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Abstract
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References are a programming language construct that lets a programmer access a datum
invariant of its location.

References permit aliasing -- several references to the same object, effectively making a single
object accessible through different names (or paths). Aliasing, especially of mutable data, is both
a blessing and a curse: when used correctly, it can make a programmer's life easier; when used
incorrectly, for example through accidental aliases that the programmer is unaware of, aliasing
can lead to hard to find bugs, and hard to verify programs.

Aliases allow us to build efficient data structures by connecting objects together, making
them immediately reachable. Aliases are at the heart of many useful programming idioms. But
with great power comes great responsibility: unless a programmer carefully manages aliases in
a program, aliases propagate changes and make parts of a program's memory change seemingly
for no reason. Additionally, such bugs are very easy to make but very hard to track down.

This thesis presents an overview of techniques for controlling how, when and if data
can be aliased, as well as how and if data can be mutated. Additionally, it presents three
different projects aimed at conserving the blessings, but reducing the curses. The first project is
disjointness domains, a type system for expressing intended aliasing in a fine-grained manner so
that aliasing will not be unexpected; the second project is Spencer, a tool to flexibly and precisely
analyse the use of aliasing in programs to improve our understanding of how aliasing of mutable
data is used in practise; and the third project is c flat, an approach for implementing high-level
collection data structures using a richer reference construct that reduces aliasing problems but
still retains many of aliasing's benefits.
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Classes:
 

class List[Data] {
  rep:Node[rep, Data] head;
}

head

Variable declarations:
 

rep:List[rep] list; 
rep:Object current;

class Node[Nodes, Data] {
  Nodes:Node[Nodes, Data] next;
  Data:Object element;
}

(rep of the list)

(rep of the owner of the current stack frame)

(stack)
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