
ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2021

Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1986

Abstractions to Control the
Future

FRANCISCO RAMÓN FERNÁNDEZ REYES

ISSN 1651-6214
ISBN 978-91-513-1062-6
urn:nbn:se:uu:diva-425128

Dissertation presented at Uppsala University to be publicly examined in Room 2446, ITC,
Lägerhyddsvägen 2, hus 2, Uppsala, Monday, 18 January 2021 at 16:00 for the degree of
Doctor of Philosophy. The examination will be conducted in English. Faculty examiner:
Professor Martin Steffen (University of Oslo).

Abstract
Fernández Reyes, F. R. 2021. Abstractions to Control the Future. Digital Comprehensive
Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1986. 85 pp.
Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1062-6.

Multicore and manycore computers are the norm nowadays, and users have expectations that
their programs can do multiple things concurrently. To support that, developers use concur-
rency abstractions such as threads, promises, futures, and/or channels to exchange information.
All these abstractions introduce trade-offs between the concurrency model and the language
guarantees, and developers accept these trade-offs for the benefits of concurrent programming.

Many concurrent languages are multi-paradigm, e.g., mix the functional and object-oriented
paradigms. This is beneficial to developers because they can choose the most suitable approach
when solving a problem. From the point of view of concurrency, purely functional programming
languages are data-race free since they only support immutable data. Object-oriented languages
do not get a free lunch, and neither do multi-paradigm languages that have imperative features.

The main problem is uncontrolled concurrent access to shared mutable state, which
may inadvertently introduce data-races. A data-race happens when two concurrent memory
operations target the same location, at least one of them is a write, and there is no
synchronisation operation involved. Data-races make programs to exhibit (unwanted) non-
deterministic behaviour.

The contribution of this thesis is two-fold. First, this thesis introduces new concurrent
abstractions in a purely functional, statically typed programming language (Paper I – Paper III);
these abstractions allow developers to write concurrent control- and delegation-based patterns.
Second, this thesis introduces a capability-based dynamic programming model, named Dala,
that extends the applicability of the concurrent abstractions to an imperative setting while
maintaining data-race freedom (Paper IV). Developers can also use the Dala model to migrate
unsafe programs, i.e., programs that may suffer data-races, to data-race free programs.

Keywords: concurrent, programming, type system, future, actors, active objects

Francisco Ramón Fernández Reyes, Department of Information Technology, Division of
Computing Science, Box 337, Uppsala University, SE-75105 Uppsala, Sweden.

© Francisco Ramón Fernández Reyes 2021

ISSN 1651-6214
ISBN 978-91-513-1062-6
urn:nbn:se:uu:diva-425128 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-425128)

To Janina and Kai

List of papers

This thesis is based on the following papers, which are referred to in the text by their
Roman numerals.

I Fernandez-Reyes K., Clarke D., McCain D.S.
ParT: An Asynchronous Parallel Abstraction for Speculative Pipeline

Computations. 18th International Conference on Coordination Models and
Languages (COORDINATION’16) [92]

A parallel abstraction that can be seen as a collection of asynchronous values
or a handle to a parallel abstraction. Combinators control the abstraction and
developers can express complex parallel pipelines and speculative parallelism.

II Fernandez-Reyes K., Clarke D., Castegren E., Vo HP.
Forward to a Promising Future. 20th International Conference on
Coordination Models and Languages (COORDINATION’18) [89]

The paper presents a high-level concurrent language that uses futures, and
explores the combinator forward, that permits promise-like delegation patterns
on future-based languages, reducing synchronisation. Then, it shows a
compilation strategy from the high-level future-based language to a low-level
promised-based language. The translation is semantics preserving and serves
to drive the runtime implementation in the Encore programming language.

III Fernandez-Reyes, K., Clarke, D., Henrio, L., Johnsen, E. B., Wrigstad, T.
Godot: All the Benefits of Implicit and Explicit Futures. 33rd European
Conference on Object-Oriented Programming (ECOOP 2019) [90]

The paper discusses two approaches to concurrent programming depending on
a future dichotomy: explicit and implicit typing, and control- and data-flow
futures. From this dichotomy, it identifies the problems of implicit data-flow
futures and explicit control-flow futures and proposes a new design that solves
these problems, formalised as Godot. This design is formalised for two calculi:
first an encoding of control-flow futures in terms of data-flow futures, and
second an encoding of data-flow futures in terms of control-flow futures.

IV Fernandez-Reyes, K., Noble, J., Gariano, I.O., Greenwood-Thessman, E.,
Homer, M., Wrigstad, T. Dala: A Simple Capability-Based Dynamic

Language Design For Data-Race Freedom.

This paper discusses the design of the Dala programming model, a simple
dynamic, concurrent, object-oriented language that maintains data-race

freedom in the presence of shared mutable state and supports efficient
inter-thread communication. Dala is a capability-based language that relies on
safe and unsafe capabilities. There are three safe capabilities and these
capabilities grant permission to their possessor to perform certain actions, e.g.,
read, write, or alias an object. Unsafe objects grant all permissions to their
possessors. Safe and unsafe objects may interact and Dala guarantees data-race
freedom on safe objects.

Reprints were made with permission from the publishers.

The Author’s Contributions

I. Main author. Manuscript written together with second author. Sole implemen-
tor. Formalisation written in collaboration with second author. Proofs written in
collaboration with second and third author.

II. Main author. Formalisation and manuscript written (primarily) in collaboration
with second author. Implementation written in collaboration with all authors.

III. Main author. Manuscript written together with all authors. Formalisation writ-
ten in collaboration with second author. Sole contributor of proofs and imple-
mentation.

IV. Main author. Manuscript written with all authors. Formalisation written with
third and last author. Sole contributor of proofs.

Related Publications

Other relevant publications by the author that are not included in the dissertation are
listed below:

• Brandauer, S., Castegren, E., Clarke, D., Fernandez-Reyes, K., Johnsen, E.B.,
Pun, K.I., Tapia Tarifa, S.L., Wrigstad, T., Yang, A.M.
Parallel Objects for Multicores: A Glimpse at the Parallel Language En-

core. 15th International School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM 2015 [35]

This paper discusses the ongoing features of the Encore language, motivation
for a new concurrent language, and future directions.

• de Boer, F.S., Serbanescu, V., Hähnle, R., Henrio, L., Rochas, J., Chang, C.,
Johnsen, E.B., Sirjani, M., Khamespanah, E., Fernandez-Reyes, K., Yang, A.M.
A Survey of Active Object Languages. ACM Comput. Surv. 2017 [74]

This paper surveys actor and active object languages and compares them across
a carefully selected set of dimensions.

• Castegren, E., Clarke, D., Fernandez-Reyes, K., Wrigstad, T., Yang, A.M.
Attached and Detached Closures in Actors. International Workshop on
Programming Based on Actors, Agents, and Decentralized Control, AGERE!
2018 [46]

This paper discusses the problem of choosing which actors can run closures,
without introducing race conditions, and shows the approach taken by the
Encore language.

• Fernandez-Reyes, K., Clarke, D., Henrio, L., Johnsen, E. B., Wrigstad, T.
Godot: All the Benefits of Implicit and Explicit Futures (Artifact). DARTS
2019 [91]

This artefact shows a minimalistic Scala library that encodes data-flow futures
in terms of control-flow futures, and explains some of the current limitations
and implementation deviations from the paper.

• Fernandez-Reyes, K., Gariano, I. O., Noble, J., Wrigstad, T. Towards Grad-

ual Checking of Reference Capabilities. Virtual Machines and Intermediate
Languages Workshop, VMIL 2019 [93]

This paper introduces a gradual capability-based language that guarantees
data-race freedom. This paper is a work-in-progress report.

• Blessing, S., Fernandez-Reyes, K., Yang, A.M., Drossopoulou, S., Wrigstad,
T. Run, Actor, Run: towards cross-actor language benchmarking Interna-
tional Workshop on Programming Based on Actors, Agents, and Decentralized
Control, AGERE! 2019 [25]

This paper shows the runtime characteristics of 3 actor-based languages, based
on the Savina benchmarks, and shows how many benchmarks have been
categorised differently but show the same runtime characteristics. The paper
proposes a new benchmark that can simulate most of the Savina benchmark
programs.

• Castegren, E., Fernandez-Reyes, K. Developing a monadic type checker for

an object-oriented language: an experience report International Conference
on Software Language Engineering, SLE 2019 [47]

This experience report shows how the Encore team used Haskell to develop the
Encore compiler.

Note:
To avoid confusion on how to cite my name, I removed my second name (Ramón),
tildes, and used a hyphen between the last names (Fernandez-Reyes). There was an-
other researcher with a name pretty similar to mine, Francisco Ramón Fernández, so I
decided to change Francisco to the diminutive of Kiko. Thus, I have signed all papers
as Kiko Fernandez-Reyes, instead of Francisco Ramón Fernández Reyes.

Sammanfattning på svenska
På 1960-talet publicerades de första artiklarna om concurrent algorithms, allt-
så algoritmer som involverar många diskreta processer som överlappar i tid,
dock inte med nödvändighet exakt samtidigt1. Concurrent-programmering och
-algoritmer uppstod av nödvändighet för att kunna konstruera operativsystem
med förmåga till multitasking, och hantera många användare uppkopplade till
ett system samtidigt.

Design av mjukvara som innefattar sådant beteende är svårt. Om flera
processer gör åtkomst till samma minne samtidigt kan resultatet bli icke-
deterministiskt och därför variera mellan körningar beroende på t.ex. sche-
maläggningen av processerna. Detta gör att sådana system kan lida av olika
typer av “kapplöpningsproblem”: när två processer utan synkronisering gör
åtkomst samma plats i minnet samtidigt, och minst en av processerna skriver
(eng. data-races) eller att schemaläggningsordningen av två processer påver-
kar programmets beteende (eng. race condition).

Mot 1960-talets slut stod det tydligt att världen stod inför en mjukvarukris
om det inte var möjligt att tygla kapplöpningsproblemen med hjälp av kon-
trollmekanismer och programspråkliga abstraktioner.

Idag är system som involverar parallella och samtidiga processer norm. Pro-
gramspråk och programbibliotek möjliggör olika avväganden mellan t.ex. pre-
standa och komplexitet, och olika språk eller programmeringsmiljöer erbjuder
olika programmeringsmodeller som lyfter fram eller gömmer dessa aspekter.
Vissa programspråk garanterar frihet från vissa typer av kapplöpningsproblem
(data-races) i korrekta program, bl.a. genom att kontrollera hur föränderligt
data kan delas samtidigt mellan processer (programspråk som Encore, Erlang

1På svenska används ibland ordet “samtidighet” som översättning för “concurrency” men det
leder ofta till språkliga konstigheter; “många samtidiga diskreta processer”. Vi använder därför
den ibland engelska termen även på svenska.

och Pony); andra språk lämpar istället över ansvaret på programmeraren som
i utbyte får större kontroll och möjlighet att optimera ett system på låg nivå
och skriva “osäker kod” (programspråk som Java, Scala och bibliotek i dessa
språk som t.ex. Akka). Anmärkningsvärt är att ren funktionell programmering
är fri från vissa kapplöpningsproblem (data-races) genom sin konstruktion.
Språk i den imperativa familjen, typiskt många objektorienterade språk, ger
inga sådana garantier då det är vanligt att objekt delas mellan olika delar av ett
program, och att dessa delar kommunicerar med varandra genom att förändra
objekten. De 5 mest populära programspråken idag (enligt TIOBE-listan) – C,
Java, Python, C++ och C# – är alla imperativa och ger inga sådana garantier.

Denna avhandlings huvudsakliga bidrag är ett antal högnivå-abstraktioner
för att uttrycka samtidiga beräkningar, inklusive spekulativa beräkningar, samt
design av en programmeringmodell som är garanterat fri från kapplöpnings-
problem (data-races). I de fall där programmerare vill använda konstruktioner
som bryter garantin är det möjligt att kontrollera förekomsten av kapplöp-
ningsproblem på objektnivå.

Abstraktionernas bygger på “uppgifter” (eng. tasks, dvs. välavgränsade se-
kvenser av instruktioner som kan exekveras av trådar), utlovade värden (pro-
mises), framtida värden (futures), och – i en imperativ miljö – “förmågor”
(capabilities) för att utesluta kapplöpningsproblem (data-races). Informellt kan
uppgifter betraktas som trådar, utlovade värden som värden som kan skrivas
en enda gång men läsas fritt, framtida värden kan ses som utlovade värden som
infrias av uppgifter, och förmågor är biljetter som ger rätt att utföra operationer
på objekt, t.ex. rätt att aliasera, uppdatera, etc.

Arbetet tar avstamp i en ren funktionell miljö där vi utvecklar en abstraktion
för parallella beräkningar, kallad ParT. ParT bygger på framtida värden och
möjliggör konstruktion och koordinering av komplexa mönster., t.ex. parallel-
la pipelines av spekulativa beräkningar i ett nätverk av uppgifter. En uppgifts
slutresultat propageras genom systemet med hjälp av framtida värden, vilket
gör det möjligt att specificera mönster där en uppgift bygger vidare på resulta-
tet från flera andra, eller väljer något av flera spekulativa resultat. För att möj-
liggöra mönster där uppgifter delegerar arbete mellan sig utvecklar vi en ny
programspråkskonstruktion kallad forward. Med hjälp av denna konstruktion
kan en uppgift delegera beräkningen av ett framtida värde på en annan uppgift
och på så sätt ta sig själv från den kritiska vägen för värdets beräkning. Som
ett led i detta arbete utvecklas ny teori för att hantera framtida värden från ett
typperspektiv som skiljer mellan sykronisering i kontrollflödet och dataflödet i
ett program utan att för den skull pådyvla en typmodell på programmet, vilket
var fallet innan vårt arbete.

Framtida värden som bygger på kontrollflöden kan användas för att skapa
delegeringsstrukturer med flera led där varje led kan informeras om framsteg
i hur ett resultat propagerar genom systemet. Framtida värden som bygger på
dataflöden åtnjuter en enklare och delvis renare programmeringsmodell, till
priset av mindre kontroll.

Abstraktionerna och delegeringsmönstren som avhandlingen introducerar
(artikel I–III) är undviker kapplöpningsproblem (data-races) genom sin kon-
struktion i en ren funktionell miljö. I en imperativ miljö med föränderligt till-
stånd går denna garanti förlorad. För att återetablera den presenteras Dala –
en modell baserad på förmågor. Dalamodellen möjliggör vidare gradvis mi-
grering av från program där kapplöpningsproblem är möjliga till program där
kapplöpningsproblem (data-races) inte är möjliga.

Med avseende på implementation går avhandlingens huvudbidrag att appli-
cera på actorspråk.

Acknowledgements
I would like to thank people that supported me during my PhD studies.

Dave, you were a great supervisor and always had my back behind all the
math symbols we wrote. You have taught me how to have fun with mathe-
matical non-sense and I cannot wait to send this thesis to the printer to try
(again) to understand category theory. You went to industry a bit too early,
and I miss our conversations about monads, pro-functors, and how to add pre-
and post-promise chaining functions. I hope we can keep in touch.

Tobias, you are great supervisor and person. I will remember all the good
moments we had, all the pizza and hackathon events, and I will never forget
how you supported me in the bad moments of the journey.

Janina, you have been my main anchor in this journey and have always
taken one for the team. I will always be grateful to you for giving me strength
and support, and for always believing in me. I love you!

Kai, what can I say? You have made the PhD much more difficult, but I
really enjoy going home and having family time. You are the best person in
this world, always maintain your innocence. Love you!

Davide and Pierre, thank you so much for all the talks, lunch, and coffees
that we have shared during my last year of PhD studies. Davide, I am going
to miss our early coffee and talks, I am not sure what I will do anymore! The
early coffee was setting a good vibe for work.

Stephan, Kim, Albert, Kike, and Elias, thank you so much for making
me have fun during the PhD, and for not judging possible stupid questions
throughout all these years.

Raphaela, you are the best TA one can get for the course Advanced Software
Design. Thanks to you, I never had to worry about the students and they
showed how good you are in the course evaluations :)

Einar, Sophia, and Juliana, you have always encourage us (PhD students) to
get the best of ourselves, challenge our opinions in a constructive way, and get
us to be the best we can be. I will really miss working with the three of you.
Please, do not hesitate to contact me in the future if there is any possibility for
collaboration :)

Isaac, Erin, Michael, and James, thank you so much for taking me under
your research group, for supporting my work, and for refining ideas. Hope-
fully I can repay you back by having our work published in a good venue.

Ulrika, Anna-Lena, and Eva, thank you for making so easy all the paper-
work, financial stuff that had to be sorted out, and all the work that you all did
so that me and my family could go on the research visit to Wellington.

Loreto and everyone in the administration, thank you so much for always
helping me out to navigate the Swedish Ladok or Uppdok system. You have
always been super helpful.

Alberto and Ale, thank you for being really good brothers; that said, Ale,
you need to visit your nephew more often, less partying! Alberto, we have al-
ways been together in this Computer Science journey, modulo the PhD studies.
Thank you for listening to my frustations, and the research that I do.

Mum and dad, you thought that research was relaxed and a “real” job was
stressful. I think you are wrong :) but thank you for supporting me all these
years and for all the travelling you have done to Uppsala, to help us when we
needed it.

To everyone else that I may have forgotten, Thank you!

Contents

Sammanfattning på svenska . ix

Acknowledgements . xiii

1 Introduction . 17
1.1 Contributions . 18
1.2 Outline . 21

2 Concurrency and Communication Abstractions . 22
2.1 Concurrency . 22
2.2 Synchronisation and Communication Patterns . 24

2.2.1 Futures and Promises . 24
2.2.2 Channels . 26

2.3 Concurrency Problems . 28
2.3.1 Data-Races . 29
2.3.2 Deadlocks . 29
2.3.3 Performance and Synchronisation Granularity 31

2.4 Concurrency and Synchronisation in Context . 32

3 Object-Oriented and Functional Programming . 34
3.1 Object-Oriented Programming . 34

3.1.1 Concurrency Perspectives In Object-Oriented
Languages . 35

3.2 Functional Programming . 36
3.2.1 Concurrency Perspectives In Functional Languages 37
3.2.2 Task-based Simply Typed Lambda Calculus 38

4 Related Work . 42
4.1 Actor-Based Concurrency Models . 42
4.2 Concurrent Asynchronous Abstractions . 44
4.3 Speculative Computations . 46
4.4 Futures & Promises . 48

4.4.1 History . 48
4.4.2 A Future Categorisation . 50

4.5 Capability-Based Languages . 52
4.5.1 Introduction To Capability-Based Languages 52
4.5.2 Ideas Adopted In Capability-Based Languages 53

4.6 Concurrent Programming Languages Summary . 54
4.7 Discussion . 63

5 Conclusion . 65

References . 66

Appendix A: Notes and Errata . 84

1. Introduction

In the early 60s, researchers published first results on concurrent algorithms
[82, 76, 192, 102, 221, 191]. Concurrent algorithms are those that allow mul-
tiple computations or processes to overlap in time, though not necessarily ex-
ecuting at the same instant [111]. The theory behind concurrent algorithms
and concurrent programming was born out of the necessity to create operating
systems that could perform multiple tasks (multiprocessing) and allow users
to connect to a single computer, concurrently [20, 21, 209, 69].

Designing concurrent software is hard. If multiple processes access and
modify the same memory cell concurrently, then the execution of a program
may return different results on each run. This is dependent on the scheduling
of processes and on the read and write operations on the memory cell. Thus,
concurrent software is subject to race conditions [120] and data-races, defined
as follows: a race condition happens when the ordering of the events affects
the behaviour of the program, and a data-race happens when two concurrent
memory operations target the same location, at least one of them is a write, and
there is no synchronisation operation involved (definition adapted from [88]).

In the late 60s, researchers realised that without any kind of structure or ab-
straction that could prevent concurrency issues (data-races and race-conditions
among were among these issues), designing a concurrent system was a monu-
mental effort and they started to speak about a software crisis [174].

Nowadays, concurrent and parallel programming is the norm [35, 14, 148,
63, 110, 223, 74]. Programming language and library designers offer differ-
ent trade-offs between the concurrency models and the language guarantees.
Some programming languages offer data-race freedom guarantees by restrict-
ing sharing of mutable state (e.g., [35, 63, 14]) while others leave more con-
trol to the developer at the expense of unsafe (e.g., not data-race free) guar-
antees (e.g., [148, 223, 181]). For example, programming languages under
the (pure) functional paradigm are data-race free by definition [158]. On the
other end, (imperative) object-oriented languages are usually not data-race
free. Today, the 5 most used programming languages are imperative at their
core1 [212], and 4 out of 5 of these languages mix the object-oriented and the
functional paradigm. Thus, concurrency abstractions cannot guarantee data-
race freedom.

1C, Java, Python, C++, and C#, Tiobe Index June 2020

17

1.1 Contributions
The main contribution of this thesis consists of high-level purely functional
abstractions to express concurrent and speculative computations,2 and the de-
sign of a concurrent programming model that extends the applicability of the
concurrent abstractions to an imperative setting while maintaining data-race
freedom, when desired. In cases where developers do not want to maintain
data-race freedom, the programming model allows data-races on a per-object
granularity.

The concurrent abstraction relies on tasks [95], promises [156], and fu-
tures [17], while the object-oriented language uses capabilities to maintain
data-race freedom. Informally, we can think of tasks as virtual threads, promises
as value placeholders that can be written once and read multiple times, of fu-
tures as promises that are implicitly fulfilled by the task’s returned value, and
of capabilities as tokens granting special permissions to its (object) possessor,
e.g., ability to read, write, or alias. (We describe tasks, promises, and futures
in Section 2.1, and capabilities in Section 4.5.)

Our work starts in a task-based concurrent purely functional setting, where
we develop a parallel abstraction, named ParT , that uses futures at its core
and allows to easily create complex coordination patterns, such as the creation
of concurrent and parallel pipelines of speculative tasks. In this task-based
concurrent setting, the task’s returned value implicitly fulfils a future. The im-
plicit future fulfilment semantics prevents developers from writing common
delegation patterns when using futures, e.g., the delegation of a future’s ful-
filment to another task. To delegate future fulfilment, this thesis investigates
a construct named forward [58] and introduces a compilation strategy from a
high-level future-based programming language to a promise-based low-level
programming language, that can encode certain delegation patterns. Then, this
thesis uses the forward delegation core idea, and new combinators and types
to express control-flow futures (the mainstream futures similar to those found
in Java, Scala, or Python) and data-flow futures [112]. Whereas control-flow
futures can nest futures and control individual access to each future layer (Sec-
tion 2.2.1), data-flow futures abstract nesting and synchronisation operations
traverse the possible nested futures and return a non-future value. For exam-
ple, a control-flow future f with type Fut[Fut[Int]] can synchronise on each
future layer, while a typed data-flow future f cannot statically exhibit future
nesting, i.e., the previous future f would be typed as Fut[Int] and represents
a future that may have nested future layers at runtime and synchronisation
operations cannot show intermediate synchronisation steps.

The abstractions and delegation patterns introduced in this thesis (Papers I–
III) are data-race free in a purely functional setting, but data-race freedom is
lost in the presence of mutation. To address this problem, this thesis proposes

2These computations are speculative in the sense that the user may or may not be interested in
all the results [123].

18

a capability-based programming model, Dala, that extends the applicability
of Papers I–III to an imperative setting, retaining data-race freedom. The
programming model also permits transitioning from an unsafe program, i.e.,
a program that is subject to data-races, to a program that maintains data-race
freedom.

From the implementation point of view, most of the ideas of this thesis can
be applied to an actor or active object programming language. We leave as
future work to statically type the Dala model and to re-write the functional
abstractions in the Dala model.

Below we give a summary of our work.

PAPER I
ParT: An Asynchronous Parallel Abstraction for Speculative Pipeline Compu-
tations

We develop a concurrent abstraction, ParT , that allows developers to ex-
press pipelines of concurrent speculative computations in a task-based lan-
guage. Spawning a task returns immediately a (control-flow) future, and fu-
tures are placeholders for values that may not have been yet computed. Values
and futures can be lifted to the ParT abstraction, and ParTs are monoids, i.e.,
a bunch of ParT abstractions can be grouped under a new ParT . Developers
can write complex concurrent (speculative) coordination patterns using ParT’s
high-level non-blocking combinators.3 Speculative termination of tasks stops
tasks that are not needed.

PAPER II
Forward to a Promising Future

Control-flow futures from Paper I can be lifted to the ParT abstraction.
But we noticed how the semantics of control-flow futures are often too rigid,
i.e., tasks implicitly fulfil a future upon termination which prevents users from
writing common delegation patterns. For example, a client that communicates
with a (proxy) server immediately gets back a future. If the proxy spawns
a worker to handle the request and returns the worker’s future, the client is
exposed to the internal structure of the (proxy) server, e.g., a future to a future.
If the proxy spawns a worker to handle the request and blocks on the worker’s
future, the proxy cannot attend new requests and may become the bottleneck
of the server. A fulfilment delegation pattern can transfer “ownership” of the
fulfilment of the future.

3There is only one blocking combinator, needed to convert the ParT abstraction into an array.

19

We introduce the forward combinator, which allows some flexibility de-
gree on delegation of the future’s fulfilment. Following the example from
above, the forward combinator allows a direct response from the worker to the
client, without involving the proxy, in a transparent way. This delegation pat-
tern removes the intermediate synchronisation from the proxy and delegates
the fulfilment of the client’s future to the worker.

PAPER III
Godot: All the Benefits of Implicit and Explicit Futures

Control-flow futures cannot abstract over nested futures without peeling the
futures layers using synchronisation combinators, among other issues. The
use of the forward construct (Paper II) allows developers to encode data-flow
futures using control-flow futures. But this requires manually inserting the
forward construct to encode data-flow futures, and data-flow futures do not
have explicit types. Thus, they are not recognisable to the developer in the
type signature.

To allow the co-existence of control- and data-flow futures, our work uses
the core ideas of Paper II and adds new data-flow combinators and a data-flow
type. This paper introduces typed data-flow futures and its combinators which
implicitly delegate the fulfilment of the future. This is the first work, that we
know of, that allows interoperability of control- and data-flow futures.

PAPER IV
Dala: A Simple Capability-Based Dynamic Language Design For Data-Race
Freedom

The abstractions and delegation patterns introduced in this thesis are data-
race free in a purely functional setting. But data-race freedom is lost in the
presence of mutation. To solve this problem, this thesis proposes a capability-
based programming model, named Dala. Dala distinguishes between safe and
unsafe capabilities. Safe capabilities grant special permissions to its (object’s)
possessor, e.g., ability to read, write, or alias an object. Unsafe capabilities
grant all permissions. Dala allows interaction between safe and unsafe objects
and guarantees data-race freedom for safe objects. This guarantee is enforced
via runtime checks.

20

1.2 Outline
The following outline shows the organisation of this thesis:
Chapter 2. Background on concurrent programming (Section 2.1), synchro-

nisation and communication patterns (Section 2.2), concurrency prob-
lems (Section 2.3), and connection to our work (Section 2.4).

Chapter 3. Covers basic notions of the object-oriented (Section 3.1) and func-
tional paradigms (Section 3.2), and introduces a task-based lambda cal-
culus, used in Papers I – III.

Chapter 4. Overviews actor-based concurrency models (Section 4.1), con-
current asynchronous abstractions (Section 4.2), speculative computa-
tions (Section 4.3), and futures (Section 4.4). It also presents a new
future categorisation based on four dimensions, introduces capability-
based languages and features commonly used in them (Section 4.5), an
overview of concurrent programming languages (Section 4.6), and fin-
ishes with a discussion section (Section 4.7).

Chapter 5 Concludes.

21

2. Concurrency and Communication
Abstractions

This chapter reviews common concurrency abstractions, some of the problems
introduced by these abstractions, and synchronisation patterns needed to un-
derstand this thesis. Section 2.1 explains common concurrency abstractions
(threads and tasks); Section 2.2 reviews synchronisation and communication
patterns in concurrent programs; Section 2.3 explains problems in concurrent
programs; Section 2.4 connects the concurrency abstractions, synchronisation,
and trade-offs between the concurrency abstractions and language guarantees,
captured on a per-paper level.

2.1 Concurrency
Threads are the minimal computational unit scheduled by an operating system
(OS); multiple threads have access to the same virtual memory and threads
from different processes access disjoint virtual memory [201, 208]. Multi-
threaded programs are concurrent by definition. By concurrent we mean that
the OS gives each thread some amount of time to run and, when the thread
runs out of its given time slice, the OS stops the running thread and runs an-
other thread. Thus, two (or more) threads run concurrently but not at the same
time. A multi-threaded program runs in parallel when multiple threads run at
the same time.

Programming languages provide libraries for operating with threads. The
most common operations are the creation and joining operations, typically
named fork and join [70, 67, 179]. These operations create and run new
threads and wait for a thread to finish. For example, Fig. 2.1 shows a parent
thread spawning a child thread (Line 10) to perform a calculation (Line 2).
Then, the parent thread continues doing other work (Line 14), and blocks until
the child thread finishes (Line 16).1

The creation and destruction of too many threads affects the performance of
a running program, as each thread needs to allocate OS resources, free them,
and the OS needs to context switch between threads [124, 151].

To mitigate this problem, researchers added new abstractions for cheap cre-
ation and distribution of work, namely tasks and work stealing [95, 193]. Un-
der this programming model, developers specify possible points of concur-
rency and parallelism using a construct named spawn. Each thread maintains

1The parent and child thread have access to the same mutable state, the counter variable.
Section 2.3 overviews common problems when sharing mutable state.

22

1 // Function executed by child thread
2 def calculation(counter):
3 counter += 1
4 ...
5
6 // parent thread
7 counter = 0
8
9 // Run function in child thread

10 child = Fork(calculation, counter)
11
12 // Perform other work
13 counter += 1
14 ...
15
16 child.join()

Figure 2.1. Pseudo-code where a parent thread forks a child thread to perform a
calculation, performs some work and waits for the child thread to finish. Parent and
child shared access to the variable named counter.

a doubly-ended queue of tasks to run. A thread tries to steal a task from other
thread’s queue when there is no more local work to do [193, 95, 149, 151].
The await construct waits for the completion of a spawned job.

An update of the previous parent-child example is in Fig. 2.2. In this ex-
ample, the only syntactic change was the use of the function spawn instead
of Fork and await instead of join (Fig. 2.2, Lines 10 and 16, respectively).
However, from the runtime perspective, spawning a new task expresses the
desire that the task’s computation may run concurrently (or in parallel), but
the runtime could also sequentialise it.

1 // Function executed by child task
2 def calculation(counter):
3 counter += 1
4 ...
5
6 // parent thread
7 counter = 0
8
9 // Run function in child task

10 child = spawn(calculation(counter))
11
12 // Perform other work
13 counter += 1
14 ...
15
16 child.await()

Figure 2.2. Pseudo-code where a parent task spawns a child to perform a calculation,
performs some work and waits for the child task to finish. Parent and child shared
access to the variable named counter.

23

2.2 Synchronisation and Communication Patterns
Threads and tasks are similar, and their main difference is that while a thread
is the minimal computational unit scheduled by an operating system, a task is
a computational unit scheduled on a thread. Threads and tasks have similar
synchronisation constructs, namely join and await, and rely on shared mem-
ory to indirectly return a value from a child thread/task. This indirect way to
synchronise, or get a value as a result of a multithreaded computation, is er-
ror prone [183]. Low-level synchronisation and communication patterns such
as locks, monitors, and semaphores, among others [81, 116, 36, 83, 37], pro-
vide facilities for synchronisation and getting a value as a result of a spawned
computation, but the logic becomes difficult to understand [183]. This thesis
focuses on higher level abstractions for synchronisation and communication
of threads and tasks.

In this section we review two high-level communication and synchroni-
sation concepts: futures and promises, and channels. Future and promises
decouple the return of an asynchronous computation from how the value is
computed (Section 2.2.1). We define an asynchronous computation as a com-
putation that does not block the current thread (task) and takes place at some
other point in time. Channels are an abstraction to explicitly control the send-
ing and receiving of values between threads (tasks), such that synchronisation
can happen explicitly and without waiting for a task to finish (Section 2.2.2).

2.2.1 Futures and Promises
Futures were originally introduced in an untyped setting [17, 133, 224], and
Liskov et al. later moved them to a typed setting and renamed them as promises
in Argus [156]. The main idea is that futures and promises decouple the return
of a value from how the value is computed, and are placeholders for asyn-
chronous computations.2 (From now on, in this chapter we will refer to a task
to mean either a thread or a task, abstracting over implementation details.)

In the recent literature, concurrent programming languages maintained the
names of these abstractions but changed its semantics slightly [165, 71, 35,
176, 187, 7]. Our work uses the following semantics when we refer to futures
and promises:3

Definition 1 (Future) A future is a read-only placeholder for the result of an
asynchronous computation, where the callee implicitly fulfils the future upon
returning of a value.

2We will refer to a concurrent computation to mean that two or more computations have inter-
leaving semantics, possibly running in the same thread, and these computations do not execute
at the same time, and we refer to an asynchronous computation as a computation that does not
execute immediately (synchronously) and runs at some non-specified point in time.
3 A more technical definition is given at the end of Section 4.4.

24

Table 2.1. Operations typed in systems with futures and promises, respectively,
including operation style (blocking or non-blocking) where “–” means not applicable.

Future Type Promise Type Operation
async ()→ Fut[t] – Non-blocking
get(f) Fut[t] → t Prom[t] → t Blocking
Prom – t → Prom[t] Non-blocking
fulfil – Prom[t] → t → Unit Non-blocking
f � (λx.e) Fut[t] → (t → t’) Prom[t] → (t → t’) Non-blocking

→ Fut[t’] → Prom[t’]

Definition 2 (Promise) A promise is a data structure that can be fulfilled (writ-
ten) once and read multiple times.

From the definitions, it is implicit that a future is tied to the asynchronous
computation (task) that fulfils it and that a future is fulfilled only once; promises
are lower-level abstractions not tied to any asynchronous computation. When
used in asynchronous computations (e.g., a promise shared with another task),
promises decouple values from asynchronous computations, but promises must
be explicitly managed. Because promises are not implicitly linked to a task or
implicitly fulfilled upon task termination, promises can simulate futures, but
futures cannot simulate all the behaviours of a promise. For this reason, we
consider futures as higher-level constructs than promises. Paper II uses this
reasoning to define a future-based higher-level language, and a compilation
strategy to a promise-based lower-level language that allows future-based pro-
grams to encode promise-like delegation patterns.

Futures and promises have a small core set of combinators to operate on
them, listed in Table 2.1 together with their type signature and asynchronous
operational description. (There are other derived combinators, but we will not
cover them here.) The asynchronous operational description merely asserts
whether the combinator is blocking or not. A blocking combinator can be
considered a synchronisation point, as it guarantees the presence of a value in
a future (promise) before it can continue. Next, we provide a description of
these combinators:

• async Spawns an asynchronous computation, returning immediately a
future.

• get A synchronisation operation that blocks on the future or promise
until it is fulfilled (has a value).

• Prom Creates a promise. A promise can be fulfilled once and raises an
error if it is fulfilled multiple times.

• fulfil Fulfils a promise with a given value.
• f � λx.e Future- and promise-chaining operation: returns immediately

a new future (promise), and attaches the computation λx.e as a callback
to f . For example, f � λx.e returns a future g and attaches the com-

25

1 // Function executed by task
2 def job(counter):
3 counter += 1
4 ...
5 return counter
6
7 counter = 0
8
9 future = async(job(counter))

10
11
12 counter += 1
13 ...
14
15 get(future)

1 // Function executed by task
2 def job(counter, prom):
3 counter += 1
4 ...
5 fulfil(prom, counter)
6
7 counter = 0
8
9 prom = Promise()

10 spawn(job(counter, prom))
11
12 counter += 1
13 ...
14
15 get(prom)

Figure 2.3. Pseudo-code that spawns a task to perform a calculation, performs some
work and waits for the future (left listing) or promise (right listing) to finish. The
current task and its spawnee have access to the mutable variable named counter.

putation λx.e as a callback to f . When future f contains a value v, the
callback (λx.e) v runs asynchronously and its resulting value fulfils g.

Fig. 2.3 adapts the example from previous section (Section 2.1) to show
the main differences between futures and promises. The spawning of a task
(async, Line 9) immediately returns a future and the task implicitly fulfils
the future upon finishing (Line 5, Fig. 2.3 left). In contrast, promises are
explicitly created (Line 9, Fig. 2.3 right), must be explicitly fulfilled (Line 5),
and are not linked to asynchronous computations (unlike futures and the async
combinator). Thus, promise creation happens within a sequential code block
and developers must explicitly share them among tasks to exploit their power
(Line 10, right).4

This section reviewed futures and promises as a way to return a value from
an asynchronous computation, decoupling the future and promise result from
the computation. The next section introduces channels, a common abstraction
to exchange values between tasks.

2.2.2 Channels
Channels are abstractions that allow direct communication between two
tasks [117], and can be unidirectional or bidirectional. In an unidirectional
channel one end of the channel allows tasks to send (but not receive) mes-
sages, and the other end of the channel allows tasks to receive (but not send)
messages [115].

Channels can be synchronous or asynchronous. A channel is synchronous
when a send operation blocks the sending task until another task receives a

4We assume that the spawn computation in the promise listing has type: ()→ ()

26

Figure 2.4. Graphical representation of a synchronous channel where two tasks ex-
change a value. (1) Task #1 sends a value to a channel; (2) Task #1 blocks until another
task receives the value; (3) Task #2 receives the value from the channel; (4) No task is
blocked.

value, and vice versa (Fig. 2.4). For this reason, channels are considered syn-
chronisation points between two tasks, where two tasks wait for each other to
exchange a value, and continue afterwards. A channel is asynchronous when
it incorporates a buffer of size S, where messages accumulate in FIFO order
until the buffer is full. In the most common case, when the buffer is full the
sender blocks (in other designs the buffer may drop messages once it is full).
Buffered channels of infinite size (also known as unbuffered channels) accept
all messages and never block the sender [50]. (More channel designs and al-
ternatives in [205]).

In Paper IV , we adop channels from the CSP programming model, i.e.,
channels are bidirectional and synchronous [117], with the restriction that we
forbid passing a channel to another channel. This restriction allows us to focus
on key concepts, and we do not think that this limitation invalidates the pro-
gramming model developed in Paper IV . The use of channels was a pragmatic
choice that allows developers to pass values back and forth between tasks (c.f.,
futures, Section 2.2.1). For simplicity Paper IV unifies task and channel cre-
ation; Table 2.2 summarises the channel combinators:

• spawn(x){...} Spawns a new computation that executes . . . and imme-
diately returns a channel; the variable x represents the channel that the
spawned task uses to communicate with the caller.

• ch ←x Sending operation that places the value x inside the channel ch,
blocking if the channel is full.

• ←ch Receiving operation that extracts a value from the channel ch,
blocking if the channel is empty.

27

Table 2.2. Channel’s combinator types and blocking semantics
Signature Operation

spawn(x){...} unit → chan Non-blocking
ch ←value chan → t → chan Blocking
←ch chan → t Blocking

1 // Function executed by task
2 def job(counter, ch):
3 counter += 1
4 ...
5 ch ←counter
6 counter = 0

7 ch = spawn(x) { job(counter, x) }
8
9 counter += 1

10 ...
11
12 ←ch

Figure 2.5. Pseudo-code that spawns a task to perform a calculation; the tasks syn-
chronise using channels.

Fig. 2.5 adapts the example from Section 2.1 of a parent and a child task
that share a counter, but use channels in its stead. The spawning constructor
(spawn(x){ ... }) returns a channel, where variable x represents the chan-
nel name used by the spawnee task to communicate with its caller (Line 7).
Channels have two operations: one for sending a value to a channel (ch ←
counter, Line 5) and one for receiving a value (←ch, Line 12). In the exam-
ple (Fig. 2.5), the child task finishes by placing a value in the channel (Line 5),
and the parent task receives the value (Line 12).

2.3 Concurrency Problems
Designing a concurrent (parallel) program is not an easy task, specially be-
cause it is easy to introduce data-races and these may have harmful conse-
quences [138, 227]. We use the following definition of a data-race, adapted
from [88]:

Definition 3 (Data-Race) A data-race happens when two concurrent memory
operations target the same location, at least one of them is a write, and there
is no synchronisation operation involved.

The use of synchronisation operations may remove data-races, but they
may also introduce deadlocks and over-synchronisation may impact the per-
formance of the program [66, 105, 200].

The next sections show examples of synchronisation operations that may
suffer from data-races and deadlocks, or performance regressions due to over-
synchronisation. This section finishes stating which abstractions from our
work may suffer data-races and deadlocks.

28

1 // Function executed by task
2 def job(counter):
3 counter += 1
4 ...
5 return counter

6 −− main task
7 counter = 0
8 future = async(job(counter))
9 counter += 1

10 ...
11 get(future)

Figure 2.6. Pseudo-code that spawns a task to perform a calculation, performs some
work and waits for the future. The current task and its spawnee have access to the
same mutable variable, counter.

2.3.1 Data-Races
Fig. 2.6 shows an example (borrowed from Fig. 2.3) of a concurrent program
that uses a pass-by-reference evaluation strategy, futures, and suffers from a
data-race. The program starts by setting the variable counter to 0 (Line 7).
The parent task spawns a child, delegating the computation of some job oper-
ation (Line 8), and gets back immediately a future – parent and child (may) run
concurrently. Assume the following scheduling, where the parent gets to run
first: the parent increments the counter (Line 9); then the child is scheduled.
The child updates the counter (Line 3), and this introduces a data-race. This
is a data-race because there are two accesses involved on the same memory lo-
cation, at least one of them is a write, and the operations are not synchronised
(Definition 3).

The main implication of a data-race is non-deterministic behaviour, and
nothing can be said about the result contained in the future variable; the
result of the future variable may not even coincide with the result of counter
[19]. Obviously, this is not the intent of the programmer. The intent of the

programmer was to update the counter once, in the child task, and once in the
parent task.

The spawn computation of Fig. 2.6 captures the variable counter, and this
variable should not be used again in the parent process until the child returns it.
If one forbids any access to captured variables (and memory locations reach-
able from the reachable object graph of the captured variable) until the variable
is retrieved from a future, then the programmer has a guarantee that there are
no data-races. This can be written as follows:

counter = get(async(job(counter))); counter += 1.

2.3.2 Deadlocks
A deadlock happens when a group of tasks wait for a condition to change
before they can continue [36, 126]. A circular dependency among tasks
causes a deadlock since each task waits for another task to remove its block-
ing condition. The consequences of deadlocks range from blocked operat-
ing systems to standstill cranes in automated container terminals or blocked
trains that compete for the same track when there is not enough trackage

29

buffer [132, 150, 157]. The coming subsections show how tasks may suf-
fer from deadlocks, and deadlocks produced between the interaction of tasks
and futures, promises, and channels.

Deadlocks in Tasks

Task-based programs deadlock when there is a circular dependency between
tasks waiting for each other to remove their blocking condition.

Dijkstra introduced a simple example of a concurrent program that may
deadlock, the dinning philosophers problem [117] (definition follows). There
is a round table where N philosophers sit next to each other to eat a bowl of
spaghetti. There is a single fork between each pair of philosophers. Each
philosopher alternates between thinking and eating, but a philosopher must
pick both forks before eating. A philosopher that finishes eating must re-
lease the forks so that other philosophers may pick them up. The amount of
spaghetti is infinite.

1 class Philosopher:
2 id: Int
3 left: Fork
4 right: Fork
5
6 def think():
7 ...
8 def eat():
9 ...

10
11 def pick(forks : List[Fork]):
12 while !this.left.isFree():
13 this.think()
14
15 forks[this.id].notFree()
16 this.left = forks[this.id]
17
18 while !this.right.isFree():
19 this.think()

20 rFork = this.id + 1 % X
21 forks[rFork].notFree()
22 this.right = forks[rFork]
23 this.eat()
24
25 this.left.release()
26 this.right.release()
27 this.run(forks)
28
29 class Main:
30 def main():
31 forks = ...
32
33 philosophers = List
34 for x in 0..5:
35 ...
36 phi = new Philosopher()
37 spawn(phi.pick(forks))
38 philosophers.add(phi)

Figure 2.7. Philosophers problem using tasks, possibly deadlocking.

Fig. 2.7 shows a possible implementation, where the class Philosopher
contains the attributes id, used to know which fork to pick up, and then two
forks. Each philosopher can think (Line 6), eat (Line 8), or pick up forks
(Line 11). When a philosopher tries to pick up a fork, the philosopher checks
whether the left fork is available (Line 12) and only try to pick up the right
fork when it has the left fork (Line 18).

It is easy to see how the code in Fig. 2.7 does not prevent deadlocks. All
philosophers could concurrently decide to pick their left fork, waiting now for
other philosophers to release their right fork. But all of them are waiting on the
same condition, that someone releases the right fork before they can continue,
so there is no progress.

30

Deadlocks in Futures and Promises

Futures and promises may suffer from deadlocks when a future (promise) is
not fulfilled. Fig. 2.8 (left), shows a deadlock produced when a shared object
(x.f, Line 5) that contains a future is concurrently updated (in the parent task)
with the own spawnee generated future (x.f = fut, Line 9). Depending on
the scheduling, the child may block on the initial future in x.f (no deadlock)
or on the spawnee future, creating a deadlock. Fig. 2.8 (right) shows a dead-
lock produced by an unfulfilled promise, which does not even need of any
concurrency construct. The example creates a promise (Line 6), calculates
some decimals of π and waits forever for the promise to be fulfilled (Line 9).

1 −− Main task.
2 x.f = spawn(work(50))
3
4 −− Blocking child task
5 fut = spawn(get(x.f))
6 x.f = fut
7
8 −− Blocking parent task
9 get(fut)

1 def pi_decimals(dec, prom):
2 −− It does not fulfil the promise
3 ...
4
5 −− Main task.
6 prom = Promise()
7 pi_decimals(50, prom)
8 −− Blocks parent task.
9 get(prom)

Figure 2.8. Deadlock using futures (left); deadlock using promises (right).

Deadlocks in Channels

Channels are subject to deadlocks when there is a mismatch between the num-
ber of send and receive operations. Fig. 2.9 shows an (adapted) example of a
deadlock that side steps the deadlock detector of the Go language [175]. In this
example, all scheduling permutations reach to the same deadlock state. After
spawning an initial task, the child waits to receive a value from the channel
(Line 13). The parent task continues by spawning a new child task (Line 15),
the child blocks on the sending operation, as there is no receiver for that chan-
nel (Line 5). The parent task places a value on the channel (Line 18), unblock-
ing the channel on Line 13. Assume that the unblocked child continues and
is blocked again when sending a value to the channel (Line 9). The parent
task takes over, spawns a new task which immediately blocks (Line 21), and
performs a receive operation (Line 27) that unblocks the child task on Line 9.
After that, the parent task tries to retrieve a new value from the channel and
blocks forever (Line 28). There are two deadlocks, one in Line 21 and one in
Line 28 due to a mismatch between sends and receives.

2.3.3 Performance and Synchronisation Granularity
Introducing the right amount of synchronisation granularity is an active
research area with performance implications from operating systems to
databases, among other domains [22, 66, 84].

31

1 def Work():
2 ...
3
4 def Send(ch):
5 ch ←42
6
7 def Recv(ch, done):
8 val ←ch
9 done ←val

10
11 def main():
12 doneParent = spawn(done){
13 ch ←done
14 Recv(ch, done)

15 c = spawn(x){
16 Send(x)
17 }
18 doneParent ←c
19
20 spawn(done2) {
21 ch ←done2
22 Recv(ch, done2)
23 }
24 spawn(_) {
25 Work()
26 }
27 ←done
28 ←done

Figure 2.9. Example of a deadlock using channels.

Synchronisation operations may prevent the introduction of data-races,
but over-synchronisation may introduce deadlocks or performance regres-
sions [66, 84, 129]. Performance regressions can happen due to synchronisa-
tion overhead and contention [84, 129]. For example, the use of locking syn-
chronisation introduces new atomic operations to acquire and release locks,
and lock contention may serialise (reduce) the amount of parallelism of an ap-
plication [84, 129]; a coarse locking policy improves the performance in some
situations [84], and compiler researchers found synchronisation heuristics to
remove redundant synchronisation [24, 27, 52, 84, 226], but these heuristics
use simple syntactic rules [136].

Other approaches may use software and/or hardware transactional memory
for lock-based synchronisation [204, 78, 190, 41, 144, 77]. This approach exe-
cutes a (lock-protected) critical section in a software or hardware atomic trans-
action; transactions succeed when there are no conflicts, and fail when mul-
tiple transactions conflict at runtime. Upon a conflict, one of the transactions
aborts and depending on the conflict strategy, either the aborted transaction
tries speculatively to commit (again) using transactional memory, or opts to
acquire the lock. One of the main benefits of using software and/or hardware
transactional memory is to elide locks [190, 77, 85]. These techniques may
also perform runtime analysis and statistics collection to dynamically decide
whether critical sections should run in a transaction or using other synchroni-
sation means [214].

2.4 Concurrency and Synchronisation in Context
This section shows a summary of our work with respect to concurrency con-
cepts (futures, promises, task, and channels) and concurrency problems (dead-
locks and data-races), showing the reader the expected background for each
paper.

32

Table 2.3. Necessary background to understand our work w.r.t. concurrency abstrac-
tions (futures, promises, tasks, and channels) and concurrency problems (deadlock
and data-races), captured on a per-paper level.

Future Promise Task Channels Deadlock Data-Race
Paper I � � � � � �

Paper II � � � � � �

Paper III � � � � � �

Paper IV � � � � � �

Table 2.3 shows the necessary background to understand our work, captured
on a per-paper level. But this table does not specify whether abstractions are
data-race or deadlock free (e.g.,), merely that the concept is a prerequisite to
understand the paper. We elaborate on this as follows:

1. Our work starts with a concurrent functional abstraction, ParT (Paper
I), in a task-based language that uses control-flow futures (brief expla-
nation in Section 1.1; detailed explanation in Section 4.4) that maintains
data-race and deadlock freedom guarantees. Data-race freedom holds
because there is no mutable state, and deadlock freedom holds because
there are no cyclic dependencies between tasks. (These guarantees ex-
tend to Paper II and Paper III for the reasons above.)

2. The ParT abstraction relies on control-flow futures and we noticed that
certain delegation patterns could not be expressed in the ParT abstrac-
tion. Based on this realisation, we introduce an existing construct named
forward [58] into a concurrent future-based calculus (simpler than the
ParT calculus), and show how the use of this new construct allows de-
velopers to write certain promise-based delegation patterns in a future-
based language.5 The calculus is based on core fragments of the ParT
calculus and thus, remains data-race and deadlock free.

3. The forward construct does not allow to differentiate between control-
and data-flow futures, i.e., futures that may synchronise in all nested
futures from those that abstract over the nesting, and requires manual
intervention to create delegation patterns. Paper III uses a minimal con-
current calculus (in line with previous work) and shows how we can use
combinators to manage control- and data-flow futures.

4. Our last paper (Paper IV) shows how we can extend the applicability of
our previous work (Papers I–III) to an imperative setting, while retaining
data-race freedom. We define a programming model that is similar to the
core calculus from previous work, but uses channels instead of futures
and a capability-based system. The programming model is data-race
free, when desired, but not deadlock free.

5As stated in Section 2.2.1, futures and promises are similar but futures enforce a single writer
to the future, while promises cannot statically maintain this guarantee.

33

3. Object-Oriented and Functional
Programming

The calculus from papers I – III use a functional language, and Paper IV uses
an object-oriented language. This chapter reviews relevant features of func-
tional and object-oriented languages. Section 3.1 summarises the difference
between objects and classes, and explains why data-race freedom is difficult
in a concurrent object-oriented language (Section 3.1.1). Section 3.2 intro-
duces functional programming concepts, explains why functional programs
are data-race free (Section 3.2.1), and gives a brief summary to a concurrent
simply typed lambda calculus (Section 3.2.2).

3.1 Object-Oriented Programming
In object-oriented programming, objects represent abstract or concrete con-
cepts and they interact with each other via method calls. Method calls may
change the object’s internal state [12]. For the purpose of this thesis, we re-
fer to objects as anything that contains identity, state, and methods (borrowed
definition from [28]). But this definition does not state anything about how
developers instantiate objects.

Language designers are responsible for the object instantiation strategy,
which affects other aspects of the language, e.g., inheritance. Common in-
stantiation strategies are class- or object-based instantiation. A class-based
strategy instantiates objects from classes, while in an object-based strategy
each object definition is also its object instantiation.

Fig. 3.1 shows an example of an object-based program that updates an im-
age on the screen, using a common technique that avoids flickering of the
image during a refreshing cycle, known as page flipping with double buffer-
ing [2]. Page flipping consists on simply swapping a pointer that points to
video memory, to point to some other video memory address. The example
defines a constant function scene that creates an object; this object will write
in the off-screen buffer and do the page flipping of the video pointer. The ob-
ject has two fields, current and next, where the former refers to the video
pointer that the graphics card constantly reads, and the latter refers to an off-
screen frame buffer. Upon creation of a scene (Line 14, initialisation details
have been omitted), the method draw is called to draw a new image on the
screen (Line 16). The method clears the off-screen frame buffer, draws some

34

1 def scene():
2 return object(current=..., next=...):
3 def draw():
4 next.clear()
5 next.draw(1, 1)
6 ...
7 next.draw(4, 3)
8 swap()

9 def swap():
10 temp = current
11 current = next
12 next = current
13
14 o = scene()
15 ...
16 o.draw()

Figure 3.1. Page flipping example in an object-based language

image, and calls on the method swap (Lines 3 and 8), which simply swaps the
video pointer current to display the content pointed by next (Lines 9 to 12).

Our work on the Dala programming model (Paper IV) uses an object-
based instantiation strategy, and omits inheritance. This decision is purely
pragmatic, to remove “noise” from the core calculus. Based on [131], who
implemented multiple inheritance models on object-based languages, we be-
lieve that the omission of inheritance should not affect much our programming
model.

3.1.1 Concurrency Perspectives In Object-Oriented Languages
Concurrent programming in object-oriented languages is hard. Most common
object-oriented languages are not data-race free. Examples of these languages
are Java, C#, JavaScript, and Scala among others, where either developers
protect objects or accept “unpredictable and surprising behaviour” [98].

There are a number of dynamic and static approaches to forbid data-races
and it is an active research area [202, 53, 56, 137, 135, 134, 196, 23, 94]. Dy-
namic detection tools such as Eraser [202] are based on a lockset algorithm.
Roughly speaking, the lockset algorithm ensures that shared variables are al-
ways accessed by threads that hold a lock, and infers at runtime which locks
should protect which variables [202]. Other approaches improve upon Eraser
by mixing static and dynamic information [53, 23, 196]. To avoid the run-
time overhead of dynamic detection tools and guarantee data-race freedom,
large programs may only use static analysis techniques. As suggested by Ri-
nard [197], “augmented type systems are the most promising approach for
activity management programs”1, which is the approach taken by capability-
based languages such as Encore [35, 48], Pony [63, 64], or Gordon’s C# ex-
tension [99] (see Section 4.5).

1Activity management programs refer to programs that use threads to manage concurrent com-
putations.

35

3.2 Functional Programming
Functional programming and their ideas have been steadily spreading and in-
fluencing many modern languages, perhaps due to the benefits of working with
immutable values in concurrent and parallel settings.

Many functional programming languages are build upon a simple yet pow-
erful functional typed language, the simply typed lambda calculus [57, 130].
Many researchers consider the simply typed lambda calculus as a bare bones
programming language and there has been plenty of research into adding
more advanced features to it, ranging from adding parametric polymor-
phism [96, 195] to encoding objects [122], among others.

When it comes to concurrency and parallelism, we highlight two key fea-
tures from functional programming languages [118]: immutability and ref-
erential transparency. Immutability allows developers to work with parallel
algorithms and abstractions without worrying about mutable side effects. Ref-
erential transparency refers to the ability to change variables and expressions
by their values, without altering the program semantics. This has many impli-
cations, spanning from memoization of functions, where functions cache their
results to application of equational reasoning [119].

1 typecheck env (Program cls) = Program <$> mapM (typecheck env) cls
2
3 typecheck env cdef@ClassDef{cname, fields, methods} = do
4 let env’ = addVariable env "this" (ClassType cname)
5 fields’ <- mapM (typecheck env’) fields
6 methods’ <- mapM (typecheck env’) methods
7 return cdef{fields = fields’, methods = methods’}

Figure 3.2. Implementation of a type checker in Haskell [47]

For example, consider the implementation of a type checker for an object-
oriented language using a pure functional language (Fig. 3.2, example bor-
rowed from [47]). Type checking classes in parallel cannot introduce data-
races, even in the presence of a shared environment – the environment is im-
mutable. In this example, the type checker receives an abstract syntax tree
node, named Program, that contains a list of classes that need to be type
checked. The operation mapM (Lines 1, 5 and 6) runs in a serial fashion and
applies the typecheck function to each class, field, and method. Compiler
writers can type check classes (and fields and methods) in parallel using par-
allel combinators such as parMapM, from the Par monad library [159].

In the next section, we argue about why these concepts are crucial for data-
race freedom in concurrent functional languages (Section 3.2.1) and introduce
the common parts of a concurrent functional core calculus used in Paper I –
Paper III (Section 3.2.2).

36

1 // Function executed by child task
2 def job(counter):
3 counter += 1
4 ...
5 return counter
6
7 counter = 0
8 future = async(job(counter))
9 counter += 1

10 ...
11 get(future)

Figure 3.3. Pseudo-code that spawns a task to perform a calculation, performs some
work and waits for the future.

3.2.1 Concurrency Perspectives In Functional Languages
Immutability and referential transparency are key features for a data-race free
concurrency model. Immutability forbids mutable side effects and referential
transparency help developers apply equational reasoning [118, 119].2 Thus,
two expressions can run concurrently (or in parallel) without introducing data-
races.

As an example, Fig. 3.3 shows a parent task that delegates work to a child
task, where the end result is non-deterministic in an object-oriented language,
due to data-races. (This same example has been studied in Fig. 2.6.) We show
two possible concurrency schedules that produce different results on the future
variable (Line 11). In both schedules, the counter has an initial value of 0, and
a parent task shares the counter variable with a child task. Under one schedul-
ing, the child task may dereference the counter and read value 0 (Line 3);
next, the scheduler runs the parent task, which dereferences the counter vari-
able and reads value 0 (Line 9). The parent task writes 1 to the counter variable
(counter = 0 + 1); the scheduler context switches to the child task, which
overwrites the value of the counter variable to be counter = 0 + 1. The
parent task reads the value from the future, i.e., the value from the counter vari-
able, 1. Under another scheduling the child task executes without any context
switch interruption, placing the value 1 in the counter variable; when the
parent task executes (Line 9), it increments the value counter, producing the
value 2. The returned result in the future is the value of the counter variable,
2.

The same code is completely deterministic in a functional programming
language. The main reason is that values are immutable. Hence, concurrent
and parallel (pure) computations do not have any effect on each other. In the

2Paper I introduces an exception to referential transparency at the task level, with the intro-
duction of a combinator called prune. This combinator allows multiple tasks to race to fulfil a
future, and referential transparency is broken because given the same input, the output may be
different depending on the scheduling of tasks. This is not a data-race, but a race condition. If
the prune combinator is not used, our model maintains referential transparency.

37

example of Fig. 3.3, regardless of the scheduling, the helper task always reads
the value of x as 0 (Line 3) and the parent task always reads the value of the
counter variable as 0 (Line 9). The returned future result is always 1.

Next, we show the core semantics of the task-based simply typed lambda
calculus from Papers I – III. These papers perform minor modifications to this
core calculus.

3.2.2 Task-based Simply Typed Lambda Calculus
In this section we give a summary of the task-based simply typed lambda
calculus used in Papers I – III; the main differences between the papers are at
the term and expression level constructs and their properties, leaving the core
task-based calculus almost unchanged.

The syntax of the task-based simply typed lambda calculus contains ex-
pressions and values (Fig. 3.4). Expressions are values (v), application (e e),
a combinator for spawning a task (async e, which returns a future f), the
get e combinator to extract a value from a future, and future chaining (e� e,
Section 2.2.1). Values are constant values (c), variables (x), futures (f), and
abstractions (λx.e).

e ::= v | e e | async e | e� e | get e
v ::= c | x | f | λx.e

Figure 3.4. Task-based simply typed lambda calculus.

Configurations represent running programs. A global configuration repre-
sents the global state of the run time system, e.g., (fut f) (task f e), and a partial
configuration config shows a view of the run time; configurations are a multi-
set of tasks, futures, and chained configurations. The empty configuration is
ε; an unfulfilled future configuration is (fut f) and a fulfilled future is (fut f v);
a task configuration represents a running expression inside the task (task f e)
that fulfils f when e evaluates to a value v; a chain configuration (chain f g e)
represents a configuration waiting on the fulfilment of future g; when future g
contains a value v, the chain configuration may run (e v) and write its resulting
value in future f .

config ::= ε | (fut f) | (fut f v) | (task f e) | (chain f f e) | config config

The operational semantics are based on small-step, reduction-context rules
for evaluation of expressions within tasks, and non-deterministic reduction
rules for evaluation across configurations. Evaluation context E contains a
hole • that denotes the location of the next reduction step, in the standard
fashion [222].

38

E ::= • | E e | v E | E� e | v� E | get E

The reduction step relation config → config′ takes a single reduction step
from configuration config to config′. Configurations are commutative monoids
under concatenation, with ε as its unit; configurations are equivalent modulo
associativity and commutativity (Fig. 3.5) and these equivalences can be ap-
plied at any time during the reduction step.

config → config′

config config′′ → config′ config′′

config ≡ config′ config′ → config′′ config′′ ≡ config′′′

config → config′′′

config ε ≡ ε config config config′ ≡ config′ config

(config config′) config′′ ≡ config (config′ config′′)

Figure 3.5. Configuration equivalence rules modulo associativity and commutativity.

The reduction of a program starts in an initial configuration, (task f e) (fut f).
The reduction rules (below) are standard for the simply typed lambda calcu-
lus (e.g., R-APP). Spawning a computation returns a future (R-ASYNC), and
the future chaining operation returns a new future, attached to a callback (a
chained configuration, R-CHAIN). A task fulfils a future when it has finished
(R-FULFIL), and a chained configuration can run only when its future depen-
dency has been fulfilled (R-CHAINC). The get combinator blocks until the
future is fulfilled and, upon fulfilment, get returns the future’s value (R-GET).

(R-APP)
(task f E[(λx.e) v])→ (task f E[e[v/x]])

(R-CHAINC)
(chain f g e) (futg v)→ (task f e v) (futg v)

(R-ASYNC)
fresh g

(task f E[async e])→ (futg) (taskg e) (task f E[g])

(R-FULFIL)
(task f v) (fut f)→ (fut f v)

(R-GET)
(task f E[get g]) (futg v)→ (task f E[v]) (futg v)

(R-CHAIN)
fresh g

(task f E[h� v])→ (futg) (chaing h v) (task f E[g])

The types of the task-based simply typed lambda calculus are

τ ::= K | τ → τ | Fut τ

where K are the basic types, τ → τ is abstraction, and Fut τ represents a
future type containing τ .

39

The typing judgement for expressions are written Γ �ρ e : τ which asserts
that under the environment Γ, expression e has type τ , and the return type
of the task is ρ . An environment Γ contains the types of free variables and
futures. Below we show the expression typing rules, and emphasise on rule
T-ASYNC, which spawns a computation returning a future type where the
spawned task running e sets the return type of the task to be the return type of
the expression.

(T-CONST)
c is a constant of type τ

Γ �ρ c : τ

(T-FUT)
f : Fut τ ∈ Γ

Γ �ρ f : Fut τ

(T-VAR)
x : τ ∈ Γ
Γ �ρ x : τ

(T-APP)
Γ �ρ e : τ ′ → τ Γ �ρ e′ : τ ′

Γ �ρ e e′ : τ

(T-ABS)
Γ,x : τ �ρ e : τ ′

Γ �ρ λx.e : τ → τ ′

(T-ASYNC)
Γ �τ e : τ

Γ �ρ async e : Fut τ

(T-CHAIN)
Γ �ρ e : Fut τ ′ Γ �ρ e′ : τ ′ → τ

Γ �ρ e� e′ : Fut τ

Well-formed configurations (Fig. 3.6), denoted Γ � config ok, express that a
configuration config is well-formed under environment Γ, that gives the types
of futures. Futures are well-formed if the future exists in the environment Γ;
task and chains are well-formed if the futures are well-formed and the expres-
sions are well-typed; a bunch of configurations are well-formed if the individ-
ual configurations are well-formed.

(WF-UFUT)
f ∈ dom(Γ)

Γ � (fut f) ok

(WF-FFUT)
f : Fut τ ∈ dom(Γ) Γ �τ v : τ

Γ � (fut f v) ok

(WF-CHAIN)
f : Fut τ2 ∈ dom(Γ) g : Fut τ1 ∈ dom(Γ)

Γ �τ2 e : τ1 → τ2

Γ � (chain f g e) ok

(WF-TASK)
f : Fut τ ∈ dom(Γ) Γ �τ e : τ

Γ � (taskg e) ok

(WF-CONF)
Γ � config ok Γ � config′ ok

Γ � config config′ ok

Figure 3.6. Well-formed configurations.

This section finishes with a running example of the dynamic semantics. The
example starts in a well-formed configuration that spawns a task, and blocks
until the task has produced a value (Eq. (3.1)). The only possible reduction
step is R-ASYNC, which spawns a new task. This creates a new future g and a
new task that runs the expression contained in the body of the async expression
(Eq. (3.2)). The next reduction can only be R-FULFIL since the other task,

40

(task f get g), is blocked waiting on a value on future g; this reduction step (R-
FULFIL) fulfils the future g with the value 42 (Eq. (3.3)). Future g is fulfilled,
and the get combinator can now extract the value from the future and place it
in the task (Eq. (3.4)). The final reduction, simply finishes the task and fulfils
its future (Eq. (3.5)).

(fut f) (task f get (async 42))→R-ASYNC (3.1)

(fut f) (task f get g) (futg) (taskg 42)→R-FULFIL (3.2)

(fut f) (task f get g) (futg 42)→R-GET (3.3)

(fut f) (task f 42) (futg 42)→R-FULFIL (3.4)

(fut f 42) (futg 42) (3.5)

41

4. Related Work

This chapter overviews common actor-based concurrency models, concurrent
abstractions and futures, termination strategies for speculative computations,
and capability-based languages. The chapter finishes giving an overview of
existing concurrent programming languages, connecting to the different con-
currency models, termination strategies, and features used in capability-based
languages.

Section 4.1 overviews existing task- and actor-based concurrency models;
Section 4.2 shows concurrent collections and abstractions. Section 4.3 shows
speculative termination strategies and adds new languages to the initial cate-
gorisation from Kolesnichenko’s et al [143]. Section 4.4 follows the history
of futures and promises, how these concepts have been used indistinguishably,
and presents a new categorisation of futures based on four-dimensions: im-
plicit/explicit futures, control/data-flow synchronisation, synchronous/asyn-
chronous futures, and its typing. Section 4.5 introduces object and reference
capability languages and ideas that have seen adoption in capability-based lan-
guages. Section 4.6 summarises concurrent languages, connecting concepts
from concurrent abstractions, futures, and capability-based languages when-
ever relevant (for the languages under study). Section 4.7 comments on how
the Dala programming model extends the applicability of our previous work
(Papers I–III) to an imperative setting, using as example the ParT abstraction
in an object-oriented setting.

4.1 Actor-Based Concurrency Models
This section covers related work in the area of actor-based systems. Con-
cretely, the actor model, active objects, communicating event loops, and con-
current object groups.

Actors [114, 104, 8] and active objects [224] are means to concurrency
and parallelism. In both systems, an actor / active object represents an entity
with its own thread-of-control and a message queue. Actors and active objects
can send asynchronous messages, change their behaviour upon processing of
messages, and spawn new actors [74]. (For the purposes of this thesis, we
will refer to active objects as actors, except in a context where the difference
matters.)

Active object languages distinguish between active objects and passive ob-
jects, and both of them are first-class citizens. Active objects have their own

42

Table 4.1. Comparison of concurrency programming models.
Actor Active Object Event Loop COG

Concurrency Actors Active Object Vats COG
First-class Actors Active & Passive Objects Objects Objects

Other objects – Passive Objects Objects Objects
Async. Calls Actors Active Objects Objects Objects

Message Queue Actor Active Objects Vats Object
Communication Message Method calls Method calls Method calls

thread-of-control; passive objects are common objects, i.e., objects without a
thread-of-control such as a Python or Java object. Communication with active
objects involves asynchronous method calls, while passive objects can only
receive synchronous method calls. Without any concurrency control, passive
objects are subject to data-races when shared among active objects.

Communicating event loop languages such as E [165] or AmbientTalk [71]
use “actor containers” (known as vats) to achieve concurrency. An event loop
is conceptually an actor with its own thread-of-control and message queue;
the event loop actor continuously picks up messages and executes them. Mes-
sages contain the target of the method call, arguments passed, and the method
to execute. Objects are owned by a single event loop actor, and multiple event
loops run concurrently; there is no concept of first-class event loop, c.f., ac-
tive object model [74]. Objects accept synchronous and asynchronous method
calls. Synchronous method calls execute directly, while asynchronous method
calls place messages in the message queue of the object’s event loop owner.

Languages based on concurrent object groups [127] (cogs for short) present
many similarities to the event loop concurrency model. A cog represents
a thread-of-control, and owns a set of objects; multiple cogs may run con-
currently, or in parallel. Each object has a message queue and can perform
synchronous or asynchronous method calls to other objects, where an asyn-
chronous method call places a message in the target object. In this concur-
rency model, a cog picks up an object, dequeues a message from its message
queue, and executes the computation (of the message) to completion.

Table 4.1 summarises the main differences between actors, active objects,
communicating event loops, and concurrent object groups. One of the main
differences between the actor and the event loop model is that in an actor-based
system, actors are first class citizens while vats and cogs (in the event loop and
concurrent object group models, respectively) are not; in the event loop and
cog model all objects can be called synchronous and asynchronously, while in
the active object model only active objects are the target of asynchronous calls.
Actors, active objects, and the event loop concurrency model place their mes-
sage queues in their concurrent abstraction, i.e., actor, active object and event
loop (vat), respectively. Concurrent object groups differ from these models in

43

the placement of the message queue, and attaches a message queue to each
single object, instead of on its cog.

4.2 Concurrent Asynchronous Abstractions
This thesis uses high-level abstractions to create and coordinate complex asyn-
chronous and concurrent computations, such as parallel pipelines of specula-
tive computations; we overview them in this section.

Concurrent Abstractions.
Programming languages offer high-level abstractions to facilitate writing con-
current applications. One simple approach towards this goal is to offer stan-
dard collection implementations that may execute concurrently (or in paral-
lel). For example, the languages Scala and C# added parallel methods to their
collections [188, 164], and Clojure and Haskell added parallel functions to
operate on their collections [87, 128, 158]. As an example, val list = (1
to 10000).toList creates a list in Scala; developers can manipulate the

list concurrently (and in parallel) when invoking the par attribute: list.par
.map(_ + 42).

Distributed Abstractions.
Distributed programming models in the vein of Map-Reduce [75, 51, 220, 125,
11, 225] are suitable in the context of concurrent abstractions. These models
build execution plans with three simple combinators: map, shuffle, and reduce,
which may operate in parallel. The model works as follows (omitting imple-
mentation details): values from a collection (or other medium) are passed to a
mapping operation. The mapping operation outputs key-value pairs based on a
user-defined function; the shuffling operation takes the output of the mapping
operation and groups key-value pairs that have the same key, passing this data
to the reduce operation; the reduce operation receives a group of key-values
and executes user-defined computations on them. The execution plans can be
deferred and optimised until the values are needed [51, 11].

Functional Approaches.
A common approach in functional languages is to use monads and concurrent
combinators to control them [159, 210, 39, 147]. In Haskell, the Par monad
uses the fork combinator to spawn a concurrent (parallel) computation. The
forked computation can share values with other concurrent computations when
it captures an I-structure [178]. An I-structure is a write-once structure with
semantics analogous to promises (Section 2.2.1), with combinators new, get,
and put to create, read, and write an I-structure, respectively.

Other languages such as F# offer computation expressions [210, 185]
to write non-standard semantics using common syntax to developers, e.g.,

44

1 let getLength url = async {
2 let! html = fetchAsync url
3 return html.Length
4 }

1 getLength url = do
2 fut ←new
3 fork $ do
4 htmlIVar ←fetchAsync url
5 html ←get htmlIVar
6 put fut (length html)
7 get fut

Figure 4.1. Asynchronous monadic computation using F# computation expressions
(left) and Haskell’s Par monad (right). The types of the functions are fetchAsync
:: Async t, fork :: Par ()→ Par (), get :: IVar t → Par t, new ::
Par (IVar t), put :: NFData a => IVar a → a → Par ().

monadic computations. Developers can assign different “interpretations” to
the syntax in a computation expression, by implementing an interface. Fig. 4.1
shows an example (borrowed from [185]) that retrieves the HTML of a web-
site and returns its length, written in F# using a computation expression, and
in Haskell using the Par monad. The computation expression starts an async
block (Fig. 4.1, left), uses the function fetchAsync :: String → Async<
’T> where the let! binding is reinterpreted as a monadic bind, i.e., let! ::
Async<’T> → (’T → Async<’U>)→ Async<’U>. The return expres-

sion simply lifts the value to the expected monad, i.e., return :: ’T →
Async<’T>. In Haskell (Fig. 4.1, right), we observe how the fork captures
the future (I-structure) fut; the put combinator fulfils the future, and the get
operation blocks until the future is fulfilled.

Orchestration Languages
Orchestration languages [169, 189, 170] coordinate (external) concurrent and
distributed computations towards certain goal. In the Orc language [139],
clients send and receive data from sites. A site represents (possibly exter-
nal) computations or services, e.g., matrix multiplication or communication
with a web server, and a site may return at most one value, but they could also
not respond. Expressions are sites and parallel combinators. Whereas a site
may return at most one value, an expression may return multiple values. We
highlight four combinators from the Orc language [140]:

1. F | G represents parallel execution of expressions F and G, and pub-
lishes values from expressions F and G.

2. F >x> G the sequence combinator executes F; each published value
from F gets bound to x and starts execution of G. When F does not
publish a value, G cannot execute.

3. G <x< F the prune combinator executes F and G in parallel and G exe-
cutes until it encounters the variable x. Upon finding x, G stops execution
until F publishes a value. When F publishes a value, the value is bound
to x, the expression F terminates, and the expression G continues its ex-
ecution.

45

4. F; G the otherwise combinators executes F and, if F does not publish
any result and halts, then G starts execution.

Other combinators are signal and stop, that publish a value and stop exe-
cution (without publishing a value), respectively.

Using these combinators one can easily orchestrate concurrent (speculative)
computations, such as parallel splits (running multiple computations in paral-
lel, e.g., F | G) or multi-merges (each published result from an expression
executes a function, e.g., (F | G)>x> H), among others [68].

The Orc language has a “monadic feeling” (suggested in [139]) where one
could consider the signal combinator as the monadic unit combinator, that
lifts a value to an Orc monad, and >x> as its bind combinator. The parallel
composition combinator | makes the Orc monad a monoid [147, 39] (a Monad
Plus in Haskell terms [215]).

The ideas of Orc have been ported to an object-oriented language,
OrcO [184]. OrcO inherits Orc’s core ideas, and adds an object-oriented pro-
gramming style with notions of objects, classes, inheritance, and mixins. Ob-
jects are immutable records and fields are (ongoing) Orc expressions, bound
on the first published value. The creation of an object returns immediately and
the field computations can be seen as transparent futures (Section 4.4), that
block upon accessing a field that is not bound to a (published) value; concur-
rency stems from the Orc combinators and OrcO does not guarantee data-race
freedom.

4.3 Speculative Computations
Many concurrent and asynchronous abstractions spawn speculative tasks to
solve a problem. These computations are speculative in the sense that the user
may or may not be interested in all the results [123], e.g., constraint solving
or search strategies. Kolesnichenko’s et al classified termination strategies of
speculative tasks as client- , supplier- , and client-/supplier-based cancellation
strategies [143]. The name of the categorisation highlights who is in con-
trol of the cancellation process: in client-based cancellations there is a client
task requesting cancellation to supplier tasks, in supplier-based cancellation a
supplier task informs its client that the supplier will cancel its execution, and
in client-/supplier-based cancellation the client and supplier tasks cooperate
during the cancellation process.

Client-Based Cancellation.
A simple client-based cancellation stops the remaining speculative tasks upon
finding a result, preemptively. This solution may leave objects in inconsistent
state or create deadlocks [98]. Other client-based cancellation strategies use
constructs such as abort. In Cilk-5, the abort statement marks all child spec-
ulative computations as non-runnable, so that the runtime ignores them when

46

they are scheduled [95]. OpenMP uses implicit checks within the executing
program to stop speculative computations, and these implicit checks happen
more often than just before starting a new task [6]. Java and Scala follow a
similar approach to OpenMP, but they use interrupts. An interrupt requests a
task to stop its execution [98], but the execution may not stop immediately, but
on safe points. Interrupts may become client-/supplier-based, more on this in
client-/supplier-based categorisation.1

Kumar’s work [146] on termination of speculative computations shows how
modern managed runtimes can leverage existing runtime checks to implicitly
stop speculative computations at well-defined points. The authors introduce
the Featherlight programming model which adds two new constructs to the
async-finish model: finish_abort and abort. The finish_abort construct allows
cancellation of speculative tasks created inside of them, via abort, without
the introduction of manual checks. Upon execution of an abort operation, all
(workers) tasks will stop on yield points. (Yield points are locations in the pro-
gram where is safe to run the garbage collector, e.g., method prologue [146],
compiler-dependent.) The task that requested the abort operation walks the
workers’ stacks and identifies workers that execute tasks that belong to the
same finish_abort scope. These workers are marked to throw a special ex-
ception instead of continue with their work, and the exception makes them
jump to a safe point where they can continue execution of other work. The
task that requested the abort operation continues right after the finish_abort,
as expected.

Supplier-Based Cancellation.
Supplier-based cancellation strategies make supplier threads to throw excep-
tions and indicate client threads that the request was not handled as ex-
pected [143, 172]. For example, Erlang processes use exit signals to indicate
to other linked processes the reason of their termination [14, 172].

Client-/Supplier-Based Cancellation.
In a client-/supplier-based cancellation, client and supplier cooperate during
the task cancellation process. Interrupts (mentioned earlier) become client-
/supplier-based when the API exposes methods to interrupt and test for in-
terruption [103], which has as end goal to increase the responsiveness of the
cancellation strategy.

C#’s Task Parallel Library [151] uses cancellation tokens to cooperatively
stop speculative computations [1]. These cancellation tokens are passed be-
tween tasks and developers either poll the token, to test its state and manually
terminate the task, or register callbacks to exit gracefully.

1 Since Orc runs on the JVM, we believe that Orc’s prune combinator may use also a client- or
client-/supplier-based cancellation strategy, but we could not find these implementation details
in the literature.

47

Imam’s et al work [123] on the Eureka model combines explicit and implicit
cancellation points in an async-finish computation. In this model, the finish
construct can register a “token” (eureka) that represents a placeholder for the
value being computed; speculative tasks (and their children) belong to their
immediate enclosing finish and can resolve its “token”. Developers can create
new “tokens” (within an existing async-finish) and link them to a new finish
construct to further control the scope and synchronisation of these child tasks.
Implicit cancellation points check whether tasks should stop before they start
execution; explicit cancellation points are entered by developers to manually
check whether the “token” has been fulfilled and the speculative task should
be stopped. The thread executing a finish construct blocks until all speculative
(and transitively spawned) tasks stop.

4.4 Futures & Promises
The original definition of futures and promises has changed over time, i.e.,
researchers and practitioners have used them interchangeably. In prac-
tice, futures are considered placeholders for values that are computed asyn-
chronously, where the fulfilment of the future happens implicitly [90, 109, 35,
127, 43]; a promise is a pair: the first item of the pair can only be read (as
a future), while the second item of the pair grants its owner write access to
the promise, but a promise can only be fulfilled once. Fulfilling a promise
multiple times throws an error.

This section continues with a brief overview on the history of futures and
promises (Section 4.4.1), and finishes with a new categorisation of futures (and
promises) that takes into account four dimensions when categorising futures
(Section 4.4.2). Our hope is that this categorisation succinctly captures the
semantics of the various forms of futures.

4.4.1 History
Originally, futures were introduced by Baker et al [17] as a reduction strategy
(call-by-future) that evaluates arguments of function calls in parallel, returning
a future. A future was therefore a placeholder for an asynchronous computa-
tion. Operations that need the result of the future to continue execution block
until the future has a value.

MultiLisp gave control to developers to perform call-by-future explic-
itly [133], using the construct Future { e } (async in some languages)
which spawns an asynchronous computation to execute the expression e.
These futures are first-class citizens and block implicitly when their values
are needed.

The actor paradigm quickly adopted futures [224], with a first twist. AB-
CL/1 featured asynchronous message passing placing the eventual result in

48

a future object, which was explicitly named. A future object had queue-like
behaviour and multiple asynchronous calls could place their results under the
same future. Synchronisation was blocking. An interesting feature was that
asynchronous calls could get the handle to fulfil the future, pass it around or
delegate the fulfilment of the future to another future computation.

Argus’ promises from Liskov et al [156] were heavily influenced by Mul-
tiLisp’s futures and (probably) the first work to typed them. Asynchronous
message sends returned promises, and these were second-class citizens, i.e.,
promises could neither be passed as arguments nor returned. Promises intro-
duced explicit blocking synchronisation constructs and error propagation, and
were implicitly fulfilled by the returned argument.

Caromel created an active object language with notions of implicit (trans-
parent) futures [42], named await objects. Futures were present at runtime but
the typing did not reflect this fact. When the value of the runtime future was
needed, the executing thread synchronised on the future, blocking until the
future was fulfilled. This synchronisation is known as wait-by-necessity [42].
These futures were similar to MultiLisp’s, but in a typed language; more re-
cent work on wait-by-necessity and active object languages culminated in the
ASP calculus [44] and its implementation, named ProActive [43].

ABCL/f was (probably) the first active object language to use explicit typed
futures [211]. Instead of using futures in a queue-like fashion as ABCL/1,
ABCL/f had first-class futures and allowed developers to create empty futures
that could be fulfilled by anyone.

The language E [165] is untyped and uses promises in a distributed event
loop language. Promises are placeholders for eventual values, and promises
have asynchronous synchronisation methods. Asynchronous message sends
on unfulfilled promises accumulate the messages, which are sent to their re-
cipients when the promises are fulfilled.

Industrial programming languages such as Java or Scala adopted (typed)
futures with synchronous and asynchronous control-flow synchronisation con-
structs, where futures are first class values [187, 3]. Promises in Scala are
similar to futures (CompletableFutures in Java), but they must be explicitly
fulfilled [187].

When we talk about asynchronous synchronisation constructs we gener-
ally think of the future chaining operation, i.e., fut � (\x→ ...). Recent
work identified the future chaining operation to have either attached or de-
tached closures [46]. An attached closure is executed in the current actor,
while a detached closure can be executed by any available actor. In the Encore
programming language, closures are attached when they capture internal state
from an actor, and detached otherwise.

Henrio noticed that futures can be categorised as implicit or explicit. An
implicit future is transparent to the developer and only visible to the runtime;
an explicit future is typed and visible to the developer [112]. In most imple-
mentations, implicit futures have data-flow synchronisation i.e., transparent

49

futures (may) wait for the completion of multiple nested futures to return a
value, and values flow from one future to the next in a transparent way. Unlike
implicit (data-flow) futures, explicit futures have control over the synchroni-
sation steps of nested futures, for which they are said to have control-flow
synchronisation [112]. Based on these findings, Henrio proposed DeF (Data-
flow Explicit Future). DeF is based on a typed active object language where
futures are explicit and have data-flow synchronisation. Nested futures are
squashed by the type system as singleton futures and the future synchronisa-
tion operations return the inner-most value of the future.

Our work on Paper III proposes a way to incorporate explicit control- and
data-flow futures under the same programming language, which is currently
not supported in DeF [112].2

4.4.2 A Future Categorisation
After this quick history on futures, we observe that futures are typed or un-
typed, implicit or explicit, with control- or data-flow synchronisation, and with
synchronous and asynchronous synchronisation (e.g., contrast the get opera-
tion with future chaining). For this reason, we introduce a new future categori-
sation based on these observations and diverge from the notion of implicit and
explicit futures introduced by Henrio [112]. Under this new categorisation,
we define implicit futures as those transparent to the developer, i.e., futures
where there is no explicit (and visible to the developer) future synchronisa-
tion, such as futures from the ASP calculus or the ProActive language; we
define explicit futures as those futures with visible synchronisation constructs,
e.g., JavaScript promises or Java futures.3

Table 4.2 classifies futures in various languages according to the explic-
it/implicit synchronisation “visibility”, their types, their control-/data-flow
synchronisation operations, and on whether these synchronisation operations
are synchronous (e.g., get operation) or asynchronous (e.g., future chaining).

Example 1. Languages in the implicit and typed categories have futures
that are not visible to the developer (futures exists but not at the surface level),
and the fact that they are typed implies that the type is some τ �= Fut τ ′. The
Panini language [16] uses implicit control-flow futures with wait-by-necessity
semantics [42].4

2DeF can introduce data-flow and control-future futures, but we foresee a substantial amount of
work to integrate them.
3Our categorisation does not make any distinction between the fulfilment of futures and
promises; for the categorisation we will refer to futures as futures and promises indistinguish-
ably, except in a context where the difference matters.
4The formal semantics seem to allow returning nested futures; the dereferencing operation
works on locations and implicit futures, but this operation does not traverse nested futures.

50

Table 4.2. Categorisation of futures based on implicit / explicit dichotomy, syn-
chronous/asynchronous synchronisation, and control- / data-flow synchronisation

Control-Flow Data-Flow

Implicit Typed
Asynchronous – –

Synchronous Panini ABS ASP

Implicit Untyped
Asynchronous – –

Synchronous Future (Baker) MultiLisp –

Explicit Typed

Asynchronous
Java Scala DeF
Encore ABS

Paper III
Paper I – III

Synchronous

Java Scala
DeFEncore ABS

ABCL/1 ABCL/f
Paper II, III

Argus Paper I – III

Explicit Untyped
Asynchronous Python Ruby

JavaScript

AmbientTalk

E

Synchronous Python Ruby JavaScript

Example 2. Some languages may belong to more than one category. It
is common under the explicit and typed category to have synchronous and
asynchronous future synchronisation operations, e.g., Java, Encore, ABS, and
Scala. For example, the get operation on a future in the Encore language is
explicit because the combinator exists at the surface level, is typed because it
happens in a typed language, and has synchronous semantics.

Example 3. E, AmbientTalk, and JavaScript are untyped and use explicit
futures (promises). E and AmbientTalk do not have blocking synchronisation
operations – they are deadlock free. Their promises are overloaded as far
references, and have data-flow synchronisation. JavaScript’s promises have
synchronous and asynchronous synchronisation with data-flow semantics.

Surprisingly, ABS appears in the categories explicit and typed, and implicit
and typed. ABS is an actor-based object-oriented language with a concurrent
object groups (concurrency) model and has explicit and typed futures at the
surface level, i.e., the future type and their synchronisation constructs are ac-
cessible to developers. The implicit and typed futures appear as a side effect
of its data-race freedom guarantees, i.e., synchronous method calls on objects

51

that belong to a different concurrent object group are interpreted at runtime as
asynchronous method calls that return futures not visible to the developer –
implicit futures – followed by a blocking synchronisation operation.

Regarding this thesis work, Paper I – Paper III use explicit and typed fu-
tures with control-flow synchronisation and synchronous and asynchronous
synchronisation operations, similar to Java or Scala. Paper II adds a new con-
struct, forward, which allows data-flow synchronisation (to some extent) by
delegating the fulfilment of the future to other asynchronous task. Paper III
adds explicit and typed futures with control- and data-flow synchronisation,
where the types reflect this fact.

4.5 Capability-Based Languages
This section introduces the notion of object and reference capabilities (Sec-
tion 4.5.1), and shows an overview of ideas that have been adopted in reference
capability languages (Section 4.5.2).

4.5.1 Introduction To Capability-Based Languages
A capability is a token that grants permissions to its owner to access an ob-
ject. First capability designs consider the capability an abstraction on its own,
where the initial bits of the capability abstraction encoded the granted permis-
sions on the object, and the remaining bits were the pointer to the object. To
access an object, the capability must grant the appropriate permissions; thus,
“capabilities are the basis for object protection” [153].

Object-capabilities need not be separate tokens of their own. In languages
that adopt the object-capability model, e.g., E or Pony [165, 63, 4], objects
can only interact via message sends with other objects in their reference graph
(which becomes their access graph). Object o1 can exchange information with
object o2 only if o1 has a reference to o2, i.e., there are no global variables
nor static objects, and fields are private and can only be accessed via message
sends. The main benefit of object-capability languages is that they satisfy
the principle of least authority [165]. Objects can only access objects sent to
them, i.e., objects can only perform operations on the objects that they have
been explicitly granted permission to.

Reference capability languages express what (owner and other) objects are
allowed to do. These systems use extra annotations (qualifiers) to restrict
/ control objects and their usage. For example, the Encore language quali-
fies classes and traits with reference capabilities for concurrency control [45].
Fig. 4.2 shows an example written in Encore, where the declaration of a Tuple
class is qualified with the read capability; the type checker enforces that read
qualified classes must be immutable.

52

read class Tuple[t, u]
val first: t
val second: u

def fst() : t => this.first
def snd() : u => this.second

end

Figure 4.2. Immutable tuple.

This section introduced object-capabilities and reference capabilities. The
next section (Section 4.5.2) shows ideas that have been adopted in reference
capability languages, and Section 4.6 overviews concurrent languages and
shows how these ideas have been integrated in capability languages.

4.5.2 Ideas Adopted In Capability-Based Languages
Linear logic [97] has seen traction in the programming language community.
In linear logic, propositions cannot be used multiple times, i.e., propositions
are consumed. This idea is interesting to programming language designers as a
way to (e.g.,) restrict aliasing [48, 47], track object state [9], and safely reclaim
memory [217]. But the application of linear logic in programming languages
may impose too strong semantics. For this reason, researchers have found
ways to relax these semantics, and they introduced concepts like borrowing.
Borrowing allows variables to relax aliasing restrictions for some delimited
scope [30, 108, 35, 141].

Ownership types [62] enforce object encapsulation. In ownership types,
the top object is usually known as world, and objects build nested ownership
layers with the objects they own. The type system guarantees that two objects
identified with different owners cannot be aliases [62, 45]. There are many
variations of ownership types [59] and we highlight two well-known invari-
ants that affect the design of ownership systems: owners-as-dominators and
owners-as-modifiers. Before we summarise these two invariants, we define an
external object o1 (w.r.t. to another object o2) as an object o1 whose reach-
able object graph does not contain o2. In systems with owners-as-dominators
an external object o1 can only communicate with object o2 via o2’s owner –
objects with the same owner are not subject to this restriction. The owners-as-
modifiers invariant relaxes the communication invariant and allows an external
object o1 to read an unowned object o2, but modifications can only happen via
the object’s o2 owner [59]. Applications of ownership types range from safe
memory allocation and immutability enforcement to deadlock and data-race
freedom [141, 182, 29], to name a few; there is also vast research on the veri-
fication of the invariants mentioned above [173, 59, 60, 152, 80].

Many object-oriented languages allow developers to statically forbid ob-
ject mutation. We distinguish between object immutability and reference im-

53

Table 4.3. Summary of features of capability-based static languages. (A = Actor, Th
= Thread, Tsk = Task, AO = Active Objects, FJ = Fork-Join.)

Complexity \ Lang. Encore HJp Pony RefImm Rust Scala

Concurrency AO Tsk A FJ Th A/Tsk
Capabilities 7+ 3 6 4 5 �

Capability Subtyping � � � � � �
Promotion\Recovery\Borrowing � � � � � �

Compositional Capabilities � � � � � �
Deep copying � � � � � �

mutability (commonly referred as readonly references) [228, 213, 186]. Ob-
ject immutability forbids mutation of an object, and (commonly) of its reach-
able object graph; reference immutability forbids mutation of an object via its
referent, but other (mutable) aliases may mutate the object. One of the main
implications of the various forms of immutability in a concurrent language is
w.r.t. data-race freedom. Immutable objects are always data-race free because
no mutation is ever allowed; reference immutability cannot immediately guar-
antee data-race freedom on its own as there may be aliases that may cause
mutation.

Fractional permissions [31, 32] act as a bridge between mutable and read-
only references. A “full” fraction allows mutation on the object; developers
use combinators to get partial fractions, and partial fractions only allow read-
only operations. Carefully crafted type systems may (implicitly or explicitly)
use fractional permissions to maintain data-race freedom in the presence of
reference immutability (e.g., [99, 160]).

This section identified features such as linear variables, ownership types,
readonly references, immutable objects, and fractional permissions. In the
next section we overview concurrent programming languages and link capa-
bilities to the ideas that we identified here.

4.6 Concurrent Programming Languages Summary
In this section we give an overview of concurrent programming languages and
refer to the concepts introduced in previous sections of the chapter, namely
the concurrent model, future “style”, concurrent abstractions, and capabili-
ties used. First we overview reference capability languages (summary in Ta-
ble 4.3), then we continue with concurrent languages (summary in Table 4.4).

Encore
Encore is an active object language with a reference capability-based type
system that guarantees data-race freedom [48, 35]. The Encore language

54

Table 4.4. Summary of features of concurrent programming languages. (AT = Ambi-
entTalk, Erl = Erlang, CapSh = Capabilities for Sharing, CnsJava = ConstraintJava,
DrSES = Distributed Electronic Rights For ECMAScript, AO = Active Objects, COG
= Concurrent Object Group, Obj = Object-Capability, Own = Ownership Types, WW
= Web Workers.)
Complexity \ Lang. ABS/ASP AT CapSh CnsJava DrSES E Erl

Concurrency COG/AO Vat � � WW Vat Actor
Capabilities � � 7 Own Obj Obj �

Compositional Cap. � � � � � � �
Deep copying � � – � � � �

Far References � � – – � � �
Futures\Promises � � – – � � �

has active objects, passive objects, tasks, and asynchronous messages return
control-flow futures. Futures are explicit, typed, and with synchronous and
asynchronous constructs. Asynchronous operations, e.g., future chaining, use
attached and detached semantics (Section 4.4), and this is transparently con-
trolled by the runtime, to forbid data-races.

Futures can be lifted to a concurrent collection, ParT , which allows devel-
opers to coordinate asynchronous workflows, e.g., asynchronous pipelines of
speculative computations. The ParT abstraction is data-race free in a con-
current and pure functional language. Under Encore’s type system, the ParT
abstraction maintains data-race freedom when dealing with immutable data
and active objects. Encore also incorporates a delegation construct, forward ,
that allows an actor to delegate the implicit fulfilment of its future, to another
actor [89]. (The ParT abstraction and forward construct are further explain in
their respective papers, Paper I and Paper II.)

Encore’s type system has 7 (seven) capabilities. Capabilities are mani-
fest at class or trait declaration, and classes are made of trait compositions.5

The reference capabilities of Encore are: linear (linear), locked (object im-
plicitly protected by a lock), read (immutable object), subord (owners-as-
dominators), active (active object), thread (actor-local), and unsafe (ob-
jects must explicitly be protected by locks).

For example, we can describe a Pair class a follows (borrowed from [48]):
class Pair = (linear Fst ⊗ linear Snd) ⊕ linear Swap {...}

Pair is packed as the conjunction of two traits (Fst and Snd) and the dis-
junction of the Swap trait. This means that objects of the Pair class can oper-
ate concurrently on the fields of the Fst and Snd traits, and contains mutable
state in fields of the Swap trait. If the pair is unpacked to perform concur-
rent operations, then the Swap trait (disjunction trait) is lost forever; details for
recovery mechanisms are in [48].

5Details regarding trait composition can be found in [48].

55

Encore offers capability polymorphism for code reusability [35, 48]. The
polymorphic capabilities are categorised as exclusive, safe, optimistic and pes-
simistic (more abstract capabilities and its details in [35]). For example, an
exclusive capability denotes resources available to a single thread and accept
linear (linear) and thread-local capabilities (thread).

Habanero Java With Permissions
Habanero Java with Permissions (HJp) [219] is an extension to Habanero Java
(HJ), an object-oriented language with task-based concurrency [49]. The ex-
tension adds permissions to HJ and guarantees data-race freedom. HJp has
subtyping via inheritance and interfaces, and parametric and F-bounded poly-
morphism [40], all inherited from Java [103].

HJp uses fractional permissions [32] to maintain data-race freedom. The
permissions are: read (readonly), write (mutable reference), shared read
(readonly and sharable), and exclusive (either read write or shared
read). Certain operations split permission fractions, and this is key to sharing
data while maintaining data-race freedom. For example, regardless of whether
there are permission fractions, an object can have permissions read and write
to allow thread-local reads and writes, and disallow sharing, or have shared
and read permissions to allow sharing and reading, and disallow modification.
Exclusive permissions are permissions that retain all the fractions; exclusive
permissions can be read and write, or read and shared permissions, but
must have all fractions. There are promotion rules to make the permission
system flexible and allow turning an exclusive write permission to an exclu-
sive shared read, and vice versa.

HJp has a gradual permission system [206, 207], accepting partial permis-
sion annotations. The compiler will insert dynamic checks to maintain data-
race freedom. Thus, all programs are data-race free modulo errors produced
from dynamic checks.

Pony
Pony is an object-oriented actor-based language that uses the object-capability
model and a reference capability-based type system that guarantees data-race
freedom [64, 63, 65].

Actors communicate via asynchronous message passing; synchronisation
operations are asynchronous, which makes the language deadlock free by de-
sign. Actors may share linear references, immutable objects, and other actors,
which makes the language data-race free.

Pony’s type system has 6 (six) reference capabilities: iso (linear), val
(immutable object), ref (thread-local), box (thread-local and readonly), trn
(readonly and single owner has write privilege), and tag (identity comparison

56

and message sends). The capabilities put restrictions on usage and the type
system forbids violation of such restrictions.

Pony has three kinds of capability subtyping: plain subtyping, aliased sub-
typing, and ephemeral subtyping. To maximise reusability, Pony incorporates
parametric capabilities and uses viewpoint adaptation to ensure that the para-
metric capabilities do not break the data-race freedom guarantees [154, 79].
(We refer the reader to [64, 154] for further details.)

The Pony runtime was optimised taking into consideration the type system’s
static guarantees. One of such optimisations is the ability to do asynchronous
message sends without deep copying of its actual values.

C# Reference Immutability
Gordon et al extended C# with permissions to guarantee data-race free-
dom [99]. Their concurrency model uses a fork-join model (see Section 2.1)
and assume a non-deterministic scheduler.

The language include 4 (four) reference permissions: isolated (lin-
ear), readable (readonly), writable (mutable object), and immutable (im-
mutable object). The permissions apply transitively to its objects. That is, a
field assignment of a readable object returns always a readable reference,
even when the referenced field has writable permissions. This guarantees
that new references do not violate the intended semantics of a readable owner,
and are enforced through viewpoint adaption [79, 99].

The type system supports permission subtyping where isolated is the bot-
tom permission and readable is the top permission, and the subtyping rela-
tion is reflexive and transitive. Recovery plays a central part in the language
flexibility, allowing to recover an isolated reference from a writable ref-
erence and an immutable reference from a readable reference (under some
circumstances [99]).

The type system guarantees data-race freedom, even in the presence of
writable references. This is because the type system can promote writable
references to readable ones when aliases are shared in a fully strict fork-
join style [26], and the type system recovers the writable reference when the
threads join. Sharing isolated references is also safe because each thread works
on disjoint parts of a reachable object graph.

Rust
Rust is an imperative (object-oriented) systems programming language that
uses ownership types [62] to guarantee data-race freedom and memory
safety [161, 141]. Functional programming concepts influenced Rust, such
as type classes [218] (named traits in Rust), pattern matching, immutable val-
ues, algebraic data types [38] (named Enums), and higher-order functions [57]

57

among other features [141]. Rust offers a thread-based concurrency model
with channel-based synchronisation [117] but other concurrency patterns are
also allowed [141].

Explicit annotations control Rust’s objects lifetimes, its mutability, and its
uniqueness; these annotations are (to some degree) compositional. The an-
notations in Rust can be seen as reference capabilities, and they have 5 (five)
main annotations: no annotation (readonly and linear), const (immutable ob-
ject), mut (mutable object), & (borrow reference), ’a (named lifetime to guide
borrow checker), and static (singleton object, i.e., alive for the duration of
the program).6

As an example of how the type system uses these different ideas, we show
an example. The following assignment, let x = Box::new(5), represents a
readonly linear variable. Assignment implicitly consumes the variable and the
Rust borrow checker forbids usage of implicitly consumed variables, e.g., let
y = x; println!(x) throws an error because the variable x was consumed.

The & annotation allows borrowing a variable for some duration of time, e.g.,
let y = &x; println!(x) allows y to access the content of x in a delimited
scoped, but x is the owner of the content (further details in [141]).

The type system prevents data-races and forbids sharing mutable state that
could lead to data-races. For example, a closure that captures state is safe
to share as long as sharing the closure removes ownership from the current
thread.

Scala
Scala is a multi-paradigm programming language that mixes the object-
oriented and functional paradigm. Scala has support for concurrent and par-
allel programming via the actor standard library and Akka [110, 223]. In
terms of object-oriented features, Scala offers support for traits [86], mix-
ins [171, 34, 155], inheritance, F-bounded polymorphism [40], and a pow-
erful type system that includes type level programming and path-dependent
types [194].

This thesis reviews two implementations of capability-based systems on top
of Scala [108, 107]. Both of them try to achieve the same goal: use of linear
references to achieve data-race freedom, but one uses Scala annotations [180]
and the other uses Scala implicits [72, 73].

Haller’s et al work on Capabilities for Uniqueness and Borrowing [108]
uses Scala annotations to enforce unique (linear) references and data-race free-
dom of the Scala actor model. Unique variables are guarded by a capability,
and the capability serves two purposes: identification of (disjoint) heap re-
gions and access permission. Unique variables are ownership closed (c.f.,
[60]), i.e., forbids internal objects from referring to external objects. Thus,

6We do not show special cases here, for further information we refer to [141].

58

the capability of a unique variable guards access to its object aggregate. The
creation of a unique variable uses the @unique annotation on object instanti-
ation, and stack-bound local aliases are allowed; consumption of capabilities
happen implicitly on method calls when the formal arguments are annotated as
@unique, which invalidates the use of aliases and variables that were guarded
by the consumed capability. Other annotations exist for borrowing and merg-
ing permissions, i.e., specifying that two unique objects belong to the same
(logical) region of the heap. The type system rejects references to implicitly
consumed variables (similar to Pony, Section 4.5.1). The motivation of this
work was to forbid data-races in the implementation of the Scala actor library.
The formalism does not include any concurrency construct but the implemen-
tation uses actors to show that the type system rejects programs that may cause
data-races.

LaCasa [107] requires actors to communicate using a special Box object.
Objects within a box can only be updated via its constructors or via method
calls, and cannot acquire global references. Because of this, boxes enforce the
object-capability model. To access and operate on a box one needs a special
permission value that is “linked” to the box; sending a box to another actor
consumes the permission of the box, which prevents concurrent access to the
box from the sender and receiver. The fields of a Box object are externally
unique [60], which is guaranteed from the enforcement of the object-capability
model within a box. Scala’s powerful type system, with its use of implicits and
path dependent types [10, 72], can infer most of the permission usages, so that
developers do not thread permissions explicitly through the program. The type
system guarantees data-race freedom in a process-based calculus, among other
properties.

ABS
The Abstract Behavioural Specification Language (ABS) is a modelling lan-
guage suitable for automated analysis of complex concurrent behaviour, re-
alised via concurrent object groups (cogs) [127]. ABS has several backends,
ranging from Erlang to Scala, is data-race free and has tooling support to guar-
antee deadlock freedom [74].

A cog selects an object and the object gets to execute a message from its
message queue in FIFO order. Cogs have cooperative scheduling, i.e., once
the cog schedules an object, the cog cannot preemptively stop the execution
of the object. Extra annotations on object construction specify whether new
objects run in the current cog or under a new cog.

All objects are subject of synchronous and asynchronous method calls,
and asynchronous method calls place messages in the target objects’ message
queue and return a future. Future constructs can stop the method execution
and release the object from the cog (cooperative scheduling), such that the cog

59

can pick another object to run [74, 127]. ABS has explicit and typed control-
flow futures with synchronous and asynchronous synchronisation constructs.
Surprisingly, ABS also has implicit control-flow futures. These futures are
not visible to the developer and happen as a side-effect of data-race freedom.
Concretely, when an object tries to synchronously perform a method call on an
object owned by another cog, the runtime performs an asynchronous message
send that returns a future, and this future is immediately synchronised with a
blocking get operation [127]. Unlike futures in task- and active object-based
programming languages, the blocking get synchronisation not only blocks the
object, but (it) blocks the whole cog.

ASP
ASP is an asynchronous calculus developed by Caromel et al [44] that in-
tegrates active objects and passive objects. Communication between active
objects happens via asynchronous method calls, and synchronous method
calls on passive objects. An asynchronous method call returns immediately
an implicit, typed, data-flow future with synchronous operators, i.e., wait-by-
necessity synchronisation [42]; passive objects are shared by deep copy [74].

ProActive [43] is Java library implementation of the ASP object calculus.
Unlike Pony or Encore, active objects are considered coarse-grained and the
ProActive middleware does not expect to handle hundreds to thousands of
active objects on the same machine.

Recently, ASP added multi-active objects [198, 113]. Multi-active objects
allow parallel and concurrent execution of methods on the same active object,
breaking the one-thread-of-control per active object reasoning.7 Methods are
annotated with assertions (named concerns) and conflicting assertions do not
run concurrently. This guarantees data-race freedom when methods are cor-
rectly annotated, but this is not a strong guarantee, as data-races may happen
when developers do not identify correctly conflicting methods; nothing pre-
vents deadlocks from happening.

AmbientTalk
AmbientTalk [71] is an untyped, distributed, object-oriented language based
on communicating event loops with explicit data-flow futures and asyn-
chronous synchronisation constructs. Futures are fulfilled with a far reference
(as in E [165]) or by a deep copy of a value. Deep copying happens on isolate
objects, i.e., objects that cannot capture free variables from the lexical scope.

AmbientTalk’s futures queue asynchronous messages until the value is re-
solved; once the future is resolved with a value, these messages are send to the
(event loop) value’s owner.

7Other languages such as Joelle do this using effects and ownership types [61].

60

AmbientTalk was designed to run on devices connected to mobile ad-hoc
networks, e.g., running on smart phones. In such distributed environment, pro-
grams use a publish-subscribe service to make themselves available to other
peers. A programs makes itself available to the network by publishing topics
names (type tags), and subscribers can register themselves on topics (under
the assumption that there is a categorisation scheme that unique identify top-
ics, i.e., type tags on multiple programs refer to the same topic).

AmbientTalk is data-race and deadlock free, as there are no blocking syn-
chronisation constructs on futures.

Capabilities for Sharing
Boyland et al defined an object-oriented language with a core set of reference
permission that allows them to express common capabilities features, such as
readonly, immutability, and linear references [33]. (This work does not include
concurrency features, but we thought it deserves a special mention in the list.)

The authors defined 7 (seven) compositional reference permissions,
grouped as access permissions, exclusive permissions, and ownership per-
mission. Access permissions include read (readonly), write (mutable), and
identity permissions; exclusive permissions are analogous to access permis-
sions but guarantee exclusiveness. For example, accessing a field requires a
read access permission, field assignment requires a write permission, and
identity comparison requires the identity permission. The combinators as-
sert and limit remove permissions from all aliases to an object (global effect)
and from to the current reference (local effect), respectively.

A variable with an ownership permission is an owned variable; variables
that lack ownership are borrowed variables. Assertions from borrowed vari-
ables only have an effect on borrowed variables; assertion of owned variables
affect the reference permissions of all owned and borrowed references.

This core set of capabilities can express linearity (as in Encore and Pony),
destructive reads, readonly, transitive readonly (as in Gordon’s work), and im-
mutability, among other features. The main idea of this work is to separate the
capability semantics from the enforcement of the invariants, through the use
of limit and assert.

ConstraintJava
ConstraintJava is a dynamic, object-oriented language incorporating dynamic
ownership [100, 101]. It is a class-based language that builds on top of Bean-
Shell [177], and supports subtyping via inheritance.

ConstraintJava incorporates dynamic ownership where objects can send
messages only to visible objects, i.e., objects that have a common owner and do
not cross ownership boundaries. That is, if we use the notation a → b to mean

61

that a owns b, and we have the following ownership tree, a → b,a → c,c → d,
then b and c can exchange messages because they have the same owner, but b
cannot exchange messages with d, while d can exchange messages with b be-
cause they have the same root owner a. Thus, dynamic ownership is restricted
to tree shape ownership and cannot cross ownership boundaries.

To forbid introducing dependencies between visible objects that break the
ownership boundary, e.g., leaking mutable state from d to b when b sends a
message to c, ConstraintJava introduces three different message sends: inter-
nal (for creating object dependencies among owned objects) and external (for
interacting with unowned objects). Within the external dependencies, Con-
straintJava has pure messages, which do not access mutable state and can only
return immutable objects (final fields in Java [103]), and oneway messages,
which return void but are allowed to update mutable state. Runtime checks
maintain the dynamic ownership model.

(ConstraintJava does not have concurrency constructs; we believe the model
could maintain data-race freedom, but it must be ensured by the developer.)

Distributed Electronic Rights For ECMAScript
The language Dr. SES (Distributed Resilient Secure ECMAScript) [166] adds
object-capabilities to the JavaScript language and requires of a small subset
of JavaScript and two key constructs: records (anonymous objects) and arrow
functions [5], and the asynchronous message send operator (!).

Dr. SES builds on SES (Secure ECMAScript), an object-capability sub-
set of ECMAScript 5 where objects can only interact with the references they
hold, and global objects from JavaScript are transitively immutable (power-
less [162]). The concurrency model uses communicating event loops; the web
workers API creates isolated event loops that communicate via deep copying.
The main goal of the language is to add smart contracts to JavaScript and the
necessary glue for a distributed, secure, and persistent platform.

Dr. SES uses object-capabilities to safely execute third party code, where
global objects are powerless. To control asynchronous communication, it in-
corporates promises with similar semantics to E’s promises [165]. The con-
currency model use pass-by-copy on primitive and array values, and pass-by-
reference otherwise.

E
E [165] is a distributed, object-oriented language with object-capabilities [165,
167, 168]. Objects may receive synchronous and asynchronous message
sends. Synchronous message sends are the common call-return control-flow
expression; asynchronous message sends return a promise. Promises are ful-
filled implicitly by the callee on termination of the method call. But promises

62

can be explicitly created. Promises are explicit, typed, with data-flow seman-
tics and with asynchronous synchronisation. Because there is no blocking
synchronisation, the language is deadlock free.

E is a communicating event loop language. Each event loop has a single
thread-of-control and owns a bunch of local objects. When a promise is ful-
filled with an object owned by a different event loop process (vat), the promise
contains a far reference (proxy) to the remote object. Only message sends are
allowed on far references, and trying to do a synchronous call throws a runtime
error. Unfulfilled promises accumulate asynchronous messages until they are
fulfilled, and forward the messages when fulfilled.

Erlang
Erlang is an actor-based, functional programming language, born at the Eric-
sson Computer Science Lab with the aim of improving how to program tele-
phony applications. Telephony applications are highly concurrent, parallel,
and distributed, and must be fault-tolerant. [13]

Actors have their own heap and do not share state between them; commu-
nication happens via message passing, where data is immutable and copied on
message send. It falls out that the language is data-race free by construction,
from using immutable data [55], but not deadlock free [54].

Many Erlang applications rely on the Erlang/OTP libraries, which include
the Erlang runtime system as well as an extensive set of libraries for facilitating
writing fault-tolerant applications. The use of Erlang/OTP opens the door to
data-races because Erlang/OTP has constructs that allow actors to share state
between them [55], e.g., ETS [142, 199]. The absence of Erlang/OTP libraries
makes Erlang a data-race free language.

4.7 Discussion
Papers I – III introduce purely functional concurrent (future-based) abstrac-
tions to allow developers to express complex concurrent coordination and del-
egation patterns. Paper IV extends the applicability of Papers I–III to the im-
perative domain. As an example, the functional ParT abstraction (Paper I) can
share mutable state without introducing data-races. The example in Fig. 4.3
shows a language that uses the Dala programming model and the ParT ab-
straction to find a solution to the N-Queen problem [18]. The N-Queen prob-
lem consists of placing N queens in a NxN chess board such that no queen can
attack any other queen (following the chess rules).

The program starts in the solveNQueen function, which receives an iso-
lated (alias-free) array of isolated strategies. Each strategy uses a different
algorithm to solve the N-Queen problem. Line 3 lifts the array with strate-
gies to the ParT abstraction; Line 4 uses the bind combinator (>>=) to create

63

1 def solveNQueen(strategies: iso [iso Strat],
2 board: imm Board): imm Par[imm Board]
3 let parStr = each(consume strategies)
4 let p = (consume parStr) >>= (\s: iso Strat → s.solve(board))
5 return show << p
6
7 def show(fut: iso Fut[imm Maybe[imm Board]]): imm Par[imm Board]
8 let sol = lift(consume fut)
9 return sol >> (\m : imm Maybe[imm Board] → match m with ...)

Figure 4.3. ParT collection in the Dala model.

parallel pipelines of strategies that try to solve the N-Queen problem; Line 5
uses the prune combinator (<<), which takes a future to the first result from the
bind operation, if there is one, and safely terminates no longer needed parallel
strategies. The left-hand side function of the prune combinator (show func-
tion) uses a future to an option value to represent the first result from the bind
operation (details in Paper I); this function (function show, Lines 7 to 9) uses
the sequence combinator (>>) to asynchronously access the optional value,
when the future is fulfilled (Line 9). The function returns a ParT with type
imm Par[imm Board], that represents that if the ParT is not empty, then it
contains a solution to the N-Queen problem.

The Dala model guarantees that strategy objects, which may have mutable
state, cannot introduce data-races. This example relies on the assumption that
the Dala model is statically typed, which is future work. In a dynamic setting
(as in Paper IV), the runtime guarantees data-race freedom.

We have covered all the necessary background on concurrency and
synchronisation, examined related work, and shown how our work on

concurrent and future abstractions can be used in an imperative setting. We
are ready to proceed to the concluding remarks.

64

5. Conclusion

This thesis proposes a concurrent functional abstraction to control futures (Pa-
per I), future combinators to express control- and data-flow computations (Pa-
pers II–III), and a novel capability-based programming model that can be used
to extend the applicability of the work done in previous papers (Papers I–III).

The contributions of this thesis are:
Paper I Design, formalisation, and implementation of a concurrent functional

abstraction, ParT , with asynchronous combinators that allow developers
to express complex speculative concurrent computations.

Paper II Introduces an existing construct into a concurrent future-based lan-
guage, defines a translation strategy from the future-based language to a
low-level concurrent promise-based language, and shows that the trans-
lation is semantics preserving.

Paper III First language (that the authors know of) that incorporates ex-
plicit, typed, control- and data-flow futures with synchronous and asyn-
chronous synchronisation combinators.

Paper IV Design and formalisation of Dala, a concurrent, capability-based
programming model that maintains data-race freedom in the presence
of shared mutable state. Dala extends the applicability of the work done
in previous papers.

Future work involves adding gradual typing to our capability-based lan-
guage, such that developers can choose whether data-race freedom is a static
or dynamic guarantee. We started some work towards this goal with the design
of a gradual capability-based system. After this is in place, we would like to
explore the addition of a gradual type system, and the interplay between the
gradual capability system and gradual type system, extending Bañados et al
work on gradual effects [203].

65

References

[1] Cancellation in managed threads. https://docs.microsoft.com/en-
us/dotnet/standard/threading/cancellation-in-managed-threads. (Accessed
October 28, 2020).

[2] Double buffering and page flipping.
https://docs.oracle.com/javase/tutorial/extra/fullscreen/doublebuf.html.
(Accessed August 10, 2020).

[3] Future (Java Platform SE 8).
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html.
(Accessed September 10, 2020).

[4] Pony tutorial. object capabilities.
https://tutorial.ponylang.io/object-capabilities/object-capabilities.html.
(Accessed September 15, 2020).

[5] Standard ECMA-262. ECMAScript�2015 Language Specification, 6 edition,
June 2015.

[6] OpenMP Specification: Version 5, November 2018.
[7] Standard ECMA-262. ECMAScript�2020 Language Specification, 11 edition,

June 2020.
[8] Gul A. Agha. ACTORS - a model of concurrent computation in distributed

systems. MIT Press series in artificial intelligence. MIT Press, 1990.
[9] Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and Zachary Sparks.

Typestate-oriented programming. In Shail Arora and Gary T. Leavens, editors,
Companion to the 24th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA, pages
1015–1022. ACM, 2009.

[10] Nada Amin, Tiark Rompf, and Martin Odersky. Foundations of
path-dependent types. In Andrew P. Black and Todd D. Millstein, editors,
Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA 2014, part of
SPLASH 2014, Portland, OR, USA, October 20-24, 2014, pages 233–249.
ACM, 2014.

[11] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali
Ghodsi, et al. Spark SQL: Relational data processing in spark. In Proceedings
of the 2015 ACM SIGMOD international conference on management of data,
pages 1383–1394, 2015.

[12] Deborah J Armstrong. The quarks of object-oriented development.
Communications of the ACM, 49(2):123–128, 2006.

[13] Joe Armstrong. A history of Erlang. In Barbara G. Ryder and Brent Hailpern,
editors, Proceedings of the Third ACM SIGPLAN History of Programming

66

Languages Conference (HOPL-III), San Diego, California, USA, 9-10 June
2007, pages 1–26. ACM, 2007.

[14] Joe Armstrong, Robert Virding, and Mike Williams. Concurrent programming
in ERLANG. Prentice Hall, 1993.

[15] Shail Arora and Gary T. Leavens, editors. Proceedings of the 24th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2009, October 25-29, 2009, Orlando,
Florida, USA. ACM, 2009.

[16] Mehdi Bagherzadeh and Hridesh Rajan. Panini: a concurrent programming
model for solving pervasive and oblivious interference. In Robert B. France,
Sudipto Ghosh, and Gary T. Leavens, editors, Proceedings of the 14th
International Conference on Modularity, MODULARITY 2015, Fort Collins,
CO, USA, March 16 - 19, 2015, pages 93–108. ACM, 2015.

[17] Henry G. Baker and Carl Hewitt. The incremental garbage collection of
processes. SIGART Newsl., 64:55–59, 1977.

[18] Walter William Rouse Ball. The eight queens problem. Mathematical
Recreations and Essays, New York: Macmillan, 1960.

[19] Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod,
and Peter Sewell. The problem of programming language concurrency
semantics. In Jan Vitek, editor, Programming Languages and Systems - 24th
European Symposium on Programming, ESOP 2015, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015. Proceedings, volume 9032 of Lecture Notes in
Computer Science, pages 283–307. Springer, 2015.

[20] Walter F Bauer. Computer design from the programmer’s viewpoint. In Papers
and discussions presented at the December 3-5, 1958, eastern joint computer
conference: Modern computers: objectives, designs, applications, pages
46–51, 1958.

[21] Robert Bemer. How to consider a computer. Automatic Control, pages 66–69,
1957.

[22] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley, 1987.

[23] Swarnendu Biswas, Man Cao, Minjia Zhang, Michael D. Bond, and
Benjamin P. Wood. Lightweight data race detection for production runs. In
Peng Wu and Sebastian Hack, editors, Proceedings of the 26th International
Conference on Compiler Construction, Austin, TX, USA, February 5-6, 2017,
pages 11–21. ACM, 2017.

[24] Bruno Blanchet. Escape analysis for object-oriented languages: Application to
java. In Hailpern et al. [106], pages 20–34.

[25] Sebastian Blessing, Kiko Fernandez-Reyes, Albert Mingkun Yang, Sophia
Drossopoulou, and Tobias Wrigstad. Run, actor, run: towards cross-actor
language benchmarking. In Federico Bergenti, Elias Castegren, Joeri De
Koster, and Juliana Franco, editors, Proceedings of the 9th ACM SIGPLAN
International Workshop on Programming Based on Actors, Agents, and
Decentralized Control, AGERE!@SPLASH 2019, Athens, Greece, October 22,
2019, pages 41–50. ACM, 2019.

[26] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded

67

computations by work stealing. J. ACM, 46(5):720–748, 1999.
[27] Jeff Bogda and Urs Hölzle. Removing unnecessary synchronization in Java. In

Hailpern et al. [106], pages 35–46.
[28] Grady Booch, Robert A Maksimchuk, Michael W Engle, Bobbi J Young, Jim

Connallen, and Kelli A Houston. Object-oriented analysis and design with
applications. ACM SIGSOFT software engineering notes, 33(5):29–29, 2008.

[29] Chandrasekhar Boyapati, Robert Lee, and Martin C. Rinard. Ownership types
for safe programming: preventing data races and deadlocks. In Ibrahim and
Matsuoka [121], pages 211–230.

[30] John Boyland. Alias burying: Unique variables without destructive reads.
Softw. Pract. Exp., 31(6):533–553, 2001.

[31] John Boyland. Checking interference with fractional permissions. In Radhia
Cousot, editor, Static Analysis, 10th International Symposium, SAS 2003, San
Diego, CA, USA, June 11-13, 2003, Proceedings, volume 2694 of Lecture
Notes in Computer Science, pages 55–72. Springer, 2003.

[32] John Boyland. Fractional permissions. In Dave Clarke, James Noble, and
Tobias Wrigstad, editors, Aliasing in Object-Oriented Programming. Types,
Analysis and Verification, volume 7850 of Lecture Notes in Computer Science,
pages 270–288. Springer, 2013.

[33] John Boyland, James Noble, and William Retert. Capabilities for sharing: A
generalisation of uniqueness and read-only. In Jørgen Lindskov Knudsen,
editor, ECOOP 2001 - Object-Oriented Programming, 15th European
Conference, Budapest, Hungary, June 18-22, 2001, Proceedings, volume 2072
of Lecture Notes in Computer Science, pages 2–27. Springer, 2001.

[34] Gilad Bracha and William R. Cook. Mixin-based inheritance. In Akinori
Yonezawa, editor, Conference on Object-Oriented Programming Systems,
Languages, and Applications / European Conference on Object-Oriented
Programming (OOPSLA/ECOOP), Ottawa, Canada, October 21-25, 1990,
Proceedings, pages 303–311. ACM, 1990.

[35] Stephan Brandauer, Elias Castegren, Dave Clarke, Kiko Fernandez-Reyes,
Einar Broch Johnsen, Ka I Pun, Silvia Lizeth Tapia Tarifa, Tobias Wrigstad,
and Albert Mingkun Yang. Parallel objects for multicores: A glimpse at the
parallel language Encore. In Marco Bernardo and Einar Broch Johnsen,
editors, Formal Methods for Multicore Programming - 15th International
School on Formal Methods for the Design of Computer, Communication, and
Software Systems, SFM 2015, Bertinoro, Italy, June 15-19, 2015, Advanced
Lectures, volume 9104 of Lecture Notes in Computer Science, pages 1–56.
Springer, 2015.

[36] H.P. Brinch and P.B. Hansen. Operating System Principles. Prentice-Hall
series in automatic computation. Prentice-Hall, 1973.

[37] Jean-Pierre Briot, Rachid Guerraoui, and Klaus-Peter Löhr. Concurrency and
distribution in object-oriented programming. ACM Comput. Surv.,
30(3):291–329, 1998.

[38] Rod M. Burstall, David B. MacQueen, and Donald Sannella. HOPE: an
experimental applicative language. In Proceedings of the 1980 LISP
Conference, August 25-27, 1980, Stanford, California, USA, pages 136–143.
ACM, 1980.

68

[39] Marco Devesas Campos and Luís Soares Barbosa. Implementation of an
orchestration language as a Haskell domain specific language. Electron. Notes
Theor. Comput. Sci., 255:45–64, 2009.

[40] Peter S. Canning, William R. Cook, Walter L. Hill, Walter G. Olthoff, and
John C. Mitchell. F-bounded polymorphism for object-oriented programming.
In Joseph E. Stoy, editor, Proceedings of the fourth international conference
on Functional programming languages and computer architecture, FPCA
1989, London, UK, September 11-13, 1989, pages 273–280. ACM, 1989.

[41] Brian D. Carlstrom, JaeWoong Chung, Hassan Chafi, Austen McDonald,
Chi Cao Minh, Lance Hammond, Christoforos E. Kozyrakis, and Kunle
Olukotun. Executing Java programs with transactional memory. Sci. Comput.
Program., 63(2):111–129, 2006.

[42] Denis Caromel. Towards a method of object-oriented concurrent
programming. Commun. ACM, 36(9):90–102, 1993.

[43] Denis Caromel and Ludovic Henrio. A theory of distributed objects -
asynchrony, mobility, groups, components. Springer, 2005.

[44] Denis Caromel, Ludovic Henrio, and Bernard P. Serpette. Asynchronous and
deterministic objects. In Neil D. Jones and Xavier Leroy, editors, Proceedings
of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2004, Venice, Italy, January 14-16, 2004,
pages 123–134. ACM, 2004.

[45] Elias Castegren. Capability-Based Type Systems for Concurrency Control.
PhD thesis, Uppsala University, Sweden, 2018.

[46] Elias Castegren, Dave Clarke, Kiko Fernandez-Reyes, Tobias Wrigstad, and
Albert Mingkun Yang. Attached and detached closures in actors. In Joeri De
Koster, Federico Bergenti, and Juliana Franco, editors, Proceedings of the 8th
ACM SIGPLAN International Workshop on Programming Based on Actors,
Agents, and Decentralized Control, AGERE!@SPLASH 2018, Boston, MA,
USA, November 5, 2018, pages 54–61. ACM, 2018.

[47] Elias Castegren and Kiko Fernandez-Reyes. Developing a monadic type
checker for an object-oriented language: an experience report. In Oscar
Nierstrasz, Jeff Gray, and Bruno C. d. S. Oliveira, editors, Proceedings of the
12th ACM SIGPLAN International Conference on Software Language
Engineering, SLE 2019, Athens, Greece, October 20-22, 2019, pages 184–196.
ACM, 2019.

[48] Elias Castegren and Tobias Wrigstad. Reference capabilities for concurrency
control. In Krishnamurthi and Lerner [145], pages 5:1–5:26.

[49] Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. Habanero-Java:
the new adventures of old X10. In Christian W. Probst and Christian Wimmer,
editors, Proceedings of the 9th International Conference on Principles and
Practice of Programming in Java, PPPJ 2011, Kongens Lyngby, Denmark,
August 24-26, 2011, pages 51–61. ACM, 2011.

[50] Francesco Cesarini and Steve Vinoski. Designing for Scalability with
Erlang/OTP: Implement Robust, Fault-Tolerant Systems. " O’Reilly Media,
Inc.", 2016.

[51] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R.
Henry, Robert Bradshaw, and Nathan Weizenbaum. FlumeJava: easy, efficient

69

data-parallel pipelines. In Benjamin G. Zorn and Alexander Aiken, editors,
Proceedings of the 2010 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2010, Toronto, Ontario, Canada,
June 5-10, 2010, pages 363–375. ACM, 2010.

[52] Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C. Sreedhar,
and Samuel P. Midkiff. Stack allocation and synchronization optimizations for
Java using escape analysis. ACM Trans. Program. Lang. Syst., 25(6):876–910,
2003.

[53] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan, Vivek
Sarkar, and Manu Sridharan. Efficient and precise datarace detection for
multithreaded object-oriented programs. In Jens Knoop and Laurie J. Hendren,
editors, Proceedings of the 2002 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Berlin, Germany, June 17-19,
2002, pages 258–269. ACM, 2002.

[54] M. Christakis, A. Gotovos, and K. Sagonas. Systematic testing for detecting
concurrency errors in erlang programs. In 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation, pages 154–163,
March 2013.

[55] Maria Christakis and Konstantinos Sagonas. Static detection of race
conditions in Erlang. In Manuel Carro and Ricardo Peña, editors, Practical
Aspects of Declarative Languages, 12th International Symposium, PADL
2010, Madrid, Spain, January 18-19, 2010. Proceedings, volume 5937 of
Lecture Notes in Computer Science, pages 119–133. Springer, 2010.

[56] Mark Christiaens and Koenraad De Bosschere. TRaDe: Data race detection
for Java. In Vassil N. Alexandrov, Jack J. Dongarra, Benjoe A. Juliano,
René S. Renner, and Chih Jeng Kenneth Tan, editors, Computational Science -
ICCS 2001, International Conference, San Francisco, CA, USA, May 28-30,
2001. Proceedings, Part II, volume 2074 of Lecture Notes in Computer
Science, pages 761–770. Springer, 2001.

[57] Alonzo Church. A formulation of the simple theory of types. J. Symb. Log.,
5(2):56–68, 1940.

[58] Dave Clarke, Einar Broch Johnsen, and Olaf Owe. Concurrent objects à la
carte. In Dennis Dams, Ulrich Hannemann, and Martin Steffen, editors,
Concurrency, Compositionality, and Correctness, Essays in Honor of
Willem-Paul de Roever, volume 5930 of Lecture Notes in Computer Science,
pages 185–206. Springer, 2010.

[59] Dave Clarke, Johan Östlund, Ilya Sergey, and Tobias Wrigstad. Ownership
types: A survey. In Dave Clarke, James Noble, and Tobias Wrigstad, editors,
Aliasing in Object-Oriented Programming. Types, Analysis and Verification,
volume 7850 of Lecture Notes in Computer Science, pages 15–58. Springer,
2013.

[60] Dave Clarke and Tobias Wrigstad. External uniqueness is unique enough. In
Luca Cardelli, editor, ECOOP 2003 - Object-Oriented Programming, 17th
European Conference, Darmstadt, Germany, July 21-25, 2003, Proceedings,
volume 2743 of Lecture Notes in Computer Science, pages 176–200. Springer,
2003.

[61] Dave Clarke, Tobias Wrigstad, Johan Östlund, and Einar Broch Johnsen.

70

Minimal ownership for active objects. In G. Ramalingam, editor,
Programming Languages and Systems, 6th Asian Symposium, APLAS 2008,
Bangalore, India, December 9-11, 2008. Proceedings, volume 5356 of Lecture
Notes in Computer Science, pages 139–154. Springer, 2008.

[62] David G. Clarke, John Potter, and James Noble. Ownership types for flexible
alias protection. In Bjørn N. Freeman-Benson and Craig Chambers, editors,
Proceedings of the 1998 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages & Applications (OOPSLA ’98), Vancouver,
British Columbia, Canada, October 18-22, 1998., pages 48–64. ACM, 1998.

[63] Sylvan Clebsch and Sophia Drossopoulou. Fully concurrent garbage collection
of actors on many-core machines. In Antony L. Hosking, Patrick Th. Eugster,
and Cristina V. Lopes, editors, Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA 2013, part of SPLASH 2013,
Indianapolis, IN, USA, October 26-31, 2013, pages 553–570. ACM, 2013.

[64] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy McNeil.
Deny capabilities for safe, fast actors. In Elisa Gonzalez Boix, Philipp Haller,
Alessandro Ricci, and Carlos Varela, editors, Proceedings of the 5th
International Workshop on Programming Based on Actors, Agents, and
Decentralized Control, AGERE! 2015, Pittsburgh, PA, USA, October 26, 2015,
pages 1–12. ACM, 2015.

[65] Sylvan Clebsch, Juliana Franco, Sophia Drossopoulou, Albert Mingkun Yang,
Tobias Wrigstad, and Jan Vitek. Orca: GC and type system co-design for actor
languages. Proc. ACM Program. Lang., 1(OOPSLA):72:1–72:28, 2017.

[66] Austin T. Clements, M. Frans Kaashoek, Eddie Kohler, Robert Tappan Morris,
and Nickolai Zeldovich. The scalable commutativity rule: designing scalable
software for multicore processors. Commun. ACM, 60(8):83–90, 2017.

[67] Melvin E Conway. A multiprocessor system design. In Proceedings of the
November 12-14, 1963, fall joint computer conference, pages 139–146, 1963.

[68] William R. Cook, Sourabh Patwardhan, and Jayadev Misra. Workflow patterns
in Orc. In Paolo Ciancarini and Herbert Wiklicky, editors, Coordination
Models and Languages, 8th International Conference, COORDINATION
2006, Bologna, Italy, June 14-16, 2006, Proceedings, volume 4038 of Lecture
Notes in Computer Science, pages 82–96. Springer, 2006.

[69] Fernando J Corbató. The compatible time-sharing system: A programmer’s
guide. The MIT Press, 1963.

[70] AJ Critcklow. Generalized multiprocessing and multiprogramming systems.
In Proceedings of the November 12-14, 1963, fall joint computer conference,
pages 107–126, 1963.

[71] Tom Van Cutsem, Elisa Gonzalez Boix, Christophe Scholliers,
Andoni Lombide Carreton, Dries Harnie, Kevin Pinte, and Wolfgang De
Meuter. AmbientTalk: programming responsive mobile peer-to-peer
applications with actors. Comput. Lang. Syst. Struct., 40(3-4):112–136, 2014.

[72] Bruno C. d. S. Oliveira, Adriaan Moors, and Martin Odersky. Type classes as
objects and implicits. In William R. Cook, Siobhán Clarke, and Martin C.
Rinard, editors, Proceedings of the 25th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications,

71

OOPSLA 2010, October 17-21, 2010, Reno/Tahoe, Nevada, USA, pages
341–360. ACM, 2010.

[73] Bruno C. d. S. Oliveira, Tom Schrijvers, Wontae Choi, Wonchan Lee, and
Kwangkeun Yi. The implicit calculus: a new foundation for generic
programming. In Jan Vitek, Haibo Lin, and Frank Tip, editors, ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
’12, Beijing, China - June 11 - 16, 2012, pages 35–44. ACM, 2012.

[74] Frank S. de Boer, Vlad Serbanescu, Reiner Hähnle, Ludovic Henrio, Justine
Rochas, Crystal Chang Din, Einar Broch Johnsen, Marjan Sirjani, Ehsan
Khamespanah, Kiko Fernandez-Reyes, and Albert Mingkun Yang. A survey of
active object languages. ACM Comput. Surv., 50(5):76:1–76:39, 2017.

[75] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing
on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[76] Alfonso Caracciolo di Forino. Programming languages. In Advances in
Information Systems Science, pages 59–116. Springer, 1969.

[77] Dave Dice, Alex Kogan, and Yossi Lev. Refined transactional lock elision. In
Rafael Asenjo and Tim Harris, editors, Proceedings of the 21st ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP 2016,
Barcelona, Spain, March 12-16, 2016, pages 19:1–19:12. ACM, 2016.

[78] David Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum. Early experience
with a commercial hardware transactional memory implementation. In
Mary Lou Soffa and Mary Jane Irwin, editors, Proceedings of the 14th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2009, Washington, DC, USA,
March 7-11, 2009, pages 157–168. ACM, 2009.

[79] Werner Dietl, Sophia Drossopoulou, and Peter Müller. Generic universe types.
In European Conference on Object-Oriented Programming, pages 28–53.
Springer, 2007.

[80] Werner Dietl and Peter Müller. Universes: Lightweight ownership for JML. J.
Object Technol., 4(8):5–32, 2005.

[81] Edsger W. Dijkstra. Over de sequentialiteit van procesbeschrijvingen (ewd-35)
ew dijkstra archive. Center for American History, University of Texas at
Austin, 1962.

[82] Edsger W. Dijkstra. Solution of a problem in concurrent programming control.
Commun. ACM, 8(9):569, 1965.

[83] Edsger W. Dijkstra. Hierarchical ordering of sequential processes. Acta
Informatica, 1:115–138, 1971.

[84] Pedro C. Diniz and Martin C. Rinard. Lock coarsening: Eliminating lock
overhead in automatically parallelized object-based programs. J. Parallel
Distributed Comput., 49(2):218–244, 1998.

[85] Anthony Discolo, Tim Harris, Simon Marlow, Simon L. Peyton Jones, and
Satnam Singh. Lock free data structures using STM in Haskell. In Masami
Hagiya and Philip Wadler, editors, Functional and Logic Programming, 8th
International Symposium, FLOPS 2006, Fuji-Susono, Japan, April 24-26,
2006, Proceedings, volume 3945 of Lecture Notes in Computer Science, pages
65–80. Springer, 2006.

[86] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and

72

Andrew P. Black. Traits: A mechanism for fine-grained reuse. ACM Trans.
Program. Lang. Syst., 28(2):331–388, 2006.

[87] Chas Emerick, Brian Carper, and Christophe Grand. Clojure Programming:
Practical Lisp for the Java World. " O’Reilly Media, Inc.", 2012.

[88] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk Olynyk.
Effective data-race detection for the kernel. In Remzi H. Arpaci-Dusseau and
Brad Chen, editors, 9th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2010, October 4-6, 2010, Vancouver, BC, Canada,
Proceedings, pages 151–162. USENIX Association, 2010.

[89] Kiko Fernandez-Reyes, Dave Clarke, Elias Castegren, and Huu-Phuc Vo.
Forward to a promising future. In Giovanna Di Marzo Serugendo and Michele
Loreti, editors, Coordination Models and Languages - 20th IFIP WG 6.1
International Conference, COORDINATION 2018, Held as Part of the 13th
International Federated Conference on Distributed Computing Techniques,
DisCoTec 2018, Madrid, Spain, June 18-21, 2018. Proceedings, volume 10852
of Lecture Notes in Computer Science, pages 162–180. Springer, 2018.

[90] Kiko Fernandez-Reyes, Dave Clarke, Ludovic Henrio, Einar Broch Johnsen,
and Tobias Wrigstad. Godot: All the benefits of implicit and explicit futures.
In Alastair F. Donaldson, editor, 33rd European Conference on
Object-Oriented Programming, ECOOP 2019, July 15-19, 2019, London,
United Kingdom, volume 134 of LIPIcs, pages 2:1–2:28. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019.

[91] Kiko Fernandez-Reyes, Dave Clarke, Ludovic Henrio, Einar Broch Johnsen,
and Tobias Wrigstad. Godot: All the benefits of implicit and explicit futures
(artifact). DARTS, 5(2):01:1–01:2, 2019.

[92] Kiko Fernandez-Reyes, Dave Clarke, and Daniel S. McCain. ParT: An
asynchronous parallel abstraction for speculative pipeline computations. In
Alberto Lluch-Lafuente and José Proença, editors, Coordination Models and
Languages - 18th IFIP WG 6.1 International Conference, COORDINATION
2016, Held as Part of the 11th International Federated Conference on
Distributed Computing Techniques, DisCoTec 2016, Heraklion, Crete, Greece,
June 6-9, 2016, Proceedings, volume 9686 of Lecture Notes in Computer
Science, pages 101–120. Springer, 2016.

[93] Kiko Fernandez-Reyes, Isaac Oscar Gariano, James Noble, and Tobias
Wrigstad. Towards gradual checking of reference capabilities. CoRR,
abs/1909.01465, 2019.

[94] Cormac Flanagan and Stephen N. Freund. FastTrack: efficient and precise
dynamic race detection. In Michael Hind and Amer Diwan, editors,
Proceedings of the 2009 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2009, Dublin, Ireland, June
15-21, 2009, pages 121–133. ACM, 2009.

[95] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation
of the cilk-5 multithreaded language. In Jack W. Davidson, Keith D. Cooper,
and A. Michael Berman, editors, Proceedings of the ACM SIGPLAN ’98
Conference on Programming Language Design and Implementation (PLDI),
Montreal, Canada, June 17-19, 1998, pages 212–223. ACM, 1998.

[96] Jean-Yves Girard. Une extension de l’interpretation de gödel a l’analyse, et

73

son application a l’elimination des coupures dans l’analyse et la theorie des
types. In Studies in Logic and the Foundations of Mathematics, volume 63,
pages 63–92. Elsevier, 1971.

[97] Jean-Yves Girard. Linear logic. Theoretical computer science, 50(1):1–101,
1987.

[98] Brian Goetz, Tim Peierls, Joshua J. Bloch, Joseph Bowbeer, David Holmes,
and Doug Lea. Java Concurrency in Practice. Addison-Wesley, 2006.

[99] Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield, and
Joe Duffy. Uniqueness and reference immutability for safe parallelism. In
Gary T. Leavens and Matthew B. Dwyer, editors, Proceedings of the 27th
Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2012, part of SPLASH 2012,
Tucson, AZ, USA, October 21-25, 2012, pages 21–40. ACM, 2012.

[100] Donald Gordon and James Noble. Dynamic ownership in a dynamic language.
In Pascal Costanza and Robert Hirschfeld, editors, Proceedings of the 2007
Symposium on Dynamic Languages, DLS 2007, October 22, 2007, Montreal,
Quebec, Canada, pages 41–52. ACM, 2007.

[101] Donald James Gordon. Encapsulation enforcement with dynamic ownership.
Master’s thesis, Victoria University of Wellington, 2008.

[102] J. A. Gosden. Explicit parallel processing description and control in programs
for multi- and uni-processor computers. In Proceedings of the November 7-10,
1966, Fall Joint Computer Conference, AFIPS’66 (Fall), pages 651–660, New
York, NY, USA, 1966. Association for Computing Machinery.

[103] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, Daniel
Smith, and Gavin Bierman. Java Language Specification. Java SE 14 Edition.
Technical report, 02 2020.

[104] Irene Greif. Semantics of communicating parallel processes. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA, 1975.

[105] Rui Gu, Guoliang Jin, Linhai Song, Linjie Zhu, and Shan Lu. What change
history tells us about thread synchronization. In Elisabetta Di Nitto, Mark
Harman, and Patrick Heymans, editors, Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo,
Italy, August 30 - September 4, 2015, pages 426–438. ACM, 2015.

[106] Brent Hailpern, Linda M. Northrop, and A. Michael Berman, editors.
Proceedings of the 1999 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages & Applications (OOPSLA ’99), Denver,
Colorado, USA, November 1-5, 1999. ACM, 1999.

[107] Philipp Haller and Alexander Loiko. Lacasa: lightweight affinity and object
capabilities in Scala. In Visser and Smaragdakis [216], pages 272–291.

[108] Philipp Haller and Martin Odersky. Capabilities for uniqueness and
borrowing. In Theo D’Hondt, editor, ECOOP 2010 - Object-Oriented
Programming, 24th European Conference, Maribor, Slovenia, June 21-25,
2010. Proceedings, volume 6183 of Lecture Notes in Computer Science, pages
354–378. Springer, 2010.

[109] Philipp Haller, Aleksandar Prokopec, Heather Miller, Viktor Klang, Roland
Kuhn, and Vojin Jovanovic. Scala Documentation. Futures and Promises.
https://docs.scala-lang.org/overviews/core/futures.html. (Accessed November,

74

2020).
[110] Philipp Haller and Frank Sommers. Actors in Scala. Artima Press, 2011.
[111] Per Brinch Hansen. The origin of concurrent programming: from semaphores

to remote procedure calls. Springer, 2002.
[112] Ludovic Henrio. Data-flow Explicit Futures. Research report, I3S, Université

Côte d’Azur, April 2018.
[113] Ludovic Henrio, Fabrice Huet, and Zsolt István. Multi-threaded active objects.

In Rocco De Nicola and Christine Julien, editors, Coordination Models and
Languages, 15th International Conference, COORDINATION 2013, Held as
Part of the 8th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2013, Florence, Italy, June 3-5, 2013. Proceedings,
volume 7890 of Lecture Notes in Computer Science, pages 90–104. Springer,
2013.

[114] Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. A universal modular
ACTOR formalism for artificial intelligence. In Nils J. Nilsson, editor,
Proceedings of the 3rd International Joint Conference on Artificial
Intelligence. Standford, CA, USA, August 20-23, 1973, pages 235–245.
William Kaufmann, 1973.

[115] Gerald Hilderink, Jan Broenink, Wiek Vervoort, and Andre Bakkers.
Communicating java threads. In Parallel Programming and Java, Proceedings
of WoTUG, volume 20, pages 48–76, 1997.

[116] C. A. R. Hoare. Monitors: An operating system structuring concept. Commun.
ACM, 17(10):549–557, 1974.

[117] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666–677, 1978.

[118] Zhenjiang Hu, John Hughes, and Meng Wang. How functional programming
mattered. National Science Review, 2(3):349–370, 2015.

[119] Paul Hudak. Conception, evolution, and application of functional
programming languages. ACM Comput. Surv., 21(3):359–411, 1989.

[120] David A Huffman. The synthesis of sequential switching circuits. Journal of
the franklin Institute, 257(3):161–190, 1954.

[121] Mamdouh Ibrahim and Satoshi Matsuoka, editors. Proceedings of the 2002
ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages and Applications, OOPSLA 2002, Seattle, Washington, USA,
November 4-8, 2002. ACM, 2002.

[122] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java:
a minimal core calculus for Java and GJ. ACM Trans. Program. Lang. Syst.,
23(3):396–450, 2001.

[123] Shams Imam and Vivek Sarkar. The Eureka programming model for
speculative task parallelism. In John Tang Boyland, editor, 29th European
Conference on Object-Oriented Programming, ECOOP 2015, July 5-10, 2015,
Prague, Czech Republic, volume 37 of LIPIcs, pages 421–444. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2015.

[124] Intel. Intel Threading Building Blocks Documentation, March 2020.
[125] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly.

Dryad: distributed data-parallel programs from sequential building blocks. In
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on

75

Computer Systems 2007, pages 59–72, 2007.
[126] Sreekaanth S Isloor and T Anthony Marsland. The deadlock problem: An

overview. IEEE Computer, 13(9):58–78, 1980.
[127] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin

Steffen. ABS: A core language for abstract behavioral specification. In
Bernhard K. Aichernig, Frank S. de Boer, and Marcello M. Bonsangue,
editors, Formal Methods for Components and Objects - 9th International
Symposium, FMCO 2010, Graz, Austria, November 29 - December 1, 2010.
Revised Papers, volume 6957 of Lecture Notes in Computer Science, pages
142–164. Springer, 2010.

[128] Simon L. Peyton Jones and Satnam Singh. A tutorial on parallel and
concurrent programming in Haskell. In Pieter W. M. Koopman, Rinus
Plasmeijer, and S. Doaitse Swierstra, editors, Advanced Functional
Programming, 6th International School, AFP 2008, Heijen, The Netherlands,
May 2008, Revised Lectures, volume 5832 of Lecture Notes in Computer
Science, pages 267–305. Springer, 2008.

[129] Simon Peyton Jones. Beautiful concurrency. Beautiful Code: Leading
Programmers Explain How They Think, pages 385–406, 2007.

[130] SL Peyton Jones, Cordy Hall, Kevin Hammond, Will Partain, and Philip
Wadler. The Glasgow Haskell compiler: a technical overview. In Proc. UK
Joint Framework for Information Technology (JFIT) Technical Conference,
volume 93, 1993.

[131] Timothy Jones, Michael Homer, James Noble, and Kim B. Bruce. Object
inheritance without classes. In Krishnamurthi and Lerner [145], pages
13:1–13:26.

[132] Edward G. Coffman Jr., M. J. Elphick, and Arie Shoshani. System deadlocks.
ACM Comput. Surv., 3(2):67–78, 1971.

[133] Robert H. Halstead Jr. Multilisp: A language for concurrent symbolic
computation. ACM Trans. Program. Lang. Syst., 7(4):501–538, 1985.

[134] Vineet Kahlon, Sriram Sankaranarayanan, and Aarti Gupta. Static analysis for
concurrent programs with applications to data race detection. Int. J. Softw.
Tools Technol. Transf., 15(4):321–336, 2013.

[135] Vineet Kahlon, Nishant Sinha, Erik Kruus, and Yun Zhang. Static data race
detection for concurrent programs with asynchronous calls. In Hans van Vliet
and Valérie Issarny, editors, Proceedings of the 7th joint meeting of the
European Software Engineering Conference and the ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2009,
Amsterdam, The Netherlands, August 24-28, 2009, pages 13–22. ACM, 2009.

[136] Vineet Kahlon and Chao Wang. Lock removal for concurrent trace programs.
In P. Madhusudan and Sanjit A. Seshia, editors, Computer Aided Verification -
24th International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012
Proceedings, volume 7358 of Lecture Notes in Computer Science, pages
227–242. Springer, 2012.

[137] Vineet Kahlon, Yu Yang, Sriram Sankaranarayanan, and Aarti Gupta. Fast and
accurate static data-race detection for concurrent programs. In Werner Damm
and Holger Hermanns, editors, Computer Aided Verification, 19th
International Conference, CAV 2007, Berlin, Germany, July 3-7, 2007,

76

Proceedings, volume 4590 of Lecture Notes in Computer Science, pages
226–239. Springer, 2007.

[138] Baris Kasikci, Cristian Zamfir, and George Candea. Data races vs. data race
bugs: telling the difference with portend. In Tim Harris and Michael L. Scott,
editors, Proceedings of the 17th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS 2012,
London, UK, March 3-7, 2012, pages 185–198. ACM, 2012.

[139] David Kitchin, William R. Cook, and Jayadev Misra. A language for task
orchestration and its semantic properties. In Christel Baier and Holger
Hermanns, editors, CONCUR 2006 - Concurrency Theory, 17th International
Conference, CONCUR 2006, Bonn, Germany, August 27-30, 2006,
Proceedings, volume 4137 of Lecture Notes in Computer Science, pages
477–491. Springer, 2006.

[140] David Kitchin, Adrian Quark, William R. Cook, and Jayadev Misra. The Orc
programming language. In David Lee, Antónia Lopes, and Arnd
Poetzsch-Heffter, editors, Formal Techniques for Distributed Systems, Joint
11th IFIP WG 6.1 International Conference FMOODS 2009 and 29th IFIP
WG 6.1 International Conference FORTE 2009, Lisboa, Portugal, June 9-12,
2009. Proceedings, volume 5522 of Lecture Notes in Computer Science, pages
1–25. Springer, 2009.

[141] Steve Klabnik and Carol Nichols. The Rust Programming Language (Covers
Rust 2018). No Starch Press, 2019.

[142] David Klaftenegger, Konstantinos Sagonas, and Kjell Winblad. On the
scalability of the Erlang term storage. In Steve Vinoski and Laura M. Castro,
editors, Proceedings of the Twelfth ACM SIGPLAN Erlang Workshop, Boston,
Massachusetts, USA, September 28, 2013, pages 15–26. ACM, 2013.

[143] Alexey Kolesnichenko, Sebastian Nanz, and Bertrand Meyer. How to cancel a
task. In João Lourenço and Eitan Farchi, editors, Multicore Software
Engineering, Performance, and Tools - International Conference, MUSEPAT
2013, St. Petersburg, Russia, August 19-20, 2013. Proceedings, volume 8063
of Lecture Notes in Computer Science, pages 61–72. Springer, 2013.

[144] Johann M Kraus and Hans A Kestler. Multi-core parallelization in Clojure: a
case study. In Proceedings of the 6th European Lisp Workshop, pages 8–17,
2009.

[145] Shriram Krishnamurthi and Benjamin S. Lerner, editors. 30th European
Conference on Object-Oriented Programming, ECOOP 2016, July 18-22,
2016, Rome, Italy, volume 56 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2016.

[146] Vivek Kumar. Featherlight speculative task parallelism. In Ramin Yahyapour,
editor, Euro-Par 2019: Parallel Processing - 25th International Conference on
Parallel and Distributed Computing, Göttingen, Germany, August 26-30, 2019,
Proceedings, volume 11725 of Lecture Notes in Computer Science, pages
391–404. Springer, 2019.

[147] John Launchbury and Trevor Elliott. Concurrent orchestration in Haskell. In
Jeremy Gibbons, editor, Proceedings of the 3rd ACM SIGPLAN Symposium on
Haskell, Haskell 2010, Baltimore, MD, USA, 30 September 2010, pages
79–90. ACM, 2010.

77

[148] Doug Lea. Concurrent Programming in Java. Second Edition: Design
Principles and Patterns. Addison-Wesley Longman Publishing Co., Inc.,
USA, 2nd edition, 1999.

[149] Doug Lea. A Java Fork/Join framework. In Dennis Gannon and Piyush
Mehrotra, editors, Proceedings of the ACM 2000 Java Grande Conference,
San Francisco, CA, USA, June 3-5, 2000, pages 36–43. ACM, 2000.

[150] Matthias Lehmann, Martin Grunow, and Hans-Otto Günther. Deadlock
handling for real-time control of AGVs at automated container terminals. OR
Spectr., 28(4):631–657, 2006.

[151] Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. The design of a task
parallel library. In Arora and Leavens [15], pages 227–242.

[152] K. Rustan M. Leino and Peter Müller. Object invariants in dynamic contexts.
In Martin Odersky, editor, ECOOP 2004 - Object-Oriented Programming, 18th
European Conference, Oslo, Norway, June 14-18, 2004, Proceedings, volume
3086 of Lecture Notes in Computer Science, pages 491–516. Springer, 2004.

[153] Henry M Levy. Capability-based computer systems. Digital Press, 2014.
[154] Paul Liétar. Formalizing Generics for Pony. Bachelor’s thesis, Imperial

College, 2017.
[155] Marc Van Limberghen and Tom Mens. Encapsulation and composition as

orthogonal operators on mixins: a solution to multiple inheritance problems.
Object Oriented Syst., 3:1–30, 1996.

[156] Barbara Liskov and Liuba Shrira. Promises: Linguistic support for efficient
asynchronous procedure calls in distributed systems. In Richard L. Wexelblat,
editor, Proceedings of the ACM SIGPLAN’88 Conference on Programming
Language Design and Implementation (PLDI), Atlanta, Georgia, USA, June
22-24, 1988, pages 260–267. ACM, 1988.

[157] Quan Lu, Maged M. Dessouky, and Robert C. Leachman. Modeling train
movements through complex rail networks. ACM Trans. Model. Comput.
Simul., 14(1):48–75, 2004.

[158] Simon Marlow, Simon L. Peyton Jones, and Satnam Singh. Runtime support
for multicore Haskell. In Graham Hutton and Andrew P. Tolmach, editors,
Proceeding of the 14th ACM SIGPLAN international conference on Functional
programming, ICFP 2009, Edinburgh, Scotland, UK, August 31 - September 2,
2009, pages 65–78. ACM, 2009.

[159] Simon Marlow, Ryan Newton, and Simon L. Peyton Jones. A monad for
deterministic parallelism. In Koen Claessen, editor, Proceedings of the 4th
ACM SIGPLAN Symposium on Haskell, Haskell 2011, Tokyo, Japan, 22
September 2011, pages 71–82. ACM, 2011.

[160] Nicholas D. Matsakis. Parallel closures: A new twist on an old idea. In
Hans-Juergen Boehm and Luis Ceze, editors, 4th USENIX Workshop on Hot
Topics in Parallelism, HotPar’12, Berkeley, CA, USA, June 7-8, 2012.
USENIX Association, 2012.

[161] Nicholas D. Matsakis and Felix S. Klock II. The Rust language. In Michael
Feldman and S. Tucker Taft, editors, Proceedings of the 2014 ACM SIGAda
annual conference on High integrity language technology, HILT 2014,
Portland, Oregon, USA, October 18-21, 2014, pages 103–104. ACM, 2014.

[162] Adrian Matthew Mettler. Language and Framework Support for

78

Reviewably-Secure Software Systems. PhD thesis, University of California,
Berkeley, USA, 2012.

[163] Norman K. Meyrowitz, editor. Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’86), Portland, Oregon, USA,
Proceedings. ACM, 1986.

[164] Microsoft. Introduction to PLINQ. https://docs.microsoft.com/en-
us/dotnet/standard/parallel-programming/introduction-to-plinq. (Accessed
September 2020).

[165] Mark S. Miller. Robust Composition: Towards a Unified Approach to Access
Control and Concurrency Control. PhD thesis, Baltimore, Maryland, 2006.

[166] Mark S. Miller, Tom Van Cutsem, and Bill Tulloh. Distributed electronic
rights in JavaScript. In Matthias Felleisen and Philippa Gardner, editors,
Programming Languages and Systems - 22nd European Symposium on
Programming, ESOP 2013, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24,
2013. Proceedings, volume 7792 of Lecture Notes in Computer Science, pages
1–20. Springer, 2013.

[167] Mark S. Miller, Chip Morningstar, and Bill Frantz. Capability-based financial
instruments. In Yair Frankel, editor, Financial Cryptography, 4th International
Conference, FC 2000 Anguilla, British West Indies, February 20-24, 2000,
Proceedings, volume 1962 of Lecture Notes in Computer Science, pages
349–378. Springer, 2000.

[168] Mark S. Miller, Eric Dean Tribble, and Jonathan S. Shapiro. Concurrency
among strangers. In Rocco De Nicola and Davide Sangiorgi, editors,
Trustworthy Global Computing, International Symposium, TGC 2005,
Edinburgh, UK, April 7-9, 2005, Revised Selected Papers, volume 3705 of
Lecture Notes in Computer Science, pages 195–229. Springer, 2005.

[169] Jayadev Misra and William R. Cook. Computation orchestration. Softw. Syst.
Model., 6(1):83–110, 2007.

[170] Fabrizio Montesi, Claudio Guidi, Roberto Lucchi, and Gianluigi Zavattaro.
JOLIE: a Java orchestration language interpreter engine. Electron. Notes
Theor. Comput. Sci., 181:19–33, 2007.

[171] David A Moon. Object-oriented programming with flavors. In Conference
proceedings on Object-oriented programming systems, languages and
applications, pages 1–8, 1986.

[172] Benjamin Morandi, Sebastian Nanz, and Bertrand Meyer. Who is accountable
for asynchronous exceptions? In 2012 19th Asia-Pacific Software Engineering
Conference, volume 1, pages 462–471. IEEE, 2012.

[173] Peter Müller. Modular specification and verification of object-oriented
programs, volume 2262. Springer Science & Business Media, 2002.

[174] Peter Naur and Brian Randell. Software engineering: Report of a conference
sponsored by the nato science committee, garmisch, germany. 1969.

[175] Nicholas Ng and Nobuko Yoshida. Static deadlock detection for concurrent go
by global session graph synthesis. In Ayal Zaks and Manuel V. Hermenegildo,
editors, Proceedings of the 25th International Conference on Compiler
Construction, CC 2016, Barcelona, Spain, March 12-18, 2016, pages
174–184. ACM, 2016.

79

[176] Joachim Niehren, David Sabel, Manfred Schmidt-Schauß, and Jan
Schwinghammer. Observational semantics for a concurrent lambda calculus
with reference cells and futures. In Marcelo Fiore, editor, Proceedings of the
23rd Conference on the Mathematical Foundations of Programming
Semantics, MFPS 2007, New Orleans, LA, USA, April 11-14, 2007, volume
173 of Electronic Notes in Theoretical Computer Science, pages 313–337.
Elsevier, 2007.

[177] Pat Niemeyer. Beanshell – lightweight scripting for Java (version 1.3).
[178] Rishiyur S Nikhil and Keshav K Pingali. I-structures: Data structures for

parallel computing. ACM Transactions on Programming Languages and
Systems (TOPLAS), 11(4):598–632, 1989.

[179] Linus Nyman and Mikael Laakso. Notes on the history of fork and join. IEEE
Annals of the History of Computing, 38(3):84–87, 2016.

[180] Martin Odersky, Philippe Altherr, Vincent Cremet, Gilles Dubochet, Burak
Emir, Philipp Haller, Stéphane Micheloud, Nikolay Mihaylov, Adriaan Moors,
Lukas Rytz, Michel Schinz, Erik Stenman, and Matthias Zenger. Scala
language specification. version 2.13. Technical report, 09 2020.

[181] Martin Odersky, Lex Spoon, and Bill Venners. Scala, 2011.
[182] Johan Östlund, Tobias Wrigstad, Dave Clarke, and Beatrice Åkerblom.

Ownership, uniqueness, and immutability. In Richard F. Paige and Bertrand
Meyer, editors, Objects, Components, Models and Patterns, 46th International
Conference, TOOLS EUROPE 2008, Zurich, Switzerland, June 30 - July 4,
2008. Proceedings, volume 11 of Lecture Notes in Business Information
Processing, pages 178–197. Springer, 2008.

[183] John Ousterhout. Why threads are a bad idea (for most purposes). In
Presentation given at the 1996 Usenix Annual Technical Conference,
volume 5. San Diego, CA, USA, 1996.

[184] Arthur Michener Peters, David Kitchin, John A. Thywissen, and William R.
Cook. OrcO: a concurrency-first approach to objects. In Visser and
Smaragdakis [216], pages 548–567.

[185] Tomas Petricek and Don Syme. The F# computation expression zoo. In
Matthew Flatt and Hai-Feng Guo, editors, Practical Aspects of Declarative
Languages - 16th International Symposium, PADL 2014, San Diego, CA, USA,
January 20-21, 2014. Proceedings, volume 8324 of Lecture Notes in Computer
Science, pages 33–48. Springer, 2014.

[186] Alex Potanin, Johan Östlund, Yoav Zibin, and Michael D. Ernst. Immutability.
In Dave Clarke, James Noble, and Tobias Wrigstad, editors, Aliasing in
Object-Oriented Programming. Types, Analysis and Verification, volume 7850
of Lecture Notes in Computer Science, pages 233–269. Springer, 2013.

[187] Aleksandar Prokopec. Learning Concurrent Programming in Scala. Packt
Publishing Ltd, 2017.

[188] Aleksandar Prokopec, Phil Bagwell, Tiark Rompf, and Martin Odersky. A
generic parallel collection framework. In Emmanuel Jeannot, Raymond
Namyst, and Jean Roman, editors, Euro-Par 2011 Parallel Processing - 17th
International Conference, Euro-Par 2011, Bordeaux, France, August 29 -
September 2, 2011, Proceedings, Part II, volume 6853 of Lecture Notes in
Computer Science, pages 136–147. Springer, 2011.

80

[189] Rosario Pugliese and Francesco Tiezzi. A calculus for orchestration of web
services. J. Appl. Log., 10(1):2–31, 2012.

[190] Ravi Rajwar and James R. Goodman. Speculative lock elision: enabling
highly concurrent multithreaded execution. In Yale N. Patt, Josh Fisher, Paolo
Faraboschi, and Kevin Skadron, editors, Proceedings of the 34th Annual
International Symposium on Microarchitecture, Austin, Texas, USA, December
1-5, 2001, pages 294–305. ACM/IEEE Computer Society, 2001.

[191] C. V. Ramamoorthy and M. J. Gonzalez. Recognition and representation of
parallel processable streams in computer programs-ii (task/process
parallelism). In Proceedings of the 1969 24th National Conference, ACM’69,
pages 387–397, New York, NY, USA, 1969. Association for Computing
Machinery.

[192] C. V. Ramamoorthy and Mario J. Gonzalez Jr. A survey of techniques for
recognizing parallel processable streams in computer programs. In American
Federation of Information Processing Societies: Proceedings of the AFIPS ’69
Fall Joint Computer Conference, November 18-20, 1969, Las Vegas, Navada,
USA, volume 35 of AFIPS Conference Proceedings, pages 1–15. AFIPS /
ACM, 1969.

[193] Keith H. Randall. Cilk: efficient multithreaded computing. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA, 1998.

[194] Marianna Rapoport and Ondrej Lhoták. A path to DOT: formalizing fully
path-dependent types. Proc. ACM Program. Lang.,
3(OOPSLA):145:1–145:29, 2019.

[195] John C. Reynolds. Towards a theory of type structure. In Bernard Robinet,
editor, Programming Symposium, Proceedings Colloque sur la
Programmation, Paris, France, April 9-11, 1974, volume 19 of Lecture Notes
in Computer Science, pages 408–423. Springer, 1974.

[196] Dustin Rhodes, Cormac Flanagan, and Stephen N. Freund. BigFoot: static
check placement for dynamic race detection. In Albert Cohen and Martin T.
Vechev, editors, Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2017, Barcelona,
Spain, June 18-23, 2017, pages 141–156. ACM, 2017.

[197] Martin C. Rinard. Analysis of multithreaded programs. In Patrick Cousot,
editor, Static Analysis, 8th International Symposium, SAS 2001, Paris, France,
July 16-18, 2001, Proceedings, volume 2126 of Lecture Notes in Computer
Science, pages 1–19. Springer, 2001.

[198] Justine Rochas. Execution support for multi-threaded active objects : design
and implementation. (Support à l’exécution pour objets actifs multi-threadés :
conception et implémentation). PhD thesis, University of Nice Sophia
Antipolis, France, 2016.

[199] Konstantinos Sagonas and Kjell Winblad. More scalable ordered set for ETS
using adaptation. In Laura M. Castro and Hans Svensson, editors, Proceedings
of the Thirteenth ACM SIGPLAN workshop on Erlang, Gothenburg, Sweden,
September 5, 2014, pages 3–11. ACM, 2014.

[200] Konstantinos Sagonas and Kjell Winblad. A contention adapting approach to
concurrent ordered sets. J. Parallel Distributed Comput., 115:1–19, 2018.

[201] JH Saltzer. Traffic control in a multiplexed computer, 1966.

81

[202] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and
Thomas E. Anderson. Eraser: A dynamic data race detector for multithreaded
programs. ACM Trans. Comput. Syst., 15(4):391–411, 1997.

[203] Felipe Bañados Schwerter, Ronald Garcia, and Éric Tanter. Gradual
type-and-effect systems. J. Funct. Program., 26:e19, 2016.

[204] Nir Shavit and Dan Touitou. Software transactional memory. Distributed
Comput., 10(2):99–116, 1997.

[205] John F Shortle, James M Thompson, Donald Gross, and Carl M Harris.
Fundamentals of queueing theory, volume 399. John Wiley & Sons, 2018.

[206] Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In
Scheme and Functional Programming Workshop, pages 81–92, 2006.

[207] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland.
Refined criteria for gradual typing. In Thomas Ball, Rastislav Bodík, Shriram
Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett, editors, 1st Summit
on Advances in Programming Languages, SNAPL 2015, May 3-6, 2015,
Asilomar, California, USA, volume 32 of LIPIcs, pages 274–293. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[208] William Stallings. Operating systems: internals and design principles. Upper
Saddle River, NJ: Pearson/Prentice Hall„ 2009.

[209] Christopher Strachey. Time sharing in large fast computers. In
Communications of the ACM, volume 2, pages 12–13. ASSOC COMPUTING
MACHINERY 1515 BROADWAY, NEW YORK, NY 10036, 1959.

[210] Don Syme, Tomas Petricek, and Dmitry Lomov. The F# asynchronous
programming model. In Ricardo Rocha and John Launchbury, editors,
Practical Aspects of Declarative Languages - 13th International Symposium,
PADL 2011, Austin, TX, USA, January 24-25, 2011. Proceedings, volume
6539 of Lecture Notes in Computer Science, pages 175–189. Springer, 2011.

[211] Kenjiro Taura, Satoshi Matsuoka, and Akinori Yonezawa. ABCL/f: A
future-based polymorphic typed concurrent object-oriented language- its
design and implementation. In Guy E. Blelloch, K. Mani Chandy, and Suresh
Jagannathan, editors, Specification of Parallel Algorithms, Proceedings of a
DIMACS Workshop, Princeton, New Jersey, USA, May 9-11, 1994, volume 18
of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 275–291. DIMACS/AMS, 1994.

[212] TIOBE. TIOBE Index for June 2020. https://www.tiobe.com/tiobe-index/.
(Accessed June, 2020).

[213] Matthew S. Tschantz and Michael D. Ernst. Javari: adding reference
immutability to Java. In Ralph E. Johnson and Richard P. Gabriel, editors,
Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2005, October 16-20, 2005, San Diego, CA, USA, pages 211–230.
ACM, 2005.

[214] Takayuki Usui, Reimer Behrends, Jacob Evans, and Yannis Smaragdakis.
Adaptive locks: Combining transactions and locks for efficient concurrency.
Journal of Parallel and Distributed Computing, 70(10):1009–1023, 2010.

[215] Tarmo Uustalu. A divertimento on MonadPlus and nondeterminism. J. Log.
Algebraic Methods Program., 85(5):1086–1094, 2016.

82

[216] Eelco Visser and Yannis Smaragdakis, editors. Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH 2016,
Amsterdam, The Netherlands, October 30 - November 4, 2016. ACM, 2016.

[217] Philip Wadler. Linear types can change the world! In Manfred Broy, editor,
Programming concepts and methods: Proceedings of the IFIP Working Group
2.2, 2.3 Working Conference on Programming Concepts and Methods, Sea of
Galilee, Israel, 2-5 April, 1990, page 561. North-Holland, 1990.

[218] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less
ad-hoc. In Conference Record of the Sixteenth Annual ACM Symposium on
Principles of Programming Languages, Austin, Texas, USA, January 11-13,
1989, pages 60–76. ACM Press, 1989.

[219] Edwin M. Westbrook, Jisheng Zhao, Zoran Budimlic, and Vivek Sarkar.
Practical permissions for race-free parallelism. In James Noble, editor,
ECOOP 2012 - Object-Oriented Programming - 26th European Conference,
Beijing, China, June 11-16, 2012. Proceedings, volume 7313 of Lecture Notes
in Computer Science, pages 614–639. Springer, 2012.

[220] Tom White. Hadoop: The definitive guide. " O’Reilly Media, Inc.", 2012.
[221] Niklaus Wirth. A note on "program structures for parallel processing".

Commun. ACM, 9(5):320–321, May 1966.
[222] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type

soundness. Inf. Comput., 115(1):38–94, 1994.
[223] Derek Wyatt. Akka concurrency. Artima Incorporation, 2013.
[224] Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-oriented

concurrent programming in ABCL/1. In Meyrowitz [163], pages 258–268.
[225] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, Ion

Stoica, et al. Spark: Cluster computing with working sets. HotCloud,
10(10-10):95, 2010.

[226] Karen Zee and Martin C. Rinard. Write barrier removal by static analysis. In
Ibrahim and Matsuoka [121], pages 191–210.

[227] Yunhui Zheng and Xiangyu Zhang. Static detection of resource contention
problems in server-side scripts. In Martin Glinz, Gail C. Murphy, and Mauro
Pezzè, editors, 34th International Conference on Software Engineering, ICSE
2012, June 2-9, 2012, Zurich, Switzerland, pages 584–594. IEEE Computer
Society, 2012.

[228] Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam Kiezun, and
Michael D. Ernst. Object and reference immutability using Java generics. In
Ivica Crnkovic and Antonia Bertolino, editors, Proceedings of the 6th joint
meeting of the European Software Engineering Conference and the ACM
SIGSOFT International Symposium on Foundations of Software Engineering,
2007, Dubrovnik, Croatia, September 3-7, 2007, pages 75–84. ACM, 2007.

83

Appendix A.
Notes and Errata

Paper I
• Fig. 4, the expression-level evaluation context has a missing rule:

E ::= . . . | v � E

• Reduction rule TS-ASYNC has misspelled the return type of the task in
the premise judgement, the rule should be:

(T-ASYNC)
Γ �τ e : τ

Γ �ρ async e : Fut τ

Paper II
• The types in Section 2.2 should be τ ::= K | Fut τ | τ → τ ′. The abstrac-

tion type was missing, even when we use it in rule T-APP.
• The types in Section 3.2 should be τ ::= K | Prom τ | τ → τ ′. The ab-

straction type was missing, even when we use it in rule TI-APP.
• Type Preservation (Lemma 1) had a minor misspelling, and Γ′ ⊃ Γ

should have been Γ′ ⊇ Γ.
• For concreteness, the micro-benchmark is in Fig. 5.1.

Paper III
• Section Extending FutFlow with Data-Flow Futures can be simplified

(Page 19). Rules T-TYPEABSTRACTION and T-TYPEAPPLICATION
can be the same as the ones in the FlowFut calculus, and the ↓ in rule
T-MATCH (Γ �ρ e3 : ↓�Fut τ) is not really required; we assume that the
types of the premises are normalised, same as in FlowFut calculus.

84

1 read class Job
2 val workload: int
3
4 def init(w: int): unit
5 this.workload = w
6 end
7 end
8
9 active class Broker

10 val workers: [Worker]
11 var current: uint
12 val wsize: uint
13
14 def init(): unit
15 this.workers = [new Worker, new Worker,
16 new Worker, new Worker]
17 this.wsize = |this.workers|
18 end
19
20 def runBaseline(job: Job): int
21 this.current = (this.current + 1) % wsize
22 val worker = this.workers(this.current)
23 var result = 0
24 val workload = job.workload
25 for i ←[0..workload] do
26 for i ←[0..workload] do
27 if (result % 4 == 0) then
28 result += i
29 else
30 result = result + 4
31 end
32 end
33 if (result % 4 == 0) then
34 result += i
35 else
36 result = result + 4
37 end
38 end
39 return result
40 end
41
42 def run(job: Job): int
43 this.current = (this.current + 1) % wsize
44 val worker = this.workers(this.current)
45 val future = worker!start(job)
46 return get(future)
47 end
48
49 def runA(job: Job): int
50 this.current = (this.current + 1) % wsize
51 val worker = this.workers(this.current)
52 val future = worker!start(job)
53 await(future)
54 return get(future)
55 end

56 def runF(job: Job): int
57 this.current = (this.current + 1)%wsize
58 val worker = this.workers(this.current)
59 forward(worker!start(job))
60 end
61 end
62
63 active class Worker
64 def start(job: Job): int
65 var result = 0
66 val workload = job.workload
67 for i ←[0..workload] do
68 for i ←[0..workload] do
69 if (result % 4 == 0) then
70 result += i
71 else
72 result = result + 4
73 end
74 end
75 if (result % 4 == 0) then
76 result += i
77 else
78 result = result + 4
79 end
80 end
81 return result
82 end
83 end
84
85 active class Main
86 def main(argv: [String]): unit
87 val repetitions =
88 match argv(1).to_int() with
89 case Nothing => 4000
90 case Just(i) => i
91 end
92 val bkr = new Broker()
93 for i ←[0..999] do
94 −− Baseline synchronous code
95 −− bkr!runBaseline(new Job(repetitions))
96
97 −− Asynchronous send + get strategy
98 −− bkr!run(new Job(repetitions))
99

100 −− Await strategy
101 bkr!runA(new Job(repetitions))
102
103 −− Forward Strategy
104 −− bkr!runF(new Job(repetitions))
105 end
106 end
107 end

Figure 5.1. Micro-benchmark used in Paper II.

85

Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1986

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through
the series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-425128

ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2021

	Abstract
	List of papers
	The Author’s Contributions
	Related Publications

	Sammanfattning på svenska
	Acknowledgements
	Contents
	1. Introduction
	1.1 Contributions
	1.2 Outline

	2. Concurrency and Communication Abstractions
	2.1 Concurrency
	2.2 Synchronisation and Communication Patterns
	2.2.1 Futures and Promises
	2.2.2 Channels

	2.3 Concurrency Problems
	2.3.1 Data-Races
	2.3.2 Deadlocks
	2.3.3 Performance and Synchronisation Granularity

	2.4 Concurrency and Synchronisation in Context

	3. Object-Oriented and Functional Programming
	3.1 Object-Oriented Programming
	3.1.1 Concurrency Perspectives In Object-Oriented Languages

	3.2 Functional Programming
	3.2.1 Concurrency Perspectives In Functional Languages
	3.2.2 Task-based Simply Typed Lambda Calculus

	4. Related Work
	4.1 Actor-Based Concurrency Models
	4.2 Concurrent Asynchronous Abstractions
	4.3 Speculative Computations
	4.4 Futures & Promises
	4.4.1 History
	4.4.2 A Future Categorisation

	4.5 Capability-Based Languages
	4.5.1 Introduction To Capability-Based Languages
	4.5.2 Ideas Adopted In Capability-Based Languages

	4.6 Concurrent Programming Languages Summary
	Encore
	Habanero Java With Permissions
	Pony
	C# Reference Immutability
	Rust
	Scala
	ABS
	ASP
	AmbientTalk
	Capabilities for Sharing
	ConstraintJava
	Distributed Electronic Rights For ECMAScript
	E
	Erlang

	4.7 Discussion

	5. Conclusion
	References
	Appendix A.
	Notes and Errata
	Paper I
	Paper II
	Paper III

