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Fig. 1. Simple program: (left) pseudo-code and (right) executions corresponding to four Mazurkiewicz traces.
The shaded background indicates that executions E; and E; are equivalent.

1 INTRODUCTION

Ensuring correctness of concurrent programs is difficult. Under sequential consistency (SC), the
memory model to which we confine ourselves in this paper, one must consider all the different ways
in which actions of threads can be interleaved. A successful technique for finding concurrency bugs
(i.e., defects that arise only under some thread schedulings) and for verifying their absence is stateless
model checking (SMC) [Godefroid 1997]. Given a terminating program, which may be annotated with
assertions, SMC systematically explores the set of all thread schedulings that are possible during
runs of this program. A special runtime scheduler drives the SMC exploration by making decisions
on scheduling whenever such choices may affect the interaction between threads. Given enough
time, the exploration covers all possible executions and detects any unexpected program results,
program crashes, or assertion violations. The technique is entirely automatic, has no false positives,
does not consume excessive memory, and can reproduce the concurrency bugs it detects. SMC has
been implemented in many tools (e.g., VeriSoft [Godefroid 2005], CrEss [Musuvathi et al. 2008],
Concuerror [Christakis et al. 2013], NIDHUGG [Abdulla et al. 2015], rInspect [Zhang et al. 2015],
CDSCHECKER [Norris and Demsky 2016], and RCMC [Kokologiannakis et al. 2018]), and successfully
applied to realistic concurrent programs (e.g., by Godefroid et al. [1998] and Kokologiannakis and
Sagonas [2017]).

SMC faces the problem that the number of possible thread schedulings grows exponentially
with the length of program execution, and must therefore be equipped with techniques to reduce
the number of explored executions. The most prominent one is partial order reduction [Clarke
et al. 1999; Godefroid 1996; Peled 1993; Valmari 1991], adapted to SMC as dynamic partial order
reduction (DPOR) [Abdulla et al. 2014; Flanagan and Godefroid 2005; Sen and Agha 2007]. DPOR
is based on the observation that two executions can be regarded as equivalent if they induce the
same ordering between conflicting statement executions (called events), and that it is therefore
sufficient to explore at least one execution in each equivalence class. Such equivalence classes are
called Mazurkiewicz traces [Mazurkiewicz 1987].

As an illustration, Fig. 1 shows a simple program with two threads, #; and f,, that access a shared
variable x. Each thread writes to the variable and reads from it into a local register, a resp. b. We
would like to explore the possible executions of this program, e.g., to check whether the program can
satisfy a = 2 and b = 1 upon termination. Under SC [Lamport 1979], the interleaving model that we
consider here, executions of this program fall into four equivalence classes (Mazurkiewicz traces),
corresponding to the possible ways in which the writes can be ordered relative to the other events.
Figure 1 shows one representative execution from each equivalence class as E,. . ., E4, respectively.
Any SMC algorithm based on Mazurkiewicz traces (e.g., the DPOR algorithms by Flanagan and
Godefroid [2005] or by Abdulla et al. [2017]), must thus explore at least four executions. However,
when checking for unexpected program results, assertion violations, or crashes, it is possible to
reduce this number even more by weakening the equivalence of Mazurkiewicz traces. Namely, a
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closer inspection reveals that the two executions E; and E; are equivalent in the sense that each
thread goes through the same sequences of local states and computes the same results. This is
because the read operations get their values from the same write operation in both executions. To
make this precise, introduce the relation rf (“reads-from”) on the events of an execution, which
connects a write with any read that reads its value. We can see that if two executions have the same
rf relation, then each thread performs the same local computation. When annotating the executions
in Fig. 1, we see that E; and E; have the same rf relation. Under Mazurkiewicz equivalence, E; and E,
would be distinguished by the ordering of writes, but this is not relevant for the computed results.

The preceding example illustrates that there is a potential for improving the efficiency of SMC
algorithms by using an equivalence which preserves only the rf relation. We introduce the term rf
equivalence for this equivalence! and the term rf trace, or just trace for an equivalence class. In this
small example, the improvement is modest. (It reduces the number of explored executions from
four to three.) However, in bigger programs, it can be significant, sometimes even exponential, as
we will show in Sect. 8. Intuitively, rf equivalence is the coarsest equivalence that respects both
the local control flow of each thread, and the flow of data between events of different threads.

To exploit the potential efficiency gains offered by the rf equivalence fully, we should design a
SMC algorithm that is both (i) optimal in the sense that it explores precisely one execution in each
equivalence class, and (ii) efficient in the sense of spending only a small (at most polynomial in the
size of the program) effort per equivalence class. Intuitively, such an algorithm would guarantee to
explore the possible combinations of control flow and data flow in a non-redundant manner.

Several recent SMC techniques [Aronis et al. 2018; Chalupa et al. 2018; Huang 2015; Norris and
Demsky 2016] try to exploit the potential offered by equivalences that are coarser than Mazurkiewicz
traces. However, they are far from optimal in the above sense, since in general they explore a
significant number of different executions that are rf equivalent. The DC-DPOR algorithm of
Chalupa et al. [2018] explicitly uses rf equivalence as a criterion, but it is neither optimal nor
efficient, except for the very restricted case when the communication graph on the set of threads
(which connects two threads if they share a variable) is acyclic.

There is a fundamental obstacle which makes it difficult to construct an efficient SMC algorithm
for rf equivalence. To explain it, we note that a natural way for an SMC algorithm to find new
executions is by modifying the rf relation of previously explored executions. For instance, in Fig. 1
it could try to generate a new execution from E4 by letting the third statement (a = x) read from the
first (x = 2) instead of the second. It should then check whether the new rf relation is consistent, i.e.,
whether it can arise by reordering the statements to obtain an actual SC execution. In this example,
the new rf relation is in fact not consistent, and so will not induce a new execution. A fundamental
obstacle for efficiency is now that the problem of checking consistency of a given rf relation
under SC is NP-complete in the size of the program (which is based on the length of the program
and the number of threads) [Gibbons and Korach 1997, Theorem 4.1]. An SMC algorithm which
generates new rf relations as modifications of explored ones and checks their consistency will
therefore not be efficient in the worst case. In fact, the NP-completeness of consistency makes the
construction of efficient SMC algorithms significantly more challenging for SC than for many other
memory models; e.g., Release-Acquire (RA) for which consistency can be checked in polynomial
time [Abdulla et al. 2018].

In this paper, we present a new SMC algorithm for checking multithreaded programs under SC,
which is both (i) optimal and (ii) efficient in practice. First, we achieve optimality by a strategy for
exploring executions, which by construction prevents generating executions that are equivalent to

IChalupa et al. [2018] use the term observation equivalence, which we think is unfortunate since in the context of process
algebra it is a well-known term which means something completely different [Hennessy and Milner 1980].
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already explored ones. It is in part inspired by the strategy of the SMC algorithm for multithreaded
programs under the RA semantics [Abdulla et al. 2018], but is redesigned to minimize the required
calls to a consistency decision procedure by maintaining ordering information that makes such
calls unnecessary. Second, we achieve “efficiency in practice” by a novel check for consistency of a
given rf relation. The consistency check consists of three phases. The first two of them constitute
a sound check for consistency which is polynomial time in the size of the program, but incomplete:
the first phase detects inconsistency and the second phase detects consistency. The third phase is a
sound and complete check to detect both consistency and inconsistency. More specifically:

(1) The first phase is a saturation procedure, which extends a given rf relation by orderings that
must be respected by any execution with the given rf relation. If the resulting extension is
cyclic, the saturation procedure returns “inconsistent”, otherwise the check continues below.

(2) The second phase attempts to construct an execution that respects the given rf relation,
which becomes a witness for consistency. The phase makes a single attempt, using as guidance
a previously explored execution. If this is successful the check returns “consistent”, otherwise
it moves to the third phase.

(3) The third phase consists of a novel decision algorithm, which decides consistency in time that
is polynomial in the length of the program and exponential in the number of threads.

An important finding is that the polynomial-time test represented by the first two phases has so far
not returned “unknown” for any rf relation on any benchmark or “real” program that we have
tried, implying that using this polynomial-time test is sufficient for checking consistency of rf
relations on “typical” programs. For this reason, we claim that our algorithm is efficient in practice.
As a further comment, the fact that the decision algorithm in the third phase runs in polynomial
time in the length of the program implies that for the case where the number of threads is bounded,
our SMC algorithm is in fact both optimal and efficient (i.e., not only “efficient in practice”).

We have implemented our algorithm by extending NIDHUGG, an SMC tool for multithreaded
C/C++ programs based on the LLVM tool chain, with a new mode called rfsc. Our experimental
evaluation (Sect. 8), on a wide range of benchmarks, shows that NipHUGG/rfsc: (i) although slower
than the fastest SMC tools when the number of rf traces coincides with the number of Mazurkiewicz
traces, scales similarly to those tools in these cases (i.e., in these cases, the performance difference
is only a small constant factor); (ii) scales better or significantly better than all other SMC tools in
cases where the rf equivalence is coarser than Mazurkiewicz; and (iii) outperforms each and every
other tool/algorithm by an exponential factor in at least one program. Moreover, we show that
the rf equivalence sometimes provides a significant performance advantage, both in identifying
concurrency errors which are known to be very challenging—and often impossible—to detect by
other methods, as well as when verifying that they have been fixed properly (Sect. 9).

In summary, the contributions of this paper include:

(1) A novel SMC algorithm for concurrent programs under the SC semantics (Sect. 4) that is both
optimal for rf equivalence and efficient in practice.

(2) An efficient polynomial-time test (in the size of the program) for checking consistency of a
given rf relation (Sect. 5), which in theory is incomplete, but in practice manages to correctly
classify all potential rf relations arising in all programs we have tried.

(3) A complete decision algorithm for checking consistency (Sect. 5.3), which runs in polynomial
time in the length of the program and exponential time in the number of threads.

(4) An implementation (Sect. 7) of all the above, which is publicly available both as an artifact
[Abdulla et al. 2019] and in a possibly more up-to-date version as part of the NipHUGG tool.

(5) A presentation of use cases in which the rf equivalence, and our new algorithm, provides a
significant performance advantage over other SMC techniques.
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Fig. 2. Exploring the program of Fig. 1: (left) the first trace and two witnesses from it, (right) the tree of traces
after the full exploration. We skip the initial write to x in traces here, and use green colour for witnesses.

2 ILLUSTRATING EXAMPLE

Let us illustrate the ideas of our SMC algorithm by its application to the program given in Fig. 1.

The algorithm represents each execution as a sequence of events, each of which is a particular
execution of a program statement. We also regard the initialization of the shared variables (of x in
this case) as events. In this program, the initialization event has no impact, so we omit it in the
following presentation. Each execution thus consists of four events. For instance, the sequence
x=1a=xx=2b=x is an execution, shown as E; in Fig. 1. Since execution is under SC semantics, in
which each read gets the value written by the most recent write to the same variable, this execution
assigns the value 1 to a and the value 2 to b.

The goal of our SMC algorithm is to explore executions in such a way that each rf equivalence
class (called a trace) is explored exactly once. Recall from the introduction that a trace is characterized
by a sequence of events of each thread, and a relation rf (“reads-from”) which connects a write with
any read that reads its value. A trace is thus naturally represented as a partially ordered set of events,
in which the events of each thread are totally ordered, events of different threads are unordered,
and in which each read event is labeled by the write event from which it reads. Throughout the
paper, we will represent a trace by any of its linearizations. Since such a linearization uniquely
defines the represented trace, we will refer to it simply as a trace, and mean the (unique) trace that
is represented by that sequence. Since in this program, each write event writes a unique value,
we can denote a read event, such as a = x, which reads from x = 1, simply by a = 1. Thus, the
trace containing E; and E; can be represented in six different ways, corresponding to its possible
linearizations, e.g., as x=1a=1x=2 b=2,0r as x=2 b=2 x=1 a=1, etc. Note that a read can also
read from a write which succeeds it in the linearization; thus a possible representation of the trace
containing E3 is x=1a=2x=2b=2.

We can now view an execution as a trace linearization in which the events are ordered so that the
source of each read is the most recent write to the same variable. We say that a trace 7 is consistent
if it has a linearization which is also an execution E. If so, we say that E is a witness for 7. A trace is
inconsistent if it has no witness. An example of an inconsistent trace is x=1x=2 a=2 b=1. We
say that a trace is complete if it cannot be extended, i.e., each thread reaches a terminal state.

To explore complete consistent traces, our SMC algorithm generates a tree, whose arcs are labeled
by events of traces. Each node represents the trace represented by the sequence of events labeling
the path from the root to that node. When the algorithm finishes, each complete consistent trace
is represented by exactly one leaf. During the generation, the algorithm checks that generated
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(complete or incomplete) traces are consistent by finding witnesses, which are then associated
with the representing node. We now illustrate, using Fig. 2, how the exploration proceeds for the
program in Fig. 1.

First, an arbitrary execution is generated. Let us assume that thisis E; := x=1a=1x=2b=2. This
execution also represents a complete trace 7y, which becomes the leftmost path in the exploration
tree in Fig. 2.

For each newly generated complete trace, the algorithm considers each of its read events, starting
from the end in the generated linearization. It finds all possible write events in the trace, which can
be alternative sources for this read event, while still maintaining consistency. Each such alternative
source is entered into a set of so-called schedules, which is associated with the node from which
the read is performed. Each schedule represents an alternative continuation, which must later be
explored by the algorithm. These sets of schedules are analogous to the backtrack sets in the DPOR
algorithm of Flanagan and Godefroid [2005] or the wakeup trees in the Optimal DPOR algorithm
of Abdulla et al. [2017].

Let us illustrate this for the trace 7; in Fig. 2. Starting from the end, first the read b = x is
considered. A potential source is x = 1, which can be the source of b = x precisely when the
trace x = 1a=1x = 2b =1 is consistent. The algorithm performs a consistency check, which
returns “consistent” and finds a witnessing execution (more details will be given in Sect. 5), say,
E; :=x=2x=1a=1b=1.(We use green colour for witnesses.) The algorithm then adds the read
event b=1 together with this witness as a schedule that should be later explored from the node
representing x=1a=1x=2 b=1, denoted by the lower dashed arrow in Fig. 2.

Thereafter, the algorithm considers the read event a=x. A possible alternative source is x = 2.
Since this write appears after the corresponding read, the added schedule must include both this
write event and the alternative read a=2. Before adding this schedule, the algorithm invokes the
consistency check for x=1 a=2 x=2. In a similar way to the previous consistency check, the test
succeeds and returns a witness, say x =1 x=2 a=2. The sequence of alternative write x =2 and
alternative read (a=2) together with this witness is entered as a possible schedule, denoted by the
right-most path in the left tree of Fig. 2.

The search for alternative sources is now finished. Thereafter the algorithm extends each discov-
ered schedule into a new complete consistent trace. In our example, the bottom schedule is already
complete, so it becomes the second consistent trace generated by the algorithm, denoted 5. For the
top one, the witness x=1x=2 a=2 is extended to a complete trace by adding the read event b=2,
resulting in execution E3 := x=1x=2 a=2 b=2 and trace 3. For each new complete trace, the
algorithm repeats the same steps that we just showed for 7;. Here 7, does not offer any alternative
sources that have not already been detected for 7;. For 73, a possible alternative source for b=2
could be x =1. However, the consistency check using the polynomial-time test reveals that this is
not possible, and so no new schedule is generated.

We can picture the explored traces in a tree, as in Fig. 2. Note that this tree is just a conceptual
record of the explored traces, and is not stored in memory. At any point in time, the algorithm
only needs to store the trace which is currently being explored, plus the schedules representing
alternative reads of that trace. Thus, when the trace 73 is being explored, the left half of the tree
(below a=1) need no longer be kept in memory. We also note that each consistency check in this
example has successfully been handled by our polynomial-time test.

3 COMPUTATION MODEL

In this section, we introduce the class of program we consider in this paper, and then define several
semantical notions such as transitions, events, executions and traces. We will use these notions
later to define and reason about our SMC algorithm.
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Programs. We consider a program PP consisting of a finite set T of threads that share a finite set X
of (shared) variables, ranging over a domain V of values that includes a special value 0. A thread has
a finite set of local registers that store values from V. Each thread runs a deterministic code, built
in a standard way from expressions and atomic commands, using standard control flow constructs
(sequential composition, selection and bounded loop constructs). Throughout the paper, we use
x,y for shared variables, a, b, c for registers, and expr for expressions. Global statements are either
a write x = expr of the value of an expression expr to a shared variable or a read a = x from a
shared variable to a register a. Local statements only access and affect the local state of the thread
and include assignments a = expr to registers and conditional control flow constructs. Note that
expressions do not contain shared variables, implying that a statement accesses at most one shared
variable. In order to simplify the presentation, we do not consider atomic read-modify-write (RMW)
operations. This is handled by our implementation (Sect. 7). The local state of a thread t € T is
defined as usual by its program counter and the contents of its registers.

Events, Traces, and Executions. Executions of a program P are defined according to the standard
interleaving (a.k.a. sequential consistency) model. We formally define this model using the following
pattern: after defining events and transitions, we define a run as a sequence of transitions of an
individual thread; we define a trace as a composition of the events generated in a run of each thread,
in which each read event reads from a write in the trace. An execution is then a linearization of a
trace in which each read reads from the most recent write to the same variable.

First we define an event as a particular execution of a statement in an execution. A write event
of P is a tuple e = (id, t, W, x,v), where id € N is an event identifier, t € T is a thread, x € X is a
variable, and v € V is a value. This event corresponds to thread t writing the value v to variable x.
The identifier id denotes that ¢ has executed id—1 events before e in the execution. For each variable
x € X, we assume a special write event init, = (—,—,W,x,0), called the initializer event for x.
This event is not performed by any of the threads in T, and writes the value 0 to x. We define
Einir := {init, | x € X} as the set of initializer events. A read event of P is a tuple e = (id, t,R,x,e’),
where id, t, and x are as for a write event, and e’ is a write event of P or an initializer event for x.
This event corresponds to thread t reading variable x and obtaining the value that was written
by e’. That is, e’ is of the form (id’, t,W,x,v) or {(—,—, W, x,0), causing e to read the value v. For
a write event e of form (id, t, W,x,v), we define e.id := id, e.th := t, e.type := W, e.var := x, and
e.val := v. For a read event e of form (id, t,R,x,e’), we define e.id, e.th, and e.var as for write
events, and define e.type := R and e.src := e’.

A transition of a thread t is of form y ~> y’, where y and y’ are local states of t and e is an
event with e.th = t, which can be executed from the state y, such that executing any subsequent
local statements of ¢ takes the thread ¢ into local state y’. A run of a thread ¢ is a sequence of
transitions of ¢ of form y, 2, " AN Yn, Where e;.id = i fori = 1,...,n, ie, event identifiers
are increasing. The run is complete if there is no outgoing transition from y,. Note that in a run, we
allow read events to read any value, not only values from write events in the same run (since they
can read from a write event from another thread). The write events and the values of read events
will be constrained (as they should be) when runs of the program’s threads are combined to form
traces and executions, to be defined below.

A trace T of P is a set of events of P, which consists of E;;;; and for each thread ¢ the set of events
in some run of ¢, such that for each read event e € 7, the write or initializer event e.src is also in 7.

Given a trace 7, we let <, be the partial order on the events of 7, in which (i) the initializer
events are ordered before the other events, (ii) for each thread ¢t € T, the events of t are totally
ordered by their event identifiers, and (iii) events of different threads are unordered, Note that the
identifiers of the events of a thread ¢ in 7 form a contiguous increasing sequence starting from 1. A
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linearization of a trace 7 is a sequence obtained by ordering the events of 7 in a way which respects
<.. For convenience, we use the term trace also for such a linearization, and mean the (unique)
represented trace. For two sequences of events, = and z’, we let 7 = 7’ denote that they contain
the same sets of events. A trace is complete if for each thread ¢, the events of t come from a complete
run of ¢.

Given a trace 7, we define the reads-from relation rf on its events by e [rf] e’ if e’ is a read
event with e’.src = e, i.e., e’ reads its value from e. We will use the term “happens-before” for the
relation [<; U rf]*, ie., we will say that e happens-before e’, or that e’ happens-after e to denote
that e[<, U rf]*e’.

An execution E of P is a linearization of a trace such that for each read event e in E, the event
e.src is the last preceding write event to the same variable (note that e.src can also be the initializer
event for e.var). A trace T may or may not have a linearization which is an execution. Define a
trace 7 to be consistent if it has a linearization E which is an execution. In this case, we say that E is
a consistency witness (or just witness) for 7. Notice that a necessary (but not sufficient) condition for
consistency of a trace is that the relation [<; U rf], on the events of the trace, is acyclic.

Example 3.1 (Trace and execution). The rightmost trace 73 in Fig. 2 is consistent since it has a
witness E5 := x=1x=2 a=2 b=2, in which each read event reads from the last preceding write to
the same variable. Note that in Fig. 2, the trace is represented by a linearization where the read
event a=2 reads from the write x = 2, even though that write appears after the read. O

We say that executions E and E’ are rf equivalent E = F/, i.e., they contain the same sets of
events. In two equivalent executions, each thread runs through the same sequence of local states,
implying that they exhibit the same local assertion violations. Note however, that they need not
end up with the same values of global variables.

Example 3.2 (Global variables in rf equivalent executions). In Fig. 1, the executions E; and E,
result in different values of x. We have x = 2 and x = 1 at the end of E; and E, respectively. O

4 THE EXPLORATION ALGORITHM

In this section, we present our SMC algorithm, named REapsFrRomM-SMC, which optimally explores
complete consistent rf traces (traces for short) of a given concurrent program. In Sect. 6, we will
show that it satisfies the following three properties:

(i) Soundness: each complete trace explored by the algorithm is a consistent trace of the program.
(if) Completeness: the algorithm explores all consistent traces of the program.

(iii) Optimality: each trace is explored exactly once.

The exploration algorithm uses a novel test for checking whether a given trace is consistent,
described in Sect. 5, thereby achieving “efficiency in practice”. Recall that we represent each trace
by some linearization.

Given a trace 7, we define a cut of 7 to be a subsequence 7’ of 7 such that whenever e and e’ are
events in 7, such that 7’ contains e and e’ [<,; U rf]* e, then r’ also contains e’. That is, a cut is
closed under causal dependencies (in the sense of <, U rf). Note that a cut is also a trace.

For a trace 7 and an event e € 7 let
pre(t,e) denote the prefix of 7 up to, but not including, e;
post(t,e) denote the suffix of 7 after, but not including, e;
predecs(r,e) denote the minimal cut of 7 which contains e, i.e., the set of events (including e) on

which e is causally dependent.
As an example, if 7 is the execution E, in Fig. 1, i.e., 7 := x=2x=1a=1 b=1, then predecs(r,b=1)
isx=2x=1b=1.
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Algorithm 1: REApsFrRoM-SMC.
1 ReaDpsFrom-SMC(t,E)

2 extend E to a complete execution E - E where each event of E is unmarked

3 v =r-E

4 for each read event eg € E do schedules(pre(r’,eg)) = 0

5 for each ep, ey € 7/ : ey .var = eg.var and ey # eg.src and

6 (eg € E orey € E) and unmarked(eg) and MAYREAD(7' e, ey) do
7 t”" = pre(t’,eR)

8 7 = predecs(t’, ey ) N posi(z’,eR)

9 o := eg[src := ew] - mark(r)

10 E” := GETWITNESS(t” - 0,E - E)

11 if E” # () and =3(c’,—) € schedules(r’’) : ¢’ = o then add {(c,E"’) to schedules(t"")
12 for each read event eg € E starting from the end do

13 " = pre(t’,eR)

14 for each (o,E"") € schedules(r”’) do ReapsFroM-SMC(z” - o,E”")

15 erase schedules(t'’)

The pseudocode of READSFROM-SMC is given as Algorithm 1. The algorithm consists in a call
READSFROM-SMC((),()) to the recursive procedure READSFROM-SMC(t, E), where 7 is a trace and E
is an execution. A precondition for READSFROM-SMC(7, E) is that 7 is consistent and E is a witness
for 7. If the precondition is satisfied, a call to READSFROM-SMC(7, E) will explore all complete
consistent traces that extend 7. More precisely, for each complete consistent trace 7’ that extends 7
(i.e, 7 is a cut of 7’), a witness E’ = E - E of 7/ will be generated at line 2 of some subcall of
READSFROM-SMC(7, E) in such a way that each trace (i.e., rf equivalence class) is explored exactly
once.

An important element in READSFROM-SMC is to analyze an explored trace to see whether another
trace can be formed by changing the source of one of its read events. In order to avoid redundant
such analyses, the representation of events in traces that arise in the algorithm is extended with an
additional field whose value is either T or L. In the first case, we say that the event is marked; in
the second, that it is unmarked. Whenever a new read event is generated to explore a new trace, it
is unmarked, denoting that the algorithm should look for alternative sources for the read. When
an unmarked event is included in a schedule (at line 9), it becomes marked to denote that it is
merely a copy of an unmarked event, and that searching for alternative sources is redundant. For a
sequence 7 of events, let mark(r) be the sequence x but with each event marked. We adapt the
equivalence = on sequences of events, by letting it ignore whether events are marked, so that, e.g.,
mark(r) = 7.

When analyzing a trace 7/, then for each prefix 7’ of 7’ such that "’ = pre(z’,eg) for some
unmarked read event eg in 7’, the algorithm maintains a set schedules(r’’) that records discovered
alternative sources for read events. Each element of schedules(r”’) is a pair (o,E), where o is a
sequence of events, the first of which is obtained from eg by changing its source to another event
in 7”7 or in o, and E is a witness for 7’ - o. Each sequence o is a way to extend 7’’ to a trace which
is incompatible with 7’, since the source of eg has been changed. Each such o will subsequently
be explored as a continuation of 7’ in a call to READSFROM-SMC which happens in the recursive
exploration phase; see below. Thus, the sets schedules(z’’) play a role analogous to that of the
backtrack sets in the DPOR algorithm of Flanagan and Godefroid [2005] or the wakeup trees in the
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Optimal DPOR algorithm of Abdulla et al. [2017]. Each set schedules(t’’) is maintained across calls
to READSFROM-SMC as long as 7’/ is a prefix of the currently explored trace.

A recursive call to READSFROM-SMC consists of three phases: the exploration phase (lines 2-3),
the new-source-detection phase (lines 4-11), and the recursive-exploration phase (lines 12-15).

In the exploration phase, READSFROM-SMC(r, E) extends E to an arbitrary complete execution
E - E with all events of E unmarked. Correctness properties can here be checked on E - E. Thereafter,
7 is extended correspondingly to 7’ = 7 - E. Note that 7’ is consistent, since it has a witness E - E.

In the new-source-detection phase, the algorithm searches for all possible ways to change the
source eg.src of a read event eg in 7’ to a write event ey in 7’ which is different from eg.src. First,
the sets schedules(t’’) for traces r”’ that are generated for the first time are initialized (at line 4).
Thereafter, all possible alternative sources for any unmarked read event eg of 7’ are found. It is
sufficient to consider alternative sources ey, that satisfy the conditions of line 6: (i) either eg
or ey is in E (otherwise their combination has been explored in some previous call), (ii) eg is
unmarked (otherwise alternative sources for eg are investigated elsewhere), and (iii) ey passes the
test MAYREAD(7, e, ey ), which returns true if eyy € 7’ is such that eg[<,; U rf]* ey, does not hold
(i.e., ew does not happen-after eg), and such that there is no write event ej,, with ey [<;]e], [<,
U rf]er (ie., e}, is a later write to the same variable, by the same thread as ey or with ey € Ejpit,
which anyway happens-before eg). It is not difficult to see that these conditions are necessary—but
in general not sufficient—for any alternative source of eg. The test MAYREAD can be viewed as a
low-cost filter which rejects combinations of reads and writes that are trivially inconsistent, in
order to reduce the number of calls to GETWITNESs.

If eg and ey pass all these necessary checks, the algorithm constructs a new trace. It first lets 7"’
be the events in 7’ which precede eg, then lets 7 be the sequence of events that succeed eg in 7’
and happen-before ey (at line 8; note that the intersection is well-defined since both arguments are
subsequences of 7). The algorithm then constructs o by appending 7 to eg[src := ey ] (the read
event obtained from eg by changing its source to ey), and marking its events. It thereafter checks
whether the trace 7" - ¢ is consistent by asking GETWITNEss(z”’ - 0, E - E) to generate a witness
for it (to be described in Sect. 5). If GETWITNESs finds such witness E”’ (signalled by returning a
non-empty sequence) the algorithm has discovered that ¢ is a way to extend 7"’ to a consistent
trace. Therefore, the pair (o,E"") is inserted into schedules(r’") (unless a sequence ¢’ equivalent to
o, i.e., with the same set of events, is already there), so that a call to READSFRoM-SMC(z"" - ¢,E"")
will be performed later.

Finally, in the recursive-exploration phase, the algorithm considers all read events eg in E, in the
reverse order of their appearance in E. For each pair (o, E”) in schedules(pre(r’, eg)), it performs a
new call READSFROM-SMC(pre(z’,er) - 0,E’") to explore the complete consistent traces that extend
pre(t’,eg) - 0. It is important to consider the read events in E in reverse order of appearance, i.e.,
to explore traces in a depth-first manner, since calls that explore alternative sources of later read
events can lead to the addition of new schedules for earlier read events.

Example 4.1 (READSFRoM-SMC). Figure 2 illustrates the exploration tree corresponding to an
application of READSFROM-SMC on the program in Fig. 1. We use the same simplified notation for
events, executions, and witnesses as in Sect. 2.

First, the algorithm starts with an empty trace and an empty execution. In the exploration phase
(lines 2 and 3), it generates the first execution E; and trace 7; where E; = 7y :=x=1a=1x=2 b=2.

Then, the new-source-detection phase (lines 4-11) is applied to 7y, searching for new ways to
change the sources of two unmarked read events b=2 and a=1. For b=2, MAYREAD(71,b = 2,x = 1)
returns true because the write x = 1 does not happen-after the read b = 2. At line 7, a prefix

7”7 := x=1a=1x=2 of 1y is collected that contains all events preceding b= 2 in ;. Because
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x =1 is the first event of thread f,, the sequence x of all events in 7; that succeed b = 2 and
causally precede x =1 is empty, i.e., 7 = (). Therefore, at line 9 the algorithm builds ¢ := b=1.
Furthermore, it generates a witness E; := x=2x=1a=1 b=1 for the trace 7, := 7"’ - o by the
procedure GETWITNESS (72, E1). Finally, the pair (o, E;) is inserted into schedules(r”’) to obtain the
lower dashed branch in Fig. 2. In an analogous way, the algorithm can construct a witness for the
read event a = 1 and its possible source x = 2 in 7.

Finally, in the recursive-exploration phase (lines 12-15), the algorithm extends each generated
witness into a new complete consistent trace as explained in Sect. 2. O

5 CHECKING CONSISTENCY: THE GETWITNESS PROCEDURE

In this section, we describe the realization of the procedure GETWITNESS(7, E), which generates
a witness for the trace 7 if 7 is consistent, and otherwise returns (). The execution E acts as a
guidance for ordering write events to the same variable when generating the witness. For this to be
meaningful, a precondition for GETWITNESs(7, E) is that 7 is obtained from a cut of E by changing
the source of one read event. Note that this precondition is satisfied by each call on line 10 of
ReADSFrROM-SMC.

The procedure GETWITNESS(7, E) is structured into three phases:

P-I. (Saturation) In this phase, the rf and <, relations of r are extended, using two saturation
rules, to a saturated-happens-before relation shb, which extends <, U rf by orderings that
must be respected by any witness of 7. If shb is cyclic, then 7 is inconsistent and GETWITNESS
returns (), otherwise it moves to the next phase.

P-II. (Witness Construction) In this phase, GETWITNEsS(7, E) attempts to construct a witness
for 7 by extending shb to a relation which for each variable totally orders the write
events to that variable. Whenever possible, the relation orders writes in the same way
as in E, i.e., E is used as guidance for the witness construction. If the phase succeeds in
constructing without introducing cycles, a topological sort of 7 which respects
will generate a witness, which is returned by GETWITNESS(7, E). If the phase does not succeed,
GETWITNESS(7, E) moves to the next phase.

P-III. (Decision Procedure) In this phase, GETWITNESS(7, E) employs a decision procedure, called
CoNSsISTENCYDECISION(7), described in Section 5.3, which checks whether 7 is consistent.
This decision procedure runs in polynomial time in the length of the program and exponential
time in the number of threads. If 7 is consistent, GETWITNESS(7, E) returns a witness for it.

We again remark that no consistency check has ever reached phase P-III on any program that we
have tried so far. This furthermore implies that whenever the saturation of phase P-I did not find a
cycle, then the trace was consistent. We next describe these three phases in more detail.

5.1 Phase P-I: Saturation

The procedure SATURATE(R) extends any ordering relation R on the events of a trace 7 by additional
orderings, which must be respected by any witness for 7 that respects R. In phase P-I, the saturation
procedure is used to extend the relation <, U rf.In phase P-II, it extends relations that are obtained
by successive strengthenings of the ordering of events.

We define SATURATE(R) := shb, where shb, called saturated-happens-before relation, is the
smallest transitive relation on the events in 7 which includes R, and which for any combination of
aread event eg and different write events ey, ef,, which are all to the same variable, satisfies the
following two rules:

R1. If ey [shb] eg and ej, [rf] eg, then ey [shb] ej,.

R2. If e}, [shb] ey and e, [rf] eg, then eg [shb] ew.
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Let us motivate these rules. Rule R1 says that
whenever ey, happens-before eg, and eg reads from
e,, then ey must happen-before ej,; see Fig. 3.
This is necessary, since ej,, [rf] er implies that
e{,v must be the last write to x that precedes eg;
since ey [shb] eg we must then have ey [shb] ej,,.
Rule R2 says that whenever ej,, happens-before ey,
and eg reads from e, then eg must happen-before
ew; again see Fig. 3. This is necessary, since ej,, [rf] er implies that e], must be the last write to x
that precedes eg; since ej,, [shb] ey we must then have er [shb] ew.

The saturation procedure can be performed in time polynomial in the length of the trace 7. This
saturation procedure is in part inspired by the saturation procedure used by Abdulla et al. [2018] for
the Release-Acquire (RA) semantics. There are two main differences between the two procedures:

Fig. 3. lllustrating the saturation procedure. The
dashed arrows are edges added by the procedure.

e Rule R1 is a weakening of the saturation rule for RA. More precisely, in the case of RA, the
rule is of the form: If ey [<; U rf]* eg and ej,, [rf] eg, then ey [shb] ef,,. In other words,
the definition of shb is not applied recursively as in the case of SC. This also affects the
manner in which saturation can be implemented in the case of RA, since a trace can be
saturated by making a single pass over the set of events in the trace. Such an approach is not
possible under SC due the recursive of definition of the shb relation.

e Rule R2 is not needed for RA.

Example 5.1 (Saturation). We illustrate how SATURATE(<,, U rf) is computed on the trace 7,
(i-e., the trace to the right of 7; in Fig. 2). The trace 7, contains four events: x = 1, x = 2,a = 1,
and b = 1. The relations <, and rf are as shown in Fig. 4. The relation shb includes <., and rf,
and additionally the dashed arrow, which is obtained by applying the rule R1. We note that the
resulting relation shb is acyclic. This does not in general allow to conclude that 7 is consistent;
see Example 5.2 below. However, in this particular case, shb totally orders all the writes to x.
Therefore, by Lemma 5.3, 7 is consistent. In the general case when shb does not totally order all
the writes to each variable, phase P-II will try to extend shb to an ordering with this property. O

Incompleteness of the Saturation Procedure. The saturation procedure SATURATE(po U rf) is in
general incomplete in the sense that there may exist orders between events that are implied by
the SC semantics but that are not detected by the procedure. Incompleteness implies that we may
have saturated traces that do contain cycles but that nevertheless violate the SC semantics. In other
words, passing the test performed by the saturation procedure is necessary but not sufficient for
checking consistency of a given trace. Therefore, we may need to run the extra decision procedure
of Phase P-III in order to ensure consistency. In contrast, the saturation procedure for the RA
semantics, as described by Abdulla et al. [2018], is sound and complete, and hence no extra phases
are required for checking consistency in the case of RA.

Despite the general incompleteness of the saturation procedure, it succeeded in spotting all
inconsistent traces in all the examples that we have tried. We believe that inconsistent traces which
are accepted by the test arise only for artificial programs which are specifically designed to exhibit
certain complex interaction patterns that do not appear in “normal” applications. To illustrate this,
we show the simplest such an example that we have been able to construct.

Example 5.2 (The saturation procedure is incomplete). We give an example that illustrates the
incompleteness of the saturation procedure. The example consists of two steps. The first step shows
that the saturation procedure is incomplete, i.e., there may be orders on the events that are implied
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a=1 b=2
shb ri ri

r=1<4----x =2 /lpo/l lpo

z=1 y=2 x=3----=>xr=4 y=>5 z=6
r. T
rf [ po £ |po of [pela fpo
f:
a=1 b=1

Fig. 4. Applying the saturation pro- Fig. 5. Saturation is insufficient to generate all necessary orders be-
cedure to the trace 72 in Fig. 2. The tween events. Here x, y, and z are shared variables while a, b, ¢, d, e,
dashed arrow is an added edge. and fare registers of read events.

by the SC semantics but not detected by the procedure. The second step shows that there are
saturated traces that do not contain cycles but that nonetheless violate the SC semantics.

In the first step, let us consider the trace r given in Fig. 5. The trace uses three shared variables
x, Y, and z, and contains six write events: x=3, x=4, y=2, y=5, z=1, and z=6. Since all the write
events use different values, we will represent a read event by the value it reads. For instance, we
write a=1 to denote the execution of the read statement a=z with source z=1. Then, the trace 7
contains six read events: a=1, b=2, c=4, d=1, e=4, and f=2. Figure 5 shows the relations <, and
rf between the events. Here, the saturation procedure does not extend the relation <, U rf with
any more edges, i.e., shb = (<; U rf). However, there is a hidden order between the events x =4
and x =3 that is respected by any linearization of 7 which is an execution, but that is not generated
by the saturation procedure on 7. To see this, we will explain why ordering these two events in the
reverse direction would lead to a violation of the SC semantics. Consider any linearization E of r
such that E is an execution, and such that E orders x =3 before x =4, as indicated by the dashed
arrow from x =3 to x =4. Since z=1 happens-before x =3 we know that E orders z=1 before x =3.
Similarly, x =4 happens-before z =6 and hence E orders x =4 before z=6. Since x =3 is ordered
before x =4 (by assumption), we have that z=1 is ordered before z=6. Since E orders z=1 before
z=6,z=1 [rf] d=1, and E is an execution, it follows that E orders d=1 before z=6 (as indicted by
the dashed arrow). In a similar way, E orders f=2 before y=>5. Finally, since y=5 [<;] d=1and
z=6 [<;] f=2, E orders y=5 before d=1, and z=6 before f=2. This means that E contains a cycle
which contradicts the fact that E is a linearization of 7.

In the second step, we extend 7 to 7’ by adding more events (following a similar pattern in 7) that
induce another hidden order, now from x =3 to x =4, that is also not generated by the saturation
procedure on 7’. This means that any linearization of 7" which is an execution must order both x =3
before x =4, and x =4 before x =3, which means that 7’ is inconsistent. However, the saturation
does not realize any order between the two write events x =3 and x =4, and hence it cannot figure
out that 7’ is inconsistent. O

5.2 Phase P-ll: Witness Construction

If the saturated-happens-before relation shb constructed in phase P-I is acyclic, then phase P-II
attempts to show that 7 is consistent by constructing a witness for 7. The key problem is to find
an extension of shb which for each variable totally orders the write events to that variable
(an ordering between writes to the same variable is called a coherence order in the literature). If
such an extension is acyclic, 7 is consistent by Lemma 5.3, and a witness can be obtained by a
topological sort. Phase P-II makes an attempt to generate an ordering between writes by mimicking
the ordering of the corresponding writes in the guiding witness E, which is supplied as an argument
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Algorithm 2: CONSTRUCTWITNESS.

1 CONSTRUCTWITNESS(7, E)

2 shb := SATURATE(<; U rf) where <; and rf are extracted from 7

3 := shb

4 for write events ey, e, € 7 : ey .var = ej,,.var and (ew,ej,) ¢ and (e, ew) & do
5 if (ew,e},) € Ethen = U (ew.eq,)

6 else = U (eqy-ew)

7 := SATURATE( )

8 if is cyclic then return “unknown”

9 E’ := ToPOLOGICALSORT( )

10 return (“consistent”,E”")

to GETWITNESS. The intuition is that E is a witness for a trace, which differs from 7 by a single rf
relation, and therefore there ought to be a witness for r which is quite similar to E, at least in how
it orders writes to the same variable.

A pseudocode of phase P-II is given as the procedure CONSTRUCTWITNESS(7, E) in Algorithm 2.
First, the procedure assigns the ordering produced by the saturation procedure in phase P-I to shb.
Then, the construction starts by letting be shb. It uses the given execution E as guidance for
ordering write events to the same variable. As long as there exist two write events ey and ej,, to
the same variable which are not ordered by , it performs the following steps (lines 4-8): (i) let

order the writes in same way as in E, (ii) extend by the SATURATE procedure, and (iii) if

becomes cyclic, abort the witness construction and return “unknown”. If, after completing
this loop, orders all pairs of write events to the same variable and no cycle arose in the loop, a
topological sort of  which respects will then generate a witness E’ for 7 (line 9). In this case,
the test returns “consistent” and also the witness E’.

LEMMA 5.3. Let T be a trace, and let be a transitive ordering on the events of T which extends
<; U rf and respects the rule R1 and the rule R2 of the saturation procedure. If totally orders
any two writes to the same variable and is acyclic, then T is consistent and any topological sort (i.e.,
linearization) of T which respects will produce a witness for t.

Proor. The nontrivial property to establish is that any topological sort of 7 which respects
results in an execution where each read reads the most recent write to the same variable. This
follows by noting that whenever ey [rf] er, and eév is another write to the same variable, then
either ej,, is before ey by the rule R1 or after eg by the rule R2 . O

The following lemma shows that the test CONSTRUCTWITNESS(7, E) spends polynomial time to
construct a witness for 7 using the guidance from the execution E.

LEMMA 5.4. For a trace T and an execution E, the CONSTRUCTWITNESS(7, E) test is polynomial time.

5.3 Phase P-llI: Decision Procedure

If neither of the previous two phases succeeded in determining whether a trace is consistent,
then phase P-III settles this question by a decision procedure, called CoNsISTENCYDECISION, whose
running time is polynomial in the length of the program and exponential in the number of threads.
For a given trace 7, if 7 is consistent then the procedure returns a witness for 7, otherwise it returns
(). The idea of CoNsisTENCYDECISION(7) is first to construct a graph representing the possible
configurations and transitions between them in any execution which generates a witness of .
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Algorithm 3: CONSISTENCYDECISION.

Initial call: CONSISTENCYDECISION(T)

1 CONSISTENCYDECISION(T)

2 G := BUILDGRAPH(7)

3 let vjpiy € G: VYVt € T. vipir (£).id = 1

4 let Utgrger € G : Yt € T. vygrget (t).type = term

5 if 3 path P in G from vjpj; t0 v1grger then return (a witness E for  from P)
6 else return ()

7 BUILDGRAPH(T)

s | Vi={o: T () =€) - (e.th=1t)]

9 E:=0

10 for v{,v9 € V do

1 if At € T. va(t).id = v1(t).id+1 and (Vt' € T\ {t}. v1(t’) = v2(¢’)) then
12 let e be v1 () and let x be e.var

13 if e.type = Wthen

14 if Jdeg € 7. eg.var = x and eg.id > v1(eg.th).id and

15 (inity [rf] er or (dew € r.ew[rf] er and ey .id < v1(ew.th).id)) then
16 ‘ isSC := false

17 else isSC := true

18 else if e.type = R then

19 let ey, be the event such that ey [rf] e

20 isSC := (ew = inity or ey .id < vi(ew.th).id)

21 if isSC then E := E U {{v1,02)}

22 return (V,E)

Thereafter, consistency is determined by checking whether this graph has a path from the initial to
the final configuration. By construction, such a path corresponds to a witness for 7.

The pseudocode of CoNsISTENCYDECISION(7) is given as Algorithm 3. The graph is constructed
by the procedure BurLDGrAPH(7). Let T be the set of threads that occur in the events in 7. Let 7™ be
 extended by one extra event for each thread ¢, denoted term’, which intuitively indicates that ¢ has
terminated (i.e., its last event in 7 has been executed). Formally, term’ is of form (id + 1,t, term,—,—)
where id is the largest identifier of an event e € t with e.th = t. We define term’.id := id + 1,
term’.th := t, and term’.type := term.

The procedure BuiLpGRrAPH(7) builds a graph G at line 2. Let us present G in the form of (V,E).
A vertex v in V maps each thread in T to an event in 7™ of that thread at line 8. Intuitively, v
represents the configuration where for each thread ¢, the event v(t) is the next one to be executed
by t (if v(t) = term’ then thread t has terminated). The set E is built by the for-loop at line 10. For
each pair of vertices v; and v, an edge should be added from v to v, if it is possible for a thread to
perform its next event in v; according to the SC semantics and arrive at v,. This is possible under
the following two conditions: (i) v; must be a “successor” of v; in the sense that v, results from
one thread performing an event in v, and (ii) the execution of that event satisfies the SC semantics.

Condition (i) is checked by the if-statement at line 11. It checks whether there is a thread ¢, which
performs an event, i.e., the identifier of the event v,(t) is one more than the identifier of v;(t), and
checks that all other threads have not moved, i.e., they have identical events in v; and v,.

Condition (ii) is checked using the Boolean flag isSC, which is true if and only if the transition
corresponding to the edge from v; to v, in which thread ¢ performs e, satisfies SC semantics. For
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this, it is necessary and sufficient to check that whenever a read event eg on a variable x reads
from a write event ey, i.e., ew [rf] e, then (a) er is performed after ey, and (b) no other write e,
to x is performed after ey, and before eg. Whenever e is a write event, we check that e does not
correspond to the event e"/v in condition (b), i.e., that there is no later read eg which reads from a
write ey performed before e, which is overwritten by e. Note that a special case is when ey is the
initializer event init, for x. Whenever e is a read event, we check condition (a), i.e., that the write
from which it reads has already been performed.

Once the graph G has been built, we check whether there exists a path P from the initial vertex
Vinit, in which no thread has executed any event, to the target vertex vges, in which all threads
have terminated at line 5.

The correctness of the ConsisTENCYDECISION procedure follows from the fact that a path from
Vinit tO Utarger Tepresents a linearization of the set events resulting in an equivalent execution which
shows the consistency of 7. The fact that this execution respects SC semantics follows from the
rules for adding edges in the for-loop at line 10. On the other hand, a linearization of the set events
corresponding to an execution E defines a path from vjy; t0 vsarger Where the events occur in the
same order as in E, and each event corresponds to an added edge in the graph.

The time complexity of CoNsISTENCYDECISION follows from observing that the size of the
constructed graph is polynomial in the length of the program and exponential in the number of
threads, and that reachability can be checked in polynomial time in the size of the graph.

6 PROPERTIES OF THE SMC ALGORITHM

In this section, we show that the READSFROM-SMC algorithm is sound, complete, and optimal.

THEOREM 6.1. The algorithm READSFROM-SMC has the following properties:

e Soundness: each complete trace explored by READSFRoM-SMC is a consistent trace of the program.
e Completeness: READSFROM-SMC explores each consistent complete trace of the program,
o Optimality: READSFrRoM-SMC never explores a complete trace more than once.

To prove the correctness properties of Algorithm 1, formulated in the above theorem, we first
observe that Soundness and Optimality are easy to establish:

e Soundness follows from the observation that each trace that is explored at line 3 has a witness,
and is hence consistent.

e Optimality follows by observing that the exploration tree branches only for a read event eg,
and that in each branch, eg reads from a different source. Thus, the same trace can never
appear in in two different branches.

Completeness requires more efforts to establish. It follows from Theorem 6.4 below, for which we
first need a couple of lemmas.

LEMMA 6.2. If a trace T is consistent, then any trace t’ with t’ C 7 is consistent.

The proof of Lemma 6.2 is obvious since 7° C 7 means that 7’ is a cut of 7.

We will also need the following lemma, which states that if a trace contains a read eg which reads
from a write ey, and ey does not happen-before any other events in the trace 7/, then the source
of eg can be changed to some other write event, and still preserve consistency. Define an event e to
be enabled after a trace 7 if, letting 7 denote the subsequence of events of e.th in 7, the sequence
7 - e is the sequence of events in some run of e.th. That is, e is the next event to be performed by
e.th after 7. In the following lemma, we have adapted the notation to fit its application in the proof
of Theorem 6.4.
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LEMMA 6.3. Let "’ be a consistent trace, and let eg be a read event which is enabled after t”’.
Let 7w be a sequence of events which contains a write event ej,,, such that (i) = does not contain
any event by thread eg.th, (ii) t”’ - er[src := e}, ] - 7 is a consistent trace, and (iii) e}, does not
happen-before any event in v"’ - . Then there is a write event e}, in "’ - 7, different from e}, such
that "’ - eg[src := e, ] - (7 \ ej,) is a consistent trace.

Proor. Since 7" - eg[src := ej,] - 7 is consistent, it has a witness E. Since neither ej,, nor eg
happens-before any event in 7"’ - 7, we can reorder E so that it is of form E’ - e],, - eg[src := ], ]
and is still a witness. This implies that there is a write event e{;, in E’ such that E’ - eg[src := e} ] is
a witness. Thus, we have found a sought ej;, and 7"’ - eg[src := ej; ] - (7 \ e], ) is a consistent trace
since it has a witness E’. O

We can now state the main theorem of completeness.

THEOREM 6.4. In each call to READSFrRoM-SMC(7,E), each trace T which is a consistent complete
extension of T is explored at least once.

Note that READSFROM-SMC(7, E) is called only if 7 is consistent. The main Theorem 6.1 follows
from Theorem 6.4 by noting that READSFROM-SMC consists of the call READSFROM-SMC((), ()).

Proor. Theorem 6.4 is proven by reverse induction on the length of 7. The base case, in which 7 is
acomplete trace, is trivially established. For the inductive step, consider a call READSFROM-SMC(7, E)
for an arbitrary consistent trace 7. We perform a proof by contradiction: we assume that there is a
complete and consistent extension 7 of ¢ which is not explored by READsFromM-SMC(r, E). We let
7’ be the longest prefix of 7 such that a call of form READsSFROM-SMC(z’, —) is actually performed.
Let 7”7 be a longest prefix of any complete trace explored in that call whose events are contained
in 7. Note that 7"’ is consistent, but not complete, since then it would be equivalent to 7, which
by assumption is not explored. Let E”” be such that 7”* - E” is a complete trace explored by the
algorithm. Since write events are completely determined by their happens-before predecessors, the
first event in E” must be a read event eg. This means that e is not in 7. But, since eg is enabled
after 7"/, an event of form eg[src := ey ] for some ey in ¢ must be contained in 7. Moreover, the
event eg must be unmarked in 7”7 - E”’. To see this, note that a read event el’e becomes marked only
as part of the sequence 7 at line 9 of READSFROM-SMC(r, E), and only if it happens-before some
read event that precedes it in the explored sequence. Since 7 does not contain eg, the sequence 7"’
that precedes eg also cannot contain any event that happens-after eg, whence eg must be unmarked.
Let "7 = predecs(7,ew) N post(z,er[src := ew]).

We claim that eg[src := ey ] - #””” will be added to schedules(z’’) for some n'”” with 7’ = n”’.
To prove this claim, we prove the following stronger claim.

Cramm 1. For all write events e, and sequences m such that e}, € t"" - & and such that

1) all events in i (except e!,, ) happen-before e!,., and
pt ey, ) napp w
(2) " - eg[src := e}, ] - 7 is a consistent trace,

"

a sequence of form eg[src := e{,] - ©'" for some w'" with 1" = m will be added to schedules(z”’).

Recall that 7’ is a consistent trace, which, among other things, implies that no event in =
happens-before some event in 7”’.

We prove Claim 1 by induction on the size of 7. For 7 = (), the claim follows immediately, since
then e{, must be in 7”’. For the inductive step, assume an arbitrary e;,, and 7. Note that if = # ()
then eév ¢ 7'’ since 7"’ is a trace. Then, the preconditions of Lemma 6.3 are satisfied. To see this, note
that condition (i) follows from conditions (1) and (2) in the claim, that condition (ii) follows from
condition (2), and that condition (iii) follows from condition (1) in the claim. The conclusion of the
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lemma implies that there is a e;,,, different from e;‘,, int” -, such that 7”7 - eg[src := eg,] () eé‘,)
is a consistent trace. Let 7’ = predecs(r,e;;;). It can now be checked that e, and 7’ satisfy the
preconditions of Claim 1. Since 7’ is smaller than 7, a sequence equivalent to eg[src := ey, ] - 7’
with 7’ marked must be added to schedules(z’’), by the inductive hypothesis. This means that a call
of form READSFROM-SMC(z"” - eg[src := ey, ] - 7', —) will be performed. By the inductive hypothesis
for Theorem 6.4, it will explore each consistent extension of 7”” - eg[src := eé{,] - r’. In particular, it
will explore a trace which extends 7"’ - eg[src := e{;;] - 7. In the new-source-detection phase for
the sequence in which ej,, first appears, a sequence of form eg[src := ej,] - 7" for some 7'”” with
7' = z will be added to schedules(r"’). since = = predecs(r,ej,,). Note that the detection of the
alternative source ej, for e is not prevented by the marking of events, since the read event eg
is not marked by any execution of line 9, and since a write event is always unmarked when it is
explored for the first time. This concludes the proof of Claim 1. O

Picking up the main line of the proof of Theorem 6.4, we have established that eg[src :=
ew] - " will be added to schedules(z’’) for some n’”" with 7’ = n’’. This means that a call
READSFROM-SMC(7” - eg[src := ew] - ©””/,—) will be performed. By the inductive hypothesis, it
will also explore 7, since 7 extends 7’ - eg[src := ey ] - 7", and we have derived a contradiction.
Theorem 6.4 is thus proven. O

By leveraging the observation that ConsisTENCYDECISION procedure has polynomial running
time in the length of the program, we infer that our SMC algorithm is polynomial time for programs
with a fixed number of threads.

THEOREM 6.5. Given a program with fixed number of threads, the READSFrRoM-SMC algorithm
spends polynomial time for each explored trace.

Proor. The theorem follows from the polynomial complexity of both the CONSTRUCTWITNESS
procedure (Lemma 5.4) and the ConsisTENCYDECISION procedure; see end of Sect. 5.3. O

7 IMPLEMENTATION

We have implemented our algorithm by extending the NIDHUGG tool with a new mode, called rfsc.
NIDHUGG takes C or C++ programs as input and works at the level of LLVM IR. Executions are
checked for assertion violations and crashes, such as segmentation faults. NIDHUGG permits applying
automatic loop bounding, sometimes called loop unrolling, to the input program. This allows it to
be used on programs which do not terminate in bounded time, and hence have an infinite trace
space. As with any bounding technique, this makes the exploration exhaustive only up to the given
bound. Bugs may be missed if they do not manifest in any trace within the bound.

In the rfsc mode of NIDHUGG, saturation of a trace is implemented using vector clocks as follows:
Initialize a work queue Q with the first event. While Q is not empty, dequeue an event e and
recompute its vector clock c. If ¢ is unchanged, do nothing. If e is now happens-after more writes,
take the last such write ey of each thread. If e is a read event, apply saturation rule R1 to ey, e, and
e.src. If e is a write event, apply saturation rule R2 to ey, e, and all readers of eyy. Finally, add all
successors of e, as well as the target of any new shb edges to Q, and repeat until the queue empties.

For performance, NIDHUGG/rfsc does not rebuild the trace from scratch each time it needs to
check consistency. Rather, it represents traces with persistent immutable data structures, and caches
the saturated trace for any consistent read. This way, to check consistency for a new read event, it
only needs to add a few new events and re-saturate. However, the saturation algorithm, as presented,
does not allow this incremental saturation use case, as it might fail to infer some edges implied by
rule R2, in particular when the two writers are in the cached trace prefix, and the reader is not. To
solve this, a special pass is added to infer these “missed” edges, that operates in an analogous way,
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but performs saturation “in reverse”, using vector clocks that encode the downward-reachable set
of an event rather than the opposite. This “reverse saturation” is only performed for a subset of
events, namely such readers, their source writes, and any successor events of these.

NipruGa/rfsc implements an extension of the algorithm to atomic read-modify-write (RMW)
and compare-and-exchange (CAS) operations. The only modification is in line 5 of Algorithm 1.
If eg is an RMW and ey, will be an RMW if it reads from eg.src (in the case of CAS) we also check
the condition that ey .src = eg. In this case, we will attempt to “reverse” eg and ey, by using
er[src := ew[src := eg.src]] in 0. Naturally, we must also consider failed CAS operations for eyy.

NipauGG/rfsc also implements an extension of the algorithm to mutexes, with both blocking
and non-blocking (“trylock”) locking operations. Non-blocking locking operations and unlock
operations can be treated like RMWs, and do not need any changes to the algorithm. Blocking lock
operations require two extensions. The first one is when the algorithm would consider reversing an
unlock operation with a blocking lock operation er . Instead the lock e, blocking or not, from which
the unlock reads is replaced by er[src := e] .src] in the trace fed to GETWITNESS(). The second one
is for the case when an execution terminates with some threads still blocking on a lock. This is not
necessarily an error. For example, it can be caused by failing an assume statement. In such cases,
the algorithm considers “replacing” the last successful lock of every mutex with each blocked lock
event of that mutex.

8 PERFORMANCE EVALUATION

In this section, we compare the performance of NipHUGG/rfsc with other SMC algorithms and
tools that were publicly available in April 2019, when this paper was submitted. Two of these
tools, NipHUGG and DC-DPOR, have been chosen because they implement state-of-the-art DPOR
algorithms for SMC under Sequential Consistency; namely Optimal DPOR, Optimal DPOR with
Observers, and Data-Centric DPOR. We briefly review these three algorithms. Optimal DPOR [Ab-
dulla et al. 2017] is optimal in the sense that it explores each Mazurkiewicz trace exactly once and
never initiates redundant exploration. Similar to READsFRoM-SMC, Data-Centric DPOR [Chalupa
et al. 2018] is based on the rf equivalence, but does not come with any optimality claims other than
for the very restricted case when the underlying communication graph (i.e., the graph whose nodes
are the program threads and two nodes are connected by an edge if they access a common shared
variable) is acyclic. In other situations, DC-DPOR can explore a considerable number of partial
executions, which later may be deemed redundant. (This is clearly shown in the tables that we will
soon present.) Finally, Optimal DPOR with Observers [Aronis et al. 2018] is an algorithm which is
optimal in the sense that it explores each trace exactly once and will never initiate redundant partial
exploration, but its equivalence relation is somewhere between Mazurkiewicz and rf. Specifically,
its equivalence relation respects the conflicts between write events only if their ordering is observed
by a read event in the same trace. Still, Optimal DPOR with Observers will never explore more
executions than the number of Mazurkiewicz traces, not even partially.

The remaining two tools, CDSCHECKER and RCMC, are high-performance stateless model check-
ers for C/C++11 programs, which of course also handle the SC fragment of C11. The CDSCHECKER
tool by Norris and Demsky [2016] employs a variant of the DPOR algorithm of Flanagan and Gode-
froid [2005], which is not optimal and may explore a significant number of redundant executions;
in fact many more than the number of Mazurkiewicz traces as we will soon see. The RCMC tool
by Kokologiannakis et al. [2018] provides an interesting approach to SMC of concurrent programs.
Its algorithms perform SMC primarily under Release-Acquire, a memory model which is weaker
than SC and where the problem of checking consistency is of polynomial complexity. Moreover,
RCMC checks for SC consistency lazily, only when an assertion is violated, thereby avoiding the
cost of this check when this is unnecessary. As we show by Example 8.1 below, such an approach
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which checks for SC lazily risks exploring arbitrarily more traces than an approach which checks
for SC consistency eagerly. Moreover, RCMC’s algorithms are not optimal under SC, and may
explore many executions for each Mazurkiewicz trace. The RCMC tool provides a mode, selectable
with its -wrc11 switch, that does not consider all the possible ways that concurrent writes to the
same location could be totally ordered. This triggers an algorithm which in many cases achieves
similar reduction as the rf equivalence, but in other cases it may unnecessarily consider many
incoherent executions. In fact, as pointed out in the RCMC paper [Kokologiannakis et al. 2018,
Section 5], there are programs for which each mode of RCMC can outperform the other arbitrarily.

Example 8.1 (Lazy vs. eager SC consistency checks). This example illustrates that an SMC algorithm
which explores rf traces that are feasible under a weaker memory model, such as Release-Acquire,
and applies an SC consistency check lazily only to traces that violate correctness, risks exploring
arbitrarily more traces than an approach which checks for SC consistency eagerly.

Consider a program that is parametric in n, shown in Fig. 6.
In this program, two threads race to sum up counters cy,. . ., ¢y, a=b=x=y=c=--=¢c, =0
but are synchronized using sequentially consistent accesses us- | x =1; y=1
ing a simplified variant (for presentation) of Dekker’s mutual
exclusion algorithm. In any SC-consistent trace, at most one
thread will be accessing the counters cy,. . . ,c,, and thus there
will only be three traces; one where the first thread gets the a+= xhg(ci, 0);
mutex, one where the second thread gets the mutex, and one
where neither thread does. However, under a weaker memory .
model, such as RA, it is possible for both threads to enter the number of RA-consistent trace?’ but

a constant number of SC-consistent
critical section, and thus there will be (2:) additional traces for {,,ces.
all the ways to interleave the accesses to cy,. . .,c,. Thus an
eager technique would explore a constant number of traces and spend time linear in the parameter n,
whereas a lazy technique would explore a number of traces, and spend time exponential inn. O

if (y == 1) return; || if (x == 1) return;
for iin (1, n) for jin (1, n)

b += xhg(cj, 0);

Fig. 6. Program with an exponential

Benchmarks and Platform. The benchmark programs we use in this section all are parametric
in the number of threads, and are taken from SV-COMP [2019], SCTBench [Thomson et al. 2016],
and from the papers that describe the tools we use [Abdulla et al. 2017; Aronis et al. 2018; Chalupa
et al. 2018]. In order for these programs to be handled by all tools, and RCMC in particular, we
needed to convert some of them to C11 with SC read and write accesses. The machine we used is a
Dell server with two Intel(R) Xeon(R) Platinum 8168 CPUs (2.70GHz), has 192GB of RAM and ran
Debian 9.6. All tools use Clang version 3.8.1 to translate the C source to LLVM IR. In all tables of
this section, we report number of explored executions (both complete and partial/redundant) and
the time this takes (in seconds).

As mentioned, the rf equivalence is coarser than the Mazurkiewicz one, and the READsFrom-SMC
algorithm is optimal for it. So, by definition, NIDHUGG/rfsc never explores more executions than
other SMC tools. Besides confirming this, with our evaluation we want to answer the following
questions: Q1) What is NIDHUGG/rfsc’s performance in programs that have the same number of rf
traces as Mazurkiewicz traces? Q2) Are there programs where NIDHUGG/rfsc beats each of the other
tools by an exponential factor in the number of executions explored? Q3) What is NipHUGG/rfsc’s
performance in programs which fall somewhere between these two extremes? We answer these
questions below.

8.1 Performance When Reads-From Coincides with Mazurkiewicz

First, note that in this section we examine programs that have the same number of Mazurkiewicz
traces as rf traces; not necessarily programs on which all tools explore the same number of
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Table 1. Performance on two programs where the number of Mazurkiewicz traces and traces under rf
equivalence is the same. Note that tools that are not optimal sometimes explore a significant number of
redundant executions (“Execs” columns). The NIDHUGG column in this table stands for both NipHUGG/optimal
and NiDHUGG/observers: both these modes explore the same number of executions in time that is very similar.

NIDHUGG DC-DPOR CDSCHECKER RCMC RCMC/wrc1l NIDHUGG/rfsc

Benchmark Execs Time Execs Time Execs Time Execs Time Execs Time Execs Time

circular-buffer(7) 3432 1.13 80641 12.84 3432 0.18 3432 1.27 43178 11.73 3432 1.29
circular-buffer(8) 12870 4.55 303149  55.39 12870 0.75 12870 5.16 200242 61.94 12870 5.21
circular-buffer(9) 48620 18.93 1147421 245.82 48620 3.08 48620 21.26 916247 313.71 48620 21.19

lastzero(9) 1536 0.62 24537 5.50 18339 1.85 1536  0.04 2560 0.06 1536 0.62
lastzero(11) 7168  3.55 172563 49.29 184331 22.66 7168 0.19 12288 0.28 7168 3.35
lastzero(13) 32768 19.44 1200300 467.43 1888624 270.64 32768 0.87 57344 1.35 32768 17.46

Table 2. Performance on one more set of programs for which the number of Mazurkiewicz traces and traces
under rf equivalence is the same. We show only one column for RCMC in this table, as numbers for the two
modes of RCMC are similar for these programs; in particular, the number of executions is the same.

NipHUGG/Optim NIDHUGG/0observ DC-DPOR CDSCHECKER RCMC NIDHUGG/rfsc
Benchmark Execs Time Execs Time Execs Time Execs Time Execs Time Execs Time
readers(9) 512 0.19 512 0.19 262144 61.87 831 0.08 512 0.04 512 0.18

readers(11) 2048 0.90 2048 0.94 4194304 1445.38 3327  0.39 2048  0.17 2048 0.87
readers(13) 8192 4.22 8192 4.28 67108864 31046.08 13311  1.88 8192 0.98 8192 3.92

casrot(8) 2048 0.64 2048 0.64 n/a n/a 44832  3.07 2048  0.02 2048 0.65
casrot(9) 8597 2.96 8597 2.99 n/a n/a 372735 29.32 8597  0.08 8597 3.04
casrot(10) 38486 14.58 38486 14.80 n/a n/a 3456845 305.81 38486 0.36 38486  14.92
fib-bench(2) 140 0.02 140 0.02 578 0.06 n/a n/a 153  0.01 140 0.03
fib-bench(4) 19605 4.62 19605 4.75 78737 11.46 n/a n/a 34205 1.09 19605 5.23
fib-bench(6) 2364418 684.83 2364418 714.04 9514410 1827.93 n/a n/a 8149694 306.66 2364418 1121.84

executions. Second, we point out that this is an important class of programs; in particular, all
programs with properly synchronized SC accesses to shared variables fall in this class. So, perhaps
for these programs it may be a better strategy to use an SMC tool whose algorithm is optimal
for Mazurkiewicz traces (e.g., NIDHUGG/optimal), or a tool that explores traces fast, either due to
having been well engineered for this or due to performing SMC under a weaker memory model
and paying the cost of SC checks only when this is needed (e.g., when an assertion is violated).

In fact, our results from this class of programs partially confirm that this is a good strategy. Refer
to Tables 1 and 2. NIDHUGG/rfsc explores the smallest number of executions in all benchmarks, but
its performance is between four and forty times slower per trace than the fastest tool (CDSCHECKER
for circular-buffer in Table 1, and RCMC for all other benchmarks in Tables 1 and 2) when that tool
gets by with exploring only the same number of executions as Mazurkiewicz traces. On the other
hand, the same evaluation also shows the following:

(i) With the exception of fib-bench, NipHUGG/rfsc has roughly similar performance as NIDHUGG,
a tool that uses DPOR-based algorithms that build traces by reversing races, which means
that their traces are “by construction” consistent under SC and thus require no checks.

(ii) The cost per trace that NIDHUGG/rfsc pays appears to be constant as the number of traces
grows. This can be seen by comparing with RCMC which performs no checks in some
programs. (Benchmarks lastzero, readers and casrot contain no assertions.) On the other hand,
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Table 3. Performance on a set of benchmarks where the rf equivalence is significantly coarser than the
Mazurkiewicz one. CDSCHECKER quickly times out or crashes for three out of these five programs. The com-
parison here is interesting mostly between NipHucG/observers, DC-DPOR, RCMC/wrc11, and NIDHUGG/rfsc.

NipHUGG/optim NIDHUGG/observ.  DC-DPOR RCMC RCMC/wrc11 NIDHUGG/rfsc
Benchmark Execs Time Execs Time  Execs Time Execs Time Execs Time Execs Time
lastwrite(2) 2 0.00 2 0.00 3 0.00 2 0.01 2 0.01 2 0.00
lastwrite(7) 5040 1.01 7 0.00 8 0.00 5040 0.24 7 0.00 7 0.00
lastwrite(8) 40320 9.11 8 0.00 9 0.00 40320 15.52 8 0.00 8 0.00
lastwrite(9) 362880 92.97 9 0.00 10  0.00 362880 2007.57 9 0.01 9 0.00
sigma(5) 945 0.20 120 0.03 872 0.16 945 0.03 120 0.01 120 0.03
sigma(6) 10395 2.62 720 0.20 5912 1.36 10395 0.40 720 0.03 720 0.19
sigma(7) 135135 38.30 5040 1.61 46232 12.81 135135 21.98 5040 0.23 5040 1.49
sigma(8) 2027025 687.76 40320 14.14 409112 142.69 2027025 9255.23 40320 2.34 40320 13.41
floating-read(6) 5040 1.06 193 0.04 8 0.00 5040 0.18 7 0.01 7 0.00
floating-read(8) 362880 98.45 1025 0.30 10  0.00 362880 119.32 9 0.01 9 0.00
floating-read(12) ® ® 24577 10.59 14 0.08 ® ® 13 0.01 13 0.00
floating-read(16) €] ® 524289  352.10 18 1.78 ® €] 17 0.01 17 0.00
control-flow(5) 5160 1.33 193 0.05 8083  0.86 5160 0.16 43 0.01 43 0.01
control-flow(7) 720720 363.95 1025 0.33 174859 28.35 720720 30.92 143  0.01 143 0.05
control-flow(11) ® O 24577 11.89 ® ® ® ® 2071 0.15 2071 0.93
control-flow(13) ® ® 114689  65.81 + + ® ® 8219 067 8219 421
opt-lock(11) 300090 96.76 170 0.04 663  0.05 414714  21.27 1497  0.06 127 0.04
opt-lock(13) 2056906 770.75 202 0.05 791 0.06 2842574 163.25 2083 0.09 151 0.05
opt-lock(100) €] ® 1594 215 6359  2.09 ® ® 120490 29.91 1195 1.99
opt-lock(1000) o ® 15994  504.06 63959 224.86 ©) O ® O 11995 227.46

on the circular-buffer benchmark that does contain assertions, NIDHUGG/rfsc has performance
almost identical to RCMC (and RCMC/wrc11).

(iii) No single tool is fastest overall: CDSCHECKER beats all other tools by more than six times on
circular-buffer, while RCMC beats all other tools in all other benchmarks, not only in cases
where it manages to explore the optimal number of executions, but also on fib-bench where
it explores about 3.5 times more executions.

(iv) Tools that do not employ optimal algorithms indeed explore a significant number of redundant
(or partial) executions and this can significantly hurt their performance; cf. DC-DPOR on
e.g., readers (Table 2), and CDSCHECKER on lastzero (Table 1) and casrot (Table 2).

8.2 Performance When Reads-From Is Significantly Coarser Than Mazurkiewicz

Table 3 shows results from synthetic benchmarks for which the traces under the rf equivalence
are significantly fewer than the Mazurkiewicz traces. As a consequence, three of the tools/modes
(NipHUGG/0ptimal, RCMC and CDSCHECKER, which is not shown) explode in terms of explored ex-
ecutions and quickly time out. We therefore focus on the remaining four tools (NIDHUGG/observers,
DC-DPOR, RCMC/wrc11, and NipHUGG/rfsc) for this benchmark set.

(i) All four tools perform similarly on lastwrite, where DC-DPOR also reports one partially
explored execution. In contrast, the number of partially explored executions of DC-DPOR on
sigma is significant and hurts its performance.

(if) The floating-read benchmark shows a case where Optimal DPOR with Observers [Aronis
et al. 2018] is outperformed exponentially by the algorithms that the other three tools
(DC-DPOR, RCMC/wrc11, and NIDHUGG/rfsc) employ. We remark that this is quite interesting
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Table 4. Performance on a set of benchmarks where the rf and the Mazurkiewicz equivalence differ but
moderately. CDSCHECKER is slow and/or cannot handle these programs, so we do not show results for it.

NIpHUGG/optim NIDHUGG/0observ ~ DC-DPOR RCMC RCMC/wrc1l NIDHUGG/rfsc

Benchmark Execs Time Execs Time Execs Time Execs Time Execs Time Execs Time

3334 2.63 3334 2.69 6137 1.96 3334 0.55 4116 0.57 1107 1.13
34904  27.72 34904  29.11 34548 14.08 34904 5.68 49104 6.68 8953  9.06
372436 302.68 372436 314.63 270055 120.15 372436 62.04 608751 82.72 73789 75.73
4027216 3406.95 4027216 3505.99 2248090 1320.72 4027216 696.83 7770620 1094.63 616227 660.83

race-parametric(4
race-parametric(5
race-parametric(6
race-parametric(7

- =

exponential-bug(3) 36570 8.34 7714 1.81 8821 1.06 46764 0.53 8224 0.10 3634 0.97
exponential-bug(5) 345069  82.73 28411 7.35 21236 2.88 463982 479 20321 0.23 10131 2.95
exponential-bug(7) 2044724 529.98 76460  21.37 43659 6.48 2833112 28.68 41692 0.45 22694 7.07

parker(8) 3431 1.00 3171 0.99 14073 1.84 21390 3.66 55938 10.67 3059 1.23
parker(12) 10541 3.71 9759 3.63 43309 6.85 92814 26.68 213304 64.54 9407 4.71
parker(16) 23731  10.09 21995 9.53 97633  18.71 271710 123.19 575550 264.00 21195 12.65
lamport(2) 32 0.00 26 0.00 119 0.01 40 0.01 00 00 22 0.00
lamport(3) 20741 6.59 11598 412 60937 7.03 83732 9.93 00 co 8175 2.88

considering that this benchmark is from the Optimal DPOR with Observers paper, and that
this is a program which also demonstrates significant differences between the Mazurkiewicz
equivalence (cf. the NiDHUGG/0ptimal and RCMC columns) and the equivalence of Optimal
DPOR with Observers. Also interesting here is to note that DC-DPOR spends a considerable
amount of time on floating-read(16), for reasons currently unknown to us.

(iii) The control-flow benchmark makes DC-DPOR explode, and shows one more case where
ReaDSFrRoM-SMC and Optimal DPOR with Observers differ significantly in terms of explored
executions. On the other hand, RCMC/wrc11 is both optimal and the fastest tool (by 6.2
times) on this benchmark.

(iv) Finally, the opt-lock benchmark, taken from the DC-DPOR paper [Chalupa et al. 2018],
shows a case where our algorithm is the only one which is optimal. (DC-DPOR explores
the same number of complete executions, but it also explores about five times as many
partial executions.) Also, notice how the number of traces grows for RCMC/wrcl1 (e.g.,
for opt-lock(100)) in contrast to NIDHUGG/rfsc, DC-DPOR, and also NIDHUGG/observers, for
which the increase in the number of redundant executions explored is very moderate.

8.3 Performance When Reads-From and Mazurkiewicz Differ Moderately

Finally, Table 4 contains results from programs that fall somewhere in between the two ends of
the spectrum. In these programs,’ the difference in the number of Mazurkiewicz and rf traces
grows as the number of threads increases, but not as dramatically as in programs of the previous
section. The results confirm that indeed NIDHUGG/rfsc explores the least number of executions in
all cases. Also, although it does not start as the fastest tool, NIDHUGG/rfsc manages to outperform
all other tools in all programs except on exponential-bug where it is beaten by RCMC/wrc11 (and
DC-DPOR, slightly).

As a side comment, we note that Table 4 also confirms that no mode of RCMC beats the other
all the time: RCMC/wrc11 is significantly better on exponential-bug, but worse in the other three
programs (in fact, on lamport RCMC/wrc11 does not terminate).

2We mention that parker is slightly different from the version used in the DC-DPOR paper [Chalupa et al. 2018], as we are
loop-unrolling the benchmark manually, to make the comparison fair.
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Table 5. Number of explored executions until the bug is Hit and Total executions in the “corrected” program.

NIDHUGG/0ptim NIDHUGG/0observ DC-DPOR NIpHUGG/rfsc
Benchmark Hit Bug  Total Hit Bug Total Hit Bug Total Hit Bug Total
reorder_3_bad 9 56 9 47 13 384 2 21
reorder_4_bad 97 1248 71 580 19 3209 2 64
reorder_5_bad 1513 40032 681 6565 32 29596 4 145
reorder 10_bad >2% > 2% 51398385 432764218 1297 1692398701 5 1540

9 WHY THE READS-FROM EQUIVALENCE MATTERS FOR SMC

In this section, we provide some more evidence why the rf equivalence in general, and our
ReEADSFROM-SMC algorithm in particular, matter for SMC tools by examining two scenarios where
they come in handy. The first is in quickly finding concurrency errors and verifying that they have
been correctly fixed. The second concerns stateless model checking of approximate data structures.

9.1 Finding and Correcting Concurrency Errors Faster

All programs in Sect. 8 did not contain concurrency errors. In these programs, SMC tools need to
explore the complete set of executions. In programs where a crash occurs or an assertion is violated
under some thread schedulings, SMC tools can stop the exploration as soon as the problem occurs.
How fast this happens depends on how frequent/rare the bug is, but also on the order in which
tools choose to explore executions.

Starting from five programs of SCTBench [Thomson et al. 2016], the Systematic Concurrency
Testing Benchmark Suite, we conducted an experiment in order to see whether the rf equivalence
provides some advantage as far as bug finding is concerned. For our experiment, we chose the
five reorder_N_bad benchmarks (N € {3,4,5,10,20} is the number of created pthreads). These are
programs adversarial for delay bounding; the smallest delay bound required for the bug to manifest
is incremented as the thread count is incremented. Thomson et al. [2016] report that, although many
systematic concurrency testing techniques locate the bug for small thread counts (N € {3,4,5}), only
probabilistic concurrency testing with larger d values [Burckhardt et al. 2010] manages to hit the
bug on reorder_10_bad and reorder_20_bad. (This is on an experiment that runs each technique
for 100 000 executions.) A recent paper by Yuan et al. [2018] reports an experiment with 10 000
executions, confirms that overall these are the second and third, in this order, most challenging
programs from the SCTBench suite, and proposes a sophisticated partial order aware sampling
technique that manages to locate the bug in reorder_10_bad with hit rate of approximately 3%. So,
we were curious to see what the various SMC tools of Sect. 8 that handle C instead of C11 source
do in these programs; in particular, to see how NIDHUGG/rfsc performs in this task.

Refer to Table 5; initially look only at the “Hit Bug” columns. NIDHUGG/rfsc manages to locate
the bug in just the first few traces (five or less), while the number of executions for the other tools
is significant. Of course, one could argue that NIDHUGG/rfsc is “just lucky here” To see whether
this is indeed the case, we “corrected” the programs by commenting out the single assertion,® and
tried to run all tools to completion. The number of executions that the tools explore is shown under
the “Total” columns of Table 5. For reorder_10_bad, besides NIDHUGG/rfsc that finishes in just 1.26
seconds after exploring 1540 traces, we also managed to obtain numbers for NIDHUGG/observers,
which finishes in 5.6 days after exploring 432.7 million executions, and for DC-DPOR, which
finishes in 6.8 days after exploring fully or partially 1.69 billion executions (120 593 170 of which
are fully explored). In contrast, NIDHUGG/optimal does not find the bug, let alone finish exploring

3We chose this “correction” method because it does not affect the number of executions that tools need to explore.
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Table 6. Performance on benchmark where N threads append elements on an approximate data structure.

NipHUGG/optim  NIDHUGG/observ DC-DPOR RCMC NipHUGG/rfsc
Benchmark Execs Time Execs Time Execs Time Execs Time Execs Time
approxds-append(4) 2460 1.05 1048 0.51 4751 0.60 2508 0.18 580 0.30
approxds-append(5) 127740 62.91 33125 20.69 154085 20.81 135900 35.11 9945 5.55

approxds-append(6) 9847080 5910.97 1334766 1003.34 6121579 1141.64 11226600 444456.16 198936 131.43

the “corrected” program, even after exploring more than 2% executions in more than one and a
half months. Note that this last experiment is exactly the next step that a developer who corrects a
concurrency error needs to take: run the SMC tool to completion in order to see whether the bug
has indeed been fixed or whether more bugs exist. It is nice to have a tool like NiDHUGG/rfsc that
finishes in seconds instead of several days (or months!).

We finish this section by mentioning what happens on reorder_20_bad. Actually, this program is
not just a “scaled up” version of the previous programs, which only have one reader, but a program
where the N spawned threads contain more readers, which makes locating the bug easier. For this
reason, we do not include it in Table 5. But NiDHUGG/rfsc finds the bug in reorder_20_bad after
just two traces; all other tools we used did not manage to locate it even after many days.

9.2 Stateless Model Checking of Approximate Data Structures

The second experiment concerns approximate concurrent data structures with construction algo-
rithms that execute without synchronization, as proposed by Rinard [2013]. The data races present
in these algorithms may cause them to e.g., drop inserted or appended elements. Nevertheless,
the “correctness” requirement is that their construction algorithms should not crash and should
produce a data structure that is accurate enough for its clients to use successfully. The argument
is that this is acceptable for many applications. Note that our aim here is simply to propose an
efficient way for the testing and verification of such data structures to those who want to develop
and/or use them.

For our experiment, we took the code of the paper [Rinard 2013, Page 4], wrote it in C11 with
atomic accesses, and made it parametric in the number of threads that try to append elements.
We then applied the various SMC tools of Sect. 8 to this program. The results we got are shown
in Table 6. The superiority of NIDHUGG/rfsc’s performance on this experiment is clear. We note
in passing that we could not get numbers for RCMC/wrc11 because the tool in this mode quickly
starts consuming more and more memory when running this program.

10 RELATED WORK

Several influential tools such as Verisoft [Godefroid 1997, 2005] and CHESS [Musuvathi et al.
2008] implement stateless model checking for concurrent programs. SMC has been combined
with (dynamic) partial order reduction (DPOR), e.g. by Flanagan and Godefroid [2005], Abdulla
et al. [2014], and Rodriguez et al. [2015], and applied to real life programs [Godefroid et al. 1998;
Kokologiannakis and Sagonas 2017]. The majority of SMC techniques are based on exploring at
least one execution for each Mazurkiewicz trace. In 2014, Abdulla et al. introduced a method that is
optimal with respect to Mazurkiewicz traces. As illustrated in the introduction, this approach has
an inherent limit on the reduction that can be achieved.

In light of this, several more recent papers use a weaker equivalence relation than Mazurkiewicz
traces. The Maximal Causality Reduction (MCR) algorithm by Huang [2015], which is based on
the Maximal Causal Model (MCM) idea by Serbanuta et al. [2013], considers the possible values
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that reads can see, instead of the possible value-producing writes, as we do in in our approach.
This approach has the potential to explore fewer traces than our approach. An obstacle is that the
problem of checking consistency for a particular assignment of values to reads can occur in an
execution is more difficult than the problem of checking consistency of a particular rf relation,
which can by done in polynomial time by our CoNsisSTENCYDECISION procedure. MCR addresses
this by relying on calls to an SMT solver to find new executions. Furthermore, MCR is not optimal
in the sense that it may explore executions that are equivalent to previously explored ones, as
shown by Chalupa et al. [2018]. Possible future work could be to investigate whether our optimal
exploration strategy can be combined with the MCM idea in an efficient way.

In Sect. 8, we compared to DC-DPOR [Chalupa et al. 2018], Optimal DPOR with Observers [Aronis
et al. 2018], as well as RCMC [Kokologiannakis et al. 2018] and CDSCHECKER [Norris and Demsky
2016]. We refer to that section for an overview of these algorithms, the equivalence classes that
they are based on, and the optimality guarantees that some of these algorithms provide.

Context-Sensitive DPOR by Albert et al. [2017] is a technique for exploring less executions than
the classical DPOR algorithm of Flanagan and Godefroid. It uses an external procedure to decide
whether alternative schedulings would lead to identical states. In certain cases, it can achieve
exponential reduction over the classical DPOR. However, since it needs to compare states, it is
an inherently stateful technique, in contrast to other stateless model checking techniques that
maintain information only about currently explored trace and how to initiate new explorations.

For the Release-Acquire semantics (RA), Abdulla et al. [2018] have developed a DPOR algorithm
which is optimal with respect to the rf equivalence. The RA semantics is different from the SC
semantics, and hence results obtained for SMC of programs running under RA cannot be carried
over to the case of SC. Since RA is weaker than SC, one can in principle use DPOR algorithms
developed for RA as an over-approximation for the verification of programs running under the
SC semantics. However, such an over-approximation will not satisfy the soundness property and
can potentially generate a significant number of false safety violations. Furthermore, as shown in
Example 8.1, supplementing such an algorithm with a lazy consistency check may generate an
exponentially larger number of redundant traces. Nevertheless, our algorithm for SMC under SC
shares some principles with the one under RA by Abdulla et al. [2018]. Two main issues make the
search algorithm more complicated in the case of SC. First, as described in Sect. 5, the saturation
rules are simpler to formulate and can be implemented more efficiently in the case of RA. Second,
due to the completeness of consistency checking procedure of RA, it can be carried out by simply
searching for cycles in a saturated trace, rather than having three phases as described in Sect. 5.

The idea of characterizing executions by the rf relation (i.e., abstracting them as rf traces) has
been exploited for runtime monitoring or predictive analysis by Sen et al. [2005], Wang and Stoller
[2006], and Sinha et al. [2011]. These works present techniques for analyzing individual executions
of a concurrent programs in order to detect correctness violations in executions that belong to
the same or a neighbouring rf equivalence class. In contrast, our work presents a technique for
exploring all rf equivalence classes of a concurrent program.

An algorithm similar to Algorithm 3 has been developed independently by Biswas and Enea
[2019] for checking serializability of bounded-width histories. Their result also implies that checking
sequential consistency of histories with a bounded number of threads is polynomial time.

11 CONCLUSION AND FUTURE WORK

We have presented a novel SMC algorithm for the verification of programs running under the SC
semantics. The algorithm is optimal with respect to the rf equivalence, i.e., it never generates two
program executions with the same reads-from relations. To that end, we have designed an efficient
exploration algorithm (Sect. 4) and a check for consistency of a given rf relation (Sect. 5). The
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SMC exploration algorithm satisfies three properties: soundness, completeness, and optimality.
The consistency check consists of three phases. The first two phases are polynomial time in the
size of the program, but an incomplete check for consistency. The third phase is a sound and
complete procedure which decides consistency in polynomial time in the length of the program
and exponential in the number of threads. An important finding is that the polynomial-time test
represented by the first two phases is sufficient for checking consistency of rf relations on all
programs that we have tried, implying that our consistency check is efficient in practice.

We have implemented our approach by extending the NIDHUGG tool for C/C++ programs with a
new mode, called rfsc. Our experimental results show that NipHUGG/rfsc, although slower than
the fastest SMC tools in programs where tools happen to examine the same number of executions,
always scales similarly or better than them, and outperforms them by an exponential factor in
programs where the number of rf traces is smaller than the number of Mazurkiewicz traces. We
also presented two non-trivial use cases where the new equivalence is particularly effective, as
well as the significant performance advantage that the rfsc of NIDHUGG offers compared to other
state-of-the-art SMC and systematic concurrency testing tools.

We note that the approach presented here assumes that each read event reads from a unique
write event in an execution. This is not true for all programs; for example it does not hold in the
code of Linux’s Read-Copy Update (RCU) mechanism that was model checked by Kokologiannakis
and Sagonas [2017], which contains byte-wide write events that are then read as a (half) word.
How to generalize the algorithm to handle such cases efficiently is left for future work.

Another interesting direction for future work is to use an even weaker relation than rf equiva-
lence, while still maintaining a polynomial time complexity for checking consistency of a trace for
a fixed number of threads. This would allow to design algorithms that are potentially more efficient
but still sound for checking assertions in concurrent programs. Furthermore, we aim at improving
the overhead cost per trace, e.g., by developed techniques based on net unfoldings [Esparza and
Heljanko 2008], to improve our algorithm for checking consistency of traces. An interesting direc-
tion is to adapt our algorithm to work with symbolic states, thereby providing full correctness in
the context of symbolic model checking; a challenge is how to combine a symbolic representation
of states with ordering information in traces in an efficient manner.
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