
ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2021

Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 2022

From Declarative Models 
to Local Search

GUSTAV BJÖRDAL

ISSN 1651-6214
ISBN 978-91-513-1152-4
urn:nbn:se:uu:diva-436139



Dissertation presented at Uppsala University to be publicly examined in Room ITC 2446, 
Polacksbacken, Lägerhyddsvägen 2, Uppsala, Friday, 23 April 2021 at 13:15 for the degree 
of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: 
Professor Laurent Michel (University of Connecticut, USA).

Abstract
Björdal, G. 2021. From Declarative Models to Local Search. Digital Comprehensive 
Summaries of Uppsala Dissertations from the Faculty of Science and Technology 2022. 47 pp. 
Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1152-4.

A solver is a general-purpose software for solving optimisation problems. It takes as input a 
description of a problem, called a model, and uses a collection of algorithms, called its solving 
technology, to ideally produce an optimal solution as output. Most solvers have a modelling 
language that cannot be processed by other solvers. This means that there is a risk of making 
an early commitment to a solver and its technology when writing a model. To address this risk, 
and to increase the accessibility of solvers, there has been a push for technology-independent 
modelling languages, a notable one being MiniZinc.

A model written in MiniZinc is transformed by the MiniZinc toolchain in order to suit a 
targeted solver and its technology. However, for a solver to process a MiniZinc model, it also 
requires what is called a backend for MiniZinc. A backend translates the transformed MiniZinc 
model into the solver’s own modelling language and synthesises any components not in a 
MiniZinc model that the solver (or its technology) requires.

The solving technology called constraint-based local search (CBLS) is based on the popular 
algorithm design methodology called local search, which often quickly produces near-optimal 
solutions, even to large problems. So, with the advent of CBLS solvers, there is a need for CBLS 
backends to modelling languages like MiniZinc.

This thesis contributes to three research topics. First, it shows for the first time how to create 
a CBLS backend for a technology-independent modelling language, namely MiniZinc, and it 
shows that CBLS via MiniZinc can be competitive for solving optimisation problems. Second, 
it extends MiniZinc with concepts from local search, and shows that these concepts can be 
used even by other technologies towards designing new types of solvers. Third, it extends the 
utilisation of another technology, namely constraint programming, inside local-search solvers 
and backends.

These contributions make local search accessible to all users of modelling languages like 
MiniZinc, and allow some optimisation problems to be solved more efficiently via such 
languages.

Keywords: discrete optimisation, combinatorial optimisation, local search, large-
neighbourhood search, MiniZinc, constraint programming, declarative modelling, declarative 
neighbourhoods

Gustav Björdal, Department of Information Technology, Computing Science, Box 337, 
Uppsala University, SE-75105 Uppsala, Sweden. 

© Gustav Björdal 2021

ISSN 1651-6214
ISBN 978-91-513-1152-4
urn:nbn:se:uu:diva-436139 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-436139)



Dedicated to coffee and tea: without you
none of this would have been possible.





Acknowledgements

First and foremost, I would like to thank my supervisors Pierre Flener and
Justin Pearson. Pierre, it is mind-boggling how much I have grown over these
past years and how much of it is thanks to you. Thank you for being constantly
supportive while also pushing and challenging me towards perfection. It has
been a pleasure to have you as a mentor, both in teaching and in research. Justin,
thank you for being a fantastic co-supervisor and balancing out the office with
our music and math discussions; indeed sometimes math just cleanses the soul.

Thanks also to Mats, Di, Andreina, Frej, Jean-Nöel, Joe, Ghafour, Lei, and
the rest for lighting up the office over the years.

Teaching turned out to be one of the things I most enjoyed over these years
and this is undoubtedly thanks to all the wonderful students I have had. I wish
you all the best and hope that we meet again soon.

I have had the pleasure of having Kalle Törnqvist as a mentor during the
Mentor4Research programme 2019. Thank you, Kalle and the people at UU In-
novation, for teaching me so many things about the world outside of academia.

During my PhD studies, I have been fortunate enough to visit the MiniZinc
team at Monash University not once but twice! I am very thankful to both Peter
Stuckey and Guido Tack for hosting me: it really was some of the best time
of my studies. Of course, my time at Monash was made wonderful by many
other people as well. Kevin, Dora, Maxim, David, Maria, Graeme, Henk, and
Jip thanks for taking care of me around the office and overall just being great
people. These visits were made possible by travel grants from the Ericsson
Research Foundation and rektors resebidrag från Wallenbergstiftelsen.

Speaking of having a great time, there are many people at the department
that I am very grateful to. Kim and Stephan, thanks for always cheering me
up and sharing my interest in weird fermented food. Aleksandar thank you
for so many life-saving coffee breaks and for introducing me to so many great
people around the department. Thanks to Calle, Anna, Fredrik, Kalle, and the
rest of the gang for all our lunch breaks together. Thanks also to Johan, Fredrik
(again), and Per for helping to organise the infrequent Friday pub!

I would probably not have stayed in Uppsala for as long as I have had it
not been for all my friends from outside the Department. Dennis, Javier, and
Joachim, it has been great to share this journey with you and to get a glimpse at
the PhD student experience at other departments. I look forward to many more
discussions and burgers! Lowe, Adam, Sanna, Hussam, and Gusten; Malte,
Viking, Per, and Falk; Amanda, Astri, Björn, Viktor, Karin, Olof, Linnea, and
Viktoria: thank you all for making these years so much more than just studying.



I must also express my eternal gratitude to Östgöta nation, which has been
my anchor point in Uppsala for over 10 years now. A house of memories where
I have spent so much time with all of these wonderful people. Truly my second
home.

Finally, to the people that I hold dearest: Mamma, Pappa, Andreas, Hanna,
Jacob,1 Anna, and especially Astrid. This would not have been possible without
you. You know how much you mean to me; I don’t need to say another word.

1Du är fortfarande skyldig mig 500kr.



List of papers

This thesis is based on the following papers, which are referred to in the text by
their Roman numerals.

I G. Björdal, J.-N. Monette, P. Flener, and J. Pearson:
A constraint-based local search backend for MiniZinc.
Constraints, journal fast track of CP-AI-OR 2015, 20(3):325–345,
July 2015.

II G. Björdal, P. Flener, and J. Pearson:
Generating compound moves in local search by hybridisation with
complete search.
In: L.-M. Rousseau and K. Stergiou (editors), CP-AI-OR 2019. Lecture
Notes in Computer Science, volume 11494, pages 95–111. Springer,
2019.

III G. Björdal, P. Flener, J. Pearson, P. J. Stuckey, and G. Tack:
Declarative local-search neighbourhoods in MiniZinc.
In: M. Alamaniotis, J.-M. Lagniez, and A. Lallouet (editors),
ICTAI 2018, pages 98–105. IEEE Computer Society, 2018.

IV G. Björdal, P. Flener, J. Pearson, and P. J. Stuckey:
Exploring declarative local-search neighbourhoods with constraint
programming.
In: T. Schiex and S. de Givry (editors), CP 2019. Lecture Notes in
Computer Science, volume 11802, pages 37–52. Springer, 2019.

V G. Björdal, P. Flener, J. Pearson, P. J. Stuckey, and G. Tack:
Solving satisfaction problems using large-neighbourhood search.
In: H. Simonis (editor), CP 2020. Lecture Notes in Computer Science,
volume 12333, pages 55–71. Springer, 2020.

Reprints were made with permission from the publishers.



Comments on Paper Contributions
Paper I
I am the main author. I made the key contributions to the research, made most
of the implementation, and made contributions to the writing of some sections.

Paper II
I am the main author. I conceived the idea, led the research, made the imple-
mentation, conducted all the experiments, and was the lead writer of most of
the sections.

Paper III
I am the main author. I conceived the idea, led the research, made the imple-
mentation with some help from the co-authors, conducted all the experiments,
and was the lead writer of most of the sections.

Paper IV
I am the main author. I conceived the idea, led the research, made the imple-
mentation, conducted all the experiments, and was the lead writer of the entire
paper.

Paper V
I am the main author. I conceived the idea, led the research, made the imple-
mentation with some help from the co-authors, conducted all the experiments,
and was the lead writer of the entire paper.

Other Publication
J. J. Dekker, G. Björdal, M. Carlsson, P. Flener, and J.-N. Monette.
Auto-tabling for subproblem presolving in MiniZinc.
Constraints, journal fast track of CP-AI-OR 2017, 22(4):512–529,
October 2017.



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Modelling of Discrete Optimisation Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 MiniZinc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 FlatZinc and Backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Solving Technologies for Discrete Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 Constraint Programming (CP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1 A Prototypical Local-Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Constraint-Based Local Search (CBLS) . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Large-Neighbourhood Search (LNS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Summaries of Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
I A CBLS Backend for MiniZinc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
II Generating Compound Moves in Local Search by Hybridisation

with Complete Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
III Declarative Local-Search Neighbourhoods in MiniZinc . . . . . . . . . . . . . 34
IV Exploring Declarative Local-Search Neighbourhoods with CP . 35
V Solving Satisfaction Problems using LNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Sammanfattning på svenska . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43





1. Introduction

Optimisation problems are crucial to both industry and society, and are prob-
lems where we make decisions that optimise some objective while also satisfy-
ing some constraints.

For example, consider a problem of delivering packages in a city, something
that takes place every day worldwide. There is a centralised depot where
all packages are stored, and from which a fleet of vehicles is dispatched to
deliver the packages. Each package has a volume and a destination, and each
vehicle has capacity constraints on for example the maximum volume of the
packages it can carry. In essence, the problem is to decide, for each vehicle,
which packages to deliver and which route to take. Furthermore, we are usually
also interested in being as efficient as possible: we also want to optimise some
objective, such as minimising the total delivery time, the total fuel consumption,
the number of used vehicles, or some combination thereof. That is, to solve this
problem, we make decisions that optimise some objective while at the same
time satisfying some capacity constraints.

Another example is the problem of personnel scheduling, say of nurses at
a hospital. There is a set of nurses, each with some expertise, and days that
are split into shifts. The problem is to decide which nurses are working each
shift of each day, subject to requirements (or: constraints) such as the number
and expertise of nurses on duty, the time of rest between two shifts, the number
of free days that each nurse has over a month, etc. Again, we are usually also
interested in optimising some objective, such as minimising the total overtime,
any imbalance of nurse workloads in the schedule, or some combination thereof.
Once more, this is a problem that is solved by making decisions that optimise
some objective while at the same time satisfying some constraints.

These are two examples, among countless others, that illustrate what makes
an optimisation problem, namely decisions, constraints, and an objective to
optimise. While these problems are in general of high importance, they are
also notoriously difficult to solve optimally.

There are, to generalise greatly, three approaches that we can take when
attempting to solve an optimisation problem:

1. we can write a special-purpose algorithm for the problem by using a
design methodology, such as local search or dynamic programming, that
one can find in any advanced algorithms textbook;

2. we can use a general-purpose software, called a solver, where the input
is a description of the problem, called a model, and the output is ideally
an optimal solution; or

1



3. we can give up and instead approximate the problem as something that is
easier to solve but then without satisfying all the constraints.

As optimisation problems can be very difficult to solve, the third approach, of
approximating the problem, is reasonable, but will not be considered further in
this thesis. Instead, we focus on the other two approaches where the aim is to
solve the problem optimally under all of its constraints. It should be mentioned
that there is actually a fourth approach that is very promising, namely quantum
computing. In theory, quantum computers are groundbreaking for solving the
type of optimisation problems that we consider in this thesis. However, it
remains to be seen if this is also the case in practice: hence we will not discuss
this approach further here.

The first approach, which we refer to as writing an ad-hoc algorithm, is in
theory always preferable as the best algorithm for an optimisation problem can
always be written ad-hoc. However, in practice, programming from scratch is
both time-consuming and error-prone, and there is no guarantee that we even
come up with a good algorithm for the problem at all.

The second approach, which we refer to as model-and-solve, offers several
advantages over the first one and is often preferable in practice. Compared to an
algorithm, a model just describes what the problem is, rather than how it can be
solved. For this reason, a model can be easier to maintain (in case the problem
changes slightly, which is often the case in practice), and a model offers more
reassurance in terms of the correctness of the solutions, due to the descriptive
nature of a model. Furthermore, as a solver improves over time, we benefit from
these improvements without having to modify any models. Indeed, solvers
usually have decades of research behind them, and are actively researched and
developed. Solvers can be based on fundamentally different algorithms. We call
the algorithms that a solver is based on its solving technology. A disadvantage
of many solvers is that they have their own language for expressing models,
and a model written in one solver’s language can often not be passed to another
solver.

The main inspiration for this thesis can be attributed to two advancements in
the field of optimisation.

First, a solving technology called constraint-based local search (CBLS)
was introduced in [31] and extended in [48]. There has since been a host of
solvers that use some flavour of local search, e.g., [3, 6, 14, 30, 35, 48]. This
has been a promising development, as local search is one of the more popular
methodologies for writing ad-hoc algorithms for optimisation problems, and in
particular because local search is known for producing near-optimal solutions
to large problems very quickly, at least when used competently.

Second, there has been a push for modelling languages that are independent
of solvers and solving technologies, so that we can write only one model and
then run it on many solvers in order to find the best solver. Such modelling
languages, and in particular the one called MiniZinc [34] and its toolchain,
drastically increase the accessibility of solvers and allow the rapid prototyping

2



of a model across various solving technologies, in order to select a best combi-
nation of a model and solver. However, initially, no such modelling language
supported CBLS solvers.

In this thesis, I bridge the gap between technology-independent modelling
languages and local search, implementing it for MiniZinc in particular. This
work not only allows us to deploy local search via MiniZinc, but also allows
more problems to be successfully tackled via MiniZinc in the first place as
some problems are in fact best suited for local search. These contributions may
eventually further reduce the need for ad-hoc algorithms.

1.1 Terminology
We provide a high-level overview of the concepts required for summarising the
contributions of this thesis in Section 1.2, and that are shared among chapters.

A constraint satisfaction problem (CSP) is a problem where we want to find
an assignment of values for a set of unknowns, called variables, such that the
assignment satisfies a set of constraints on the variables. We say that such an
assignment is feasible and that it is a solution; otherwise, it is infeasible and is
not a solution. A constrained optimisation problem (COP) is a CSP extended
with an objective function on the variables, where the sought assignment is
a minimal solution (or maximal solution). In this thesis, we only consider
discrete problems, where each variable must take a value from a finite set,
called its domain.

When the objective function is to be minimised, then the COP is a minimi-
sation problem. We introduce everything in terms of minimisation problems
as maximisation problems can be turned into minimisation problems by negat-
ing the objective function, and as a CSP is a COP with a constant objective
function.

As an example of a COP let us consider the travelling salesperson problem
with time windows, which is a variation of the vehicle routing problem above
of package delivery, but for a single vehicle:

Example 1.1. Given are a set of n locations, with a designated starting lo-
cation d in {1, . . . ,n} called the depot; a travel-time matrix T where Ti, j is
the travel time from location i to location j; and for each location i a time
window consisting of an earliest arrival time Ei and a latest arrival time Li. The
travelling salesperson problem with time windows (TSPTW) is to find a route
of n+1 locations that starts at location d at time 0 and ends at location d, that
visits each other location exactly once and within its time window, and that has
a minimal total travel time.

A route that would arrive at a location before its earliest arrival time is still a
valid route, and the arrival time is then instead at least the earliest arrival time
at that location, which corresponds to the salesperson waiting for the location

3



to become available. There is no time window for the return to the depot. Note
that the time the salesperson spends serving a location can be added into the
travel-time matrix without loss of generality, and we thereby do not consider it.

The unknowns are the route and the arrival times at the locations, the con-
straints are that each location (except the depot) is visited exactly once and that
each location is visited within its time window, and the objective is to minimise
the total travel time.

This is a variation (with time windows) of the more commonly known
travelling salesperson problem (TSP) [28]. While the TSP is formulated in
terms of a salesperson mainly for historic reasons, it remains a very important
problem to solve. Indeed, the TSP is at the core of problems in many areas of
vehicle routing, shipping, automated warehouses, and even in biology, where
for example the TSP is a sub-problem in DNA sequencing.

A model is a declarative description of a problem and is expressed in a mod-
elling language. Some notable solver-independent languages are AMPL [16],
Essence [17], and MiniZinc [34]. A model is given as the input to a solver that
is based on some solving technology. Some notable solving technologies are
constraint programming [42], integer programming [51], constraint-based local
search (CBLS) [48], propositional satisfiability [7], and satisfiability modulo
theories [26]. Each solving technology comes with its strengths and weak-
nesses, and there is no solving technology that dominates all others, in the sense
that no solving technology is the overall best one for solving all problems.

In this thesis, we think of a solver as a stand-alone program that takes a
model as input. However, it is worth noting that having a modelling language is
not necessary for being a solver, because many solvers are also (or exclusively)
programming libraries that are used via an interface, through which something
equivalent to a model is passed.

During solving, a solver will in some way explore the space of all possi-
ble assignments of values to the variables, called the search space, in order
hopefully to find an optimal solution.

One aspect that can distinguish solving technologies is whether they use
systematic search or local search when looking for solutions. Systematic search
looks for solutions by systematically exploring the entire search space (and
usually not by enumerating it), and is therefore guaranteed to eventually find
an optimal solution or determine that no solution exists. Local search looks
for solutions by starting from some assignment and then repeatedly moving
to a new assignment, which is drawn from what is called a neighbourhood of
assignments similar to the current one. Local search is usually a randomised
process, and in general offers none of the guarantees of systematic search, but
can in practice often find near-optimal solutions very quickly. A key difference
between systematic search and local search is that as the size of a problem
grows, say for larger values of n in Example 1.1, systematic search quickly
becomes impractical, while local search tends to scale better to larger sizes.

4



Systematic search is sometimes also referred to as complete search as it will
eventually perform something akin to a complete exploration of the search
space. In contrast, local search is sometimes referred to as incomplete search
as it generally does not explore the entire search space. However, there is some
ambiguity in these two terms: if systematic search is stopped early, say due to
exceeding a time limit, then the systematic search was in fact an incomplete
search. The terms systematic search and local search are therefore here deemed
preferable.

1.2 Contributions
This thesis contributes to three research topics: it shows for the first time how
to connect a CBLS solver to a technology-independent modelling language
(Paper I and Paper II); it adds technology-independent and declarative neigh-
bourhood syntax to MiniZinc and shows how they can be used successfully
across solvers of different solving technologies (Paper III and Paper IV);
and it extends the utilisation of constraint-programming technology, which
performs systematic search, during local search in order to solve problems
more efficiently (Paper II, Paper IV, and Paper V).

1.3 Outline
This thesis is organised as follows. Chapter 2 gives a brief overview of Mini-
Zinc and how discrete optimisation problems can be modelled in it. Chapter 3
introduces the solving technologies that are used in this thesis, namely con-
straint programming (Section 3.1), constraint-based local search (Section 3.2.2),
and large-neighbourhood search (Section 3.2.3). Chapter 4 summarises the
motivations, contributions, and results of this thesis. Finally, we conclude in
Chapter 5.

5



2. Modelling of Discrete Optimisation
Problems

We give an overview of models of discrete optimisation problems (Section 2.1)
and an overview of a language for expressing models, namely MiniZinc [34]
(Section 2.2).

2.1 Models
A model is a formal description of an optimisation problem that specifies the
variables of the problem, the values that each variable can take, the constraints
on the variables, and the objective function on the variables. A model is a
declarative description of a problem as it only defines what the problem is, as
opposed to an algorithm, which describes how the problem can be solved. A
model can be expressed in many ways, for example by mathematical notation
as shown in Example 2.1 and its Model 2.1:

Example 2.1 (continued from Example 1.1). A mathematical model of the trav-
elling salesperson problem with time windows (TSPTW) is shown in Model 2.1.
Each of the n+1 variables xi represents the ith location that is visited in the
route, and is constrained to take a value in the set {1, . . . ,n} (line 2.7). The
first and last location visited is the depot (line 2.2), and each location is visited
exactly once except for the depot, which is visited twice (line 2.6). The objec-
tive (line 2.1) is to minimise the sum of the travel times between consecutively
visited locations. The arrival time at the ith visited location (not to be confused
with location i) is denoted by the variable ai (line 2.8), which is a natural
number, except for the last visited location, for which we need no such variable
as there is no time window for the return to the depot. Each ai must take a value
within the time window of the ith visited location (line 2.5), and must be at least
the arrival time at the previous location plus the travel time from there (line 2.4).
Recall that if the salesperson is to arrive at the ith visited location before its
earliest arrival time, i.e., ai−1 +Txi−1,xi < Exi , then ai will still take some value
within the time window due to the constraint in line 2.5, which corresponds
to the salesperson waiting at least until that location becomes available. The
arrival-time variable a1 for the first location is constrained to be 0 (line 2.3),
which corresponds to the starting time of the route being 0.

6



Model 2.1 A mathematical model of TSPTW; note that it is not linear.

minimise
n

∑
i=1

Txi,xi+1 (2.1)

subject to
x1 = d = xn+1 (2.2)
a1 = 0 (2.3)
ai−1 +Txi−1,xi ≤ ai ∀i ∈ {2, . . . ,n} (2.4)
Exi ≤ ai ≤ Lxi ∀i ∈ {1, . . . ,n} (2.5)
xi 6= x j ∀i, j ∈ {1, . . . ,n}, i < j (2.6)
xi ∈ {1, . . . ,n} ∀i ∈ {1, . . . ,n+1} (2.7)
ai ∈ N ∀i ∈ {1, . . . ,n} (2.8)

Model 2.1 is a parametric model as it is defined for any values of its parame-
ters n, d, E, L, and T . We call a concrete set of parameters data and when a
model is paired with data, they form an instance.

Models can also be expressed in declarative languages, which we call mod-
elling languages. By using a modelling language to describe a problem, we
can analyse and transform the model, and solve instances of the problem, by
using off-the-shelf problem-independent software that we call a solver. This
model-and-solve paradigm provides a convenient approach for problem solving,
as writing a model can be significantly easier than writing a problem-specific
algorithm for solving the problem. For example, Model 2.1 is significantly
simpler than any algorithm for solving TSPTW. Furthermore, contrary to what
one might believe, the model-and-solve approach usually does not sacrifice
performance for convenience. Solvers are discussed in Chapter 3.

2.2 MiniZinc
MiniZinc [34] is an open-source toolkit for a modelling language that has been
developed as a push towards a standard modelling language that is independent
of solvers, and even independent of solving technologies. By using a solver-
independent language, we do not have to make an early commitment to a
specific solver and solving technology when writing a model.

The MiniZinc language supports both parameters and variables of Boolean,
integer, integer-set, and float types, and arrays thereof. MiniZinc was extended
in [2] to support string variables, but this extension is not yet part of the official
language.

7



Constraints are declared using constraint predicates (as defined in Sec-
tion 2.2.1 below) and expressions. Expressions are built using typical pro-
gramming operators and syntax like +, -, *, div, X[i], not, ∧ , etc. We
do not give the full grammar and semantics of expressions in MiniZinc as this
amount of detail is not important for this thesis, but note that ∧ denotes the
logical ‘and’ operator.

Example 2.2. Model 2.2 shows a parametric MiniZinc model that corresponds
to Model 2.1. Lines 2 and 3 declare the two integer parameters n and d, line 4
declares the 2d parameter array TravelTimewhere TravelTime[i,j] is
the travel time from location i to location j, and lines 5 and 6 declare two arrays
of parameters, where EarliestArrival[i] and LatestArrival[i]
form the time window of location i. The main variables are declared on
line 8 as elements of an array Route, which corresponds to the xi variables in
Model 2.1 and is indexed by what we call the index set 1..n+1, where a..b
is the set of integers between a and b inclusive. The syntax var 1..n
on line 8 specifies that each element of Route is a variable that has the
domain 1..n, i.e., they can take a value in the integer set 1..n. Furthermore,
the array ArrivalTime, which corresponds to the ai variables in Model 2.1,
is declared on line 9. Here the syntax var int means that these variables can
take any integer value.

The constraints on lines 11 and 12 require the depot to be the first and last
location visited. The constraint from line 13 to line 15 requires the variables
of Route (except for Route[n+1]) to all take different values. On line 16
the arrival time at the depot (which corresponds to the starting time of the route)
is constrained to be 0. Lines 17 until 19 constrain the arrival time at the ith
location in the route to be at least the arrival time at the (i-1)th location plus
the travel time between these two locations, while lines 20 until 23 constrain the
arrival time to be within the time window of each location. Finally, the solve
statement on line 25 specifies that this is a minimisation problem and gives the
objective function to minimise, namely the sum of the travel times between
consecutively visited locations.

2.2.1 Constraints
A constraint predicate is the name of a commonly required relationship between
variables and is either user-defined or part of the MiniZinc language, such as the
infix = and ≤ predicates. A predicate is either natively supported by a solver
or requires a decomposition, which is a definition of the predicate expressed in
MiniZinc in terms of others: decompositions can be solver-specific, but default
ones are shipped with MiniZinc.

8



Model 2.2 A MiniZinc model for TSPTW that corresponds to Model 2.1.

1 % Parameters
2 int: n;
3 int: d;
4 array[1..n, 1..n] of int: TravelTime;
5 array[1..n] of int: EarliestArrival;
6 array[1..n] of int: LatestArrival;
7 % Variables
8 array[1..n+1] of var 1..n: Route;
9 array[1..n] of var int: ArrivalTime;

10 % Constraints
11 constraint Route[1] = d;
12 constraint Route[n+1] = d;
13 constraint forall(i, j in 1..n where i < j)(
14 Route[i] 6= Route[j]
15 );
16 constraint ArrivalTime[1] = 0;
17 constraint forall(i in 2..n)(
18 ArrivalTime[i-1] + TravelTime[Route[i-1],

Route[i]] ≤ ArrivalTime[i]
19 );
20 constraint forall(i in 1..n)(
21 EarliestArrival[Route[i]] ≤ ArrivalTime[i] ∧
22 ArrivalTime[i] ≤ LatestArrival[Route[i]]
23 );
24 % Objective function
25 solve minimize sum(i in 1..n)(TravelTime[Route[i],

Route[i+1]]);

Example 2.3. The constraint even(x), which constrains an integer variable x
to take an even value, has the user-defined predicate even, which can have the
following decomposition:

predicate even(var int: x) = (x mod 2 = 0);

Indeed, x is even if and only if x is congruent with 0 modulo 2.

A special class of constraint predicates is the class of global-constraint
predicates. Although there is no agreed-upon definition of what is required to
be a global constraint, the name is often used for complex constraints that are
parametrised in the number of arguments, have a complex decomposition, or
some combination thereof [4].

9



Example 2.4. The alldifferent(X) constraint in MiniZinc has a com-
monly used global-constraint predicate that constrains the variables in array X
to all take different values, and can have the following decomposition:

predicate alldifferent(array[int] of var int: X) =
forall(i, j in index_set(X) where i < j)(
X[i] 6= X[j]

);

This declares that alldifferent can be applied to an array with any index
set and variables of any integer domain, and constrains each pair of elements
at distinct indices in X to take different values. Note that lines 13 to 15 in
Model 2.2 can (and should, as argued below) be replaced by

constraint alldifferent(Route[1..n]);

where Route[1..n] has the first n elements of Route.

Using a global-constraint predicate in a model, as opposed to using a decom-
position, offers several advantages. First, the model becomes more concise,
which improves the readability and maintainability of the model. Second, if a
better decomposition is discovered for some predicate, then any model using
that predicate will benefit from this discovery, without one having to change
the model. Finally, a global-constraint predicate captures a complex combina-
torial substructure of a problem that can otherwise be difficult to automatically
identify. This allows solvers to then easily reason about this complex substruc-
ture. For example, by instead using alldifferent(Route[1..n]) in
Model 2.2 for lines 13 to 15, where there are n variables with the domain 1..n,
it is trivial to automatically discover that Route[1..n] has to be a permuta-
tion of the set 1..n, and thereby easy for solvers to exploit this information
for faster solving. Discovering this fact in Model 2.2 would require that es-
sentially the alldifferent(Route[1..n]) constraint is identified. In
general, automatically identifying that some constraints are equivalent to a
global constraint is a non-trivial task [27].

The Global Constraint Catalogue [4] discusses most of the global-constraint
predicates identified in the literature. The MiniZinc language includes an
extensive list of constraint predicates, including many global ones.

2.2.2 FlatZinc and Backends
Solvers do not directly solve the problem described by a MiniZinc model, but
instead have their own solver-specific modelling language and can only handle
models expressed in that language. Therefore, in order to use a solver for a
MiniZinc model, the model must be translated into the solver’s language and
any components not in the MiniZinc model that the solver requires must be

10



synthesised. We call such a translate-and-synthesise unit the solver’s back-
end for MiniZinc. Note that we distinguish between a solver and a backend,
and that the words are not synonyms: a solver need not have a backend for
MiniZinc, and a backend can be independent of any particular solver and
can even provide input suitable for many solvers. Some notable solvers that
have a backend for MiniZinc are Choco [40], Gecode [18], and SICStus Pro-
log [9] of constraint-programming technology (see Section 3.1); Gurobi [21],
CPLEX [23], and Cbc [24] of integer-programming technology via the com-
mon backend of [5]; OscaR.cbls [14] and Yuck [30] of CBLS technology (see
Section 3.2.2); Picat-SAT [52] of propositional-satisfiability technology; Opti-
MathSAT [11] of optimisation-modulo-theories technology; and Chuffed [10]
and CP-SAT [20] of hybrid technologies. Note that some solvers offer several
solving technologies via MiniZinc: for example Gecode can also perform
large-neighbourhood search (a flavour of local search, see Section 3.2.3).

Designing a backend can be a significant challenge as there is usually not
a one-to-one correspondence between the components of a MiniZinc model
and the components that a solver requires. Indeed, this challenge is the main
focus of Paper I and for example of [5, 11, 52]. In order to simplify the job
of a backend designer, MiniZinc offers an intermediate language called Flat-
Zinc that each MiniZinc model, together with data, is compiled into. FlatZinc
is a subset of the MiniZinc language and the compilation process is called
flattening. During flattening, a MiniZinc model is transformed by introducing
new variables and constraints such that the resulting FlatZinc model consists
only of variable (and parameter) declarations, constraints that each have a single
constraint predicate, and a solve statement with a single variable, which is
constrained by the constraints to take the value of the objective function.

Example 2.5. During flattening, the constraint x*y ≤ z is replaced by adding
a new variable a and stating the two constraints x*y = a and a ≤ z. For
the statement solve minimize x*z a new variable b is constrained by
x*z = b to take the value of the objective function, and the statement be-
comes solve minimize b.

Note that as part of the flattening process, all parameters in a MiniZinc
model must be given values: data must be supplied. Therefore, a FlatZinc
model is always an instance.

Another important aspect of flattening is that a model is always flattened for
use by a given solver via a backend: the flattening process can also make solver-
specific changes to the model. Specifically, each solver or backend provides
to MiniZinc the list of (global-)constraint predicates that the solver natively
supports, so that during flattening the constraints with supported predicates are
kept intact while the constraints with unsupported ones are replaced by using
either the default decomposition provided by MiniZinc or the solver-specific
decomposition.

11



3. Solving Technologies for Discrete
Optimisation

We briefly describe the solving technologies that are used in this thesis, namely
constraint programming (Section 3.1), constraint-based local search (Sec-
tion 3.2.2), and large-neighbourhood search (Section 3.2.3).

Recall from Chapter 2 that all concepts are introduced for minimisation
problems, omitting satisfaction and maximisation problems without loss of
generality. For the sake of brevity, we will in the context of solvers abuse the
terminology of Chapter 2 slightly by saying that a solver solves a model rather
than an instance.

3.1 Constraint Programming (CP)
A constraint programming (CP) solver uses systematic search to solve a CP
model, defined as follows:

Definition 3.1. A constraint-programming model for a constrained minimisa-
tion problem is a tuple 〈V,D,C,o〉 consisting of:

• a set V of variables;
• a function D that maps each variable v in V to its initial domain, which is

the set D(v) of values it can take;
• a set C of constraints on V that must be satisfied in any solution; and
• a variable o in V , called the objective variable, that has constraints in C

that require it to take the value of the objective function, which is to be
minimised.

A CP solver associates each variable v with what is called its current do-
main, denoted by dom(v). The current domains are collectively called a store.
Initially, each dom(v) is D(v): the initial store is {v 7→ D(v) | v ∈V}. During
solving, values are removed from the current domains in the store. When the
current domain of a variable is a singleton, then the variable is said to be f ixed
to the value in that set. When all variables are fixed by a CP solver, then they
form a solution.

A CP solver interleaves propagation (Section 3.1.1) and systematic search
(Section 3.1.2).

12



3.1.1 Propagation
Consider a CP model 〈V,D,C,o〉. For each constraint c(v1, . . . ,vn) in C over
variables vi in V a CP solver instantiates a corresponding propagator for predi-
cate c provided with the CP solver:

Definition 3.2. A propagator for a constraint c(v1, . . . ,vn) is an algorithm that
performs propagation: it infers some values in the current domains of v1, . . . ,vn
that are impossible under the constraint and removes them. When a propagator
cannot remove any further values, it is said to be at a fixpoint.

Example 3.1. Consider the variables x, y, and z with the current domains
{1,2,3,4}, {5,6,7,8}, and {10,11,12} respectively, and the linear equality
constraint x+y= z. A propagator for x+y= z can remove value 1 from dom(x),
as for each value w in dom(y) and each value u in dom(z), we have 1+w 6= u.
Likewise, the value 5 can be removed from dom(y), and no other values can be
removed based on the current domains.

Note that a propagator might empty the current domain of a variable, and
that it need not remove all values that are impossible under the constraint
and the current domains. The degree to which a propagator removes values is
referred to as its consistency. There usually are multiple propagators of different
consistencies for each constraint predicate in a CP solver, as a propagator that
is able to remove more values might take significantly more time to execute.
There is a default propagator for each constraint predicate, and the modeller
can override the default one when there are multiple propagators to choose
from. See [44] for more details on propagators.

3.1.2 Search
In order to solve a CP model, a CP solver builds a search tree by interleaving
propagation and search, as sketched in Algorithm 3.1. Each node in the tree
corresponds to a store. We first describe a search for all solutions, both optimal
and sub-optimal ones, and then mention some refinements for more efficiently
searching for an optimal solution.

For a CP model 〈V,D,C,o〉, the solving starts by the call CP-SOLVE({v 7→
D(v) | v ∈V},C,o,B) to the recursive procedure CP-SOLVE, where the first
argument is the root node of the tree and B is a branching strategy. Upon each
call to CP-SOLVE, the store is first updated by running all propagators until
they are each at a fixpoint (line 2). If the current domain of some variable is
empty (line 3), then the node is said to be failed and the procedure returns
to the caller (line 4), which corresponds to backtracking to the parent node.
When all variables are fixed (line 5), then a solution has been found and
is output (line 6), and the search backtracks to the parent node in order to

13



Algorithm 3.1 Overview of depth-first all-solutions search by a CP solver for
a CP model 〈V,D,C,o〉, current store S, and branching strategy B.

1: procedure CP-SOLVE(S,C,o,B)
2: S← PROPAGATE(S,C) . reduce the current domains
3: if HASEMPTYCURRENTDOMAIN(S) then
4: return . current node is failed
5: if ALLFIXED(S) then
6: OUTPUTSOLUTION(S) . solution is found
7: return
8: v← SELECTVARIABLE(S,B) . select variable to branch on
9: {P1, . . . ,Pp}← PARTITION(v,S,B) . partition dom(v)

10: for i ∈ {1, . . . , p} do
11: CP-SOLVE(S,C∪{v ∈ Pi},o,B) . explore child with v ∈ Pi

search for additional solutions (line 7). If backtracking does not happen, then
the branching strategy B selects a variable v with at least two values in its
current domain (line 8) and partitions dom(v) into p≥ 2 non-empty disjoint
subsets (line 9). For each part Pi of the partition, a child node is constructed
by restricting v to take a value in that part, and the new node is recursively
explored (lines 10 and 11). This depth-first exploration of the search tree is
a systematic search that is guaranteed to eventually output all solutions, both
optimal and sub-optimal ones. We discuss at the end of this section how only
to search for a solution that is better than the one previously output, if any.

Example 3.2. Consider again Example 3.1. After propagation in the root
node, the variables x, y, and z have current domains {2,3,4}, {6,7,8}, and
{10,11,12} respectively. Consider a branching strategy that selects a variable
with at least two values in its current domain, using the priority order x,y,z, and
partitions that variable’s current domain into two parts, where the first part has
the smallest value of the current domain, and the second part has the remaining
values.

From the root node, the search creates two child nodes by partitioning
the current domain of x into {2} and {3,4}. The search then visits the node
where x ∈ {2} and, upon propagation, the current domains in this node are {2},
{8}, and {10} respectively, and a first solution has been found.

The search then backtracks and visits the other child of the root node,
where upon propagation the current domains become {3,4}, {6,7,8}, and
{10,11,12}. The search then continues like this, first visiting the node where
dom(x) is {3}, until all solutions have been found, namely [x,y,z] ∈ {[2,8,10],
[3,7,10], [3,8,11], [4,6,10], [4,7,11], [4,8,12]}.

14



In order to accelerate the solving, a CP solver usually employs many re-
finements to both the propagation and the search [43]. Nevertheless, such a
systematic search can still take a significant amount of time. Therefore, one can
limit the search by imposing some budget on the CP solver, such as a maximum
runtime, a maximum number of nodes to explore, or a maximum number of
failed nodes to be encountered. When the CP solver has exhausted its budget,
then it stops early and returns its currently best solution.

In order to efficiently reach an optimal solution to an optimisation problem,
a CP solver usually employs branch-and-bound search as a refinement of the
usual depth-first search. In branch-and-bound search, whenever a new solution
is found, the CP model is extended with the new constraint o < o′, where o′ is
the value that the objective variable o has in that solution. Branch-and-bound
search ensures that each new solution is better than the previous one, and allows
propagation to further reduce the size of the search tree.

3.2 Local Search
Local search, as described for instance in [22], is a family of algorithm design
methodologies for solving optimisation problems and usually does not process
a model. That being said, some local-search frameworks do classify as solving
technologies: they solve a model using local search.

In this thesis, we are concerned with two of these solving technologies,
namely constraint-based local search [48] and large-neighbourhood search [45],
which we discuss in Sections 3.2.2 and 3.2.3 respectively. But first we discuss
local search in general in Section 3.2.1.

3.2.1 A Prototypical Local-Search Algorithm
Consider a constraint-free discrete minimisation problem that has a set of
variables V , where each v in V takes a value from some finite domain D(v);
and an objective function f that maps V to an integer value that is to be min-
imised. A prototypical local-search algorithm for solving such a problem is
Algorithm 3.2, which iteratively changes an assignment, where each variable v
in V is associated with a value in its domain D(v). We here focus on problems
without constraints for the sake of simplicity, but local search can deal with con-
strained problems using for example the approaches we show in Sections 3.2.2
and 3.2.3.

Overview
LS-SOLVE starts by creating some assignment, which is called the initial
assignment and initialises the current assignment, of the variables in V that is
then iteratively improved by, at each iteration, first probing a set of changes

15



Algorithm 3.2 A prototypical local-search algorithm for a set of variables V
with domains given by D and an objective function f .

1: procedure LS-SOLVE(V,D, f )
2: A← INITIALISE(V,D) . create the initial assignment
3: while not DONE(A, f ) do . loop while stopping criteria are not met
4: N← GENERATENEIGHBOURS(A) . generate a neighbourhood
5: m← SELECTMOVE(A,N, f ) . probe moves and select one
6: A← COMMIT(A,m) . commit to selected move
7: return A

and then performing one of them, until some stopping criteria are met, in the
hope of finding an optimal solution or at least a near-optimal one.

Next, we define the key aspects of local search, namely its initialisation
strategy, its neighbourhood structure, its heuristic, and its meta-heuristic. We
call a particular design of those aspects a local-search strategy, and we call an
algorithm that implements a local-search strategy a local-search algorithm.

Initialisation Strategy
On line 2 of Algorithm 3.2 an initial assignment A is created and becomes the
current assignment. The initial assignment is generated by an initialisation
strategy, which usually has some amount of randomisation and takes some
problem-specific knowledge into account. For example, a problem-independent
initialisation strategy is to assign each variable a random value within its
domain. Another initialisation strategy is to use a problem-specific algorithm to
generate an assignment that has some desirable property. For example, if some
variables must all take different values, then those variables can be initialised
to random but different values.

Neighbourhood Structure
At each iteration (line 3 will be explained as part of the heuristic below), over
lines 4 and 6, the current assignment A is changed by performing a move:

Definition 3.3. A move is a change to the values of some variables in the current
assignment. If a move changes assignment A into assignment A′, then A′ is said
to be a neighbour of A. A set of moves (or, equivalently, the set of neighbours
they reach) is called a neighbourhood. A neighbourhood where the moves have
a shared structure is said to have a neighbourhood structure.

Example 3.3. A common neighbourhood structure is the swap neighbourhood
structure, where each move only changes two variables, namely by swapping
their values. We use the notation x :=: y to mean “swap the current values of the
variables x and y”. Consider three variables [x,y,z] with a current assignment
of [1,1,2]. The neighbourhood of all possible swap moves of two variables

16



is {x :=: y, x :=: z, y :=: z}, or equivalently the set of neighbours {[1,1,2],
[2,1,1], [1,2,1]}; note that the current assignment here happens to be in its own
neighbourhood, which is not disallowed in general.

On line 4 the neighbourhood of the current assignment A is generated via
the call GENERATENEIGHBOURS(A). Note that in practice the neighbour-
hood generation is usually lazy as SELECTMOVE(A,N, f ) on line 5 might not
consider all neighbours, as discussed next.

Heuristic
A heuristic, which probes each move of the neighbourhood and selects one,
is performed on line 5. A move can be probed by tentatively performing the
move on the current assignment, recording the value of the objective function
at the obtained neighbour, and undoing the move. In practice moves can be
probed more efficiently by utilising problem-specific features. Moves are
probed in order to determine the quality of neighbours, such as whether they
are improving or not:

Definition 3.4. A neighbour A′ to assignment A is improving if f (A′)< f (A),
and likewise the move from A to A′ is said to be improving. If an assignment
has no neighbour that is improving, then it is a local minimum of the objective
function f . If there are no assignments that are improving on a local minimum,
then the latter is also a global minimum of f .

Note that since local search does not systematically explore all assignments,
it can only determine that it has reached a global minimum in case f (A) reaches
an a priori known lower bound, such as the sum of the n shortest travel times in
Example 1.1 (note that this lower bound is very unlikely to be feasible).

Heuristics, in general, are greedy in that they only select an improving
move (if one exists), without considering the impact of the move over several
subsequent iterations. We call them improving heuristics. Two improving
heuristics are the first-improving heuristic, which selects the first probed move
that is improving, and the best-improving heuristic, which probes all moves
and selects a most improving move.

Heuristics usually employ some amount of randomisation when selecting a
move, such as randomised tie-breaking in case of two or more equally improv-
ing neighbours. There are many other heuristics: see [22] for an overview.

Finally, the selected move is committed on line 6: the move is performed
and the resulting neighbour replaces the current assignment.

This is repeated until some stopping criteria are met on line 3. Usually, the
stopping criteria are the exhaustion of some budget like for example the number
of iterations, the running time, or some combination thereof, but can also be
based on the current assignment A or the objective function f .

17



Meta-Heuristic
When using only an improving heuristic, Algorithm 3.2 will eventually reach a
local minimum and be unable to make any further moves as none are improving
(by definition). Since local search has no way of determining if a local minimum
is also a global minimum, the search must continue, and therefore it needs
some mechanism for escaping a local minimum. In order to accomplish this,
a meta-heuristic is commonly used. A meta-heuristic forces the heuristic to
sometimes deviate from its behaviour so that the local search can move into
parts of the search space that it might otherwise not visit. There are many
meta-heuristics: some notable ones are Simulated Annealing [25] and Tabu
Search [19]; for other examples see [22]. In this thesis, we are only considering
Tabu Search:

Definition 3.5. Tabu Search extends a heuristic by introducing a short-term
memory M that contains assignments. The size of M is called the tabu tenure, or
just tenure, and determines how many assignments M can hold before it is full.
At each iteration, the new current assignment is recorded in M after committing
a move. If M was full, then the oldest assignment in M is first deleted. Tabu
Search also extends the heuristic so that it can perform non-improving moves,
if this was not already the case, and so that the heuristic cannot select a move
that reaches an assignment currently in M.

Tabu Search ensures that if the search reaches a local minimum, then the
heuristic can make a non-improving move, and the short-term memory ensures
that the heuristic does not revisit any of the last t assignments, including local
minima, where t is the tenure. This prevents the heuristic from getting stuck in
a cycle of repeating the same (up to t) moves.

3.2.2 Constraint-Based Local Search (CBLS)
Usually local-search strategies are problem-specific and have an ad-hoc im-
plementation that is tailored specifically for a problem; recall that we call the
implementation a local-search algorithm. As a result the effort for designing
a local-search algorithm can be significant, and yet code reusability for other
problems is limited. This effort should not be underestimated as the success of
a local-search algorithm is highly dependent on an efficient implementation.

In order to increase code reusability and significantly reduce the implemen-
tation effort for efficient local-search algorithms, constraint-based local search
(CBLS) [32, 48] is proposed as a solving technology, rather than an algorithm
design methodology. A CBLS solver provides abstractions for expressing a
model, similar to those of constraint programming, and provides programming
abstractions for implementing local-search strategies that utilise the model in
order to efficiently generate and probe moves:

18



Definition 3.6. A CBLS model is a tuple 〈V,D,C,F,o〉 consisting of:
• a set V of variables;
• a function D that maps each variable to its domain;
• a set C of constraints on V ;
• a set F of functional constraints on V , each functionally defining some

variables in terms of others and written as [o1, . . . ,on] = f (i1, . . . , im),
where f is a function symbol, with C∩F =∅; and

• a variable o in V that has constraints in C∪F that require it to take the
value of the objective function, which is to be minimised.

For example, the constraint x+ y = z of Example 3.1 is functional. Note
that a constraint in C can also be functional: it is the modeller who decides
which functional constraints of the problem are in C rather than F , as there are
restrictions on the constraints in F (see Definition 3.10 below).

Definition 3.6 does not necessarily correspond exactly to how models are
structured across all CBLS solvers. Indeed, CBLS solvers represent and im-
plement a model in slightly different ways in practice. Our intention here is
instead to just define the relevant concepts for this thesis and to highlight the
aspects in which a CBLS model is conceptually more complex than a MiniZinc
model.

Furthermore, note that the term “constraint-based local search” is sometimes
used liberally to mean any local-search algorithm that somehow involves con-
straints, but such a definition applies to essentially all local-search algorithms,
as constraints are a very general concept, whether or not they are stated in a
model. Therefore, we use CBLS to exclusively mean a solving technology in
the spirit of what is outlined in [48] and next.

Overview
Below we describe the parts of CBLS that are essential for this thesis, namely
invariants, constraints with violation, implicit constraints, and local-search
strategies (now in a CBLS context). Finally, we briefly discuss some CBLS
solvers. Compared to [48], we sometimes introduce additional terminology:
this is not necessary when working directly with a CBLS solver, but the distinc-
tions are at the core of Paper I, which concerns the translation of any MiniZinc
model into a CBLS model and the synthesis of a local-search strategy from the
MiniZinc model.

Invariants
For a CBLS model 〈V,D,C,F,o〉, a CBLS solver holds a current assignment for
all variables in V . Some of these variables are occasionally changed by moves
during search and the remaining variables are each automatically changed by
an invariant that implements a functional constraint in F :

19



Definition 3.7. For a functional constraint [o1, . . . ,on] = f (i1, . . . , im), an invari-
ant is an algorithm that is said to compute new values for the variables o1, . . . ,on,
and thereby change them, in response to any change of at least one of the vari-
ables i1, . . . , im: the invariant ensures that the functional constraint is always
satisfied. We call the variables o1, . . . ,on the invariant’s output variables, and
the variables i1, . . . , im its input variables. Each o j is said to depend on each i j.

Definition 3.8. Each output variable of an invariant is called a defined variable
of the CBLS model. Each variable that is not a defined variable is called a
search variable of the CBLS model, and is subject to changes by moves during
search.

We denote an invariant using the arrow symbol, [o1, . . . ,on]← f (i1, . . . , im),
in order to distinguish it from its functional constraint. Note that each input
variable of an invariant for a functional constraint in a model can be either a
search variable or a defined variable. Note also that a variable can be changed
by either a move or an invariant, depending on whether it is a search variable
or a defined variable.

Example 3.4. The functional constraint [y1,y2,y3] = Sort([x1,x2,x3]), some-
times written as Sort([x1,x2,x3], [y1,y2,y3]), requires that the array [y1,y2,y3]
is a permutation of [x1,x2,x3] sorted in non-decreasing order, and functionally
defines the output variables y j in terms of the input variables xi. Consider
a current assignment where [x1,x2,x3] is [2,1,3]. The invariant [y1,y2,y3]←
Sort([x1,x2,x3]) ensures that [y1,y2,y3] is [1,2,3] in that assignment. If x2 is
changed to the value 3, then the invariant changes y1 and y2 to be 2 and 3
respectively.

Example 3.5. The functional constraint z = Element(x, [y1,y2,y3]), sometimes
written as Element(x, [y1,y2,y3],z), requires that z is yx, and functionally de-
fines the output variable z in terms of the input variables x and the yi. Con-
sider a current assignment where [x,y1,y2,y3] is [2,4,5,6]. The invariant
z← Element(x, [y1,y2,y3]) ensures that z is 5 in that assignment. If x is changed
to the value 3, then the invariant changes z to be 6. If instead y2 is changed to
be 7, then the invariant changes z to be 7.

When the current assignment of a search variable is changed by a move, the
CBLS solver must notify each invariant whose output variables transitively
depend on the changed variable, so that the invariant can change its output vari-
ables. Algorithms for efficiently determining the invariants that are transitively
affected by a move as well as the algorithm that each invariant uses to change
its output variables are at the core of a CBLS solver. These algorithms, which
are called propagation (not to be confused with CP-style propagation: recall
Section 3.1.1) and incremental recomputation, are out of scope for this thesis,

20



where we just use CBLS solvers off-the-shelf. For more information the reader
is referred to [32, 35, 48] as a starting point.

In the context of Paper I, there are some further details regarding invariants
and functional constraints that we must consider. First, what happens when a
defined variable is used for computing its own value, and second, what happens
with a functional constraint that can be reformulated into another functional
constraint that functionally defines a different set of output variables. We
discuss these cases next.

Definition 3.9. For an invariant [o1, . . . ,on]← f (i1, . . . , im), we say that some o j
statically depends on some ik when the value of o j depends on the value of ik
for all values of i1, . . . , im; otherwise, we say that o j dynamically depends on ik.

Example 3.6. In Example 3.4, each y j statically depends on each xi because the
value of each y j is always computed by sorting all the xi. In Example 3.5, the
output variable z statically depends on x and dynamically depends on each yi
because the value of z depends always on x but only on yx.

If x statically depends on y and y statically depends on z, then x statically
depends on z. If either x dynamically depends on y, or y dynamically depends
on z, or both, then x dynamically depends on z.

CBLS solvers normally require that a CBLS model is valid in order for the
propagation algorithm to behave properly:

Definition 3.10. A CBLS model is valid if each variable is an output variable
of at most one invariant and does not statically depend (transitively) on itself.

If a model is valid and a variable dynamically depends on itself, then the
local-search strategy is responsible for ensuring that the search never visits an
assignment where the value of the variable is actually computed in terms of
itself. For example, for z← Element(x, [z,y]) the local-search strategy must
ensure that x never becomes the index of z, as z would then be undefined.

Some functional constraints can be rewritten, for example by our MiniZinc
backend presented in Paper I, into other functional constraints, but only one of
them can be implemented as an invariant at a time:

Example 3.7. Consider the functional constraint z = x+ y. It can be rewritten
into x = z−y and y = z−x, which are also functional constraints and also have
an output variable that is statically defined by the input variables. However,
due to Definition 3.10, at most one of these can be implemented as an invariant,
as the output variables would otherwise statically depend on themselves.

21



Constraints with Violation
For a current assignment to be a solution, it must satisfy all constraints. It
may seem beneficial to somehow only allow solutions to be considered during
search, so that the local search can focus on improving the objective value.
However, only visiting solutions during local search can in general make the
search space disconnected, meaning that from some initial assignment, some
solutions cannot be reached via the used neighbourhood structure, as shown
next:

Example 3.8. Consider the constraint x < 50⇔ x > y, an initial assignment
where x is 60 and y is 100, which satisfies the constraint, and a neighbourhood
structure of moves that change the current value of a single variable to any
other value. If moves that yield an assignment that violates this constraint are
disallowed, then there is no sequence of moves from this initial assignment
that yields an assignment where x is less than 50: in order for x to take a value
lower than 50, say 10, variable y must first take a value lower than 10, but y
cannot take such a value lower than 50 unless x first takes a value lower than 50.
This deadlock means that the search space is disconnected. This could be
detrimental if for example we are minimising x, but becomes a non-issue if we
allow moves to yield infeasible assignments.

Therefore, in order to allow a transit through infeasible assignments, a CBLS
solver implements the constraints in the set C of a CBLS model 〈V,D,C,F,o〉
as constraints with violation:

Definition 3.11. For a constraint c(x1, . . . ,xn), a constraint with violation
is obtained by first introducing a solver-internal defined variable, called its
violation variable and denoted by v(c(x1, . . . ,xn)), and then using invariants for
defining its value, called the violation. The violation must be 0 if the current
assignment of x1, . . . ,xn satisfies c(x1, . . . ,xn), and must otherwise be a positive
integer corresponding to how far away the current assignment is from satisfying
the constraint.

Example 3.9. Consider the constraint x≤ y and a current assignment where x
is 0 and y is 10. The violation variable can be defined using the invariant
v(x≤ y)← max(0,x− y), as in [48]. Since the constraint is satisfied by the
current assignment, the violation variable v(x≤ y) has value 0. Upon a change
of x to value 30, the constraint is no longer satisfied and v(x≤ y) is changed by
the invariant to take value 20, that is the amount by which x exceeds y.

Note that for a CBLS model 〈V,D,C,F,o〉, the constraints of both C and F
are implemented as invariants, the difference being that the invariants for C
define solver-internal variables, which are not in V .

22



Example 3.10. Consider the constraint AllDifferent([x1,x2,x3]), where the
union of the domains of the variables xi is some set S, and a current assignment
where [x1,x2,x3] is [1,2,3]. As in [48], the violation variable can be defined
using the invariant

v(AllDifferent(X))← ∑
d∈S

max(0,count(X ,d)−1)

where count(X ,d) denotes the number of occurrences of d in the array X . Note
that this invariant can in turn be expressed by using invariants for ∑, max,
and count. Since the constraint is satisfied by the current assignment, the
violation is 0. Upon a change of both x1 and x2 to the current value 3 of x3, the
constraint is no longer satisfied and v(AllDifferent([x1,x2,x3])) is changed by
those invariants to take value 2, that is the number of variables xi that must take
a new value in order to satisfy the constraint.

There is no consensus on what the violation of a constraint should measure,
or alternatively what its unit is. In Example 3.9, the violation is defined as
the minimum total numeric increase (for x) or decrease (for y) needed for at
least one of the variables in order to satisfy the constraint: the violation is
not proportional to the number of variables that need to be changed. But in
Example 3.10, the violation is defined as the minimum Hamming distance
between the current assignment and an assignment that satisfies the constraint:
the violation is the number of variables that need to be changed. Indeed, this
is a design choice in the CBLS solver that is individual for each constraint
predicate. See [48, pp. 101–102] for a further discussion of this topic.

Since the violation of all constraints in a CBLS model must be 0 in every
solution, we also have the notion of global-violation variable:

Definition 3.12. The global-violation variable, denoted by g(C), of the con-
straints in a set C is a solver-internal variable that represents an aggregation
of the violation variables for C. The variable g(C) must take value 0 when
the violations of all constraints in C are 0, and otherwise must take a positive
integer value corresponding to how far away the current assignment is from
satisfying all the constraints in C.

In practice the global-violation variable is usually defined as a weighted sum
of the individual violations, with each violation weight being either given as
an annotation to its constraint, or 1 by default. Note that other aggregations
are possible: for example, the global-violation variable can be defined as the
maximum among all violation variables.

By having constraints with violation and thereby allowing infeasible as-
signments to be visited, the function to minimise by the local search for a
CBLS model 〈V,D,C,F,o〉 is therefore not just the value of o, but also the
value of g(C). This can in principle be achieved by performing a lexicographic

23



minimisation of the objective 〈g(C),o〉, but in practice the two components
of this pair are usually aggregated by the modeller in a problem-specific way,
usually in the local-search strategy.

Implicit Constraints
A constraint of a problem that is part of neither the set C nor the set F in a
CBLS model 〈V,D,C,F,o〉 must be implemented as part of the local-search
strategy:

Definition 3.13. A constraint of a problem is an implicit constraint when it is
initially satisfied by the initialisation strategy and always maintained satisfied
by the neighbourhood structure.

Example 3.11. In Example 3.10, we showed how an AllDifferent([x1, . . . ,xn])
constraint can in the general case be implemented as a constraint with violation.
We now show how to implement it as an implicit constraint in the particular case
where each xi has the same domain S of size n (that is the number of xi variables),
meaning that [x1, . . . ,xn] must be a permutation of S. By initialising [x1, . . . ,xn]
to be a random permutation of S and using a swap neighbourhood structure
(see Example 3.3), the constraint is satisfied by the initial assignment and
cannot be violated by any moves, as swapping the position of two values in
a permutation can only create another permutation. Note that even in the
general case, regardless of the domain of each xi, an AllDifferent([x1, . . . ,xn])
constraint can be implemented as an implicit constraint (see, e.g., Paper I).

The use of implicit constraints means that a CBLS model might not be a
complete description of a problem, and that the model can only be used together
with a local-search strategy that implements the implicit constraints, if any. One
can of course include the implicit constraints as constraints explicitly in the
model, in order to make the model portable to arbitrary solving technologies,
but since a local-search strategy that implements implicit constraints is usually
desirable (as the search then ensures that those constraints are always satisfied),
and since having those constraints explicitly in the model comes with an
overhead within the invariant propagation, the implicit constraints are usually
omitted from the CBLS model in practice.

Local-Search Strategies in CBLS
Recall from the overview of Section 3.2.1 that a local-search strategy is a
particular design of an initialisation strategy, a neighbourhood structure, a
heuristic, and a meta-heuristic. A local-search strategy for a CBLS solver is
conceptually not different from what is described in that section, except that it
now utilises the components of a CBLS model 〈V,D,C,F,o〉. Specifically, it
evaluates the objective function by reading the current value of the objective

24



variable o, it considers the global-violation variable g(C), and it considers the
violation variables of the individual constraints in C.

Some CBLS solvers provide features that simplify some aspects of express-
ing a local-search strategy, or even allow the entire local-search strategy to be
synthesised from the model, as discussed in the following mini-survey.

CBLS Solvers
There are around a dozen frameworks, such as [3, 6, 14, 15, 30, 32, 35, 39, 48,
50], that can be classified as CBLS solvers in that they provide generic features,
such as a modelling language or a programming library, for expressing models
that can be utilised by a local-search strategy. For a CBLS solver, a local-search
strategy is either expressed by the modeller declaratively, or expressed by the
modeller procedurally as a local-search algorithm, or synthesised by the solver,
or obtained by a combination thereof. We here briefly discuss some notable
solvers, with a focus on how the local-search strategy is obtained. Note that
some modelling languages, including MiniZinc, have no syntax for expressing
a local-search strategy, and therefore solvers (or backends) that use such a
language must synthesise it.

Localizer
Historically, the first CBLS solver was Localizer [32], which has a declarative
modelling language and introduced the idea of using invariants for efficiently
computing the values of some variables and implementing functional con-
straints. Localizer introduced, and requires the use of, syntax for declaratively
expressing parts of the local-search strategy. This syntax allows multiple neigh-
bourhood structures to be combined declaratively as part of the local-search
strategy. Localizer is currently not publicly available.

Comet
Comet [48] succeeded Localizer, by extending most of its features. Among
other things, Comet introduced differentiable objects [33] as an alternative
and more efficient approach for probing the changes of the global-violation
variable or objective variable that are caused by moves. In terms of express-
ing a local-search strategy, Comet departed from the declarative approach
of Localizer in favour of expressing neighbourhoods in a more procedural
fashion, by generating and using closures for expressing moves [47]. This al-
lows more complex local-search strategies to be expressed, including ones that
include systematic-search components. As an alternative to having a modeller-
expressed local-search strategy, Comet can also synthesise one by treating
some constraints in the model as what we call implicit constraints [49]. These
constraints have to be annotated in the model with the keyword ‘hard’, and this
requires that a pre-defined initialisation strategy and neighbourhood structure
exist for the predicate of such a constraint. A predefined (meta-)heuristic then
has to be selected for the model, which gives some further control over the

25



synthesised local-search strategy. Comet is currently available upon request to
its authors.

Kangaroo
Kangaroo [35] is mainly an effort towards improving the algorithms on in-
variants by using what they call lazy propagation (not to be confused with
propagation in constraint programming). Kangaroo is implemented in C++ and
provides a library for expressing CBLS models, as opposed to the dedicated
modelling languages of Localizer and Comet. The local-search strategy has
to be expressed by the modeller procedurally. To the best of my knowledge,
Kangaroo was never publicly released.

LocalSolver
LocalSolver [6] is a commercial CBLS solver that provides both a library (for
multiple programming languages) and a dedicated modelling language for
expressing CBLS models. Notably, LocalSolver always synthesises the search
strategy from the model and it has no syntax for expressing one.

OscaR.cbls
OscaR.cbls [14], which is part of the OscaR framework [36], is a CBLS solver
written in the Scala programming language and is based on the design of Comet
as described in [48]. OscaR.cbls is a library for expressing CBLS models and
search strategies. Since Scala allows most of its syntax to be redefined on-the-
fly, OscaR.cbls is able to provide a syntax that is fairly similar to the modelling
language of Comet while still being a library. Local-search strategies are
primarily expressed procedurally, but OscaR.cbls was extended with a library
of neighbourhood combinators [13], which allow neighbourhood structures
to be declaratively combined in order to form more complex ones. Note
that the neighbourhood structures to be combined still have to be expressed
procedurally. OscaR.cbls is open-source under the GNU lesser general public
license. In Paper I, we were the first to show how to create a CBLS backend
for MiniZinc: it uses OscaR.cbls as the underlying solver. Since MiniZinc does
not have syntax for expressing a local-search strategy, we show how it can be
synthesised from a MiniZinc model (see the summary in Chapter 4).

Yuck
Yuck [30] is a CBLS solver in the style of Comet and has a backend for Mini-
Zinc. The backend of Yuck is comparable to what we introduced in Paper I
(see Chapter 4) and synthesises a local-search strategy since MiniZinc has no
syntax for expressing one. The local-search strategy is based on Simulated
Annealing and uses a neighbourhood structure that is a combination of generic
neighbourhood structures and implicit constraints. Yuck is open-source under
the Mozilla Public License 2.0.

26



Athanor
The Athanor solver [3] uses Essence [17] as modelling language and imple-
ments a CBLS model by a parse tree of the Essence model. The parse tree also
serves as an evaluation tree. It is not clear if these trees can represent variables
that dynamically depend on themselves, as a tree by definition cannot contain
cycles and thereby would be unable to represent such cyclic dependencies. A
novelty of Athanor is that it dynamically unrolls quantifications. For example,
for the constraint ∀i ∈ S : ri⇒ ci, which states that the constraint ci must be
satisfied whenever the constraint ri is satisfied, Athanor dynamically introduces
the invariants for ci when ri is satisfied, and removes the introduced invariants
when ri is not satisfied. Athanor uses an approach similar to [1] in order to
synthesise a local-search strategy from an Essence model (as there is no syntax
for expressing one) by making use of variables of arbitrarily nested types, such
as a sequence of sets of sequences of integer variables. In short, multiple
neighbourhood structures are synthesised by combining pre-defined parametric
neighbourhood structures of each type (integer, sequence, set, etc.). Then the
(meta-)heuristic uses a regret-minimising multi-armed bandit algorithm for
selecting one of the neighbourhood structures to use at each iteration. Athanor
is open-source under the BSD-3-Clause license.

3.2.3 Large-Neighbourhood Search (LNS)
Large-neighbourhood search (LNS) [45] is a popular local-search algorithm
for solving optimisation problems. LNS can be implemented on top of a solver
of any solving technology with systematic search and thereby makes use of
a model provided to that solver, which by extension makes LNS a solving
technology.

Overview
We describe LNS in the context of constraint programming (CP) technology
(see Section 3.1). A prototypical algorithm for LNS is Algorithm 3.3 and takes
as argument a CP model. We highlight some of its similarities to Algorithm 3.2,
but also invite the reader to the compare them further. We first describe the
operators of Algorithm 3.3, namely initialising, freezing, and improving, and
then discuss in more detail some variations and improvements of these operators.
We do not discuss lines 3 and 7 as they are essentially like in Algorithm 3.2.

Initialisation
In order to solve an optimisation problem for which we have a CP model
〈V,D,C,o〉, the LNS-SOLVE algorithm requires an initial solution, which be-
comes what we call the current solution A of V (line 2). This initial solution is
usually obtained by calling CP-SOLVE({v 7→ D(v) | v ∈V},C,o,B) of Algo-
rithm 3.1 with some branching strategy B, but limiting the CP solver to stop

27



Algorithm 3.3 A prototypical LNS algorithm.

1: procedure LNS-SOLVE(〈V,D,C,o〉)
2: A← INITIALISE(〈V,D,C,o〉) . create an initial solution
3: while not DONE(A) do . loop while stopping criteria are not met
4: F ← FREEZE(A) . create a fragment F ⊂ A
5: A′← IMPROVE(〈V,D,C,o〉,F) . improve A based on fragment
6: A← COMMIT(A,A′) . commit to A′ if it is improving over A
7: return A

after finding a first (and possibly sub-optimal) solution. Note that in principle
there are no requirements on how the initial solution is actually obtained.

Freeze
In each iteration of LNS-SOLVE, the FREEZE operator selects a non-empty
strict subset of A, called the fragment and denoted by F (line 4). The variables
in the fragment are then frozen, that is they are forced to keep their value in
the current solution during execution of the subsequent IMPROVE operator.
Some variables, such as the objective variable o, are never in the fragment, as
discussed when presenting LNS variations below.

Note that the FREEZE operator defines the set of similar assignments that will
be probed and thereby corresponds to the GENERATENEIGHBOURS operator
in Algorithm 3.2. Note that an assignment need not be a solution, but that LNS
only visits solutions, due to the IMPROVE operator described next.

Improve
Next, the IMPROVE operator uses the CP solver in order to look for an improv-
ing solution A′ (line 5) where each variable in F has the same value as in A, but
with an improved objective value, i.e., A′(o)< A(o). That is, IMPROVE calls
CP-SOLVE({v 7→ D(v) | v ∈ V},C∪ {v = A(v) | v ∈ F} ∪ {o < A(o)},o,B)
with some branching strategy B.

The CP solver called by the IMPROVE operator is usually limited to perform
an incomplete systematic search, meaning that the search is given a budget such
as a time limit or a limit on the number of failed nodes. This budget is usually
small so that many fast iterations are performed per time unit, rather than a few
slow ones. This, however, means that the IMPROVE operator can fail to find
a solution, i.e., that A′ does not exist when the budget is exhausted. If a new
solution A′ is found, then it is committed and replaces the current solution A,
otherwise A remains unchanged (line 6).

The IMPROVE operator essentially probes a large neighbourhood of assign-
ments that share the fragment F . We say that these assignments overlap, as
each variable in F is unchanged across these assignments. Note that the IM-
PROVE operator in Algorithm 3.3 corresponds to the SELECTMOVE operator

28



in Algorithm 3.2 as it selects a neighbour from the neighbourhood defined by
the FREEZE operator.

LNS Variations
Selecting the fragment is arguably the most crucial design aspect of LNS.
Usually, some variables should never be in the fragment as they become fixed
via CP-style propagation when the other variables are fixed, or because they
are expected to change in each iteration, such as the objective variable o.
Specifically, a variable that is functionally defined by a constraint should never
be in the fragment. For the sake of simplicity, we do not refer to these variables
when we discuss which variables the FREEZE operator considers for freezing.
Furthermore, the FREEZE operator should freeze sufficiently few variables so
that an improving solution can be found, but not so few that the search space
of the CP solver becomes so large that the solver is unable to find any new
solution before its budget is exhausted.

A crude but problem-independent and surprisingly effective FREEZE oper-
ator is to randomly select some percentage of the variables of V to put in the
fragment, with percentages between 80% and 90% often being good choices in
practice. LNS that uses this FREEZE operator is often referred to as random
LNS, and is what we use in Paper V quite successfully.

However, for most problems it is believed to be beneficial to use a problem-
specific FREEZE operator. For example, in [45] where LNS is used for solving
vehicle-routing problems, the FREEZE operator is problem-specific. It itera-
tively constructs the fragment from the empty set by adding a variable (that
represents a location) at random, but with a bias based on its relatedness (such
as short travel distance) to variables (i.e., locations) already in the fragment,
until the fragment is sufficiently large.

There have also been some successful approaches for defining the related-
ness of variables in order to select a fragment in a problem-independent way.
Notably, relatedness is defined in [37] by how many values each variable causes
CP propagators to remove from other variables’ current domains; in [29] by the
impact on the objective that the current value of each variable has; and in [41]
by explanations of why, for example, an improving solution could not be found.

It can be beneficial for the IMPROVE operator to allow a non-improving
solution, or at least a non-worsening one, as LNS can otherwise end up in a
local minimum that it is unable to escape. For example, as an extreme case, it
could be that the current solution does not overlap with any improving solution,
but that there are (non-)worsening solutions that overlap with both the current
solution and an improving one.

Finally, we again emphasise that using CP as the underlying solving technol-
ogy of LNS is also a design choice and that the IMPROVE operator can indeed
be implemented by using any solver of any solving technology with systematic
search, or even by problem-specific algorithms that repair partial assignments.

29



4. Summaries of Papers

I A CBLS Backend for MiniZinc
In Paper I we were the first to show how to create a CBLS backend for
a technology-independent modelling language like MiniZinc. We built our
backend, which we call fzn-oscar-cbls, by targeting the OscaR.cbls solver [14].
Its implementation is open-source under the GNU lesser general public license.1

Recall from Section 2.2.2 that a backend for MiniZinc must translate any Flat-
Zinc model, which is a CP model 〈V,D,C,o〉, into a model for the targeted
solver. Furthermore, a backend must synthesise any remaining components
required by the solver, here an entire local-search strategy (and its algorithm),
that is an initialisation strategy, a neighbourhood structure, a heuristic, and a
meta-heuristic. Both of these aspects are non-trivial when targeting a CBLS
solver, as discussed next.

The first challenge is the translation step, as there are discrepancies between
a FlatZinc model 〈V,D,C,o〉 and a CBLS model 〈V ′,D′,C′,F ′,o′〉, the trivial
translation being V ′ = V , D′ = D, C′ = C, F ′ = ∅, o′ = o. Recall from Sec-
tion 3.2.2 that a constraint of a problem can be implemented in one of three
ways for a CBLS solver: as an invariant in case the constraint is functional
(called a one-way constraint in Paper I) and in F ′, as a constraint with violation
if it is in C′, or as a constraint that is implicit and part of the local-search strat-
egy; the latter two ways are also applicable for functional constraints. However,
at the moment MiniZinc provides no syntax for expressing that a constraint
should belong to any of these categories.

We address this first challenge by proposing what we in our subsequent pa-
pers and here call a structure identification scheme. The scheme automatically
partitions the constraint set C into the sets C′, F ′, and N′, where N′ is the set of
implicit constraints that are to be implemented by the neighbourhood structure.
Creating this partition is non-trivial as there can be many partitions of C and
there is no well-defined way of determining which partition is best (or even
what it means to be best). Furthermore, any partition must result in a valid
CBLS model (see Definition 3.10). Our structure identification scheme priori-
tises identifying as many constraints as possible to be among the functional
constraints F ′ by considering constraint reformulations like in Example 3.7.
Note that variables can in principle dynamically depend on themselves, namely

1https://www.it.uu.se/research/group/optimisation/
software#fznoscarcbls – Accessed on March 5, 2021. Note that fzn is an
abbreviation of FlatZinc.

30



when the local-search strategy ensures that the value of each variable is never
actually computed in terms of itself. However, determining when this is possi-
ble and synthesising an appropriate local-search strategy requires a significantly
deeper analysis of the model. Therefore, our approach always avoids partitions
where variables in any way depend on themselves. This is a limitation of the
current approach. We believe it is beneficial to prioritise having constraints
in F ′, as this means that there are more defined variables in the CBLS model,
which in turn gives fewer search variables for the local-search strategy to con-
sider. Only some constraint predicates, namely those for which we have a
predefined neighbourhood structure such as AllDifferent (see Example 3.11),
are considered for implicit constraints. See Section 4.2 of Paper I for further
details on our structure identification scheme.

The second challenge is the synthesis of a local-search strategy (and al-
gorithm). Since a FlatZinc model does not contain any local-search strategy
we design one that can run on any CBLS model 〈V ′,D′,C′,F ′,o′〉 and set N′

identified by the structure identification scheme.
We address this second challenge by proposing a local-search strategy that

is both problem-specific, namely when using implicit constraints, and generic,
namely by using a variation of Tabu Search (as explained below). In particular,
the neighbourhood structure of the local-search strategy is the union of several
neighbourhood structures that are each either specific to an implicit constraint
or generic. We ensure that all search variables belong to at least one neigh-
bourhood structure. The initialisation strategy follows from the neighbourhood
structure. The heuristic and meta-heuristic go through three consecutive phases:

1. a greedy phase tries to quickly improve the global violation g(C′) of
the initial assignment by, for a few iterations, focusing on changing the
variables that do not belong to the neighbourhood structure of an implicit
constraint;

2. a satisfaction phase uses a Tabu Search in order to find a first solution, by
only minimising g(C′) until it reaches zero (which means that a solution
was found); and

3. if a solution is found, then an optimisation phase uses a Tabu Search
in order to minimise the objective α ·g(C′)+β ·o′, where α and β are
positive coefficients that are dynamically tuned during search in order
to balance between improving the global violation, which may increase
again during phase 3, and improving the value of the objective variable o′.

The Tabu Searches used in the last two phases are adaptive in the sense that they
monitor the change in the global violation (and objective value) and change the
tabu tenure whenever the search appears to have stagnated. See Section 5 of
Paper I for further details on our local-search strategy.

We experimentally evaluate the performance of fzn-oscar-cbls by running
it on all models and instances that appeared in the MiniZinc Challenge [46]
between the years 2010 and 2014; this is an ongoing annual competition
between solvers with a backend for MiniZinc. Our evaluation shows the

31



importance of partitioning C and in particular that having constraints in F ′

has (perhaps not unsurprisingly) a significant positive impact on solving time
and solution quality. Furthermore, our evaluation shows that fzn-oscar-cbls
is complementary to other backends as it can easily solve, sometimes even to
optimality, some instances that the other backends had difficulty solving during
a MiniZinc Challenge.

Update
Our backend fzn-oscar-cbls has evolved since publishing Paper I. One notable
addition is the use of CP propagators from the OscaR.cp solver (of the same
OscaR framework as OscaR.cbls). We use the CP propagators in order to
reduce the domains of variables in the CBLS model before and during the local
search. Indeed, many published MiniZinc models have domains that are not
declared as tight as they could be, which means that performing propagation
before starting the local search can be crucial for good performance, whereas
solvers that perform systematic search (such as CP solvers) are usually not
hindered by non-tight declared domains. Furthermore, whenever a new solution
is found, we use CP propagators for the new best value of the objective variable
in order to possibly remove values in the domains of some search variables. If
values are removed, then this decreases the size of the search space and again
sometimes drastically improves the solving time.

Between the years 2015 and 2020 (inclusive) we entered fzn-oscar-cbls
into the annual MiniZinc Challenge. Each year fzn-oscar-cbls has overall
ranked low, but has been one of the top backends for at least one of the 20
problems. The overall low ranking is not surprising: many of the MiniZinc
models used for the challenge are not formulated in a local-search friendly way,
in addition to having non-tight domains. Specifically, there often are models
where what could be expressed as functional constraints is instead expressed by
non-functional ones (see Paper II). Compared to the functional formulations,
such non-functional formulations can have an insignificant effect on backends
of solving technologies with systematic search, but they sometimes prevent
fzn-oscar-cbls from finding any solutions at all, which yields an overall low
ranking. But, on a positive note, the fact that fzn-oscar-cbls each year excels
on a few problems is very promising and highlights its complementary nature:
often these are problems where all other solving technologies struggle to find a
high-quality solution, if even any at all. Overall, one might surmise that when
an appropriate model is used, then fzn-oscar-cbls, and by extension CBLS via
MiniZinc, can be highly competitive. This warrants further research on dealing
with unfavourable model formulations.

32



II Generating Compound Moves in Local Search by
Hybridisation with Complete Search

The structure identification scheme of Paper I implicitly partitions the variables
of a FlatZinc model into two sets Vs and Vd of respectively the search variables
and the defined variables. The synthesised local-search strategy defines moves
on all variables in Vs in its neighbourhood structure. However, following the
publication of Paper I we noticed empirically that for some models, including
the TSPTW model shown in Model 2.2, the synthesised local-search strategy
performs significantly worse than expected. It turns out that when a model has
variables that represent auxiliary information, which we call auxiliary variables,
such as the ArrivalTime[i] variables in Model 2.2 (as discussed below),
and these variables end up in the set Vs, then the local-search strategy is unable
to perform meaningful moves on these variables.

The intuition behind why it is challenging to make a meaningful local-search
move on an auxiliary variable is that it should ideally only be changed in
response to a move on one or more non-auxiliary variables. Furthermore, an
auxiliary variable should ideally not even be changed via local-search moves, as
a value can often be easily determined given an assignment of the non-auxiliary
variables. For example, in Model 2.2 it is only meaningful to change the
values of the ArrivalTime[i] variables in response to a change of some
Route[i] variable: for a given assignment of the Route[i] variables it is
trivial to compute an assignment of the ArrivalTime[i] variables without
requiring any local search on them.

In Paper II we address this issue of auxiliary variables, and by exten-
sion improve the performance of fzn-oscar-cbls, by proposing what we call
compound-move generation (CMG). First, we offer two approaches for identi-
fying auxiliary variables in a model: allowing a modeller to annotate variables
in a MiniZinc model in order to explicitly designate auxiliary ones; and a crude
automatic scheme where variables that do not belong to a neighbourhood struc-
ture of an implicit constraint are assumed to be auxiliary. Then, the local-search
strategy is modified to only consider moves on non-auxiliary variables and,
upon each move, use a solver with systematic search (called complete search
in the paper) to determine values of all auxiliary variables. This means that we
augment each move on non-auxiliary variables into a compound move that also
changes all auxiliary variables.

A similar idea was proposed in [12] for vehicle routing problems, where
propagation (but not search) by a CP solver is used after each move in order
to check if there is a feasible assignment of the auxiliary variables. CMG can
be seen as a generalisation of this, as [12] does not consider what to do when
feasibility cannot be determined via only propagation (which is why we use
also systematic search) and as we present CMG in a problem-independent
context.

33



We implement CMG in fzn-oscar-cbls by using the CP solver OscaR.cp as
the systematic-search solver and discuss several refinements and variations of
CMG. In our experimental evaluation we see that by using CMG we signifi-
cantly improve the performance of fzn-oscar-cbls on some problems.

Finally, it should be noted that CMG is not just beneficial for backends that
target CBLS solvers, but also for local-search solvers in general, as CMG is a
generic way of creating meaningful moves for a model with auxiliary variables.
Indeed, a similar approach was afterwards proposed in [8] for the local-search
solver LocalSolver [6].

III Declarative Local-Search Neighbourhoods in
MiniZinc

A drawback of Paper I is that all parts of the local-search strategy, that is
an initialisation strategy, a neighbourhood structure, a heuristic, and a meta-
heuristic, have to be synthesised from a MiniZinc model. This is by no means
a perfect process, and can at times make it very challenging for the backend
to solve some problems. This can be of particular frustration to a modeller
attempting to model a problem where a good local-search strategy is well
known and might even be easy to formulate directly in the underlying CBLS
solver of the MiniZinc backend. Indeed, for the same reasons, MiniZinc offers
search annotations, which are hints on which branching strategy a CP backend
should use.

In Paper III we address this limitation by extending the MiniZinc language
and toolchain with syntax and support for declaratively defining a neighbour-
hood structure and an initialisation strategy at the MiniZinc level, which we
jointly call a declarative neighbourhood, which is then passed via FlatZinc
to any backend that cares to use it. This means that local-search backends
then only need to synthesise a heuristic and a meta-heuristic based on the now
prescribed neighbourhood structure and initialisation strategy, which gives the
modeller more control over the backends and more predictable performance.
We show how to use a declarative neighbourhood within fzn-oscar-cbls and
how its moves can be efficiently evaluated by using key features of CBLS
solvers, namely invariants and constraints with violation.

The main challenge is that the declarative neighbourhood defined at the
MiniZinc level should (or arguably must) be independent of any backend and
its solving technology, in the very spirit of MiniZinc. Thereby, the main
contribution is our description of how to compile a declarative neighbourhood
into an extended version of FlatZinc that supports function declarations, is still
a subset of MiniZinc, and does not rely on any CBLS-specific details.

We experimentally evaluate the expressiveness of declarative neighbour-
hoods and their impact on performance by stating in our new syntax some
well-known neighbourhood structures and initialisation strategies, including

34



some of the ones that fzn-oscar-cbls hard-codes for implicit constraints. The
evaluation shows that declarative neighbourhoods only have a small overhead
compared to the hard-coded implementations of neighbourhood structures
and initialisation strategies for implicit constraints, and that declared problem-
specific neighbourhood structures and initialisation strategies (unsurprisingly)
outperform non-specific ones.

IV Exploring Declarative Local-Search Neighbourhoods
with CP

In Paper IV, we show that the declarative neighbourhoods of Paper III can
not only be used in a CBLS backend for MiniZinc, but can also be used to
perform local search with any systematic-search solver. This shows that our
declarative neighbourhoods are actually independent of solving technologies.

We accomplish this by showing how the flattened version of any declarative
neighbourhood can be transformed into a CSP that is parameterised by the
current assignment and encodes the neighbourhood, i.e., the solutions to the
CSP are the neighbours of the current assignment. This CSP can then be solved
by any systematic-search solving technology; in particular we use CP for our
implementation.2 This approach, which is conceptually similar to yet different
from LNS, is introduced as a methodology in [38] and is contemporary with
both LNS and CBLS. However, this methodology did not gain much traction at
the time, possibly because the encoding has to be handcrafted for each problem
and each neighbourhood structure, and thus has limited reusability as opposed
to what is enabled by LNS and CBLS. However, starting from our declarative
neighbourhoods, we show how to generate this encoding automatically.

In order for our encoding to be efficient, we also introduce a new global-
constraint predicate, called Writes, which is now part of MiniZinc. As part of
our contribution, we define an efficient decomposition for this predicate.

Finally, we show that by using our encoding based on the Writes predicate
we are able to implement a local-search solver that is a backend for MiniZinc
by only using a CP solver. We thereby provide an approach that is orthogonal
to Paper I for creating a local-search backend for MiniZinc.

Our experimental evaluation of our new backend, which we call LS(CP)
(read “local search using CP”) and implement on top of the OscaR.cp solver,
shows that LS(CP) can be competitive with backends using either CBLS or LNS.
Interestingly, LS(CP) does not suffer from the issue with auxiliary variables
that we addressed in Paper II, as it is a side-effect for LS(CP) to find values
for these variables for each move by using systematic search rather than local
search.
2Note that in Paper IV we use the term valuation in place of assignment when in a local-search
context, and the term solution to refer to the assignment that the CP solver obtains when exploring
a neighbourhood.

35



V Solving Satisfaction Problems using LNS
Recall from Section 3.2.3 that large-neighbourhood search (LNS) is only de-
fined for optimisation problems and that it requires an initial solution for the
search to start. Therefore, in order to use LNS to solve a satisfaction problem,
we must first soften some constraints in a manner analogous to the constraints
with violation of CBLS (see Definition 3.11). For example, a soft constraint
for x+ y = z can be expressed by introducing a variable v, called a violation
variable, and a variable s, and using the constraints s = (x+ y)− z and v = |s|,
which constrain the variable v to take value 0 if the original constraint holds
and otherwise to be the distance s between x+ y and z. We call x+ y = z the
softened constraint, and s = (x+ y)− z∧ v = |s| its soft constraint. LNS can
then be used to try and reduce the sum of all introduced violation variables
to zero, thus satisfying the original satisfaction problem.3 That is, we now
have an optimisation problem where an initial solution can easily be found
(because even large values of violation variables are fine), thus fulfilling the
requirements of LNS.

In fact, it is often necessary to soften constraints when using CP in a local-
search context in general (even one that is not LNS), as local-search strategies
often need to be able to explore infeasible parts of the search space, as shown
in Example 3.8. Indeed, in both Paper II and Paper IV, some constraints were
automatically softened in the CP models (which are solved as subtasks during
local-search solving) in order for the local search to progress, as mentioned in
the respective papers.

However, softening constraints in this manner for CP can give poor perfor-
mance in general as the soft constraints rarely cause propagation, which can
result in a significantly longer local search and the softened constraints not
being satisfied until very late in the local search. This is not only an issue when
solving satisfaction problems with LNS, but also something we observed in the
experiments of both Paper II and Paper IV.

In Paper V, we address this issue by defining a new type of propagator,
which we call a non-failing propagator. Our key observation is that softening for
a CP solver entirely replaces a constraint, and thereby its propagator. However,
this is often overkill, as the propagator for the softened constraint could have
performed some (but not all) propagation while still allowing infeasible parts
of the original search space to be explored during the CP search at each LNS
iteration. A non-failing propagator removes values right up until it would empty
the current domain of some variable, and at that point the propagator is disabled
instead of forcing a backtrack. This means that a non-failing propagator can
never itself force a backtrack.

Our approach is then to use a non-failing propagator for each softened con-
straint in addition to a normal propagator for its introduced soft constraint. We
show that, by only making a few tiny changes to the PROPAGATE procedure

3Note that in Paper V we use penalty as a synonym for what we here call violation.

36



called at line 2 of Algorithm 3.1 in an existing CP solver, any propagator can
be made non-failing without modifying its code. Our experimental evaluation
shows that non-failing propagators for the softened constraints, when used
in conjunction with normal propagators for soft constraints, can greatly im-
prove LNS performance on satisfaction problems, compared to just using soft
constraints.

Furthermore, some optimisation problems are hard to satisfy, which means
that it is difficult to use LNS for solving these problems as the local search
cannot start until an initial solution has been found. Thankfully, finding an
initial solution is a satisfaction problem, so we can use softening and an initial
round of LNS for finding an initial solution. We also evaluate the use of non-
failing propagators and softening for solving this initial satisfaction problem,
and show not only that the use of non-failing propagators again greatly improves
LNS performance, but also that (perhaps a bit surprisingly) once an initial
solution has been found, the LNS iterations can sometimes easily improve this
solution without the need for the soft constraints.

While Paper V focuses on LNS, its contributions should also significantly
benefit the local-search backends of Paper II and Paper IV, but testing this is
future work.

Clarifications
In Paper IV, we claim that “[since] the max-clique problem reduces to achiev-
ing domain consistency on a Writes constraint, domain-consistent propagation
is NP-hard”. However, it would have been more intuitive to instead say that the
graph-colouring problem reduces to achieving domain consistency. A proof
can be sketched as follows, but note that it uses terminology not covered by this
introduction of this thesis. The Writes(O, I,P,V ) constraint requires among
other things that ∀i 6= j : Vi 6=Vj ⇒ Pi 6= Pj, which means that we can define
a dynamically evolving graph where each node corresponds to a Pi variable
and there is an edge between each pair Pi and Pj when dom(Pi)∩dom(Pj) =∅
or dom(Vi)∩ dom(Vj) = ∅. That is, there is an edge between each pair that
must take different values. The chromatic number of this graph is a lower bound
on |∪i dom(Pi)| and unsatisfiability can be determined early when |∪i dom(Pi)|
is less than the lower bound. Note that any graph can appear upon having
enough variables Pi and tailoring each dom(Vi) to force edges, namely by
associating a unique integer with each edge (i, j) not in the graph and hav-
ing that integer only in both dom(Vi) and dom(Vj): the graph can thereby be
independent of each dom(Pi).

The Yuck solver runs in a deterministic mode by default, which was not
known to us at the time of writing Paper III and Paper IV. This means that
Yuck was essentially evaluated over a single run rather than 10 in both papers.4

4Personal communication by Michael Marte on July 17, 2020.

37



Algorithm 1, which is used to exemplify propagation, of Paper V is only
correct for positive integer coefficients in the array A. However, this does not
in principle affect any of the examples of the paper, where negative coefficients
are in fact used, as any negative coefficients can be dealt with by using so-called
variable views. In any case, the solver used in the experimental evaluation has
a correct implementation and Algorithm 1 is not a contribution of that paper.

38



5. Conclusion

With the increasing focus on high-level and solver-independent modelling
languages like MiniZinc, the model-and-solve approach is becoming more
accessible to a wider audience.

This thesis can be summarised as a push towards making the power of local
search more accessible via MiniZinc. We accomplish this by contributing to
three research topics over five papers:

• In Paper I, we were the first to show how to create a constraint-based
local search (CBLS) backend for a language like MiniZinc, and that
such backends can be competitive with those of solving technologies that
are based on systematic search. Furthermore, in Paper II we identified
a weakness with CBLS backends and showed how to overcome this
weakness.

• In Paper III and Paper IV, we introduced syntax to MiniZinc for declar-
atively defining a neighbourhood structure and an initialisation strategy,
which allows a local-search concept to be part of MiniZinc, similarly to
how constraint programming (CP) branching strategies are already part of
the MiniZinc language. We showed how these neighbourhood structures
can be flattened in a solver-independent way, and how they can be further
encoded and used by any solving technology with systematic search.

• In Paper V, we focused on another local-search technology, namely large-
neighbourhood search (LNS), and showed how LNS can be improved
upon for solving satisfaction problems by improving how CP solvers deal
with soft constraints. This also benefits other local-search technologies
that rely on CP, like those shown in Paper II and Paper IV.

These contributions allow more problems to be successfully tackled via lan-
guages such as MiniZinc, as some problems are in fact best solved via local
search. Furthermore, this may eventually reduce the need for ad-hoc local-
search algorithms.

Of course, there is still much work to be done, and this thesis should be
seen as a first step. Here we created a backend for MiniZinc based on CBLS,
and focused on improving its neighbourhood structures. Future work therefore
includes improving the remaining components of a synthesised local-search
strategy: the heuristic and the meta-heuristic. In addition, other aspects of a
CBLS backend, such as its structure identification scheme, also deserve further
research.

39



Sammanfattning på svenska

Optimeringsproblem är något som ständigt dyker upp i industrin och i samhället.
För att lösa dem väl behöver man fatta optimala beslut som uppfyller vissa
villkor och begränsningar.

Låt oss till exempel titta på problemet med att leverera paket i en stad, vilket
är en viktig del av dagens e-handel. Vi har en depå där alla paket lagras för
att sedan skickas ut med olika fordon för leverans. Varje paket har en volym
och en destination, och varje fordon är begränsat i den totala volymen av paket
som det kan bära, samt i hur långt det kan köra. För att lösa problemet måste vi
bestämma vilka paket varje fordon ska leverera, samt vilken rutt som ska tas.
För att vara så effektiva som möjligt, måste vi också ta optimala beslut gällande
aspekter såsom den totala leveranstiden, den totala bränsleförbrukningen, och
antalet fordon som används. Alltså, för att lösa detta problem måste vi fatta
beslut som optimerar vissa aspekter, samtidigt som vi uppfyller villkor och tar
hänsyn till kapacitetsbegränsningar.

Ett annat exempel där optimering behövs, är problemet med personalplane-
ring på ett sjukhus. Låt oss anta att vi har sjuksköterskor med olika expertis,
och arbetsdagar som är uppdelade i skift. I varje skift finns det alltid ett krav på
antalet sjuksköterskor som arbetar samt att viss expertis finns tillgänglig. För att
lösa det här problemet måste vi bestämma vilka sjuksköterskor som ska arbeta
vid varje skift, men också uppfylla vissa ytterligare krav (eller: begränsningar);
såsom vilotiden mellan skift, antalet lediga dagar som varje sjuksköterska har
under en månad, och så vidare. Vi är återigen intresserade av att optimera vissa
aspekter, såsom att minimera den totala övertiden, minimera eventuell obalans
mellan sjuksköterskans arbetsbelastningar i schemat eller liknande. Alltså, det
här är återigen ett problem som löses genom att fatta beslut som optimerar vissa
aspekter men samtidigt tar hänsyn till begränsningar.

Det ovanstående är exempel på den typ av optimeringsproblem som vi
fokuserar på i den här avhandlingen. De kallas diskreta optimeringsproblem då
man har ett givet antal diskreta alternativ för varje beslut. Problemen är mycket
viktiga att lösa, men också notoriskt svåra att lösa optimalt. För enkelhetens
skull kan man säga att det finns tre tillvägagångssätt för att lösa ett diskret
optimeringsproblem:

1. vi kan skriva en algoritm specifikt för problemet genom att till exempel
använda en designmetodik, såsom lokal sökning eller dynamisk program-
mering;

2. vi kan använda generell programvara, som kallas för en lösare (eng.
solver), som tar som input en beskrivning av ett problem, vilket kallas för
en modell, och ger i bästa fall en optimal lösning som output; eller

40



3. vi kan ge upp och istället lösa en förenklad version av problemet som kan
vara lättare att lösa men då inte längre uppfyller alla villkor som ställs i
problemet.

Eftersom diskreta optimeringsproblem kan vara mycket svåra att lösa i prak-
tiken så är det tredje tillvägagångssättet fullt rimligt och används ofta. Dock
fokuserar vi i den här avhandlingen på de andra två tillvägagångssätten där
vi försöker lösa problemet optimalt och samtidigt uppfylla alla villkor. Det
bör även nämnas att det faktiskt finns ett fjärde alternativ som är en mycket
lovande lösningsmetod, nämligen kvantalgoritmer som körs i kvantdatorer. I
teorin så är kvantdatorer banbrytande specifikt när det gäller att lösa diskreta
optimeringsproblem, men det återstår att se ifall de även är det i praktiken:
därför kommer vi inte att diskutera dem vidare här.

Det första tillvägagångssättet, som vi kallar för att skriva en ad-hoc-algoritm,
är i teorin alltid att föredra eftersom den bästa algoritmen för ett problem alltid
kan skrivas ad-hoc. I praktiken är det dock mycket tidskrävande att skriva en
sådan algoritm från grunden, och det finns ingen garanti för att vi ens hittar en
bra algoritm för problemet oavsett hur mycket tid vi lägger på det.

Det andra tillvägagångssättet, att använda en lösare, har flera fördelar jämfört
med det första, och är ofta att föredra i praktiken. Till skillnad från en algoritm,
beskriver en modell vad problemet är snarare än hur det kan lösas. Därmed
kan en modell vara betydligt enklare att skriva och förstå än en algoritm för
att lösa problemet. Samtidigt är en modell lättare att underhålla och utöka
utifall att problemet förändras något, vilket ofta är fallet i praktiken. Dessutom
kan vi dra nytta av när en lösare uppdateras utan att behöva modifiera några
modeller. Lösare kan baseras på fundamentalt olika algoritmer. Vi kallar den
typ av algoritmer som en lösare bygger på för dess lösningsteknik. En nackdel
med vissa lösare är att de har sitt eget språk för att uttrycka modeller, och att en
modell skriven på en lösares språk normalt sett inte kan användas i en annan
lösare.

Huvudinspirationen för denna avhandling är två viktiga framsteg kring lösare
och deras modelleringsspråk.

Det ena framsteget är framtagningen av en lösningsteknik som kallas vill-
korsbaserad lokal sökning (eng. CBLS). Efter dess introduktion har det kommit
en våg av lösare som använder lokal sökning som deras lösningsteknik. Detta är
en lovande utveckling, eftersom lokal sökning också är en av de mer populära
metoderna för att skriva ad-hoc-algoritmer, då den snabbt kan producera nästan
optimala lösningar för väldigt stora och komplicerade problem.

Det andra framsteget är att det har tagits fram flera modelleringsspråk som
är oberoende av både lösare och lösningsteknik, så att vi endast behöver skriva
en modell som vi sedan kan köra på många lösare. Sådana modelleringsspråk,
och särskilt ett som kallas MiniZinc, ökar drastiskt tillgängligheten för lösare
och möjliggör att man snabbt kan ta fram prototyper av modeller för olika
lösningstekniker. Ursprungligen hade dock inga av dessa teknikoberoende
modelleringsspråk stöd för CBLS-lösare.

41



I denna avhandling kopplar jag ihop teknikoberoende modelleringsspråk
(specifikt MiniZinc) och lokal sökning. Detta arbete gör det möjligt för oss
att använda lokal sökning via språk som MiniZinc, och möjliggör också att
fler problem kan lösas effektivt via MiniZinc, då vissa problem faktiskt är
bäst lämpade för lokal sökning. Detta arbete kan med tiden ytterligare minska
behovet av att någonsin behöva skriva ad-hoc-algoritmer.

42



References

[1] Özgür Akgün, Saad Attieh, Ian P. Gent, Christopher Jefferson, Ian Miguel,
Peter Nightingale, András Z. Salamon, Patrick Spracklen, and James
Wetter. “A framework for constraint based local search using Essence”.
In: IJCAI 2018. Ed. by Jérôme Lang. IJCAI Organization, 2018, pp. 1242–
1248 (referenced on page 27).

[2] Roberto Amadini, Pierre Flener, Justin Pearson, Joseph D. Scott, Peter J.
Stuckey, and Guido Tack. “MiniZinc with strings”. In: LOPSTR 2016:
Revised Selected Papers. Ed. by Manuel Hermenegildo and Pedro López-
García. Vol. 10184. LNCS. Springer, 2017, pp. 59–75 (referenced on
page 7).

[3] Saad Attieh, Nguyen Dang, Christopher Jefferson, Ian Miguel, and Peter
Nightingale. “Athanor: High-level local search over abstract constraint
specifications in Essence”. In: IJCAI 2019. Ed. by Sarit Kraus. IJCAI
Organization, 2019, pp. 1056–1063 (referenced on pages 2, 25, 27).

[4] Nicolas Beldiceanu, Mats Carlsson, Sophie Demassey, and Thierry Petit.
“Global constraint catalogue: Past, present, and future”. In: Constraints
12(1) (Mar. 2007), pp. 21–62. The catalogue and the current working ver-
sion are available at http://sofdem.github.io/gccat (referenced
on pages 9, 10).

[5] Gleb Belov, Peter J. Stuckey, Guido Tack, and Mark Wallace. “Improved
linearization of constraint programming models”. In: CP 2016. Ed. by
Michel Rueher. Vol. 9892. LNCS. Springer, 2016, pp. 49–65 (referenced
on page 11).

[6] Thierry Benoist, Bertrand Estellon, Frédéric Gardi, Romain Megel, and
Karim Nouioua. “LocalSolver 1.x: a black-box local-search solver for 0-1
programming”. In: 4OR – A Quarterly Journal of Operations Research
9(3) (Sept. 2011), pp. 299–316. LocalSolver is available at https://
www.localsolver.com (referenced on pages 2, 25, 26, 34).

[7] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, eds.
Handbook of Satisfiability. Vol. 185. Frontiers in Artificial Intelligence
and Applications. IOS Press, 2009 (referenced on page 4).

[8] Léa Blaise, Christian Artigues, and Thierry Benoist. “Solution Repair by
Inequality Network Propagation in LocalSolver”. In: PPSN XVI. Ed. by
Thomas Bäck, Mike Preuss, André Deutz, Hao Wang, Carola Doerr,
Michael Emmerich, and Heike Trautmann. Vol. 12269. LNCS. Springer,
2020, pp. 332–345 (referenced on page 34).

43



[9] Mats Carlsson, Greger Ottosson, and Björn Carlson. “An open-ended
finite domain constraint solver”. In: PLILP 1997. Ed. by H. Glaser,
P. Hartel, and H. Kuchen. Vol. 1292. LNCS. Springer, 1997, pp. 191–
206. SICStus Prolog is available at https://sicstus.sics.se
(referenced on page 11).

[10] Geoffrey Chu. “Improving Combinatorial Optimization”. PhD thesis.
Department of Computing and Information Systems, University of Mel-
bourne, Australia, 2011. Available at http://hdl.handle.net/
11343/36679; the Chuffed solver and MiniZinc backend are avail-
able at https://github.com/chuffed/chuffed (referenced on
page 11).

[11] Francesco Contaldo, Patrick Trentin, and Roberto Sebastiani. “From
MiniZinc to optimization modulo theories, and back”. In: CP-AI-OR
2020. Ed. by Emmanuel Hebrard and Nysret Musliu. Vol. 12296. LNCS.
Springer, 2020, pp. 148–166 (referenced on page 11).

[12] Bruno De Backer, Vincent Furnon, Paul Shaw, Philip Kilby, and Patrick
Prosser. “Solving vehicle routing problems using constraint programming
and metaheuristics”. In: Journal of Heuristics 6(4) (Sept. 2000), pp. 501–
523 (referenced on page 33).

[13] Renaud De Landtsheer, Yoann Guyot, Gustavo Ospina, and Christophe
Ponsard. “Combining neighborhoods into local search strategies”. In: Re-
cent Developments in Metaheuristics. Ed. by Lionel Amodeo, El-Ghazali
Talbi, and Farouk Yalaoui. Vol. 62. ORCS. Springer, 2018, pp. 43–57
(referenced on page 26).

[14] Renaud De Landtsheer and Christophe Ponsard. “OscaR.cbls: An open
source framework for constraint-based local search”. In: ORBEL-27,
the 27th annual conference of the Belgian Operational Research Soci-
ety. 2013. Available as https://www.orbel.be/orbel27/pdf/
abstract293.pdf; the OscaR.cbls solver is available at https://
bitbucket.org/oscarlib/oscar/branch/CBLS (referenced on
pages 2, 11, 25, 26, 30).

[15] Luca Di Gaspero and Andrea Schaerf. “EasyLocal++: An object-oriented
framework for the flexible design of local-search algorithms”. In: Soft-
ware: Practice and Experience 33(8) (June 2003), pp. 733–765 (refer-
enced on page 25).

[16] Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL: A Mod-
eling Language for Mathematical Programming. 2nd ed. Cengage Learn-
ing, 2002. Available at https://ampl.com/resources/the-ampl-
book (referenced on page 4).

44



[17] Alan M. Frisch, Matthew Grum, Chris Jefferson, Bernadette Martinez
Hernandez, and Ian Miguel. “The design of Essence: A constraint lan-
guage for specifying combinatorial problems”. In: IJCAI 2007. Morgan
Kaufmann, 2007, pp. 80–87 (referenced on pages 4, 27).

[18] Gecode Team. Gecode: A Generic Constraint Development Environment.
2021. The Gecode solver and its MiniZinc backend are available at
https://www.gecode.org (referenced on page 11).

[19] Fred Glover and Manuel Laguna. “Tabu search”. In: Modern Heuris-
tic Techniques for Combinatorial Problems. John Wiley & Sons, 1993,
pp. 70–150 (referenced on page 18).

[20] Google Optimization Team. OR-Tools: Google’s Software Suite for Com-
binatorial Optimization. 2021. Available at https://developers.
google.com/optimization (referenced on page 11).

[21] Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual. 2017.
Available at https://www.gurobi.com (referenced on page 11).

[22] Holger H. Hoos and Thomas Stützle. Stochastic Local Search: Founda-
tions & Applications. Elsevier / Morgan Kaufmann, 2004 (referenced on
pages 15, 17, 18).

[23] IBM. CPLEX. https://www.ibm.com/analytics/cplex-optimizer.
2021 (referenced on page 11).

[24] johnjforrest, Stefan Vigerske, Haroldo Gambini Santos, Ted Ralphs, Lou
Hafer, Bjarni Kristjansson, jpfasano, EdwinStraver, Miles Lubin, rlougee,
jpgoncal1, h-i-gassmann, and Matthew Saltzman. coin-or/Cbc: Version
2.10.5. Mar. 2020. URL: https://doi.org/10.5281/zenodo.
3700700 (referenced on page 11).

[25] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. “Optimization by
simulated annealing”. In: Science 220(4598) (May 1983), pp. 671–680
(referenced on page 18).

[26] Daniel Kroening and Ofer Strichman. Decision Procedures: An Algorith-
mic Point of View. 2nd ed. Texts in Theoretical Computer Science, an
EATCS Series. Springer, 2016 (referenced on page 4).

[27] Kevin Leo, Christopher Mears, Guido Tack, and Maria Garcia de la
Banda. “Globalizing constraint models”. In: CP 2013. Ed. by Christian
Schulte. Vol. 8124. LNCS. Springer, 2013, pp. 432–447 (referenced on
page 10).

[28] Shen Lin and Brian W. Kernighan. “An effective heuristic algorithm for
the traveling-salesman problem”. In: Operations Research 21(2) (1973),
pp. 498–516 (referenced on page 4).

[29] Michele Lombardi and Pierre Schaus. “Cost impact guided LNS”. In:
CP-AI-OR 2014. Ed. by Helmut Simonis. Vol. 8451. LNCS. Springer,
2014, pp. 293–300 (referenced on page 29).

45



[30] Michael Marte. Yuck: A local-search constraint solver with FlatZinc
interface. 2021. Available at https://github.com/informarte/
yuck/ (referenced on pages 2, 11, 25, 26).

[31] Laurent Michel and Pascal Van Hentenryck. “Localizer: A modeling
language for local search”. In: CP 1997. Ed. by Gert Smolka. Vol. 1330.
LNCS. Springer, 1997, pp. 237–251 (referenced on page 2).

[32] Laurent Michel and Pascal Van Hentenryck. “Localizer”. In: Constraints
5(1–2) (2000), pp. 43–84 (referenced on pages 18, 21, 25).

[33] Laurent Michel and Pascal Van Hentenryck. “A constraint-based architec-
ture for local search”. In: ACM SIGPLAN Notices 37(11) (2002), pp. 101–
110. OOPSLA 2002 (referenced on page 25).

[34] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand,
Gregory J. Duck, and Guido Tack. “MiniZinc: Towards a standard CP
modelling language”. In: CP 2007. Ed. by Christian Bessière. Vol. 4741.
LNCS. Springer, 2007, pp. 529–543. The MiniZinc toolchain is available
at https://www.minizinc.org (referenced on pages 2, 4, 6, 7).

[35] M.A. Hakim Newton, Duc Nghia Pham, Abdul Sattar, and Michael
Maher. “Kangaroo: An efficient constraint-based local search system
using lazy propagation”. In: CP 2011. Ed. by Jimmy Lee. Vol. 6876.
LNCS. Springer, 2011, pp. 645–659 (referenced on pages 2, 21, 25, 26).

[36] OscaR Team. OscaR: Scala in OR. 2012.
Available at https://bitbucket.org/oscarlib/oscar/wiki/
(referenced on page 26).

[37] Laurent Perron, Paul Shaw, and Vincent Furnon. “Propagation guided
large neighborhood search”. In: CP 2004. Ed. by Mark Wallace. Vol. 3258.
LNCS. Springer, 2004, pp. 468–481 (referenced on page 29).

[38] Gilles Pesant and Michel Gendreau. “A constraint programming frame-
work for local search methods”. In: Journal of Heuristics 5(3) (Oct.
1999), pp. 255–279. Extends a preliminary version at CP 1996, LNCS,
vol. 1118, pp. 353–366, Springer (1996) (referenced on page 35).

[39] Cédric Pralet and Gérard Verfaillie. “Dynamic online planning and
scheduling using a static invariant-based evaluation model”. In: ICAPS 2013.
Ed. by Daniel Borrajo, Subbarao Kambhampati, Angelo Oddi, and Si-
mone Fratini. AAAI Press, 2013, pp. 171–179 (referenced on page 25).

[40] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. Choco:
A Free and Open-Source Java Library for Constraint Programming.
2014. Available at https://www.choco-solver.org (referenced on
page 11).

[41] Charles Prud’homme, Xavier Lorca, and Narendra Jussien. “Explanation-
based large neighborhood search”. In: Constraints 19(4) (Oct. 2014),
pp. 339–379 (referenced on page 29).

46



[42] Francesca Rossi, Peter van Beek, and Toby Walsh, eds. Handbook of
Constraint Programming. Elsevier, 2006 (referenced on page 4).

[43] Christian Schulte and Mats Carlsson. “Finite domain constraint pro-
gramming systems”. In: Handbook of Constraint Programming. Ed.
by Francesca Rossi, Peter van Beek, and Toby Walsh. Elsevier, 2006.
Chap. 14, pp. 495–526 (referenced on page 15).

[44] Christian Schulte and Peter J. Stuckey. “Efficient constraint propagation
engines”. In: ACM Transactions on Programming Languages and Systems
31(1) (Dec. 2008), pp. 1–43 (referenced on page 13).

[45] Paul Shaw. “Using constraint programming and local search methods
to solve vehicle routing problems”. In: CP 1998. Ed. by Michael Maher
and Jean-François Puget. Vol. 1520. LNCS. Springer, 1998, pp. 417–431
(referenced on pages 15, 27, 29).

[46] Peter J. Stuckey, Thibaut Feydy, Andreas Schutt, Guido Tack, and Julien
Fischer. “The MiniZinc Challenge 2008–2013”. In: AI Magazine 35(2)
(summer 2014), pp. 55–60. See https://www.minizinc.org/
challenge.html (referenced on page 31).

[47] Pascal Van Hentenryck and Laurent Michel. “Control abstractions for
local search”. In: CP 2003. Ed. by Francesca Rossi. Vol. 2833. LNCS.
Springer, 2003, pp. 65–80 (referenced on page 25).

[48] Pascal Van Hentenryck and Laurent Michel. Constraint-Based Local
Search. The MIT Press, 2005 (referenced on pages 2, 4, 15, 18, 19, 21–
23, 25, 26).

[49] Pascal Van Hentenryck and Laurent Michel. “Synthesis of constraint-
based local search algorithms from high-level models”. In: AAAI 2007.
Ed. by Adele Howe and Robert C. Holte. AAAI Press, 2007, pp. 273–278
(referenced on page 25).

[50] Christos Voudouris, Raphael Dorne, David Lesaint, and Anne Liret. “iOpt:
A software toolkit for heuristic search methods”. In: CP 2001. Ed. by
Toby Walsh. Vol. 2239. LNCS. Springer, 2001, pp. 716–729 (referenced
on page 25).

[51] Laurence A. Wolsey. Integer Programming. Wiley, 1998 (referenced on
page 4).

[52] Neng-Fa Zhou and Håkan Kjellerstrand. “The Picat-SAT compiler”. In:
PADL 2016. Ed. by Marco Gavanelli and John Reppy. Vol. 9585. LNCS.
Springer, 2016, pp. 48–62 (referenced on page 11).

47



Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 2022

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through
the series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-436139

ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2021


	Abstract
	Acknowledgements
	List of papers
	Comments on Paper Contributions
	Paper I
	Paper II
	Paper III
	Paper IV
	Paper V

	Other Publication

	Contents
	1. Introduction
	1.1 Terminology
	1.2 Contributions
	1.3 Outline

	2. Modelling of Discrete Optimisation Problems
	2.1 Models
	2.2 MiniZinc
	2.2.1 Constraints
	2.2.2 FlatZinc and Backends


	3. Solving Technologies for Discrete Optimisation
	3.1 Constraint Programming (CP)
	3.1.1 Propagation
	3.1.2 Search

	3.2 Local Search
	3.2.1 A Prototypical Local-Search Algorithm
	3.2.2 Constraint-Based Local Search (CBLS)
	3.2.3 Large-Neighbourhood Search (LNS)


	4. Summaries of Papers
	I A CBLS Backend for MiniZinc
	II Generating Compound Moves in Local Search by Hybridisation with Complete Search
	III Declarative Local-Search Neighbourhoods in MiniZinc
	IV Exploring Declarative Local-Search Neighbourhoods with CP
	V Solving Satisfaction Problems using LNS
	Clarifications

	5. Conclusion
	Sammanfattning på svenska
	References



