och problemen kan förhoppningsvis lösas (IBID.).

De åtgärdsplaner som inrättades i själva produktionen var gällande just Demand Driven Supply, medarbetarna, processförbättringar i allmänhet, mellanliggande lager och utrustningen i produktionen. Demand Driven Supply skulle genomföras med nya lösningar som Vendor Managed Inventory, visual planning och "paper & powder" och en ökad kontakt med Demand Driven Supply planeraren vid behov. Med "paper & powder" menas att produktionsdokumenten skall följa med batchen i flödet. Genom att ändra denna detalj kunde ledtiden reduceras på dokumentationen från 100 ner till fem timmar. Kanban skulle också implementeras och de försökte få medarbetarna att arbeta engagerad med kanban. Medarbetarna skulle engageras och motiveras genom att öka fokus på de mål som uppnåddes med ledtiden. Dela upp projektet i delmål för att ge motivation att ständigt vilja nå nästa mål. Personalen skulle reducera de fel som kunde uppstå i produktionen och försöka få stabilitet på förbättringarna som gjordes. En analys över hur optimal användning av mellanliggande lagret gjordes och genomfördes under detta projekt. Den befintliga utrustningen och andra diverse små processer i produktionen sågs även över(IBID.).

Alla dessa delprocesser skapar både finansiella mål genom att reducera kostnaderna. Beräkningar visade på att kostnaderna skulle sänkas med mer än 50 % (IBID.).

4.2.3 Läget innan Demand Driven Supply

Innan AstraZeneca införde Demand Driven Supply använde de sig av en prognosstyrd tillverkning, så kallad push-metod. Ledtiden för att leverera en batch var fem månader. Detta medan kunderna lade order två månader innan och kunde ändra sig efter lagd order. Detta resulterade i att produkter i arbete motsvarade fem månaders efterfrågan. Om prognosen var fel tillverkades fel produkt. AstraZeneca behövde ändra planeringen när marknadens efterfrågan ändrades (DDS Metoder & Verktyg_v1.8).

På grund av hög nivå på produkter i arbete hade AstraZeneca väldigt hög kapitalbindning och väldigt dålig flexibilitet. De felaktiga prognoserna ledde till högre färdigvarulager vilket ytterligare höjde kapitalbindningen (Henriksson, 2007).

Bilden nedan visar tiden för produktionen av en specifik medicin.

Ofta insåg kunden att prognosen varit för hög eller för låg och AstraZenecas tid för att reagera på förändrad efterfrågan var då 61 dagar (17+22+22) vilket resulterade i att det behövdes ständiga förändringar i planen och för mycket eller otillräckligt med produkter i lager (DDS Metoder & Verktyg _v1.8).

4.2.4 Förklaring Demand Driven Supply

En Demand Driven Supply- analys innehåller mycket ”learning by doing”. Mycket av arbetet måste upprepas eftersom personalen som utför analyserna lär sig efter hand vilken information de letar efter och hur den ska användas, därför kan analysen vara väldigt tidskrävande. Analysen bygger på matematiska formler som räknas ut med hjälp av olika data från produktionslinjen, dessa formler kommer vi dock ej att redovisa. I verkligheten kan det vara svårt att finna eller fånga in all data, sen är det också svårt att veta om den data som hittats är fullständigt korrekt. Vilket gör att alla svar som kommer fram måste utvärderas för att se om de kan vara rimliga (DDS tools and formula).
Tillvägagångssättet med Demand Driven Supply kommer att förklaras genom denna bild.

Steg 1

Produktsynkroniseringen är första steget i en Demand Driven Supply-analys, det är ett flödesschema som visar hur de processer som krävs för att tillverka en produkt hänger ihop inklusive kassation och omarbetning. Detta används senare som grund för ledtidsanalys och Line Design. En process är indelningen av arbetsmoment som utförs av personal och/eller maskiner på en viss mängd material. De olika produkterna delas upp i olika produktfamiljer utefter liknande tillverkningsprocess vilket underlättar arbetet då genomgången av de olika stegen sker per familj och inte för varje enskild produkt (DDS Metoder & Verktyg _v1.8).
Steg 2

Steg två går ut på att se vilka resurser som finns tillgängliga och detta görs genom att lägga ihop effektiv arbetstid, antal skift och personalstyrkan. Effektiv arbetstid är den tiden som faktiskt används för arbete under ett normalt skift, och fås fram genom att ta skiftets totala längd minus normala pauser, såsom lunch, raster och dagliga möten. Effektiv arbetstid kan vara olika för maskiner och människor (IBID.).

Steg 3

Demand at Capacity (Dc) är den nivå på efterfrågan som produktionslinjen är utformad för, det vill säga hur mycket linjen ska kunna tillverka. Den tas fram utifrån prognos och försäljning och följs regelbundet upp. Den bestamda nivån på Dc påverkar förmågan att leverera samt behovet av kapacitet och lager. Produktionslinjen kan köras på en lägre nivå än Dc utan att design eller arbetssättet förändras, denna marginal avpassas med hänsyn till tre parametrar:

- Flexibilitet att reagera på förändrad efterfrågan
- Kapacitetsplanering
- Balansering av kostnad och flexibilitet

För att hålla dessa tre parametrar krävdes det att AstraZeneca började arbeta efter daglig efterfrågan (IBID.).

Steg 4

Steg fyra inleds med att göra en processkarta vilket är en tabell med faktiska tider för varje produktfamilj, faktiska tider omfattar inte icke värdeskapande tid som till exempel kö och omarbetningar. Processkartan utgör grunden för resursbehovsberäkningar och beräkningarna för ledtidsanalys.

Tidssuppgifter för processkartläggning kan komma från bedömningar, mätningar, händelseförlopp med mera (IBID.).
Steg 5

Steg 6
Steg sex är en ledtidsanalys. Den går ut på att finna nuvarande ledtid, optimal ledtid (den bästa ledtiden som kan uppnås med givna resurser) och praktisk ledtid (den ledtid som produktionslinjen bedöms klara) (IBID.).

Steg 7
AstraZeneca använder sig av kort som kanbansignal, korten sätts aningen på godset eller på en kanbantavla. Kanbantavlan används för att visualisera flödet av material och material på lager på ett enkelt och överskådligt sätt (IBID.).

Steg 8
För att underlätta förståelse och ge en bättre övergripande bild av vad som gjorts och ska göras skapades kanbantavlor, planeringstavlor och visuella buffertlager, det infördes också dagliga planeringsmöten där dessa gavs igenom. Tavlorna visar

- Översikt och kontroll över processer och arbetsmängd.
- Vilken del som äger materialet under de olika processerna.
- Snabba problemidentifiering, och problemlösning.
• Effektiv resursfördelning.
• Ledtider.

Planeringsmötena på mornarna är cirka 15 minuter långa och innefattar personer från tillverkning, förråd och lager, lab, planering och värdering. Mötena har skapat.

• Bättre kommunikation och förståelse mellan funktioner.
• Bättre resurstanvändande.
• Snabbare hantering av problem.
• Uppföljning av förbättringsaktiviteter.

(IBID.)

Steg 9
AstraZeneca ska fortsätta att tillverka efterfrågestyrt med fokus på leveranssäkerhet. Detta ska genomföras genom att använda kanban där det går och visualisering på tavlor ska finnas för enkel utsikt.

4.2.5 Demand Driven Supply Principer

För att tydliggöra vilka principer som ligger bakom Demand Driven Supply-verktygen skapade AstraZeneca ett så kallat AstraZeneca-hus där deras filosofi och huvudprinciper finns med.

![AstraZeneca-huset](DDS_Metoder_verktyg_v1.8)

Figur 4.2.5.1 AstraZeneca-huset
(DDS Metoder & Verktyg_v1.8)

Pelarna till vänster innehåller rätt från mig och medarbetarskap. Med rätt från mig menas att varje del av produktionen ska uppfylla gällande krav innan materialet skickas vidare i flödet. Medarbetarskapet är att alla anställda ska veta och förstå vad AstraZeneca vill uppnå.

4.2.6 Efter Demand Driven Supply Supply - resultat

I och med genomförandet av Demand Driven Supply gick AstraZeneca från prognosstyrd tillverkning till efterfrågestyrd tillverkning, pull-metoden. De började lagerhålla standardprodukter och minimerade packningsledtiden. Produkter i arbete och lager minskades för att endast täcka återfyllnadstiden och prognoser användes för dimensionering och för att förutsäga eventuella undantag (DDS Metoder & Verktyg _v1.8). Med att endast täcka återfyllnadstiden menas att produkter i arbete och produkter i lager endast ska täcka det behov som finns innan en ny batch kommer in.

För att sänka lager och produkter i arbete användes Japanska sjön som verktyg, nivåerna sänktes steg för steg och direkt ett problem uppstod löstes det innan nästa steg togs (DDS Intrasite rapport ver. 041006).

Bilden nedan visar tiden för produktionen av en specifik medicin. Samma medicin som i exemplet på sidan 28

![Diagram](image)

RIP= Raw in process inventory
FVL= Färdigvarulager

Figur 4.2.6.1 Tid för produktion av ett specifikt läkemedel efter DDS (AstraZeneca)

Ledtiden sänktes huvudsakligen genom aktiviteter som reducerade köer, snabbare analyser och värderingar. RIP-lager (som är lager för produkter i arbete) dimensionerades efter återfyllnadstiden. Ny ledtid för produkten är 39 dagar (DDS Metoder & Verktyg _v1.8).
Efter införandet av Demand Driven Supply hade lagervärdet för Drug Substance Supply sjunkit till en sjätte del av vad det var innan Demand Driven Supply (Forsgårdh, 2007).

Resultat av detta: (Mätbara)

• Orderledtiden är nu mindre än en månad.
• Rätt mängd lager finns i varje tillverkningssteg.
• Tillverkar endast det som behövs.
• Reaktionstiden vid förändrad efterfrågan har minskat till 15 dagar
• Total ledtid har minskat till 39 dagar.

(DDS Metoder & Verktyg _v1.8).

Kapitel 5– Avslutande diskussion

Här analyseras och diskuteras den fallbeskrivning som beskrivits i kapitel fem.

5.1 Analys och slutsats

AstraZeneca skapade ett AstraZeneca-hus (figur 4.2.5.1) som är uppbyggt kring principer, även detta härstammar från Toyota Production System. Tanken med att ha det som ett hus är för att visa att alla delar hänger samman och alla är viktiga för att huset ska kunna stå upp. AstraZeneca-huset är uppbyggt med två stötsepelare på vardera sidan, men de två pelarna har kommit olika långt. De har nu efterfrågestyrda tillverkning och ledtider och kostnader har kapats, men implementeringen av Demand Driven Supply skedde väldigt snabbt och det fokuserades mest på utbildning på verktygen och väldigt lite tid lades på de grundläggande principerna vilket har lett till att personalen vet att det finns principer men inte vilka de är. Ett hus med en stark pelare och en svag kommer troligen att rasa om inte den svaga pelaren förstärks.

5.2 Diskussion

AstraZeneca hade innan alla tankar kring ny produktionsstyrning fick genomslag långa ledtider, höga lagernivåer, hög kapitalbindning och skulle ha svårt att konkurrera mot generiska konkurrenter efter att patenttiden gått ut. Att ta in nya verktyg i produktionen är snabbare än att först diskutera principer och sedan vilka verktyg som ska användas för att nå dit de vill. På detta sätt visade de snabbt vilka resultat som kunde nås genom att ändra synen på det arbetet som utfördes i produktionen. Som Johan Forsgårdh på AstraZeneca sa under vår intervju med honom, ”man måste få kunna experimentera och misslyckas, så länge det inte skadar patienten /…/ det absolut viktigaste är leveranssäkerheten, det är ju ändå läkemedel vi sysslar med”. Detta med att det är just läkemedel de sysslar med försvårar deras situation, om en bil blir försenad en vecka leder detta självklart till negativa effekter för alla inblandade parter. Men om ett läkemedel är försenat en vecka kan det resultera i att patienten inte får sin medicin.

AstraZeneca har börjat se mer till lean production. Lean bygger likt Demand Driven Supply också på Toyota Production System, men lean har kvar mer av de filosofiska tankarna från Toyota Production System än vad Demand Driven Supply har. Lean bygger till stor del på delaktighet och medarbetarskap. Ska AstraZeneca klara lean är det viktigt att det sätts in mer resurser på den vänstra pelaren i AstraZeneca-huset.

Den övergripande uppfattningen vi har fått i de intervjuer som har gjorts har varit att de finansiella och produktionsmässiga målen som fanns har uppnåtts, men att den del av genomförandet som kunnat hanteras annorlunda är hanteringen av medarbetarna. Det har funnits reaktioner på att verktygen kom för tidigt och att principerna bakom verktygen ej förankrats ordentligt bland personalen. I och med den kommande successiva implementeringen av lean production och AstraZeneca huset så vill vi poängtera betydelsen att få med personalen på principerna och tankesättet. AstraZeneca har kommit väldigt långt i utvecklingen av att effektivisera sin försörjningskedja, vilket är den ena pelaren i AstraZeneca huset, Demand Driven Supply. Det är den pelaren tillsammans med medarbetarna som håller uppe huset, och fokuseringen på medarbetarna har ej varit lika stor som fokuseringen på att få Demand Driven Supply verktygen att fungera. Lean produktion är ett tankesätt, ett arbetssätt för medarbetarna att ständigt arbeta enligt ”lean-tänket” – rätt från
mig. För att få en dynamik och balans i huset så föreslås det att principerna bakom lean produktion förankras väl ända ned på golvnivå. Visserligen är det kostsamt att underhålla personalen mentalt, men det är en lönsam investering för framtiden.
<table>
<thead>
<tr>
<th>Ordlista</th>
</tr>
</thead>
<tbody>
<tr>
<td>API</td>
</tr>
<tr>
<td>Batch</td>
</tr>
<tr>
<td>BPS</td>
</tr>
<tr>
<td>DDS</td>
</tr>
<tr>
<td>DSS</td>
</tr>
<tr>
<td>DPS</td>
</tr>
<tr>
<td>LPS</td>
</tr>
<tr>
<td>TPS</td>
</tr>
</tbody>
</table>
Källförteckning

Publicerade källor

Your views on hot supply chain topics, Supply Chain Europe, Feb2004, Vol. 13 Issue 1, p58-58, 1p
Elektroniska källor

AstraZeneca, URL www.astrazeneca.se, 2008-01-02, 21:00

Läkemedelsindustriföreningen, URL www.lif.se, 2008-01-02, 20:45

European Federation of Pharmaceutical industries and Associations, URL www.efpia.org, 2008-01-01, 15:30

Dokument

DDS Intrasite rapport ver. 041006

DDS Metoder & Verktyg_v1.8

DDS tools and formula

Intervjuer

Lidberg, Monica 2007 Outsourcing Project Manager Global External Sourcing, Intervjun utfördes 2007-12-07 i ett konferensrum i Gärtuna.

Bilagor
Intervjuerna i bilagan är sammanfattningar av intervjuerna, men vi har försökt att så långt det går använda intervjuobjektens egna ord. Intervjun med Monika Lidberg utgick som tidigare nämnts ifrån en rapport vilket gör att stora delar av den inte blir förstålig utan rapporten, därför tar vi valt att inte ha med den som bilaga.

Frågemall

- När och hur väcktes tanken om att förändra varuförsörjningskedjan?
- Varför väcktes idén, vilka var drivkrafterna?
- Vad var första steget till implementeringen? Hur genomfördes den? Vilka aktiviteter, faser, mål hade ni? Hur strukturen ut?
- Vilka produkter började ni med och varför? (Vilka var ”pilotprodukterna?”)
- Hur såg varuförsörjningskedjan ut innan? Hur var visionen?
- Vilka problemområden kunde ni identifiera som ni ville förändra?
- Strategi med DDS, varför valde ni de teorier ni gjorde? Hur valde ni och värderade de kritiska momenten?
- DDS är ju ett ihop-plock av olika logistiska teorier som skall ge olika utslag och definierade mål, hur valde ni vilka just ni skulle arbeta med?
- Hur fick ni personalen engagerade?
- Hur informerade ni personalen och hur engagerade ni dem? Hade ni olika aktiviteter eller strategier för att motivera?
- Vilken var den spontana responsen från personalen?
- Hade ni projekt, kurser, hur genomfördes implementeringen?
- Vilka hinder stötte ni på i implementeringen? Hur löstes dessa? Vilka var de största problemen med implementeringen av DDS?
- Förklaring av TPS och BPS, exakt vad är de?
- VMI lösningen, vilka produkter, hur har de löst det med informations-databitén?
- Ni övergick till pull-produktion men hade ändå kvar fast schema?
Intervju med Martin Henriksson

Intervjuobjekt: Martin Henriksson (MH)
Intervjuare: Anders Gustafsson (AG), Johanna Wenngren (JW)
Kursiva ord inom parantes är egna anmärkningar.

AG När och hur väcktes tanken på att förändra försörjningskedjan?

AG Varför väcktes iden? Vilka var drivkrafterna?
MH Det är väl de klassiska, det som man brukar ange som den vanligaste förklaringen inom läkemedel industri är att tillverkningskostnaden har varit en sådan liten del av totala produktpriset. Därför har inte tillverkningen varit under något jättefokus på att pressa kostnaderna tills slutet av 90-talet, början av 2000 då man började se att det här blev viktigare och viktigare. Man viste att massa patent skulle gå ut och man skulle utsättas för generika (generisk konkurrens). Jag skulle säga att den största drivkraften, eller i alla fall en allmän drivkraft var att vi inte kommer att ha samma goda marginaler som vi haft tidigare utan nu plötsligt så blev det viktigare att pressa alla delar av kedjan. Sen så var vi väl iättigt, jag vet inte hur vi är internationellt, eller jämfört med andra företag inom vår bransch men inom läkemedelbranschen traditionellt så har man ganska mycket bundet kapital och vad man behövde var kapital för att frigöra till forskning och andra delar av organisationen så att det, det var väl dels att man vill frigöra bundet kapital och sen att man ville fär ned kostnaderna så det tror jag är de två största drivkrafterna.

JW För att satsa mera på marknadsföring och forskning?
MH Ja det skulle man kunna tänka sig, jag tror till organisationen i allmänhet, pressa kostnaderna för att behålla marknadsandelar.

JW Märkte man då trycket från konkurrenster att det började röra på sig från dem eller var det rent från AstraZeneca:s sida?

AG Vad var det första steget till implementering och hur genomfördes den?
MH Alltså nu vet inte jag exakt hur det var på DSS (tidigare BPS) men det jag kan svara på är inom formulering och packningsdelen och där var det absolut första vi gjorde, det var införandet av Demand Driven Supply, att gå från en push till en pull. Det var det första och nu är det utvecklat. Nu är det ju mycket, mycket mera. Nu skulle man kunna säga att vi har börjat förstå och diskutera mer lean. Alltså om resan började med DDS så har vi nu börjat lean-resan skulle man kunna säga och det har väl pågått i sju år.

JW Kom det centralt ifrån att det skulle implementeras?
MH Implementeringen och konsulterna kom centralt ifrån, men så bedrevs själva arbetet lokalt ute på de olika fabrikerna.

JW Konsulterna vad hade de för kravprofil, viste ni redan vad de skulle göra eller tog ni in dem externt och lokalt började titta på det hela eller?

MH De hade en metodik och ett arbetssätt, de viste nog exakt vad de ville att vi skulle göra, de hade ju en ganska bred kompetens och ett ganska brett verktygsfält. När de kom till ett tillverkningsavsnitt och tittade på det då anpassade de det, det var väldigt fokuserat runt just det här att gå från push till pull. Det var väl det som var det viktigaste, sen går inte alltid det att genomföra på grund av hur tillverkning sker och alltling sånt, men det var nog deras första fokus.

AG Vilket var det uttalade målet, och vilka var strategierna och faserna?

JW I vilken omfattning var det ni började, var det DSS (tidigare BPS) ni började med?

MH Nej det började hår ute, alltså det började som ett internt projekt här ute på Gärtuna (på TPS) och det gjorde man väldigt mycket med interna resurser och folk som hade börjat på Astra som kom från andra branscher och när man hade gjort det och sett potentialen och sett hur mycket man kunnat korta ledtider och hur mycket bättre det hade blivit, då plockades den här konsultfiran in för att hjälpa till och driva det här vidare. Det var inte bara i Sverige, utan de var ju i England, USA, Australien, Frankrike, de var över allt. Så det började på Tablets (tidigare DPS) skulle man kunna säga och sen rullade man ut det. Det var efter man hade gjort det projektet som man plockade in konsulter och då, då kommer jag inte ihåg den exakta ordningen som man gjorde men man gjorde det överallt, de var ett antal konsulter och de försökte besöka så många projekt som möjligt parallellt både inom TPS som tablettillverkningen hette då och LPS som den flytande tillverkningen hette och BPS som var API-tillverkningen, de var överallt.

AG Så det startade som ett internt projekt.

JW Hur stor var omfattningen på just DSS, hur stor del av personalen var inblandad?

MH Jag tror att alla på DSS gick någon form av medvetandeträning och sen utbildades ett antal experter.

JW Var det konsultfiran som utbildade?
MH Ja både konsultfirman och internt. Ett antal av oss, däribland jag själv, gick på en tredagsutbildning som konsultfirman höll, men sen har folk utbildat sig på externa kurser.

AG Vilka produkter var det man började med, och varför var det just dem?
MH Jag kan inte svara på faktiskt vilka produkter de började med på DSS men rent potentiellt så är det väl det klassiska, de där man hade en magkänsla av att här finns det störst potential av att göra förbättringar. För den kunskapen finns rätt ofta ute i organisationen om man går och pratar med planerare eller fabrikschefer så vet de att det här är inte helt optimalt liksom, det vet jag att vi gjorde inom Liquids (tidigare DPS) i alla fall där gick vi igenom en prioritering för att se vad den största potentialen fanns. Sen är det en massa andra faktorer, var finns det resurser tillgängliga och allting sådant.

AG Innan projektet startade, hur såg produktionen ut då, var det ren push-produktion?
MH När det gäller API:n så är det nog så ja, och så var det nog inom formulerad och packningsdelen också. Man hade introducerat en variant av VMI, det vill säga vi styrde mot kundens lager och då blir det väl ett delsteg i alla fall mot att gå mot någon form av pullvariant, då man tittar på externa försäljningsprognoser istället för interna inköpsprognoser. Men i praktiken ja så var det nog väldigt mycket push. Det kan vara lite svårt att införa en pull mellan, när vi pratar om våra marknadsbolag så är det ju nästan som ett separat företag och hur man fixar signaler från deras lager till vårat lager? Det har inte varit helt lätt så vad man har gjort är väl ofta att man har tittat på delar av flödet och introducerat pullmetodik och sen så nu är ju frågan hur man kopplar ihop alla de här olika delarna som API tillverkning med formulering och packning och ut till marknadsbolaget.

AG DDS och John Costanza varför blev det just det?
MH Det vet jag faktiskt inte varför man just valde dem, man var nog mer intresserade av deras verktyslåda och deras metodik och att man tyckte att den passade våran tillverkning och att de förmodligen hade erfarenhet från farmaceutisk tillverkning.
JW För de har ju valt ett visst antal logistiska teorier som har implementerats på AstraZeneca och det är då Costanza som har tagit ihop det verktygspaketet ut emot vilka krav och vilka mål ni ville hade?
MH Ja, precis så är det.
AG När man tittar i de dokument som vi har fått tagit del av, så får man en känsla av att det är plockat lite här och lite där, det känns nästan som om man har suttit med skolböckerna och plockat.
MH Ja, jag tror att det har varit precis så att man har valt olika verktyg för att förbättra. Och man började med de här verktygen och så länge den här konsultfirman var inne så var det nog de verktygen som gällde, men sen har verksamheten utvecklat sina egna verktyg och man har fått influenser från andra delar och nytt folk, nu har de olika delarna och de olika fabrikena börjat utveckla egna nya verktyg, så den här verktysfloran har nog expanderat och flutit ut lite. Det är väl det man har sett nu och försöker att centralisera det mer och säga att det är de här verktygen vi ska jobba med.
AG De går till något vidare perspektiv?
MH Ja precis och de utvecklas centralt och sen så sprider man ut dem i organisationen. Men det är det som är problemet med en sådan här stor organisation att man kan inte vänta sig att allt ska styras centralt för då kommer aldrig någonting att hända utan man måste ge frihet ut till de olika fabrikena samtidigt så vill man inte att det blir för spretigt.

JW Men rent spontant hur känner du att det har varit med er personal som har varit påverkad? Deras inställning till förändringarna?
MH Jag tror att det har varierat, det har funnits hela spannet, det har funnits de som har sagt äntligen gör vi någonting nu är vi på rätt väg och varit väldigt snabba att hoppa på det här och sett de positiva effekterna som vi faktiskt har fått ut av det här. Sen har det funnits folk som har jobbat här hur länge som helst som säger jag vägrar att ändra på mig så man hittar nog folk i hela spektret där majoriteten nog skulle jag vilja säga ligger någonstans i mitten. Jag vet inte hur det funkar på Toyota, men man har fått sig en bild av hur det ska vara på Toyota att alla är väldigt fokuserade just på kunden och man löser problem kontinuerligt och förbättringsarbete och allt det där, och riktigt där är vi ju inte än men det rör på sig. Alltså om man går ut och frågar någon så tror jag att alla är nog medvetna om och fått någon form av utbildning, men hur man sen applicerar det fullt ut, där har vi en bit och gå.

AG hur gjorde ni, och gör nu med dem som är emot förändringen, när det gäller att skapa engagemang?

MH Det finns inte en lösning på hur man hanterar dem utan jag tror att, det är väl det klassiska att man försöker utbilda, förklara göra små ändringar, göra ändringar i olika steg. Sen får man acceptera att det finns motstånd ute i organisationen och försöka hantera det, men jag tror att det man kommer tillbaka till är bygga kunskap bygga förståelse, försöka förklara vad man försöker åstadkomma och hur man ska göra det. Det är att förändra attityder och att förändra attityder tar många år liksom.

JW Hur är det med uppföljningen?

MH Man följer upp väldigt mycket, de klassiska är ju ledtider, lageromsättning, kundservice.

AG De två utbildningspaketen var det majoriteten av personalen som fick gå, eller var det cheferna som gick och sen utbildade de dem under eller?

MH Från början var det att man valde ut ett team som skulle jobba med det här och då var det teamet som fick den här utbildningen och det kunde variera från operatör till halvhöga chefer i alla fall, mellan nivå skulle man säga. När det hade gjorts så rullade man ut utbildningen till flera människor och då blev det kanske inte riktigt lika mycket utan då blev det mer endagars aktiviteter där man gick igenom på en övergripande nivå. Allt eftersom det fanns behov så utbildade man folk mera så att säga jag tror att det finns absolut ett gång operatörer och planerare och mellanchefer som är mycket, mycket mer utbildade än vad de höga cheferna är, det skulle jag vilja säga. Men man började med olika team som skulle jobba med det här och det var de som fick den stora utbildningen i början medan alla andra fick något som vi kallar för awareness training.

AG Vilket paket fick du?

AG Vilka hinder stötte ni på i implementeringen?

MH Jag vet inte exakt vad de stötte på för hinder i DSS för det är lite annorlunda mot var det var om man jämför mot packat. Men jag menar det klassiska är väl skulle jag vilja säga att resurser, att hinna med, för att det är förfarande så man har ett vanligt dagligt jobb som måste göras och att dessutom hitta tid till att göra förbättringar, så jag tror att vi kämpade lite med att få tillräckligt mycket snabbhet och driv och hitta resurserna, det var nog en sak. Sen tror jag att det är ganska mycket med attityder. Vad det handlar om ofta är ju kanske att köra kortare serier och ändra folks arbetsuppgifter och syn på det, så jag tror att det var nog ganska mycket med och förändra attityder och få upp kunskapsnivån på folk. Jag tror att många tror att resultaten ska komma fort, att efter två dagar kunna se resultat, det kom
resultat i rätt riktning, men på vissa delar tog det längre tid att se, man gjorde några quick hits
den här stora förbättringen tog längre tid än vad man förväntade sig att det skulle göra. Och
sen det tredje är väl att hålla allt uppe, jag tror att man gjorde en väldigt stor push där runt
2002, 2003 men sen att hålla uppe den takten och att driva kontinuerligt och att få det som en
naturlig del av organisationen att man förändras och utvecklas det har inte lyckats helt. Det
har jag upplevt personligen att vi gjorde väldigt mycket och sen så gick jag iväg med andra
saker och sen så kom jag tillbaka och jobbade med det här igen och då upplevde jag att det
kanske inte hade hänt så mycket de två, tre senaste åren. Att vi hade gjort massa men sen var
det nästan som att det stannat till lite. Men det tror jag är väldigt lokalt vem man frågar för
vissa vet jag har varit väldigt duktiga med och jobba kontinuerligt och utveckla men vissa
delar av organisationen tror jag man gjorde väldigt mycket men sen stannat av. Ett hinder är
helt klart att hålla uppe den här kontinuerliga förbättringen.

AG Är det ett problem att olika delar i produktionen har hunnit olika långt, att det blir
flaskhalsar där de inte hunnit så långt?

MH Så är det nog men jag upplever det inte som ett jätteproblem.

AG Vi skulle vilja ha en bra förklaring på TPS, BPS och LPS mer exakt vad de är?

MH BPS står för Bulk Production Sweden det var en gammal benämning för de som
tillverkar API. Det är som en egen organisation med ett antal fabriker och fabrikschefer och
tillhörande förråd. Samma sak gäller för TPS som står för Tablet Production Sweden där
skedde all tillverkning av själva tabletterna eller kapslarna och packning, alltså allt torrt. De
var också som en egen organisation med ett antal fabriker och fabrikschefer och tillhörande
förråd. LPS, Liquid Production Sweden som tillverkade allt flytande och frystorkat, så som
nässprejer och krämer. De här tre enheterna jobbade ganska mycket med varandra och trots
att alla ligger i Sverige var det ganska vattentäta skott mellan dem, de var nästan som egna
företag inom företaget så att säga. BPS har två kundtyper, den ena är att de tillverkar och
levererar API till TPS och BPS för vidareförädling. Men sen tillverkar de även ganska
mycket aktiva ingredienser till våran forskningsorganisation.

AG VMI-lösningen är det att ni har lager hos kund eller är det att leverantörer har lager hos
er?

MH Det beror på, från BPS synvinkel, eller DSS som de heter nu så skulle man vilja säga att
VMI lösningen är att man framförallt planerar och försörjer sina kunders lager. Dock är det
inte så långt att man äger lagret hos kunden utan det är fortfarande så att kunden äger sitt eget
lager, men man är ansvarig för att fylla på kundens lager. Det är väl framförallt det vi menar
när vi säger VMI trots att det är samma organisation vilket utförs genom förslag och
godkännande.

AG Vilka produkter gäller det?

MH Det är framförallt produkter där det inte är distinkta uttag utan någon form av halvjämnn
förbrukning som man nyttjar VMI.

AG I en av rapporterna står det att ni övergår från push till pull, men sen lite senare står det
att ni fortsätter att producera mot schema. Teorierna kring pull är ju just att man bortgår från
schemaproducering.

MH Någonstans måste man ha ett schema, frågan är på vilken nivå man lägger det. Nu kan
jag inte exakt svara på vilket tidsspann det rör sig om men jag kan tänka mig att man har gått
från ett schema på fyra månader, till ett schema som kanske sträcker sig två till fem dagar.
Om man studerar hur kanbankorten flödar så ser man ett schema, förr eller senare så blir det
ett schema, frågan är hur lång tid det sträcker sig och hur det genereras. Genereras det via
kort eller är det att man har någon form av automatisk begränsning i sitt system och stabilitet
i systemet eller blir det så att schemat kan variera hur mycket som helst. Man måste veta vad man ska producera imorgon annars går det inte. Vi har som vi kallar det ett rhythm wheel, det vill säga att man kör alltid ordningen produkt A, D, E, K, C. Det är det schemat som löper hela tiden sen är frågan hur mycket man kör av varje produkt, men det är alltid den ordningen för att man ska ha så få omställningar som möjligt och det är ju också en form av schema.

AG Det står även i rapporten att ni har dubbla lager på BPS och TPS beroende på att det inte finns insyn.
MH Ja precis, det var som jag sa att de var som två olika organisationer och båda höll på lager av samma produkt för att ha som säkerhetslager. Det var väldigt skumt och det är till viss del fortfarande så, vi är samma företag och vi är halvdåliga på att ens dela information intern. Men det har blivit bättre de senaste åren.
AG Arbetar TPS och BPS med samma datasystem?

AG Hur utbrett är kanban inom AstraZeneca?

JW Nu i efterhand med facit i hand, fanns det något med implementeringen som skulle kunna ha gjorts annorlunda?
MH Nu började vi nästan på något sätt med verktygen och sen har liksom principerna kommit som steg två, och jag menar alternativet hade varit att man fokuserat väldigt mycket mer på principerna först, och att man hade bestämt att det är det här som det här strategin och då behöver vi de här verktygen. Jag tror säkert att det var så man gjorde men jag upplevde det inte riktigt så, jag upplevde det som att man identifierade ett problem och någonting man ville göra och sen så okej vad har vi för verktyg och så började man jobba med den biten och sen så har man förstått att vi måste ha ett gäng principer och ett gäng strategier som vi arbetar utifrån och det har kommit lite grann nästan som steg nummer två.
JW För att få med personal och så.
MH Ja framförallt ha ett regelverk som säger att internt inom AstraZeneca så arbetar vi utifrån det här regelverket. Sen är ju frågan, kanban är ett verktyg eller är det en princip, VMI är det ett verktyg eller är det en princip, det blir ju lite kvasiintellektuella diskussioner. För mig kändes det i början som att vi fokuserade allt för mycket på verktygen och sen att vi
gick över till principerna, att de kom som nummer två. Det hade kanske varit bättre om vi hade bestämt vad principerna är först och sen sagt att då ska vi ha de här verktygen. Men någonstans, man måste ju komma igång också för att om man bara sitter och diskuterar principer händer inget. Så nu när vi ska introducera lean så sitter man och diskuterar principer och det tar ju lång tid att utveckla, och så sitter man och diskuterar det i två år och så sitter alla och undrar varför inget händer. Så jag tror att man kände ett visst behov att vi måste gå in och göra något snabbt och visa på vinster och då valde man att göra på detta sätt och levererar någonting så får folk se att det händer någonting och får fram positiva effekter. Om man jämför med Scania så har de sitt SCANIA-hus som de utgår ifrån, de använder de här principerna och för det ska de här verktygen användas.

AG Men ni har ju byggt, eller vad man ska säga, ett AstraZeneca-hus.
MH Ja nu har vi byggt ett eget.
AG Som är ruskigt likt Scanias.
MH Ja, steal with pride.
AG Hur utbrett är AstraZeneca-huset, känner alla i personalen till det?
MH Ja alla har sett huset men det är långt ifrån alla som har förstått det.
Intervju med Johan Forsgård

Intervjuobjekt: Johan Forsgårdh (JH)
Intervjuare: Anders Gustafsson (AG), Johanna Wenngren (JW)

AG När väcktes tanken om att förändra varuförsörjningskedjan?
JF I England sitter någonting som heter AZSS, AstraZeneca Supply System, som är våra
logistiker bland annat. Under 2001, 2002 någon gång så började man att samla alla sajter för
att vi skulle ha ett och samma planeringssystem som skulle lösa de flesta problem vi hade, vi
levde med Zeneca:s system och Astra:s system. Där började tanken väckas att vi skulle gå
mot ett och samma logistiksystem. Det togs fram rapporter och så på våra ledtider bland
annat. Våra lager var gigantiska och vad man gjorde då på AZSS-nivå det var att man tog en
resa till USA och träffade ett par konsulter på JCIT. De gick en utbildning och man erbjöds
ett helt paket, det bestod av att vi fick ta del av deras verktyg och vi fick även läras upp så att
vi själva kunde bedriva liknande analyser och projekt och 2002 började det rullas igång på de
stora sajtorna. Sweden Ops och Macclesfield var de två första som rullades ut. Innan det här
vid 2000 ungefär satte Gärtuna igång med Kanban-snurran för två läkemedel. De gick
igenom formuleringssflödet av det och såg enorma effektiviseringar, man såg att ledtiderna
mer eller mindre halverades så man kan säga att det var väckarklockan för oss alla andra.
Men det här var inget helt nytt utan vi har haft ständigt förändringsarbete och
förbättringarbete, det var bara att vi hade inget globalt språk över huvud taget. Så vid 2001,
2002 kom de här konsulterna in och var här ett till två år, så bland annat jag har gått med en
konsult under en längre tid och sen har jag kolleger runt omkring som också fick gå och göra
sådana här analyser.

JW Varför började man med just kanban?
JF Det var att man ville åt, istället för att ha prognosstyrd produktion som vi hade historiskt
gå över till behovsstyrd och när kanban införs så sätts ju saker till sin spets och
produktionsplaner suddas ut, nu måste vi agera på signaler. Nu är ju inte kanban kanske det
mest resurssnåla systemet men det ändrar i alla fall allas tankar att vi producerar inte mot en
prognos, vi producerar mot behov. Vi kommer att leva kvar med olika försörjningstekniker
ett litet tag till, tills vi bestämmer oss för en och samma. Men den ska komma in nu i och med
lean är tanken att man går efter planeringshjul.

JW Ok, det är det ni håller på aktivt med nu?
JF Ja, det tittas febrilt på det, men det ska ju implementeras också, och där har vi lite olika
förutsättningar. Våra flöden i fabriker som har kanske sex sju produkter som går till många
marknader, där är det ganska enkelt, men sen har vi fabriker, till exempel packning på
Gärtuna med två och ett halvt tusen olika produkter med väldigt ryckiga behov där kunden
styr lagren i dagsläget. Sen har vi turbuhaler där 70% går på VMI med andra förutsättningar.

JW På vilket sätt anammar ni VMI, vad är VMI för er?
JF För oss är det att vi fyller på kundens lager vid en viss beställningspunkt.

JW Inte att ni äger lagret hos kunden?
JF Nej, eller indirekt så blir det ju Sweden Ops som äger lagret, men det är ju ett och samma
bolag det är inte förens det har lämnat marknadsbolaget som vi kan börja prata om äkta VMI-
lösning. Det vi försöker göra det är att ha en stor lager punkt för hela, istället för som vi
tidigare har haft då de var utspridda. Vi formulerar samma tabletter men packar dem inte, utan håller dem i stora kår sedan fyller vi på kundernas lager när de sjukar.

JW Varför väcktes idén kring DDS, vilka var drivkrafterna?

JW Demand Driven Supply vad kommer namnet ifrån?

JF Tack vare att vi tog in JCIT så blev det Demand Driven Supply och verktygslådan heter Demand Flow Technology och det är ett antal benämningar och beräkningar enligt deras modell.

JW Var det en verktygslåda de redan hade, eller kom de hit och såg era förutsättningar och eran organisation?

JW Och han använde begreppet ledtid?

JF Ja det är nyckeln till framgång. Det använder sig ju Toyota också av, från att order har placerats, eller den har kommit, eller tills du har fyllt den, det är det enda du fokuserar på att krympa den tiden, så det räknar av det på att krympa den tiden därför måste den röra sig precis med varandra. Och sen har de samma angreppssätt vad det gäller slöserier av resurser, det är väldigt hård fokus på det, det är bara att de inte kan använda sig av samma benämningar för det är USA och det är Japan.

JW Och då kom de in och började jobba med implementeringen här lokalt?

JF Ja det var inventeringen på tre månader för varje flöde och sen var det implementeringar tre månader. Det som det resulterade i var att man satte upp kanban, men hur de andra verktygen användes, ja det var det lite si och så med. Vi har gjort en uppföljning för hela Sweden Ops, för förra året och då tog vi fram en DDS-standard globalt sett, som jag kan skicka över, där står det liksom vad man ska göra för att kalla det DDS. Samtidigt runt 2002 eller någonsting där, när vi började med det här då började även turbuhaler titta och benchmarkas mot till exempel Scania och titta på vad de höll på med, så det var liksom ett naturligt steg att börja titta mer och mer på lean.
JW Sett lokalt till Sweden Ops, vad hade man för strategi då, vilka avdelningar började man med, vilka flöden började man med, tilltade man på de största för att få störst resultat eller?
JW Och då skickade man personalen på kurs?
JF Vi har haft två utbildningar, en introduktionsutbildning som man har kört historiskt sett för operatörer den har mer och mer bytts ut mot en lean-introduktion. Sen har vi verktyg och metoder som är mera för planerare och fabrikschefer etcetera.

JF (Johan visar bilden på deras AstraZeneca-huset där DDS finns med som en av pelarna)
DDS är bara en del av hela lean-huset, det är ju alla de här områdena som vi jobbar med, var av DDS har kommit längst.

JW Vad är de största hindren, vad är svårast med hela det här arbetet, tycker du?
JF Först var det väldig fokus på just på ledtider vi har ju liksom koll på hur lång tid det tar att tillverka, det hade vi inte 2002. Vi har fått ned variationen, vi har fått ned ledtider och allting, men det vi fortfarande kämpar med är volymerna in som kan variera ganska kraftigt, vi pratar 100, 200 % avvikelser mellan prognos från prognos mot vad man verkligen tar ut.

JW Har ni uttalade krav och mål på er uppifrån?
JF Ja vi har det här med ständiga förbättringar (taket på AstraZeneca-huset), om man ska ha det som ett uttryck så finns det ju alltså målbild från högsta ledning och den ska generas ändamål till operatör- nivå.

JW Vad är de största hindren, vad är svårast med hela det här arbetet, tycker du?
JF Först var det väldig fokus på just på ledtider vi har ju liksom koll på hur lång tid det tar att tillverka, det hade vi inte 2002. Vi har fått ned variationen, vi har fått ned ledtider och allting, men det vi fortfarande kämpar med är volymerna in som kan variera ganska kraftigt, vi pratar 100, 200 % avvikelser mellan prognos från prognos mot vad man verkligen tar ut.

JW Vad är de största hindren, vad är svårast med hela det här arbetet, tycker du?
JF Först var det väldig fokus på just på ledtider vi har ju liksom koll på hur lång tid det tar att tillverka, det hade vi inte 2002. Vi har fått ned variationen, vi har fått ned ledtider och allting, men det vi fortfarande kämpar med är volymerna in som kan variera ganska kraftigt, vi pratar 100, 200 % avvikelser mellan prognos från prognos mot vad man verkligen tar ut.

JF Det bottnar i att DDS kanske är bra att börja med för att få effektivare tillverkning och varuförsörjning, lean går ju mera in på det här med ständiga förbättringar. DDS har behovsstyrd tillverkning, räkna och allting, där är den ruggigt bra, medan rätt från mig, visuell styrning, standardiserat bästa arbetssätt ligger i lean.

JW DDS är ju den ena pelaren i huset, den andra då, medarbetarskap, vilket arbete är det som ligger där under hos er? Jobbar man lika aktivt inom den pelaren?
JF Ja det var det jag var inne på, de har kommit olika långt. Vissa pelare här är väldigt starka och vissa har vi bara varit inne och liksom identifierat. Delaktighet och sådant det kommer ju, det är ju det som är positivt med lean det är väl att man får upp handlingsplanen på tavlorna och, de här små förbättringarna och idéerna och magkänsla och sådant kommer med. DDS tog oss en bit på väg, nästa bit det är att utnyttja varenda operatörs kunskaper och fiska och mjölla ut de sista förbättringarna.

JW Har du någon uppfattning om hur medarbetarna reagerade på det här, det nya sättet att tänka och det nya sättet att arbeta?
JF Det gick väldigt snabbt. Om man tar de där kanban-implementeringarna, plötsligt så var det bara kanban på tavlan och successivt så anammades det. Man kan väl säga att 1/3 var positiva och pröva på nytt, en annan tredjedel var skeptiska och 1/3 sa väl aldrig i livet. Vi var väldigt förberedda när det gällde datan och allting, vi hade koll på alla parametrar och man hade utbildningspåmar där det stod exakt vad som skulle göras, enkla lathundar, tydligt uppmanat att när kortet befinner sig i den här sektionen så får du inte röra kortet, när det befinner sig här så ska du flytta fram det. Det var väldigt uttänkt, men sen efter ett tag så måste man ju underhålla också, och så måste man förbättra och sen måste man vara beredd på att om inte metodiken fungerar längre kan man ta till sig en ny som när vi fick in signalerna för sällan. För när vi implementerade hade vi signaler varje dag då blir det ju ganska jämnt.

JW Så implementeringen av kanban gick alltså relativt bra?

JF Inom API gick det bra, där jag var med, det gick inte bra på en annan API fabrik för där stack behovet och vi hade ingen kapacitet, så där fick ledningen gå in och bestämma vad som skulle prioriteras och då har man ju suddat bort alla förutsättningar för kanban. Sen kom man inte upp på banan på grund av att man byggde om fabriken och fick för stora stopp, nu skulle vi implementera det i våras igen i den fabriken och det gick inte heller då vi såg att hela hösten kommer vi att i stort sett behöva tillverka en och samma produkt och den andra får vi lägga på en annan sats. Då tar du bort förutsättningen för att implementera. Men det ser inte jag som ett nederlag, utan all data finns framme om man skulle vilja pröva på det igen.

AG Om man ser till principer och verktyg känns det som att ni tog in verktygen först och principerna fick komma sen istället för tvärt om?

AG Där har ni ju också det lite hårdare, en lastbil kanske det går att vänta en vecka till på men det gör det inte med alla läkemedel.

AG Erat AstraZeneca-hus, är det ett begrepp för hela organisationen eller är det mer ett begrepp för toppen?

JF Folk har nog hört talas om huset, men alla känner inte till innebörden i huset och det är ju en resa som vi måste vandra.

JW Hade någonting kunnat göras annorlunda, med facit i hand?

JW Men det är som du säger också, man måste gör fel för att komma någonstans.