
ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2018

Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1749

Structured Data

STEPHAN BRANDAUER

ISSN 1651-6214
ISBN 978-91-513-0515-8
urn:nbn:se:uu:diva-366932

Dissertation presented at Uppsala University to be publicly examined in Room 2446,
Institutionen för informationsteknologi, Polacksbacken, Lägerhyddsvägen 2, Uppsala,
Wednesday, 23 January 2019 at 13:15 for the degree of Doctor of Philosophy. The
examination will be conducted in English. Faculty examiner: Professor Doug Lea (State
University of New York at Oswego).

Abstract
Brandauer, S. 2018. Structured Data. Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology 1749. 85 pp. Uppsala: Acta
Universitatis Upsaliensis. ISBN 978-91-513-0515-8.

References are a programming language construct that lets a programmer access a datum
invariant of its location.

References permit aliasing -- several references to the same object, effectively making a single
object accessible through different names (or paths). Aliasing, especially of mutable data, is both
a blessing and a curse: when used correctly, it can make a programmer's life easier; when used
incorrectly, for example through accidental aliases that the programmer is unaware of, aliasing
can lead to hard to find bugs, and hard to verify programs.

Aliases allow us to build efficient data structures by connecting objects together, making
them immediately reachable. Aliases are at the heart of many useful programming idioms. But
with great power comes great responsibility: unless a programmer carefully manages aliases in
a program, aliases propagate changes and make parts of a program's memory change seemingly
for no reason. Additionally, such bugs are very easy to make but very hard to track down.

This thesis presents an overview of techniques for controlling how, when and if data
can be aliased, as well as how and if data can be mutated. Additionally, it presents three
different projects aimed at conserving the blessings, but reducing the curses. The first project is
disjointness domains, a type system for expressing intended aliasing in a fine-grained manner so
that aliasing will not be unexpected; the second project is Spencer, a tool to flexibly and precisely
analyse the use of aliasing in programs to improve our understanding of how aliasing of mutable
data is used in practise; and the third project is c flat, an approach for implementing high-level
collection data structures using a richer reference construct that reduces aliasing problems but
still retains many of aliasing's benefits.

Keywords: Aliasing, mutable state, imperative, programming, programming languages.

Stephan Brandauer, Department of Information Technology, Division of Computing Science,
Box 337, Uppsala University, SE-75105 Uppsala, Sweden.

© Stephan Brandauer 2018

ISSN 1651-6214
ISBN 978-91-513-0515-8
urn:nbn:se:uu:diva-366932 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-366932)

�

O A B
A B

O
O A B O

O A B A
B

�

N
N − 1

‡

†

†

‡

N

O(1)

†

† ‡

g

f

† ‡h

portfolio1p
portfolio2p

…
…
…
…

last
first

O(1)

p, q
i

w z

p w q
z

w1, . . . , wr z1, . . . , zr

w1, . . . , wN z1, . . . , zN
i1, . . . , . . . , ir

wi1 · · ·wir = zi1 · · · zir

shallow reference
shallow object

shallow class
deep reference

deep object

sh
all

ow
 re

fe
re

nc
e

sh
all

ow
 ob

jec
t

sh
all

ow
 cl

as
s

de
ep

 re
fe

re
nc

e
de

ep
 ob

jec
t

de
ep

 cl
as

s

deep class

��
��

��
��

����

im
m

ut
ab

ili
ty

 o
f a

immutability of b

��
��

��
��

��
��

������ ��

��
��

��
��
�� ��

��
��

��
��
�� ��

��
��

��
��
��

�� �� �� ��none

no
ne

�

o
o'

×

o
o′ o′

o′

o o

o

o o′
o′ o

×

×
×

×

r
o r.f1 . . . fn
o

o

r s
o r s

o

† ‡

p1p
p2

p1p
p2

list
current
(stack)

list
current

Classes:

class List[Data] {
 rep:Node[rep, Data] head;
}

head

Variable declarations:

rep:List[rep] list;
rep:Object current;

class Node[Nodes, Data] {
 Nodes:Node[Nodes, Data] next;
 Data:Object element;
}

(rep of the list)

(rep of the owner of the current stack frame)

(stack)

. . .

o

o

o1 o2

⊥

ρ

β v : (ρ) | ρ
ξ 1 | ε
ε z | 1 − ε | ε · ε′
π ξβ

1β
ρ

1v : (ρ) v
ρ′ εβ

zβ (1−z)β
zβ z · z′β

z · (1 − z′)β z′
Π π ξβ

ρ ρ
1ρ ∈ Π

1v : (ρ) ∈ Π
ρ

ρ

‖
ρ′

ρ′ ρ′

β

1ρ

1ρ′

1ρ′′

1v1 : ptr(ρ)
zv2 : ptr(ρ′)
1v3 : ptr(ρ′)
z′v4 : ptr(ρ′′)

1ρ′

z′′ρ′ (1− z′′)ρ′

ρ′

ρ′

1ρ

1ρ′

1ρ′′

1v1 : ptr(ρ)

zv2 : ptr(ρ′)
1v3 : ptr(ρ′′)
z′v4 : ptr(ρ′)

ρ′

ρ′

e1
e2 e1 e2

† ‡
†

†
† ‡

×
†

† ‡ †
† ‡

†, ‡

† ‡

×

×
×

×

×
×

×
×

×
×

x
y
…
…
…
…

x
yy
…

g
f

h† ‡

† †

x
y
…
…
…
…

x
yy
…

† ‡g

f

h

e

←−−→
←−−−

−

−

×

† ‡

O(1)

1 2 3 4

7 6 5

front
back

nil

nil

〈1, 2, 3, 4, 5, 6, 7〉

7 6 5

front
back

nil

nil

〈1, 2, 3, 4, 5, 6, 7〉 1−−4
5−−7

4, 3, 2, 1
5, 6, 7

1 2 3 4

O(N)

O(1) O(N)

n
〈1, 7, 2, 9, 13, 4, 8〉 n+1

〈1, 7, 2, −9, 13, 4, 8〉
n n + 1 n

†

n
n + 1 n n + 1

-9
1 7 2

9
13 4 8

version n

version n + 1

†

n
〈1, 7, 2, 9, 13, 4, 8〉 n + 1 −9 9

3 6

5

10

11

14

version n version n + 1

13

n
〈3, 5, 6, 10, 11, 14〉 n + 1 13

-9
1 7 2

9
13 4 8

version n

version n + 1

†

version n + 2

17

n + 2
17

n + 1
N

O(N) O(1)

n+ 2

O(N)

n+1

O(N)

3 6

5

10

11

14

version n version n + 1

13×

n + 1

3 6

5

10

11

14

version n version n + 1

�
13

O(N)

O(N)

1 7 2
9

13 4 8
-9

version n

version n + 1

�

O(1)
O(N)

1 7 2

9

13 4 8

-9

O(1)
O(m) m

1 7 2 13 4 8

-9-9-9-9-9

The first 4 versions can
use the extra space in
the original node.

The 5th overflows: it creates a node copy and
updates the previous and next nodes to refer
to the new copy for any version starting
with the 5th.

O(1)

�
�

�

1 7 2 9 13 4 8

n n′ n′ n

d) s) d+ s)

↓ →

�d+s

�s �s �s

�d

�d �d

�d+s �d+s

≈ 29.000.000

�

O(
N2

)

(key, value)

�

�

�

� �

�

Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1749

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through
the series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-366932

ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2018

	List of papers
	Contents
	Summary in Swedish
	Thanks, but not Goodbye

	Part 1: Introduction
	1. Overview
	1.1 Background
	1.2 Contributions
	1.3 A Short History of References
	1.3. l References for Dynamically Sized Data Structures
	l.3.2 References For Constant Time Passing ofLarge Data
	l.3.3 References For Sharing ofMutable State
	l.3.4 Unintended Sharing of Mutable State

	1.4 Restricting Aliasing: A Taxonomy
	1.5 Forms of Immutability: A Taxonomy

	2. Language Abstractions for Alias Control
	2.1 Restricting Aliasing
	2.1.1 Encapsulation of Mutable State
	2.1.2 Alias Control by Subdivisions of the Heap
	2.1.3 Uniqueness, Linear Types, Permissions
	2.1.4 Summary

	2.2 Preventing Modification
	2.2. l Immutability through Read-Only References
	2.2.2 Limitations of Reference-Immutability
	2.2.3 Immutability Through Functional Data Structures

	2.3 Summary

	3. Mining for Alias Control
	3.1 Mining Techniques
	3.1.l Snapshot- and Trace-Analysis

	3.2 How Common Uniqueness, Encapsulation, and Immutability are in Practice
	3.2.1 Immutability
	3.2.2 Uniqueness and Encapsulation

	4. Conclusion
	Bibliography

