Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1749

Structured Data

STEPHAN BRANDAUER

ACTA
UNIVERSITATIS ISSN 16516214
UI;?%%I/]SE EIS ISBN 978-91-513-0515-8

2018 urn:nbn:se:uu:diva-366932

Dissertation presented at Uppsala University to be publicly examined in Room 2446,
Institutionen for informationsteknologi, Polacksbacken, Lagerhyddsvigen 2, Uppsala,
Wednesday, 23 January 2019 at 13:15 for the degree of Doctor of Philosophy. The
examination will be conducted in English. Faculty examiner: Professor Doug Lea (State
University of New York at Oswego).

Abstract

Brandauer, S. 2018. Structured Data. Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology 1749. 85 pp. Uppsala: Acta
Universitatis Upsaliensis. ISBN 978-91-513-0515-8.

References are a programming language construct that lets a programmer access a datum
invariant of its location.

References permit aliasing -- several references to the same object, effectively making a single
object accessible through different names (or paths). Aliasing, especially of mutable data, is both
a blessing and a curse: when used correctly, it can make a programmer's life easier; when used
incorrectly, for example through accidental aliases that the programmer is unaware of, aliasing
can lead to hard to find bugs, and hard to verify programs.

Aliases allow us to build efficient data structures by connecting objects together, making
them immediately reachable. Aliases are at the heart of many useful programming idioms. But
with great power comes great responsibility: unless a programmer carefully manages aliases in
a program, aliases propagate changes and make parts of a program's memory change seemingly
for no reason. Additionally, such bugs are very easy to make but very hard to track down.

This thesis presents an overview of techniques for controlling how, when and if data
can be aliased, as well as how and if data can be mutated. Additionally, it presents three
different projects aimed at conserving the blessings, but reducing the curses. The first project is
disjointness domains, a type system for expressing intended aliasing in a fine-grained manner so
that aliasing will not be unexpected; the second project is Spencer, a tool to flexibly and precisely
analyse the use of aliasing in programs to improve our understanding of how aliasing of mutable
data is used in practise; and the third project is c flat, an approach for implementing high-level
collection data structures using a richer reference construct that reduces aliasing problems but
still retains many of aliasing's benefits.

Keywords: Aliasing, mutable state, imperative, programming, programming languages.

Stephan Brandauer, Department of Information Technology, Division of Computing Science,
Box 337, Uppsala University, SE-75105 Uppsala, Sweden.

© Stephan Brandauer 2018
ISSN 1651-6214

ISBN 978-91-513-0515-8
urn:nbn:se:uu:diva-366932 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-366932)

To Kim and Felix.

List of papers

This thesis is based on the following papers, which are referred to in the text
by their Roman numerals.

I

II

111

v

Disjointness Domains for Fine-Grained Aliasing

Stephan Brandauer, Dave Clarke, Tobias Wrigstad

International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 2015 [8]

A type system for expressing the shape of a program’s data in a fine-grained
manner.

Spencer: Interactive Heap Analysis for the Masses
Stephan Brandauer, Tobias Wrigstad

International Conference on Mining Software Repositories (MSR), 2017 [10]

An interactive tool for simple, online analysis of dynamic execution traces of
programs from standard program corpora. Spencer hosts large data sets and
runs in a web browser, making it easy to gain insights about the behaviour of
the programs.

Mining for Safety using Interactive Trace Analysis
Stephan Brandauer, Tobias Wrigstad

Workshop on Quantitative Aspects of Programming Languages and Systems
(OAPL), 2017 [9]

An application of Spencer (Paper II) to analyse program traces for safety
properties, like immutability, uniqueness, stack-boundedness, etc.

Cb: A Modular Approach to Efficient and Tunable Collections
Stephan Brandauer, Elias Castegren, Tobias Wrigstad

Onward!, 2018, [7]

A domain specific language and its implementation that lets programmers
design high level structures. These data structures can be combined with
different ways (back-ends) to represent data in memory, yielding collections
that can be optimised by just picking the right back-end.

Reprints were made with permission from the publishers.

The Author’s Contributions

I Mainauthor. Idea and design by main author, formalisation and manuscript
with co-authors.
II Main author. Sole implementer, manuscript with co-author.
I Main author. Experiments by main author, manuscript in collaboration
with co-author.
IV Main author. Idea, design, implementation and evaluation by main au-
thor. Manuscript with co-authors.

Related Publications

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore
Stephan Brandauer, Elias Castegren, Dave Clarke, Kiko Fernandez-Reyes, Einar Broch Johnsen,
Ka I Pun, S. Lizeth Tapia Tarifa, Tobias Wrigstad, Albert Mingkun Yang, 2015

15th International School on Formal Methods for the Design of Computer, Communi-
cation and Software Systems: Multicore Programming

An introduction to the design of the Encore programming language. Encore is a paral-
lel object-oriented programming language with active objects that communicate asyn-
chronously via message passing and a type system that guarantees data race freedom.

The Joelle Programming Language: Evolving Java Programs Along Two Axes of Par-
allel Eval
Johan Ostlund, Stephan Brandauer, Tobias Wrigstad

International Workshop on Languages for the Multicore Era 2012

An introduction to the Joelle programming language that explores the use of ownership
types and effects, and actors for building parallel programs safely.

Contents

Part I: Introduction ... 13
I OVEIVIEW oot 15
1.1 Background ...l 15
1.2 ContribUtionS ... 16
1.3 A Short History of References ... 16
1.3.1 References for Dynamically Sized Data Structures 17
1.3.2 References For Constant Time Passing of Large Data .. 18
1.3.3 References For Sharing of Mutable State ... 18
1.3.4 Unintended Sharing of Mutable State ... 19
1.4 Restricting Aliasing: A Taxonomy ... 22
1.5 Forms of Immutability: A Taxonomy ... 23
2 Language Abstractions for Alias Control ... 29
2.1 Restricting Aliasing ... 29
2.1.1 Encapsulation of Mutable State ... 30
2.1.2 Alias Control by Subdivisions of the Heap 32
2.1.3 Uniqueness, Linear Types, Permissions 38
214 Summary ... 43
2.2 Preventing Modification ... 44
2.2.1 Immutability through Read-Only References 44
2.2.2 Limitations of Reference-Immutability 57
2.2.3 Immutability Through Functional Data Structures 58
2.3 SUMMATY ..o 68
3 Mining for Alias Control ... 69
3.1 Mining Techniques ... 69
3.1.1 Snapshot- and Trace-Analysis ... 70

3.2 How Common Uniqueness, Encapsulation, and Immutability
are in Practice ... 73
321 Immutability ... 73
3.2.2 Uniqueness and Encapsulation ... 74
4 ConClUSION ...l 76

Bibliography ...l 79

Summary in Swedish

Referenser dr en programsprékskonstruktion som abstraherar datorns minne
genom att lata program manipulera data som dr beldget pa abstrakta platser.
Detta tillater en programmerare att skriva kod som behandlar data oavhingigt
dess placering i minnet och skapa datastrukturer som kan vidxa och krympa
dynamiskt genom att flera datum ldnkas samman. En graf kan till exempel
representeras som ett antal objekt (noder) som haller referenser (kanter) till
andra objekt. Referenser tillater vidare aliasering — att ett objekt &r nabart i
ett program via flera olika namn. Utdver dess uppenbara nytta for att repre-
sentera strukturer — som grafer — dér cykler eller flera vdgar till samma plats
forekommer naturligt anvédnds aliasering typiskt for att effektivt dela minne
mellan delar av ett program eller traversera en datastruktur, t.ex. folja en se-
rie av lankar mellan objekt for att soka efter ett element i en viss ordning. En
negativ sidoeffekt av detta bruk av referenser ar att bade programlogik och
prestanda knyts till hur data dr representerat i minnet — ju fler linkar mellan
objekt, desto effektivare kan vi na fram till en vissa plats i strukturen, men till
priset av mer komplexa referensstrukturer som maste underhallas och som gor
det svarare att resonera om programs korrekthet, som vi snart skall se.

Referenskonstruktionen har sin upprinnelse i spraket PL/I pa 60-talet, och
blev tidigt kind som bade kraftfull och behiftad med problem. Dessa problem
uppkommer sirskilt nér referenser anvinds for att dela fordnderligt data. Om
ett objekt O delas mellan — aliaseras av — flera stukturer, A och B sdg, blir
all forandring via A ocksé synlig fran B och tvdrtom. Som en konsekvens
av detta maste dérfor alla fordndringar av O ta hinsyn till alla forvantningar
pa O fran bade A och B (och alla andra stukturer som O #r en del av). Att
hélla reda pa vilka strukturer ett objekt &r del av vid varje given tidpunkt, eller,
mer generellt, vem som blir paverkad av en fordndring, blir darfor av yttersta
vikt for ett programs korrekthet. Detta forsvaras av att strukturer byggs upp
och forindras dynamiskt under kérning — och att det inte ar synligt i koden
huruvida en fordndring av O dr synlig for bara A, for bara B eller for bade A
och B.

Amnet for denna avhandling ir referenser: tekniker for att undvika problem
med referenser genom att undvika aliasering, eller aliasering av fordnderligt
data, och tekniker som tillater aliasering under kontrollerade former.

Iinledningen ger vi en 6versikt och en kategorisering av existerande tekniker
for programmering med referenser. Var hypotes ér att programsprak ger fri-
heter att anvidnda referenser som de flesta program inte anvéander eller behover
och att detta gor det svarare for programmerare, verktyg och kompilatorer att
resonera om ett programs beteende.

For att undersoka denna hypotes utvecklar vi ett verktyg — Spencer — som
sparar hur referenser skapas, anvénds och forstors i program, och anvénder det
pa flera vilkédnda program. Vi finner att trots att alla referenser i de flesta pro-
gramsprak tillats vara alias, och till yttermera visso fordndras, dr detta ovanligt,

och foljer ofta vissa monster. Spencer &r byggt for reproducerbar forskning —
data lagras i molnet, resultat delas enkelt mellan forkare, och det ar enkelt att
bygga vidare pa och férfina nagons resultat.

Vi skapar ytterligare tva system: forst “disjointness domains” som ér ett
system som later programmerare uttrycka vilken aliasering som &r mojligt i ett
program pa ett precist sitt. Detta system &r kraftfullt, och bevisat korrekt, men
svart att utvérdera fullt ut eftersom det ar skapat for ett enkelt forskningssprak.
Vi bygger vidare pa resultaten frén Spencer och disjointness domains; istéllet
for att forhindra aliasering eller kontrollera férdndringar abstraherar vi refer-
enskonstruktionen ytterligare i “Cb”, och tillater endast att referenser anvinds
for traversera en dataastruktur i enlighet med ett férdefinierat protokoll (t.ex.,
som om datstrukturen var ett trad). Detta tillater oss att lata referenser peka pa
abstrakta objekt, vilket i sin tur goér det mojligt att separera logiken som imple-
menterar en abstrakt datatyp fran hur den dr representerad i minnet. Detta gor
det mojligt att justera prestanda utan att dndra i logiken, och utan komplicerade
referensstrukturer.

Thanks, but not Goodbye

I want to take some time to thank the people that have made my time during
my PhD studies in Uppsala so much more enjoyable.

Tobias, you have been a great advisor over the last five years! Other than
always having my back, you’ve taught me a lot about teaching, where I made
some of my most memorable experiences as a PhD student. Our group is so
tight-knit, we treat each other more like friends than like colleagues. I think
that your influence has been responsible for a lot of this positive climate. Thank
you for your patience with me!

Dave, I will miss the weekly meetings, the fun we had, the design discus-
sions about Encore (needs more monads!). I’'m happy that you joined our daily
step-count competition, but I’'m not so thrilled about the distances you are walk-
ing!

Kim, I can not describe how glad I am to have you. During these five years,
there were ups and downs in my work, and you’ve always been there for me.
I hope that one day, I can repay you for your never-ending kindness, your
patience, the sourdough bread, the smiles that you put on my face when I’'m
tired. I’'m not sure if I’ll manage, but I have a lifetime to try my best. I love
you!

Felix, since you were born, everything is different. You have changed my
life completely and I love every bit of my new life. I can’t wait to go on parental
leave with you! I love you!

Elias, we started our PhD at roughly the same time, and I always considered
the two of us to be “in this together”. It was great to have you as a colleague
to share an office with; go to the best summer school ever with (and the sec-

10

ond best); argue about ketchup; invent “clapital letters” with; work with at the
whiteboard and in the class room. Thank you for having been such a great
colleague, and thank you for teaching me so much over the years.

Kiko, Albert, Phuc: I’'m really glad to have had you as colleagues. We had
plenty of fun and I learned lots from you guys. I will always remember how
much fun we had at the lab outings, the coffee breaks we had together. Thank
you!

Andre, Greg: the two of you have so often managed to take my mind off
work, I owe you. Thank you for all the fun we had together, thank you for the
late night conversations, thank you for being such great uncles to Felix.

Andreas, Anke, Arve, Astrid, Beatrice David, Greg, Gustaf, Kjell, Magnus
(Lang, Norgren, and Sjdlander), Mihail, Stavros, and those I have forgotten:
I’'m glad to have been here with you all. Lets stay in contact!

Mum and dad, you have always believed in me and supported me. Without
you, so much would not have been possible. Thank you for all of that!

My big brothers: the influence of one of you got me interested in computers;
the influence of the other got me interested in academia. But these are only the
little things! Growing up with you has defined me in so many good ways —
you’re awesome!

11

Part I:
Introduction

1. Overview

A reference in programming is a language construct that can be used to indi-
rectly access a datum at any location in memory. References are handles that
can be stored in variables or fields and that allow accessing an object at a dif-
ferent location in memory. Several references can exist that refer to the same
datum. When several references to a datum exist, we call the references, as
well as the variables containing them, aliases, and the datum aliased.

Definition 1 (Alias) Two references x and y are aliases if they refer to the
same object. The term “aliasing” stems from the fact that a single object
has several names, x andy. If two variables contain these references, we
also call the variables aliases.

References criss-crossing the mutable state of a running program make un-
derstanding the program hard. This is a problem for all parties involved in
writing, maintaining, and executing software: programmers inadvertently in-
troduce bugs because they have a hard time keeping in mind which parts of a
system are affected by updating a datum; compilers are limited in the amount
of optimisations they can do; the hardware finds itself slowed down because
dereferencing a pointer often leads to cache misses (and requires slowly load-
ing data from main memory).

The situation is, we think, reminiscent of unstructured code: in the 1970s,
programmers slowly moved away from “spaghetti code” and started using tech-
niques of structured programming [21] —i.e., loops and function calls. This
thesis is about structured data. At the heart of the issue we are addressing lies a
fundamental disconnect, similar to the one proponents of structured program-
ming found: while most programs use data that is structured (most objects have
few aliases, encapsulation is common, etc.), programming languages provide
little means of documenting, understanding, or optimising that structure. Code
that uses much aliasing looks similar to code that uses little.

1.1 Background

There is a vast amount of techniques to mitigate the risks that aliasing of mu-
table state brings with it. This introduction chapter covers a fraction of these
techniques. The range of ideas presented here is vary wide, we will cover

15

type-based abstractions, code generation techniques, libraries for systems pro-
gramming languages, pure functional programming, etc. Coherently present-
ing these techniques is no small task, but we attempt to make it easier to achieve
a unified understanding by classifying them into a coherent, informal, system
that we will introduce in Section 1.4 and Section 1.5. The purpose of this classi-
fication is, in part, to hide details that are irrelevant for this thesis (even though
these details are far from irrelevant in programming practice): e.g., we will
spend very little time talking about type soundness because we are interested
in the core idea of an abstraction, not its implementation (which may be sound
or unsound).
Our main goal for this chapter is to make the reader understand two things:
1. How large the number of techniques is that researchers and practition-
ers have come up with to try and solve this problem and how small in
comparison the number of basic concepts being used is (most notably:
uniqueness, encapsulation, and immutability in various forms);
2. How the research we have conducted fits into this context by relying on
many of the same ideas.

1.2 Contributions

The contributions of this thesis are presented in the subsequent chapters. The
work covers a wide range of research that is all aiming to understand, and cope
with, aliasing in imperative programming.
In particular, the thesis make the following contributions:
1. anovel type system for expressing structure invariants of programs;
2. a tool to analyse dynamic program traces that we apply to look for evi-
dence that program memory is highly structured in practice; and
3. an embedded domain specific language for data-structure implementa-
tions that removes aliasing from its semantics altogether, but recovers
much of the performance benefits of aliasing by using high-level optimi-
sations of whole data structures.

1.3 A Short History of References

Before we can talk about how references are problematic, and what to do about
that, we need to understand the reasons for why references exist in the first
place. As references have been in programming use for so long, it is easy to
forget those reasons.

Harold W. Lawson received the IEEE Computer Pioneer Award in 2000
for the invention of pointers, and their implementation in the PL/I program-
ming language in 1964-65 [37]. Pointers are variables that store the memory

16

address of a datum. Pointers are a kind of reference (but references may be
implemented in other ways, like as integer indexes into an array).
The pointer concept was ground-breaking at the time as it enabled several

important features, amongst them:

— The implementation of dynamically sized data structures in a high level

language (Section 1.3.1);
— constant-time passing of large data structures (Section 1.3.2);
— sharing of mutable data from several locations (Section 1.3.3).

1.3.1 References for Dynamically Sized Data Structures

Using references, we can implement dynamically sized data structures. A
pointer always has the same size (the length of a virtual memory address) in
memory, regardless of the size of the datum pointed at. This is crucial for de-
termining the size of a recursive data type!, a type that contains values of type
T or pointers to T. As an example, consider a linked list. A node in a linked
list consists of a value (here called “element”), and a pointer to a following
node—it is a recursively defined data type, because the node contains a field
pointing to another node.
In the C programming language a node could be declared like this:
struct {
int element;
struct node *next; //next points at the following node, or is NULL
} node;

The size of such a list in memory might be defined simply as the sum of the
size of its constituent fields?. In this case: the sum of the size of an integer
(for the element field) and a pointer (for the next), sizeof(struct node)=

sizeof(int)+ sizeof(struct node *) — no matter whether next is NULL,
refers to a tail list of length 1, 2, or any other number.

If next would not be a reference type, but rather declared as struct node
next, then the size of a node would be undefined, due to the sum’s definition
becoming recursive: sizeof(struct node)= sizeof(int)+sizeof(struct
node). When the program allocates space for a node, it needs to know the
size of a node in bytes. In C, defining a data type with such a recursive size
definition is, for this reason, prohibited.

In conclusion, references are useful for the constant size they have, no matter
what the size of the referent is; this knowledge is helpful to implement, as
presented, recursive data types. Recursive data types could be implemented

'If we squint and look at dynamically sized arrays of T elements and length N as tuples of a T
value and an array of length N — 1, we see that the references are also generally necessary for
dynamically sized arrays just like other recursive data types.

2We are skipping over data structure alignment in C for simplicity.

17

without pointers, but the implementations we are aware of end up relying on a
form of references, like integer indices into an array of nodes.

1.3.2 References For Constant Time Passing of Large Data

There are at least two reasons to pass a reference to a parameter, rather than a
copy of the parameter:
1. It can be more efficient to pass a reference to a large object as a parameter
than making an expensive copy,
2. passing a reference to an object as a function parameter, rather than a
copy can be used to let the function change the object.

Passing values by reference in a high-level language was first implemented in
the language PL/I. In PL/I, it was possible for pointers to refer to the location
of a stack variable, as well referring to heap-allocated data.

1.3.3 References For Sharing of Mutable State

References allow reaching the same object from several other variables or ob-
jects. When this object happens to be mutable, changes to it can be perceived
through all aliases.
This behaviour gives rise to useful programming idioms, like iterators:
class StringlListNode {
private StringlListNode next;
private String element;

public void allStringsToUpper() {
StringlListNode n = this;

do {
n.element = n.element.toUpper(); /1
n = n.next;
} while (current == null);
}
}

class StringlListIterator {
private StringlistNode currentNode; //f
public String getNext() {...}
public void advance() {...}

}

18

In the example, the field currentNode (defined at {) ranges over all the
nodes in the list, if the advance method is called often enough. Importantly,
the contents of currentNode is a reference to a node that is also part of the list.
This means that the changes caused to the /ist object (at 1) will affect the values
a list iterator returns. This is a form of communication between objects, and
intended behaviour. It is possible due to the use of shared references to mutable
state.

Referencing a mutable object from several fields can be useful for asymptot-
ically better performance: mutating an object that is reachable from N other
objects indirectly changes the behaviour of these other objects as well—but
requires only a constant amount of work. This quite abstract principle has
concrete applications in data structures. In a linked list, maintaining a last-
reference gives it an O(1) append operation by exploiting the aliasing of the
last node of the list. Due to the aliased last pointer in Figure 1.1b, an append
operation can find the end of the list in constant time and update it immediately.
In Section 2.2.3, we will compare how immutable data structures can handle a
requirement for fast appends, and how immutability makes this task harder to
achieve.

1.3.4 Unintended Sharing of Mutable State

While references are a powerful construct, they are also dangerous. Even the
justification for the computer pioneer award acknowledges that, quote:

When utilised in a non-professional manner, pointer
variables have led to software reliability problems. These
problems are evident in enormous software composites
containing significant unnecessary complexity.

— IEEE Comp. Soc. [37]

Programmers are tasked with avoiding these problems, not languages and
tools:

By not properly engineering software, complex
pointer relationships and status can arise that are difficult
to predict and trace thus leading to difficulties. When will
we ever learn that engineering discipline is required to
produce high quality software? Pointer variables when
properly utilised have provided hundreds of thousands of
software engineers with an essential enabling tool of the
trade.

— IEEE Comp. Soc. [37]

19

It is true that pointers (or generally, references) are “an essential enabling
tool of the trade”. But the fact that their use remains, after decades of industry
use, a reliability problem might come from the fact that references make it too
easy to do the wrong thing: references can, by way of aliasing and mutability,
introduce a hidden connection from one aggregate object to another; if a pro-
grammer is not aware that such a connection exists, they can easily—believing
they are modifying only one of the objects—modify both of them. This acci-
dental modification of an object is a bug, and finding that bug can be very hard,
as it may not be clear where changes are coming from. A programmer needs to
understand aliasing of mutable state in order to modify a program she herself
has not written.

As an example, consider a program’s memory in Figure 1.1a: there are two
stack variables portfoliol and portfolio2 that contain the addresses of dif-
ferent objects. However, the transitive closures of these objects are not disjoint.
In particular, we can reach the object marked t from an object in portfoliol’s
transitive closure (via the field f) and as well from an object in portfolio2’s
transitive closure (via the field g). Any object we can reach from 7, like the 1 ob-
ject, is therefore also reachable from both portfoliol and portfolio2. There-
fore, modifying the data reached from portfoliol can indirectly change the
state of portfolio2 unexpectedly, and vice-versa. This may lead to methods
being called on portfolio2 that break invariants associated with portfoliol.
To use an example by Hogg et al. [34]° of a class modelling portfolios of finan-
cial assets that contain checking accounts (and perhaps other assets). Portfolios
have the transferTo(Portfolio other, int amount) method that will trans-
fer money from one portfolio to another. Consider the following statement:

portfoliol.transferTo(portfolio2, 100);

Will executing this code decrease the amount of money in portfolio1? This
depends: if portfoliol and portfolio2 are aliases, the statement will not
have the expected effect. In this case, it is easy to guard against: the check
assert(portfoliol = portfolio2) will prevent the problem from breaking
an invariant. However, what happens if the portfolios are not the same object,
but each happens to contain the same checking account, like in Figure 1.1a?
The behaviour will be equally unexpected, but the simple dynamic assertion
does not solve the issue any longer. If the portfolio class makes its internal
state inaccessible by outside code, the problem can no longer be solved without
modifying the portfolio class.

Instead of dynamically enforcing aliasing invariants, we could consider static
analysis to avoid unintended sharing of mutable state. Pointer analysis (analy-
sis of whether or not two pointers may refer to the same object) was shown [40,
41, 54] to be undecidable—no general algorithm exists that computes precisely
whether or not two pointer variables x and y may contain the same pointer at

3We are translating the code to a Java-like syntax from the original Smalltalk code.

20

portfoliol
portfolio2 \‘E}/'E)»>

(a) Unintented sharing.
(b) Intended sharing in a linked list.

Figure 1.1. Pointers can be used for sharing. a) Programmers might not know about
these connections between mutable state, thereby causing bugs by first writing to the
state reachable from x and then reading from the state reachable from y (or vice-versa).
b) When sharing is intended, it can have a positive effect, like a O(1) add operation in
a linked list that needs a last pointer and therefore aliasing.

a given location. We will briefly give an intuition for why this is the case:
Ramalingam [54] reduces aliasing analysis to Post’s correspondence problem
[50], which is known to be undecidable*. The reduction works by observing a
program that uses two pointers p, g to traverse a binary tree. In a loop, the pro-
gram chooses a random integer ¢, and uses it as index to access to sequences of
integers w and z. The integers are interpreted as relative directions in the tree,
each 0 in the integer’s binary representation corresponds to a left-step, each 1
to a right-step. The p pointer is updated using the value drawn from w, the ¢
pointer is updated using a value drawn from z.

At the end of that loop, the pointers may alias iff post’s correspondence
problem has a solution for the sequences wq, ..., w;, and z1, ..., 2.

Obtaining that “engineering discipline” that programmers are supposedly
should have is not easy: we want to conserve the useful features of pointers
(cheap passing of data, dynamically sized data structures, intended sharing),
but we want to prevent the bugs caused by unintended sharing.

To balance the quote from before, we can give another quote, one that is as
harsh as the previous quote is forgiving:

References are like jumps, leading wildly from one
part of a data structure to another. Their introduction into
high level languages has been a step backward from
which we may never recover.

— C.A.B Hoare [32].

*Post’s Correspondence Problem: given two sequences of strings w1, . .., wy and z1, ..., 2§
over some alphabet, decide whether or not there is non-empty sequence of indices 1, ..., ...,
s.t. the concatenations wj, - - - w;, = z;, - - - z;, are equal.

r

21

While unintended sharing of mutable data is clearly problematic, we some-
times intend to; then, we often want to avoid changing the data to not inadver-
tently change other parts of memory indirectly. The next two sections give a
birds-eye view in the form of classification of features of systems that restrict
aliasing and mutation. As a birds-eye view usually does, the classification in
these two sections is painting in broad strokes: it will compare type-safe ab-
stractions with programming idioms and libraries used in low level program-
ming languages (which usually have features to disable all safety guarantees).
The reason to introduce this category is to give the reader a basic understanding
of many of the concepts we will talk about.

1.4 Restricting Aliasing: A Taxonomy

We will break up tools and techniques to avoid or highlight the sharing of mu-
table data into orthogonal categories in order to later on use those categories
to systematically compare existing research and implementations of both pro-
gramming language, and library abstractions. Our categorisation is informal
(we know of no formal system to capture the whole range that we will cover
here, a situation that others have also remarked on [46]) but covers a wide
range of the research presented in the rest of this chapter, ranging from almost
no restriction (reference variables in imperative programming languages), all
the way to unique references (Definition 7) and alias control methods based
on encapsulation like islands, and ownership types (c.f- Section 2.1.2, [16, 33,
47]).

The categories that we will use are:

The mode of alias restrictions. An object can be shared (when more than one
references to it may exist), it can be temporarily shared (when the pro-
gram’s run-time is divided into phases where more than one reference to
an object exist, alternating with phases where there is only one alias), or
it can be unique (when only one reference to it exists). Temporary shar-
ing is a technique that is commonly used to permit users to call methods
on uniquely referenced objects: calling the method creates an alias ref-
erence, available through the method’s this parameter. But when this
is borrowed (in other words, it will never be stored into the heap [5, 11])
this alias only exists for the duration of the method call. Calling meth-
ods on a uniquely referenced object would require the callee reference
to be made unavailable at call site (for instance, by setting the referring
variable to null in the process) and passing the this reference back to
the caller as part of the return value.

The reach of alias restrictions. While the mode of alias restrictions is about
the reference(s) to an object, the reach of alias restrictions is about what
is known about the references read, transitively, from the object. This is

22

a mechanism that is used to protect the inner state of an object by pre-
venting uncontrolled outside access. The reach of alias restrictions can
be shallow, meaning that at least some references read from the object
are globally shared (they can be passed anywhere); or it can be deep,
meaning that the access to the object’s inner state is restricted.

The scope of alias restrictions. Alias restrictions can apply to a whole pro-
gram, meaning that there really is only one reference to a certain object
in all the program. This kind of aliasing restriction, which we call global
alias restrictions (c.f. global uniqueness in Paper 1), is desirable — but
many situations are not that simple. E.g., a tree data structure might be
guaranteed to contain only one reference to a certain object, but refer-
ences outside of the data structure may also refer to the object. We use
the term /ocal alias restrictions when a reference is guaranteed to be the
only one in a certain set of fields or variables strictly smaller than the set
of fields and variables referring to objects of the same object type.

We are not the first ones to come up with a categorisation of aliasing like
aliasing modes: Mycroft and Voigt [46] categorise aliasing into linearity (c.f-
Definition 8, p. 39), spatial aliasing, and temporal aliasing, which roughly
correspond to our aliasing modes®.

The idea of a scope of alias restrictions will be important in Paper I, which
introduces a static type systems to express a wide range of fine aliasing, ranging
from global deep kinds of aliasing restrictions (the most restrictive — but safest)
to globally shared (the most permissive — but least safe), see Chapter 4 and
Paper L.

A large number of systems deals with systems that use alias restrictions.
Clarke et al. [15] give a comprehensive overview of ownership types, a fam-
ily of type systems that are used to guarantee object encapsulation in various
versions. Rust uses deep alias control as a default (references into an object
may never outlive the object) but comes with smart pointer types that can ex-
plicitly disable this behaviour where needed. We categorise a number of type
systems, code patterns, modes of uses of existing languages, etc. in Table 1.1
and Table 1.2.

1.5 Forms of Immutability: A Taxonomy

At a first glance, it might seem like immutability has a simple, and single def-
inition. However, this is not so: the term “immutability” can refer to a wide
range of semantics. This section groups semantics of immutability — infor-
mally — for the purpose of understanding differences and similarities of this
wide range. These features are:

SBoth their and our definitions are informal. Our aliasing modes can be combined further with
scope and reach to yield a classification that subsumes more diverse techniques.

23

Table 1.1. Examples for forms of shallow alias restrictions. We will introduce those
systems in Chapter 2.

Local

Global

Shared

Encapsulated objects are local to
objects reachable from the
encapsulating object.

C pointer/C++ pointer/Java
reference type fields/variables.

Temp. Shared

C’s restrict pointers force a
programmer to use only the one
restricted alias to an object as long
as this pointer is alive, c.f.

Section 2.1.3.

A data structure’s spine and the
iterator’s field that references the
current node (temporary when
iterators have a bounded lifetime,
as is common).

“Standard” unique references with
borrowing (c.f- Section 2.1.3).

Unique The set of element-fields of a set

data structure may never contain
the same reference twice.

Linear types (c.f. Section 2.1.3,
immutable data reachable from
them is shared [59]).

Global uniqueness (c.f- Chapter 4,
Paper 1), if explicit aliasing is
avoided and the referred-to object
contains shared data.

The reach of immutability. Immutability can be shallow (apply to the object
itself, but not to all references stored by the object) or deep (the object
itself is immutable, and also all objects reachable from it).

The granularity of immutability. Immutability can mean that an object may
not be mutated through a single reference to an object (but through other
copies of that reference), or it can mean that an object may not be mutated
(in other words to all references to the object are reference immutable),
or it can apply to all instances of a type. We speak of reference-, object-,
or class immutability.

The mode of immutability. Immutability can be permanent (e.g.,, a perma-
nently immutable object may never be mutated once it’s constructed, like
in purely functional programming) or temporary (e.g.,, an object that un-
dergoes an initialisation phase and at some point “freezes”, like objects
using memoisation or lazy initialisation; or an object that has clearly de-
lineated phases in its lifetime during which it won’t be mutated, like pass-
ing a C string to a function that will write to it, e.g., for making a copy:
strcpy(a)).

Considering the list above, we see that the term “immutability” can refer to
a great variety of meanings, some of which are very restrictive (but maintain

24

Table 1.2. Examples for forms of deep alias restrictions. We will introduce those
systems in Chapter 2.

Local Global

Shared
From Paper I: Object with Pointer to Java/C/C++ object using
no/global domain parameters, encapsulation.
referenced through a shared Bridge Objects in Islands [33].

domain (c.f Chapter 4, Paper I).

Temp. Shared

Rust values enforce that their Balloon objects [2, 55], see
aliases never outlive the object, Section 2.1.2.
and that any references taken from

N . o Dynamic borrowing (e.g., Rust’s
inside an object have a lifetime std:: cell [18], ¢.f Section 2.2.1)

shorter than the object (deep). ensures that the object is accessed

From Paper I: a unique reference through only one of the aliases at a
that is temporarily aliased and later | time.
recovered to unique (c.f Chapter 4,

Mutex-locking accesses to an
Paper I).

object that encapsulates its
representation ensures that only
one of the references may access
the object at each time.

Unique . .
From Paper I: local uniqueness of From Paper I: a globally unique
an object that uses only globally reference (of type T#unique),
unique type parameters (c.f- where T’s type parameters are all
Chapter 4, Paper I). globally unique. (c.f. Chapter 4,

Paper I) and explicit sharing is

The next fields in a list’s spine
form a set of fields that contains
each reference only once, but an
external iterator will contain
aliases of the next fields®.

avoided.

strong invariants for reasoning about programs), and others are very permissive
(but maintain only weak invariants).

To illustrate how we can use these different kinds of uniqueness, we’ll con-
duct a small litmus test: whether reordering two statements will preserve the
program’s meaning, or not. In other words, we ask whether there is interfer-
ence between the two statements:

a.foo();

x = b.f;

Definition 2 (Interference between statements) Tivo statements inter-
fere if one of them writes data that the other reads or writes.

25

immutability of b
2

’Zg']e
%'7//0,,,
oy, %,
O ey,
05
Yoy, e,
& W cr
G C/
C2] 2,
e teg, 8
%ob.’efl
S J%b[
L2
X3

none

shallow reference

shallow object

shallow class

<
NENENEEREE

deep reference | v | v/

\
SISISIS[S[S S 9%,

<

deep object | v/

SsIsIs[s]S 9%,
NN REREREA

immutability of a

<

deep class | v | v/

Figure 1.2. Assuming the references are immutable at least temporarily for the scope
of the code snippet, the answer depends on which kinds of immutabilities the variables
a and b have. v': reordering preserves program semantics.

Figure 1.2 shows the results. For example, if variable a is deeply reference
immutable during the code snippet, that is sufficient to conclude that seman-
tics will not change. This is, because line 1 can not change b. f, even though
the reference in the variable b might be included somewhere in a’s transitive
closure. However, that the variable b is deeply reference immutable, is not
sufficient. a simple counter example would be if a and b are aliases, and the
method call in line 1 changes the reference stored in b.

These kinds of immutability are used in practice; be it in the form of type ab-
stractions, abstractions provided by libraries, or simply coding idioms. E.g., on
the restrictive side, we have permanent deep class immutability, like in purely
functional data structures, c.f. Section 2.2.3. On the least restrictive side, we
have temporary shallow reference immutability, like C’s const pointers [38].
The overviews in Table 1.3 and Table 1.4 show some common use cases and
implementations of the combinations of the kinds of immutability we can ex-
press in the classification from this section. We will, starting with Chapter 2,
go through these systems and explain them one by one. In Chapter 3, we will
talk about how commonly used some of these kinds of immutability are in
practise.

Now that we have demonstrated what aliasing is, how it is problematic when
mutable state is aliased, and what ways to mitigate the problems are, we are
ready to survey some means of alias control that have been designed by prac-
titioners as well as researchers.

26

Table 1.3. Different forms of shallow immutability, and examples (the examples are
not exhaustive) for where they are used. We will introduce those systems in Chapter 2.

Reference Object Class

P t

ermanet The references a Const values (const T, | C/C++ struct with only

collection has to its Section 2.2.1). const fields or Java
elements are usual}y A pointer that is both class with only final
not used for mutation. unique and a read-only fields.
C/C++ const pointer reference (c.f- Immutable collections
when the referent may Section 2.2.1). or option types, when
be const. Casting CH+ they contain mutable
const-ness away and unique_ptr<const T> data (c.f “conditional
modifying the f)bject (“uni qu;: pointer to deep immutability”,
would then be illegal const”, Section 2.2.1). Section 3.2.1).
[38] (c.f.
Section 2.2.1).

Temporary —

C/C++ const pointers
to a non-const object
(then const-ness can be
typecasted away,
Section 2.2.1).

Java’s unmodifiable
collections, when there
are references to the
inner collection left
(Section 2.2.1).

Freezing a Java
collection by moving
(Definition 7) it into an
unmodifiable
collection (c.f.

Section 2.2.1).

27

Table 1.4. Different forms of deep immutability, and examples (not exhaustive) for

where they are used. We will introduce those systems in Chapter 2.

Reference

Object

Class

Permanent

Javari read-only
references (see
Section 2.2.1).

const T (non-pointer
type, see Section 2.2.1)
in C++, if T
encapsulates its
reachable state.

A permanent read-only
reference that is known
to be unique, c.f.
Section 2.2.1.

C++ propagate_const
<unique_ptr<const T
>> pointer (see

Section 2.2.1) if T
encapsulates the
reachable state or uses
propagate_const as
well.

Immutable data
structures (e.g., [48]).

Javari readonly class
(see Section 2.2.1).

Temporary

28

C++ T const * (see
Section 2.2.1), if the
type T encapsulates its
reachable state. If the
referent is not actually
const, it can be
typecasted to T *.

Rust objects are
immutable during
periods of aliasing.

Fractional permissions
(Section 2.1.1).

Lazily initialised
classes.

Classes with caching
(e.g., java strings that
cache the result of the
hashCode method).

2. Language Abstractions for Alias Control

The big lie of object-oriented
programming is that objects
provide encapsulation.

J. Hogg [33]

Aliasing of mutable state is a double-edged sword. On the one hand, it can
support useful programming idioms (Section 1.3). On the other hand, it can
lead to bugs because how far an object is shared is not always clear.

Alias control (Definition 3), roughly, is the attempt to express in a program
how, and whether, objects can be aliased and often includes protocols that may
include additional constraints on the use of aliased data, related to mutation of
aliased data.

Definition 3 (Alias control) The term alias control was coined by Hogg
etal. [34]. Alias control groups techniques that permit aliasing to happen,
but do so in a way that permits a programmer to tell when this is the case.
Aliasing control aids programmers to ensure that unexpected aliasing will
never occur.

In the next section, Section 2.1, we will survey techniques that let a pro-
grammer avoid or make them explicit in code in a way that is suitable to avoid
bugs caused by unintentional aliasing. After, in Section 2.2, we will cover
some techniques that are available to restrict instead the modification of data
in order to safely share data.

2.1 Restricting Aliasing

There are two obvious solutions to avoid problems caused by aliasing of muta-
ble state: to restrict aliasing of mutable data, or to restrict mutation of aliased
data by using forms of immutability. This section covers the first: to restrict
aliasing, while Section 2.2 covers the latter.

We will start with encapsulation, a pattern that is widely used in object ori-
ented programming, and its limitations. We will continue with type systems
that are designed to control precisely how references can be aliased in order
to give more reliable means of understanding code than today’s mainstream
programming languages.

29

2

3

4

Figure 2.1. Object o encapsulates (Definition 4) the objects drawn within the bubble,
including object o’. As o’ is encapsulated, references from the outside (like the crossed
reference) are prevented. The object reachable directly from o is not encapsulated
inside o, as there is a path of references to it that does not go through o.

2.1.1 Encapsulation of Mutable State

One the most well known techniques to restrict aliasing in programming prac-
tice is encapsulation (Definition 4). Figure 2.1 shows a partial object graph
where an object o encapsulates several objects that are transitively reachable.

Definition 4 (Encapsulation) 4n object o encapsulates another object o
as long as o' can only be accessed during method calls to object o. This
definition of encapsulation is about reachability of data, unlike some def-
initions of the same term in the context of object oriented programming.

Encapsulation is Difficult to Implement
A problem with encapsulation is that it is hard to enforce consistently. Con-
sider the following class of financial portfolios that we have already used as
an example in Section 1.3.4. A reasonable invariant is that a portfolio must al-
ways encapsulate the checking account within it, such that no outside code can
access the checking account directly. This makes encapsulation a deep form
of alias restriction.
public x class Portfolio {

protected Account acc;

public Account getAcc() { return this.acc; x }

public void setAcc(Account a) { this.acc = a; X }

}

This snippet contains several violations of encapsulation: passing data to the
outside, passing data to the inside, and privileged access through inheritance.
We now go through these in order.

Passing Data to the Outside
First, the getter in line 3 violates encapsulation: the getAcc method must not
return the object referenced by the acc field—or otherwise, outside code could

30

call portfolio.getAcc().withdraw() without going through the portfolio im-
plementation. The getter could instead return a copy of the account instead:
return this.acc.copy(). Other options would be to, if the languages has
that feature, return a read-only reference to the account (Section 1.5), or move
the account out of the portfolio by setting the account field to null before re-
turning the account.

Passing Data to the Inside
Second, the setter in line 4 is broken: client code could install a checking ac-
count, retain a reference to it and use it later to withdraw money:
Account acc = new Account();
somePortfolio.setCheckingAccount(acc);
// ... after portfolio owner has put money in ...
acc.withdraw();

Instead, the account could use a copy of the newAcc that is passed in: this.
acc = newAcc.copy().

Privileged Access Through Inheritance
Third, the class is not marked final in line 1, meaning it can be inherited from:
even after the Portfolio class is fixed by copying the account every time it
crosses the encapsulation boundary, careless usage of inheritance can break
encapsulation once again:
public class BrokenPortfolio extends Portfolio {
@0verride public Account getAcc {
return this.acc; X
}
// similar for setAcc

}

Note that not even preventing the subclass from accessing the acc field (by
making it private) would prevent inheritance from causing a problem, as we
could simply add a new account field in the subclass and override the setter, as
well as the getter to use that new field instead.

This list of problems is not exhaustive', but shows that even for a single
and simple class, enforcing aliasing intentions is surprisingly hard and — when
cloning is used — costly. Also, importantly, reading the code is hard as well:
the fact that encapsulation is present is never said explicitly. Alias control
in mainstream languages is often painted in the negative space—by carefully
omitting things, not by explicitly stating. In the next section, we will see sys-
tems that can help programmers enforce properties such as encapsulation in a
more reliable manner by stating the properties positively, rather than by omis-
sion.

'we could, for instance, also use Java’s reflection to make the account field public

31

2.1.2 Alias Control by Subdivisions of the Heap

One way to let programmers denote explicitly how much aliasing is possible
is to divide the heap into disjoint regions of data by using a type system. Each
object lives inside exactly one region, and usually, this is an object property
(all references to the object agree). Most commonly, these regions are defined
by objects like the portfolio in Section 2.1.1: an object could define that — for
instance — every object reachable from it is considered to be inside it and there-
fore an alias can not be passed to the outside; similarly, no outside reference
can be simply copied to the inside without making sure that that there are no
outside aliases left.

By looking at the region a reference refers into, we can often rule out alias-
ing: if two references refer to objects in different regions, they may not be
aliases; but two references referring to objects in the same region may be
aliases. In such a system, a type usually carries information about which re-
gions of memory the objects that are indirectly referred to from it (Definition 5)
are in.

Definition 5 (Indirect Reference) A reference r is an indirect reference
to an object o if there is a non-empty chain of accesses r.f1 ... fn that
evaluates to o. If two variables contain these references, we also call the
variables indirect references to o.

By reasoning about the regions of memory that are transitively reachable
from two objects, we can often infer there can be no indirect aliasing (Defini-
tion 6).

Definition 6 (Indirect Aliasing) Two references r, s, are indirectly
aliased if there exists at least one object o such that both r and s are
indirect references to o, in other words: if the transitive closures over-
lap. If two variables x and y contain these references, we also call the
variables indirect aliases. The variables portfoliol and portfolio2 in
Figure 1.1a are indirect aliases because they are both indirect references
to the objects t and 1.

We will provide an overview of this field and make an attempt to bring out
some important similarities and differences of the work we present.

Islands and Balloons: Reliable Encapsulation

Islands, a proposal by Hogg [33], introduce the idea to enforce encapsulation
(Definition 4) at a language level. An island is a region of the heap that contains
all objects reachable from a bridge object. In order to modify the objects within
an island, one must call methods on the bridge object.

32

pl pl
p2 p2

(a) Valid islands and balloons. (b) Valid islands, not balloons.
Figure 2.2. Bridge objects in islands can be aliased, but not in balloons.

From a freshly allocated object, no other objects can be reached—a freshly
allocated object therefore is a bridge object representing an (empty) island as
it was just described. In order to maintain encapsulation, Hogg’s work addi-
tionally demands some properties of bridge objects. As bridge objects are the
entry points into a disjoint region of memory, by ensuring that

a) only unaliased references get passed inside a bridge object (including

during the object constructor), and that

b) no references to the internal representation are copied outside the bridge

object.

If we follow these rules, we get a guarantee that islands stay, in fact, disjoint
from each other?. A nice property of the system is that bridge objects can be
modularly type checked: an object is a bridge object if all methods accept only
unaliased arguments and return only aliased data. Figure 2.2a and Figure 2.2b
both depict valid islands: islands have a single bridge object that connects an
encapsulated part of the heap (drawn shaded) with the surrounding memory,
and bridge objects themselves may be referred to from multiple aliases.

Coming back to the portfolio class we talked about in Section 1.3.4 and
Section 2.1.1, we can now show how this class could be implemented using
islands (we use Java-like syntax for consistent presentation).

public bridge class IslandsPortfolio {

protected Account acc;
public @Unique Account getAcc() { return this.acc.clone(); }
public void setAcc(@Unique Account a) { this.acc = move a; }

}

The island class may return only unique references, and accept only unique
references as parameters to its methods (both made explicit in the getter by
using an @Unique annotation that denotes a globally deeply unique reference).
Assuming the account has a clone method that returns a unique account ref-
erence (as it returns a freshly allocated object), we can enforce that the getter

*References to deeply object immutable data can also cross through bridge objects even when
aliased, but we will focus on the aliasing part of the system here.

33

returns an actual clone to the outside. Similarly, the fact that we only accept
a unique reference to an account in the setAcc method forces a client to give
up its own reference to the account. The move keyword is required to read a
unique reference, it expresses that as a side effect of reading the reference in
a, the variable is being set to null in order to maintain uniqueness (see Sec-
tion 2.1.3).

The islands work features two important concepts as language abstractions:

— The notion of nested regions: an island can contain references to bridge
objects, describing a deeply structured program memory,

— Unique references: in order to enforce rules a) and b) above, islands
require consistent use of unique references for all parameter types and
method return types.

The islands system requires annotations on variables, arguments, and fields
that denote whether or not objects reachable through them are read-only, or
whether the references are unique (as read-only data is exempt from having to
be unique).

The islands abstraction is easy to understand, but also coarse grained. Con-
sider a collection class that is a bridge object, and that we want to iterate over
in a loop. In order to achieve that, the collection needs to remove every single
element from itself, only to re-insert it once the loop is done with that item, as
we can not have the item be referred from the outside (where the iteration loop
is) and the inside at the same time. Figure 2.3a shows an example of such a
situation, where a list exists, and a variable current should refer to one ele-
ment of the list. Implementing this iteration with islands is possible but needs
to deconstruct and reconstruct the list in the process.

Balloon types by Almeida [2] provide a type abstraction that has similar
semantics to islands, with certain differences: the entry into a sub-region of
the heap (what in islands is called bridge objects), the balloon object, can not
be aliased from fields of objects. There can, however, be temporary aliases
from stack variables. The fact that balloon objects can not be aliased is less
expressive, but provides a stronger guarantee than islands, the guarantee that
two variables referring to balloon references are always disjoint (with islands,
the variables could be aliases).

Compared to islands, balloons do not require all references passed in or
out of them to be unique. This works by using, instead of uniqueness at the
boundary, static analysis for each balloon class. This analysis step ensures that
methods of balloon types can not introduce illegal sharing between balloons—
which, in the islands proposal is ruled out by the uniqueness requirement. In-
stead the static analysis tracks which balloon a reference is coming from and
ensures that the reference does not get passed into another balloon. To track
the flow of references accurately, the balloons system requires all balloon ref-
erences to be unique. Compared to islands: balloons can store a reference
to an element that is inside a balloon-collection in a stack variable, where is-

34

lands need to elaborately shift references outside and back inside a collection
to achieve the same.

Balloons have been successful in research: they have been applied to paral-
lelism (e.g., by Gordon et al. [26], Servetto et al. [55]).

Flexible Alias Protection and Ownership Types: Fine-Grained
Encapsulation

The “Flexible Alias Protection” proposal (short: FAP) and ownership types
[16, 47] add an important idea to the abstractions used in islands and bal-
loons: where islands and balloons insist on encapsulation of a/l/ the mutable
state reachable from a bridge/balloon object, FAP and ownership types permit
more fine-grained description of aliasing. Whereas islands and balloons only
accept references from objects within a balloon to go to objects within the same
balloon (modulo exceptions like references to immutable data), FAP and own-
ership types remove this limitation and permit references from one group of
objects to another as long as the references are annotated accordingly. Fig-
ure 2.3b presents an example using ownership types: the list encapsulates all
of the nodes, but the data are stored in a different region.

FAP achieves the increased granularity through inventing aliasing modes.
Aliasing modes are reference annotations® that annotate each field or variable
with the role they play. The most important modes are rep and arg: a field
that is annotated with rep contains a reference to an object that is part of the
field-owner’s mutable inner side, here called the “representation”: references
to this object can never leak outside the object that holds the field—the invari-
ant maintained for rep is similar to islands. In addition, however, flexible alias
protection adds the arg mode: an object referred to from an arg field is a refer-
ence to a value stored inside a collection (called an “argument”). The collection
can not modify the object through this field, only use read-only operations on
the value.

Collections can be parameterised by modes: the list can take a type param-
eter representing the aliasing mode of its data. A client can now bind e.g., its
own rep to the list’s aliasing mode for the data. The ability to parameterise
types is quite powerful, considering its relative simplicity. A list with iteration
in FAP could be implemented easily: it would be parameterised with an arg
mode to declare the access mode it should use to store its contained elements;
the rest of its structure (the nodes), it would store using the rep access mode,
as the list needs full write access. The object whose rep is bound to the list’s
arg (the “owner” of the data in the list) is then free to iterate over the data.

Ownership types Clarke, Potter, and Noble [16] were built on the ideas of
flexible alias protection. Ownership types provide similar abstractions, but
differ in minor ways; for instance, they do not enforce that objects may only

3An object itself does not have a mode, but all variables referring to the objects do; and the
variables do not necessarily agree.

35

list
current d
(stack) T

O

(a) In order to iterate over a list in the islands system, we
have to move the elements out of the list.

[list |
current head
(stack) (rep of the list)

Variable declarations:

\
|

' rep:List[rep] list; ! (rep of the owner of the current stack frame)

! rep:Object current;

|

! Classes: !
i class List[Data] { class Node[Nodes, Data] {

i rep:Node[rep, Datal] head; Nodes:Node[Nodes, Data] next; i
i1 Data:Object element;

i

' i

(b) While a list may always encapsulate its nodes, it may not encapsulate its
data, flexible alias protection and ownership types (drawn) permit this use
case. Syntax: a type o:C[p,q, ..] denotes an object of class C that is in the
ownership context o and binds ownership contexts p,q. . . to its domain param-
eters, meaning it may hold references into those domains.

Figure 2.3. Islands are semantically simple, but too coarse-grained for many situa-
tions. Flexible alias protection and ownership types are more complex, but also more
expressive.

36

mutate data they own directly. In ownership types, objects are grouped in
“ownership contexts”. In Figure 2.3b, we can see different ownership contexts
in use, the representation of the object o owning the current top stack frame
in light grey, which contains the list; the list itself has its own representation
(dark grey), which it uses to hide away the nodes it contains. It is parameterised
over the light grey ownership context in order to make the elements of the list—
unlike the nodes—accessible from o directly. Ownership contexts are nested
regions of the heap, just like islands and balloons are. Every class instance
in ownership types defines manages an ownership context of its own, called
“rep”—its mutable representation, like in flexible alias protection. An object
can, like in FAP, also be parameterised over ownership contexts. One differ-
ence between ownership types and flexible alias protection is that the former
do not conflate aliasing with limitations on updates: modifications through an
arg-moded variable are not permitted in flexible alias protection. Ownership
types have been extended and implemented in various systems. For instance,
they have been applied to parallelism [14, 49], and side-effects tracking us-
ing an effects system [12] that expresses, for each method which ownership
contexts it reads from and which it writes to for more fine-grained expression
of non-interference. A method that only writes to an ownership context ef-
fectively turns all references that refer into this ownership context into deeply
read-only references, augmenting ownership types with a form of temporary
reference-immutability.

Ownership contexts can be useful to describe mutation using effects: for
example, Clarke and Drossopoulou [12] add an effect system to ownership
types where methods annotate inside which ownership contexts they read from
or write to objects. These annotations allow reasoning about non-interference
of statements: two statements that only write to non-overlapping ownership
contexts and/or that only read overlapping ownership contexts can not interfere
with each other and can therefore be safely reordered, or executed in parallel.
A class that takes an ownership context as a parameter that its methods only
ever read from is similar to an arg parameter in FAP-but arg expresses this
property directly, while in ownership type with effects, this property is less
declaratively expressed by omission.

The access modes and ownership contexts we have covered are abstractions
that permit aliasing within them, but avoid aliasing between them. They group
the data into (ideally) small bubbles of unrelated state. As they provide forms
of encapsulation, these systems are inherently forms of deep alias control — a
very useful property for reasoning about programs. They do not readily lend
themselves to express absence of aliasing within such a bubble, like expressing
a list with set semantics (that contains no object twice). The other dominant
way of alias control that we will cover next is a dual of sorts: by starting with
references that have no aliases, they easily express the list with set semantics,
but it is comparably harder for these systems to deliver deep alias control.

37

There are many more papers that could be mentioned here, like work on
universes [20, 44, 52, 60, 61] that also subdivide the heap into nested regions,
but these are not presenting new ideas that we will be necessary in order to
explain the background of our contributions.

Disjointness domains, that we contribute in Paper I (also c.f. Chapter 4) re-
late to the systems in this section: they have the advantage that they can quite
naturally express encapsulation as well as a list with set semantics in a unified
system; however, they lack a true rep that confines an object’s internals within
it. While we think that this could be added to the system by adding an exis-
tential domain to each object that it may not expose to a client, the work as
presented permits only a statically fixed number of shared domains that most
closely resemble the semantics of rep. An advantage that disjointness domains
have is that using unique references is the syntactic default (it requires the least
amount of annotations), while in ownership types and FAP, strong invariants
are achieved by putting data into many disjoint contexts which requires anno-
tations.

2.1.3 Uniqueness, Linear Types, Permissions

In this section, we will talk about systems that avoid aliases of single references,
for instance by enforcing that the reference is never copied, only moved (like
in islands, that we have covered in Section 2.1.1).

We will show how this basic idea that is as useful as it is limiting, more
expressive systems can be created.

Unique References

The systems that subdivide the heap into nested regions that we have just
covered would avoid the problem in Figure 1.1a by enforcing that the two
data structures may never share any data, while expressing the aliasing in Fig-
ure 1.1b by putting all the nodes inside the same ownership context/access
mode.

Unique references are a simple language abstraction that can effectively
avoid unintended sharing by avoiding sharing altogether. They are a means
of conserving two of the listed core features of references (dynamically sized
data structures in Section 1.3.1, and cheap passing of data in Section 1.3.2) but
do not permit the last listed core feature, sharing of data, at all:

Definition 7 (Unique references) are guaranteed to be unaliased [33].
A common way to implement unique references is to move references from
variable to variable, rather than copying. For example, setting the source
variable y to null as a side effect of the assignment operation x =y
maintains uniqueness of the reference now stored in x.

38

Another way that avoids using null and the resulting run time errors is to
make y inaccessible for further reads as part of a type check (the Rust program-
ming language does that) or a static analysis [4], or to use a swap operator that
replaces the reference being read with a new reference atomically [30].

As intentional sharing of mutable data is a feature, prevention of all sharing
is a limitation — in fact, a significant part of the work presented on the following
pages will be dealing with carefully allowing limited sharing of data. Despite
or due to their simplicity though, unique references are used relatively widely
in programming practice, perhaps also due to the fact that many references in
actual programs happen to be unique anyway (Chapter 3).

Unique references are often conflated with linear types (and we will gener-
ally use the term uniqueness to refer to both as well), a related concept, and
while they have similarities, linear types still differ in important ways. These
are described next.

Linear Types

Linear type systems are type systems where linear values, are to be used exactly
one time—not zero or more times. Linear types integrate well with functional
programming (c.f. work by Wadler [59]), where they have the advantage that
values can be cheaply mutated in-place, without breaking equational reasoning.

Definition 8 (Linear and Affine Types) A4 value of a linear type must be
used exactly once [59]. In contrast, affine types enforce that a value of
affine type is used at most once. These terms are sometimes used inter-
changeably, with the term “linear types” being used in place of “affine

types”.

A major difference to unique references is that linear values must be used
exactly once; this means that holding a value of linear type can be considered
an obligation to consume it; the program will not pass type checking otherwise.
This limitation can be very useful as a basis for certain advanced type systems
that enforce usage protocols of a data type. Using type systems with support
for linear types, it becomes possible to implement small examples like a class
representing a file handle that enforces that the handle is closed after usage
(because closing is the only way to consume the obligation [19, 23]); or to
enforce that communication with a web server follows a certain protocol, like
in so-called behavioural type systems like session types [35].

A related consequence of using each value only once is that a linear value
can not exist in a shared value. Imagine that s is a shared variable, and t is
an alias; if the referred object has a field f of linear type, we could access
this field as s. f and t.f, breaking the use-once rule. This is a non-issue with
unique-references, as they can be used many times, just not aliased. There
is work addressing this issue, but it adds significant complexity to the type

39

system. E.g., work by Fahndrich and DeLine [23] introduces the adoption and
focus keywords. In their system, all values are linear by default. But a linear
value 01 can adopt another linear value oo. In turn, the user gets a non-linear
reference to the adoptee. This non-linear reference now prevents accessing any
linear components that the adoptee might contain in order to avoid breaking
the use-once rule. To temporarily allow access to the linear components, they
design a focus expression that lets a user temporarily recover the linearity
of the adopted value at linear type; in order to make sure that multiple focus
operations can never lead to several linear-typed values that are actually aliases,
the type check removes the adopter from the type environment for the duration
of focusing. This means that the adopter (that remains linear after adoption)
can be used as a token that permits temporarily recovering linearity of one of
the adoptee s aliases at a time. We classify the resulting system as globally
temporarily shared.

Another difference is that where unique references have a bottom value like
null or L #, linear values differ by not having null. While this difference
might seem inconsequential, it is not: it means that when reading a field of
linear type, the whole object containing the field it must be “consumed” (made
inaccessible for later use in the program) at the same time; after all, the field
can only be used one time, and the object containing the field can not exist
without a value for that field. With unique references, the reference can be
moved out of the object, setting the object’s field to null. This may leave the
object in a broken state, but a programmer could now choose to insert a fresh
reference into that field, thereby restoring any invariants that may have been
broken intermittently.

Unique References and Linear Types in Mainstream Programming
Languages

Unique references are a widely used abstraction in the contemporary use of the
C++ systems programming language. We are not aware of research that gives
us empirical support for that statement, but the fact that the class is recom-
mended commonly by text books [27, 57] and coding standards [25] is some
evidence. The class std:: unique_ptr<T>> represents an unaliased pointer to
an object of type T. These pointers can not be copied using the usual assignment
operation x = y, but instead, pointers have to be moved explicitly: x = std::
move(y)®. This move operation will leave y in an empty state, dereferencing it
is forbidden. As C++ is a language without garbage collection, unique pointers
are useful for automatic reclamation of heap memory: when a unique pointer
goes out of scope, the reference it contains can never be used again; when a

*Usually, but there are exceptions e.g., Harms and Weide [30] suggest a swap operator to avoid
null.

Sstd i unique_ptr<T> documentation: https://en.cppreference.com/w/cpp/memory/
unique_ptr.

5The specific implementation details, although interesting, are not important for this document.

40

unique pointer is overwritten, the old reference can never be used again. There-
fore, the pointer may automatically deallocate the object in both these cases.

The C programming language does not know of (globally) unique refer-
ences, but it provides the restrict keyword to express a form of local shallow
uniqueness (Section 1.4). The restrict keyword is used to notify the com-
piler of optimisation possibilities when certain pointers are unaliased locally,
but programmers have to respect the constraints aliasing of aliasing imposed
— or the program behaviour is undefined. A pointer that is annotated with the
keyword, * T restrict, points to an object that (or parts of which) may only
be accessed through that restrict pointer, never others. This restriction holds
only as long as the pointer is used.

In programming languages research, unique references have been used by
the islands proposal, and balloon types (Section 2.1.2) to support a “transfer
of ownership”: moving a unique reference from one object to another means
that the other object becomes responsible for managing that object. In type
systems that divide the heap into non-overlapping regions, it becomes possi-
ble to transfer a uniquely referenced object from one heap-region into another
soundly, as it is clear that no reference to the object remains in the old region.

The Clean [56] programming languages uses unique references to be able
to mutate data, while keeping referential transparency. One advantage of that
is that, for instance, arrays in clean can be changed in place without needing
to use monads (like Haskell’s state monad).

The Rust programming language comes with the std:: Box<T> type, that
represents a unique reference to a heap-allocated object of type T. Compared
to C++’s unique_ptr, an assignment operation of boxes x = y in Rust makes
the source variable y inaccessible by employing a type check, it is therefore not
possible have run-time crashes due to a dereference of an empty box pointer.
We can model semantics closer to C++’s unique_ptr e.g., by wrapping the
box in an option type (where the None variant represents a pointer that has
been consumed), using the type std:: option<std :: Box<T>> instead, should
such behaviour be intended. One reason to do that would be to avoid having
to consume the whole object holding a unique reference when the unique ref-
erence needs to be moved out of an object—the option type can be set to None
instead (c.f. Section 2.1.3).

Unique references and linear types, as we have just presented, are means of
preventing aliasing; fractional permissions, the next system, is an extension of
linear types that adds a means of temporarily aliasing references; but aliased
references my not be used to cause updates.

Fractional Permissions

In work by Boyland [5], fractional permissions quantify variables with a “de-
gree of ownership™: a variable can fully own the data it references. But data
can also be aliased, in which case the permission of all aliases will express that
they only represent ownership of a fraction of the data. Boyland uses this sys-

41

tem to guarantee non-interference by only allowing mutations of fully owned
data. References may always be aliased, but in the process, we must accept that
modifying the data they refer to is no longer possible. An object may therefore
be mutable during some program phases, and deeply immutable during others,
we classify fractional permissions as a form of temporary deep immutability.
The syntax for permissions in this system is as follows (p denotes an abstract
location that is used to reason about aliasing of data c.f. [alias-types, 1]):

base permission B = wv:uptr(p)|p
fraction & = 1le

partial fraction e = z|l—egle-&
fractional permission « = &0

A fractional permission can be either a full permission (12 is a full permission
to access the abstract location p in memory, permitting mutation of the object;
and 1v : ptr(p) is a full permission to read and re-assign reference variable v
that currently refers to location p') or a partial permission /3. Two aliases x and
y can have the partial permissions z/3 and (1 — z) 3 respectively. If we alias the
permission z/3 further, the resulting aliases would have the permissions z - 23
and z - (1 — 2’) for a fresh /.

The permission environment 11 is a set of permissions 7 of the form £5.
Type checking guarantees that a heap location p can only be modified if p is
fully owned (in other words, if 1p € II). Additionally, a variable can only be
assigned if the variable is fully owned (in other words, if 1v : ptr(p) € II).
Variables carry the abstract location p they refer to at a given time in their type
(the ptr(p) part), and this permits tracking what abstract location a reference
refers to at a given time. For example, Figure 2.4 lists a parallel expression
involving four variables. The context to the left (Figure 2.4a), this expression
is well-typed. In the context to the right (Figure 2.4b), it is not: The left sub-
expression of the parallel composition || requires at least partial ownership of
p' (in order to dereference *v2). At the same time, the right sub-expression
needs full ownership of p’ (in order to execute xv3:= ..., after storing p’ into
v3).

To summarise, type checking fractional permissions differs from “standard”
linear types in two crucial details:

1. Where linear types are unaliased, here aliasing is tracked in terms of

abstract locations /3, and

2. alinear reference can be split into read-only aliases with smaller fractions

during type checking with the constraint that a partial permission may not
be mutated.

That means that fractional permissions constitute a means of bringing alias-
ing back, even for linear values, without losing the freedom of side effects that
is required in pure functional programming.

Fractional permissions relate to our work on disjointness domains in Paper
I: there, we also build a system that permits temporarily aliasing objects. Dis-

42

1vy : ptr(p) —»[:] 1p

2y @ ptr(

r) /
lvg : ptr(p’)>D 1’0
2'vy ptr(p”)———»D 1p”

(a) An environment in which the expression is well-typed. The permission
1p’ is duplicated to both subexpressions (the first subexpression receives the
permission 2" p’, the second receives (1 — 2”)p’). Type checking with partial
permissions to p’ works because they only need read access to the abstract
location p'.

1vy : ptr(p —»D 1,0
zvy 1 ptr(p’) 1p/
1vs : ptr(p”

Z'vy ptr(p) 1p”

(b) An environment in which the expression is i//-fyped. After the assignment

v3 := v4, the v3 variable refers to the p’ locations. But to type check the *v3

:= .. assignment, a full permission to p’ would be needed; this full permission

is not available, due to the fact that the left parallel subexpression requires at

least a partial permission in order to execute *v2.
Figure 2.4. Fractional permissions example. Type-checking the parallel expression
join { fork { xvl:=%v2; vil:=v4 }; fork { v3:=v4; *v3:=3+%v2 } }. The *
operator denotes dereferencing, := is an assignment, and join { fork {e;}; fork
{es} } executes the two expressions e; and es in parallel, then joins the two threads.
Example program from Boyland [5].

jointness domains differ from fractional permissions in that they do not prevent
aliasing or mutation at all (they are descriptive). Also, they use unique refer-
ences as a starting point, together with a move operator.

2.1.4 Summary

We have now covered several means of restrictions of aliasing: systems that
subdivide the program’s heap, and systems that finely control the aliasing of
individual references, all with various levels of expressive power.

In several of these systems, we have already mentioned that they achieve
greater expressive power by adding flavours of immutability to have aliasing
that would otherwise be deemed unsafe. The next section will cover how we
can use forms of mutability to mitigate the negative effects of aliasing, instead
of constraining the flow of references through our programs.

43

2.2 Preventing Modification

Interference requires that shared data is modified and read. The last section
showed how interference can be avoided by limiting sharing, but limiting shar-
ing can be difficult, especially in mainstream languages. This section shows
how to avoid interference by limiting the modification of shared data instead.
This approach is commonly used in programming (functional programming
languages being a prominent example), yet it has disadvantages. This section
will survey systems, libraries, and languages that aid programmers in reliably
implementing immutability. In order to understand better the situation that the
field is in today, we will again pay extra attention to some mainstream lan-
guages, and the support for different kinds of immutability that they provide.

2.2.1 Immutability through Read-Only References

A way to prevent modifications of T and I in Figure 1.1 is to classify all meth-
ods of t according to whether they mutate the object itself or objects reachable
from it—or not. Then, the fields f and g can be marked as deeply read-only (a
version of reference immutability), meaning that via these fields, only methods
that do not mutate data may be called. We can also implement shallow read
only references that way by only tracking mutations of the object itself, not
reachable state. In contrast to object immutability and class immutability like
in functional data structures (which we will cover in Section 2.2.3), read-only
references are a form of reference immutability: they do not necessarily pre-
vent objects from changing! Read-only references only prevent modifications
going through that one reference, or copies of it but permit the existence of
other writable aliases. Once the object is shared between the aggregates, we
can limit the effects of sharing by converting, for instance, both references to
deep read-only references for as long as sharing continues: in Figure 2.10a,
we have drawn the same data and overlayed a graph as dashed arrows that
denotes the direction in which data can be read and written: a field that can
be used to read and write lets values travel in both directions (aligned with
the pointer direction in the case of a write, against the pointer direction in the
case of a read), but a field containing a read-only reference can only let data
travel against its reference direction. It becomes clear that no values can flow
from the aggregate after x to that after y, as y is not reachable from x (or vice-
versa). While this property does not exclude modifications coming from other
possible aliases, it can still be useful (for instance, for running operations on
the two aggregates in parallel). But we could, depending on the invariants re-
quired, choose to convert only one of the references. Depending on which of
the references (if any) we make deeply immutable, the possible interferences
between statements involving the variables x and y in Figure 2.10a change:

1. Making reference f deeply read-only, we can prevent value flow from

statements using x to statements using y;

44

2. making reference g deeply read-only, we can prevent value flow from
statements using y to statements using x.

3. making both references f and g deeply read-only, we can implement non-
interference between x and v,

4. ifwe know that f and g store the only references to object T and that object
1 encapsulates object T, making f and g read-only references is sufficient
to conclude that the immutability is object immutability (Section 2.2.1).

Constructing Object Immutability from Reference Immutability with
Knowledge of Aliasing
Even though read-only references may help implementing non-interference,
their power is limited — read-only references can profit from some kind of
reasoning addressing aliasing. Consider the example in Figure 2.10b: here,
we have again marked the fields f and g as read-only (again, drawn as single
dashed arrows). But we have added a writable alias, via field e (marked x)
from an external object to object . This means that we can use this field to
modify object 1 or object . If we can guarantee that all references to | are
deeply read-only, we can conclude that 1 and I are, in fact, object immutable.
This has practical consequences: if all we have done is make f and g deeply
reference immutable, this gives us the ability to execute statements in parallel:
// the finish block waits for its inner
// forks to terminate before continuing
join {
fork { x.foo(); } //fork runs its inner block in a separate thread
fork { y.bar(); }
}

That join is necessary, as later statements might modify f, { using the exter-
nal writeable alias; this would constitute a data race.
But if we are able to rule out any further writeable aliases to t or I, we
require less synchronisation:
// we can immediately continue execution without joining,
// as no other statement may interfere with any of the
// spawned threads
fork { x.foo(); }
fork { y.bar(); }

Read-only references are available—with differing semantics—in commonly
used programming languages and research proposals. The technique to be able
to guarantee object immutability using only knowledge of the absence of alias-
ing and reference immutability is indeed very useful: it can be used by a static
analysis and type systems to gain the ability to express object immutability. Ob-
ject immutability would be hard to track otherwise, as it would require a static

45

alias analysis. Versions of this technique have been used Gordon et al. [26]
and Milanova and Dong [42] (c.f. Section 3.1).

The rest of this section will survey selected implementations of read-only
references ordered in (roughly) increasing order of abstraction.

Pointers to Const in C
The const keyword in the C programming language allows defining a pointer
that may only be used for reading a value, but not writing it. A variable with
the type T const = is a pointer to a value of type T that may not be changed
using that pointer, but a pointer to const does not preclude the existence of
writable aliases, making it a form of reference immutability. In addition, const
is shallow, as data reachable from the object being protected is still freely
mutable.

Const can also be applied to values directly. The type const T (where T is
not a pointer) denotes a T value that is object immutable. But unlike in stronger
type systems, object immutability is not something the compiler enforces for
the programmer, it’s rather something the compiler expects of the programmer
to enforce themselves: whether or not a reference to const is a form of perma-
nent immutability or not is potentially very hard to find out in a C program:
if the value referred to by the pointer was not defined to be object immutable
(e.g., int x, rather than const int x), then it is legal to type-cast const away,
making it a temporary form of immutability. But if the value was declared to
be object immutable (e.g., const int x), then casting it away is illegal. A safe
default is to treat pointers to const as permanently immutable.

The listing in Figure 2.5a shows an example of shallow semantics: a struct

node const * pointer only protects the node it is referring to from modifica-
tion, but not the other nodes reachable after it. This means that pointers to
const are not sufficient to guarantee non-interference. We can, even though
this takes a lot of work and is error-prone, implement deep const: consider
the code in Figure 2.5b. There, we have added accessor functions next_const
(..)and next(..). The idea is that if we only have a pointer to a const node,
we can only call next_const, which gives us yet another pointer to const; but
using a non-const pointer, we can also call next for mutable traversal of the
data structure. However, for nodes that have more than one pointer field, we
would need to replicate these accessor functions for each field, and implement
deep const for each data type they refer to, making this approach laborious in
practice.

46

Table 2.1. C pointer syntax: reading the type backwards explains the meaning.

Type Read as..

T Pointer to T.

T* const Constant pointer to T (will always store same reference,
but supports mutating the object).

T const * Pointer to constant T (reference immutability).

T const * const | Constant pointer to constant T (reference immutability).

struct node {
struct node *next;
int elt;

b

/...

struct node const * n = ...; //allocate new node
(n->elt)++; // X prevented modification
(n->next)->elt+; // 22 permitted modification

(a) A pointer to const node does not convert pointers read through it to
pointers to const node. Therefore, only the first node is protected from
writes, but not the second, nor any subsequent node.
struct node const *next_const(struct node const *n) {
return n->next;

}

struct node *next(struct node *n) {
return n->next;

}
/...

struct node * const n = init(); //allocate node
next(n)->elt++; // X prevented calling next
next_const(n)->elt+; // X prevented modification

(b) Using explicit accessors that preserve the const qualifier of the
pointer, we can enforce that a non-const pointer can only be obtained
from a non-const node, thereby implementing a deep version of const.
However, this requires care and needs to be done for each field (like
next in this example) individually.

Figure 2.5. Expressing deep immutability using const-pointers is possible, but labori-
ous.

47

struct node {
unique_ptr<node> _next;
int _elt;

node(int elt) { this->_elt = elt; } //constructor

void insert(int x) {
unique_ptr<node> oldNext = std::move(this->_next
)H
this->_next = std::make_unique<node>(x);
this->_next->_next = std::move(oldNext);
}
b

(a) A node in C++ can express that its next node is an unaliased ref-
erence; the insert method then needs to move rather than copy refer-
ences.

node writable = node(1);

writable.insert(2);

const node& read_only = writable;

read_only._elt+; // x modification prevented
read_only._next->_elt+; // 72 modification permitted

(b) Even using the unique_ptr class in C++, immutability remains
shallow.

Figure 2.6. A const unique pointer does not apply the const-ness to its referent, just
like a const pointer.

C++

Like in C, pointers and references’ in C++ implement a shallow version of
const. As Figure 2.6 shows, we can construct a node class using a unique
pointer (unique pointers do not permit their referent to be aliased from other
unique pointers). C++ adds several relevant differences to C: const methods
and smart pointers.

’ Although C++ has const pointers like C, we shall use references in our examples in order to
match idiomatic C++. The difference between pointers and references is not important for these
examples.

48

struct nodes next() { return *_next; } /null checks omitted
const struct node§ next() const { return x_next; }

(a) Using a similar trick to the one for C const pointers in Figure 2.5b, we can create
two overloaded getter methods for nodes to implement deep immutability for the node
type.

writable.insert(2);

const node& read_only = writable;

read_only._elt+; // X prevented modification
read_only.next()._elt+; // X prevented modification

}

(b) As read_only is a const reference, only the const overloading of the next getter
can apply; therefore, the result of next is also protected from writes.

Figure 2.7. Implementing two getters for the next field, we can achieve deep im-
mutability semantics.

Using Const Methods to Implement Deep Const

C++ adds the possibility to have const annotations on methods. A method that
is annotated as const, intuitively®, is a method that will not modify the object
it is called on. If an object in C++ is object immutable (const T, like in C), or
referred from a pointer-to-const (e.g., T * const, unique_ptr<const T>), or
a C++ const reference (const T&), only methods annotated as const can be
called on it. Programmers can use this mechanism for implementation of deep
const.

By using encapsulation, we can implement deep const semantics. By mak-
ing the _next field private and instead adding two overloaded getters like in
Figure 2.7, we can use C++’s type system: the getter that returns a writable ref-
erence (type node&) is not marked as const method. From the type system’s
view, obtaining a writeable reference into the node now changes the node and is
there not permitted on a const node. The other getter returns a read-only refer-
ence (type const node§), and that getter is marked using the const keyword—
the type system will allow calling this getter even on a const node. This way,
we ensure that a user can only obtain const references to the next node of
const nodes. We still need to take great care to not accidentally return any
mutable references (direct references or indirect references as part of a return
value) to the outside.

Using Smart Pointers to Reduce the Complexity of Deep Const
Using C++’s smart pointers, the solution using overloaded getters can be made
easier and more reliable. Consider the node declaration in Figure 2.8a. Instead

8The precise semantics vary with the version of C++ [31].

49

of declaring two overloaded getters for the field, a user can instead use a wrap-
per for a pointer that gives the wrapped pointer const-propagating semantics.
This means that if the pointer itself is const, then the pointed-to value will also
be const. This means that the safety feature that we had to implement manu-
ally by carefully implementing appropriate getters in Figure 2.7a can be imple-
mented once in the standard library in the form of a wrapper class for pointers,
and then just re-used. It also makes the code easier to read, as this property is
now documented in the field declaration, rather than implicitly in the method
implementations. Figure 2.8a shows usage of the class propagate_const that
is being evaluated for addition to the C++ standard at the time of this writ-
ing. The authors of the proposal to add propagate_const to C++’s standard
library, Jonathan Coe and Robert Mill [39], include a comment that is espe-
cially remarkable in the context of this thesis’:

Given absolute freedom we would propose changing
the const keyword to propagate const-ness. That would
be impractical, however, as it would break existing code
and change behaviour in potentially undesirable ways. A
second approach would be the introduction of a new
keyword to modify const, for instance, deep const,
which enforces const-propagation. Although this change
would maintain backward-compatibility, it would require
enhancements to the C++ compiler.

— Jonathan Coe and Robert Mill [39]

Reference Immutability in the Rust Programming Language
Unlike C and C++, the Rust programming language syntactically defaults to
immutable semantics: mutable data has to be annotated using the mut qualifier
that has semantics that are different from C/C++. In particular, mut is a deep
property. Declaring a node like in Figure 2.9, the fact that reference ro is a
read only reference prevents us from modifying any node of the list. Rust’s
type system enforces that, at any one time, there can be either at most one
mutable reference or any number of read-only references to a datum [3]. This
constitutes a big difference between Rust and C++: Rust propagates immutabil-
ity by default, like Coe and Mill [39] in the last section suggested. Not giving
mut deep semantics, would violate the reference semantics, as two writable
references to a single node could then be obtained.

In practice, this means that Rust programmers have to do extra work to
achieve interference when it is really needed: where the Box<T> type consti-

9This stance is further backed by the fact that const methods, starting with C++11 but unlike
C++98 and earlier, need to be thread safe. This is because the standard library is not obligated
to explicitly synchronise const method calls [31].

50

struct node {
std:: experimental :: propagate_const<unique_ptr<node>> _next;
int _elt;

node(int elt) : _elt(elt) {} // constructor

void insert(int x) {
auto oldNext = std::move(this->_next);
this-> next = std::make_unique<node>(x);
this-> next->_next = std::move(oldNext);
}
b

(a) Using the propagate_const pointer wrapper for the _next field in the node gives
the node deep immutability semantics.

node writable(1);
writable.insert(2);
const node§ read_only = writable;

read_only._elt+; // X prevented modification
read_only._next->_elt+; // X prevented modification

(b) Even without explicitly implementing the two overloaded getters, a const node
reference is now deeply protected from writes.

Figure 2.8. Although this feature is not widely used, C++ supports safe means of deep
immutability.

51

struct Node {
elt: i32,
// Box<T> can not be "null’, therefore use Option<..>:
next: Option<Box<Node>>,

}
/...

let mut n@ = ...;

let r0: &Node = &n0@; //read only reference to n0

ro.elt += 1; // x compiler prevents modification

let rl: &Node = r@.next.as_mut().unwrap(); // X compiler prevents
taking mut reference

rl.elt += 1;

Figure 2.9. Unlike C and C++, Rust uses deep immutability by default.

tutes an unaliased pointer'?, a Rust programmer may use a variety of reference-
like (similar to smart pointers in C++) classes with weaker guarantees. For
instance, the type RefCell<T>!! to share a T value between different locations.
A RefCell<T> permits modifications from different locations, but not concur-
rently: before changing the value contained in a RefCell, the programmer
needs to explicitly borrow the value for writing, but that borrowing must end
before the value can be borrowed again. This linearizes the accesses to a shared
value. The RefCell ensures that, if two borrows happen at the same time, an
error is raised. By picking from a rich set of pointer semantics, a Rust program-
mer can gradually decrease the power of reasoning, but increase the power of
expressivity. The difference to the other mainstream languages here is that the
language uses safe defaults, and requires extra work for things that are poten-
tially dangerous.

Reference Immutability in Java

Java final

Java comes with the final qualifier (already mentioned in Section 2.1) that,
when used on a field or variable declaration of reference type, states'? that this
field or variable will always refer to the same object. That all final fields are
initialised during object construction is checked during compilation, and the
compiler prevents re-assigning final fields. This is similar to a constant pointer
in C/C++, rather than the pointers-to-const we have mostly talked about above

05td :: boxed :: Box documentation: https://doc.rust-lang.org/std/boxed/index.html.
"std:: cell documentation: https://doc.rust-lang.org/std/cell/index.html.
"2This protection can be circumvented using reflection.

52

(a) When all references to object T are deeply read-only, object t is deeply object
immutable.

(b) Deep read-only references can be used to construct non-interference between aggre-
gates (like the data reachable from x and y. In order to get deep immutability, writable
aliases have to be prevented.)

Figure 2.10. The example from Figure 1.1 with deep read-only references f and g.
Value-flow is drawn as dashed lines. Fields that can be used for reading and writing
their referent can be used to move a value in direction of the reference and back (drawn
< — — —). Fields that can only be used for reading can be used to move a value
against the reference direction (drawn <————).

53

(T * const, rather than T const *): the fact that the variable can not be re-
assigned does not protect the referred-to object from modification.

final Node n = new Node();

n = new Node(); //compiler prevents re—assignment

n.next = new Node(); //compiler does not prevent modification

Unmodifiable Collections

Even in languages that do not support static typing for read-only references,
we can sometimes write code that gives us similar functionality. What this
demonstrates is that static types are not the only way to reach this feature. An
example is Java: it does not have read-only references as part of its type system,
limited support for read-only references can however be implemented (and
is commonly used) dynamically. So-called “unmodifiable collections”!3, are
wrappers for a collection data structure that ensure that the wrapper can not
cause any update to the contained data structure.

An unmodifiable collection, in Java, is a collection that does not support
any update operations. It will throw an exception when code tries to modify
it, rather than prevent a modification at compilation time. Unmodifiable col-
lections protect the collection itself from modification, but not the elements
contained in the collection, which may still be modified and are therefore a
shallow form of immutability.

A disadvantage of unmodifiable collections is that, effectively, a part of the
interface is disabled at run-time: all methods that are supposed to update the
collection are overridden to throw an exception instead, and the type system
does not track help us to avoid them. In Java, unmodifiable collections are
a subtype of their mutable counterparts, meaning that the type system can not
prevent users to attempt to call these methods. This means that erroneous mod-
ifications will only be found at runtime, rather than during compilation.

Java Type System Extensions for Deep Read-Only References

Even though Java does not have reference immutable types, there is research
on adding those to Java. We will describe one such type system here, Javari by
Tschantz and Ernst [58], but Javari is not the only system that adds read-only
references to Java-like languages [36, 45, 60, 61].

Javari [58] is a Java dialect that adds read-only type annotations to Java types
and classes. These annotations have deep semantics, meaning that neither the
object, nor any object reachable via a read-only reference may be mutated, but
explicitly permitting other variables that are not annotated as read-only to make
such modifications.

BDocumentation for unmodifiableList: https://docs.oracle.com/javase/7/docs/api/
java/util/Collections.html#unmodifiablelist(java.util.List); other collections are
supported using similar methods.

54

Java’s final variables and fields and Javari’s readonly are orthogonal: for
example, a variable may be assignable (non-final), yet still read-only, meaning
that the object referred to from this variable may change, but the variable may
not be used to cause modifications on any of the objects it references, and that
it may not be used to obtain writable references to any of its internal state.

When accessing a field of an object, that field’s mutability mirrors the muta-
bility of the object hosting it—a field of an object accessed through a read-only
reference is final and readonly'4.

Javari treats mutable references as being of a subtype of a read-only refer-
ence. Therefore, an assignment readonly Node x = mutableNode is permit-
ted, but not Node y = readonlyNode, as this would permit to obtain a writable
reference from an originally read-only reference. One may think of a type
readonly T as an interface containing only non-mutating methods, whereas T
has the full set of methods.

In order to protect state reachable from an object, the programmer is re-
quired to split the interface of a class into those two parts explicitly, by anno-
tating methods with information on whether or not they require read-only or
full mutable access to the method’s implicit this parameter, and type checking
is extended with support for only allowing methods requiring mutable access
to be called on mutable objects.

Javari offers similar behaviour as const-propagating pointers when reading
fields from objects: as explained above, the reference read from a read-only
referenced-object are in turn going to be read-only. However, Javari adds a fur-
ther qualifier for ergonomics (this qualifier serves to avoid code duplication),
called romaybe. A method that is marked as, or uses a parameter or return type
marked as romaybe, is considered to be templatized: during type checking calls
to that method may be type-checked in two ways: either with all occurences
of romaybe replaced by mutable or with all occurences of romaybe replaced
by readonly. Figure 2.11 shows an example of a class using this feature: the
method getVval can change its annotation of the implicit this parameter, de-
pending on whether the result will be used in its read-only or in its mutable
form. Should the result reference be mutable, then obtaining the reference
already is considered a side effect by the type system, similar to calling the
non-const getter in our above section on C++. This feature permits soundly
tracking aliasing of the object’s internal state by registering a mutation before
it happens, making complicated tracking of aliasing of the result reference un-
necessary.

In Figure 2.5 and Figure 2.7, we have seen that—for example—getter func-
tions or methods need special treatment when using const-pointers to imple-
ment deep immutability. The typical way in C/C++ was to provide acces-
sors next to get a mutable pointer to the next element of a mutable node and

4 An exception holds for fields that are annotated as mutable which serve to bypass readonly
protection, for use cases such as result caching.

55

class Node {
private Object value;
Node next;

// If the result gets stored into
// a readonly variable, romaybe
// becomes readonly, otherwise
// mutable:
romaybe Object getVal() romaybe {
return this.value;
}
}

(a) The romaybe qualifier behaves as if there were two over-
loaded methods, one where all occurences of romaybe are
replaced by readonly and one where they become mutable.

readonly Node n = ...;

// does type check:
readonly Object roval

n.getval();

// does not type check:
mutable Object mutval = n.getVal();

(b) Type checking picks the overloading that is applicable.

Figure 2.11. The romaybe qualifier permits templatisation wrt. mutability, thereby
avoiding code duplication.

56

next_const to get only a const pointer to the next element of a const node.
This led to duplication in both languages. We showed, in Figure 2.8, that in
C++ the duplication can be avoided by using const-propagating smart point-
ers. However, to our knowledge, C++ does not offer a reasonably easy way to
implement a feature like Javari’s romaybe.

In addition, as we will cover in Section 3.1, Javari has been extended with
support for inference of its annotations.

2.2.2 Limitations of Reference-Immutability

Reference immutability and read-only references as an implementation thereof
are not without problems; their semantics are not strong enough to express
many desirable properties.

Consider again our example of portfolios. We have made our class secure
earlier by returning a copy of the account to our client, and by copying all
accounts that the user of the class passed inside. But copying bank accounts
wastes memory .

We can therefore attempt to make the class secure by using read-only refer-
ences, rather than cloning:

public final class Portfolio {

private Account acc;

// veturn only a read—only reference to the client
public readonly Account getAcc() { return this.acc; }

public void setAcc(x readonly Account a) { this.acc = a; }

s}

What we quickly discover is that reference immutability lets us protect our-
selves from returning inner data to the outside writably, but it does not let us
prevent the user from retaining a writable alias. The user can still withdraw
from our portfolio’s account. This problem is also identified by Boyland [6],
who suggests a solution: using a form of uniqueness for the setter (that unique-
ness needs to come in a deep variety that prevents the user from retaining ref-
erences into the account as well [13]).

Additionally, the read-only references we have presented have prevent us
from using much of the code we write, namely the mutable part of the interface
of a class becomes unusable when using a read-only reference. This particular
problem is addressed by functional data structures in the next section.

15Tt also amounts to printing money, which might raise some eyebrows in the accounting depart-
ment and break all sorts of invariants in the larger program.

57

2.2.3 Immutability Through Functional Data Structures

The read-only references we have described in Section 2.2.1 have a crucial
disadvantage: in order to prevent problems caused by sharing of mutable state,
we are sacrificing parts of the functionality of our data structures: all code that
mutates them is simply made unavailable.

Functional data structures are data structures that are designed to never be
mutated, no matter under which circumstances, a form of class immutability;
instead of changing in place, a functional data structure will instead return a
new instance that has the change applied to it.

Looking again at Figure 1.1, instead of making fields f and g mutable, we
can implement the objects 1 and I as functional data structures. If any operation
from the aggregate x then changes one of the shared objects, it will not mutate
the data in place, but rather receive an updated, new reference to a freshly
allocated object back.

This fresh object is sometimes referred to as a “version” of the data structure:

Definition 9 (Versions) We use the term “version” to denote a snapshot
of a functional data structure at one point in time. Mutating a version is
not possible, but obtaining a version that represents a altered data struc-
ture (e.g., containing the same elements as the previous version, but with
one added element, etc.) is.

In this section, we will do two things: first, we will show why functional data
structures are no silver bullet; second, we will show how even functional data
structures heavily depend on restriction of aliasing and therefore, even though
they are more commonly seen as an alternative to alias control, can themselves
profit from tightly controlling aliasing: they depend on the absence of aliasing
for performance.

Functional Data Structures Can be Slower Than Their Mutable
Counterparts
A special power of shared mutable state is that a single update can change the
meaning of all objects indirectly referencing (Definition 5, p. 32) it. If all
data is immutable, we give up this power. In Section 1.3.3, we promised to
introduce an example of the linked list that maintains a last pointer in order
to achieve O(1) complexity for append new data at the list’s end.

Changing a mutable list to support constant-time append is simple: we add
a reference to the last node in a list, and update this reference for all insert
and remove operations; appending to the list then is to simply dereference the
reference in the last field, modify that node by inserting a new node after it,
and updating the last reference to refer to the newly inserted node.

Supporting constant-time append in immutable lists is significantly more
involved than for the mutable list. Additionally, we have to work harder in this

58

instance, and — again, in this instance — have to accept that some operations
only have good amortized complexity, rather than worst case. A well-known
functional list-like data structure that supports a constant-time append is the
the “deque” (for double-ended queue) by Okasaki [48]: Okasaki’s deque splits
the elements it contains into two lists, a “front” and a “back” list. Each time
a datum is inserted at the beginning of the deque, that datum is placed at the
beginning of the front list in constant time; and each time a datum is inserted at
the end deque, that datum is placed at the front (!!) of the back list in constant
time. This means that the back list is going to contain elements in reverse order.

trnt ol G ()
(=~
(a) An instance of Okasaki’s deque data structure, containing the val-

ues (1,2,3,4,5,6,7). The values in the back part of the data struc-
tures are in reverse order.

(b) A version of the data structure from the previous subfigure where
the first four values have been removed. Before we can remove from
this list’s beginning, we need to re-balance.

Figure 2.12. Okasaki’s data structure improves on the simple linked list for appending,
but removing from its front is not worst-case constant time, only amortized constant-
time now.

For removing values from the front and back, we similarly access the front
of the respective list. Figure 2.12a depicts an instance of this data structure that
contains the values (1,2, 3,4, 5,6, 7), where the values 1 — —4 happen to be in
the front part of the list in standard order, and the values 5 — —7 happen to be in
the back part of the list in reverse order. We could achieve this configuration by
prepending the values 4, 3, 2, 1 to an empty deque in this order, then appending
the values 5, 6, 7 to the resulting version of the deque. Now consider a later
version of the data structure, after the values 1, 2, 3, and 4 have been removed
from it. This is depicted in Figure 2.12b: the front part of the deque is now
empty. If we now want to remove yet another value from its front, we find an
empty list that we can not get our value from. The value we are looking for, in

59

the case of an empty front, is the last value of the back part. The case where
we want to remove from an empty part of the deque is handled by splitting
the other part (the back part in the example) into two roughly-equal length
parts and further using them (in the respectively correct order) as the new front
and back parts. This step has O (V) complexity, and represents the worst-case
cost of the removal-from-front operation. Removal from the back mirrors this
operation and comes at the same asymptotic cost.

Functional data structures, therefore, can lead to worse asymptotic perfor-
mance. This is not to say that it always will lead to higher asymptotic complex-
ity, even data structure designers that have mutability available as a tool are
well advised to look at functional data structures as an implementation tech-
nique. For example, it is possible to revert Okasaki’s deque in constant time
O(1) by simply switching the front and the back of the list, compared to O (V)
needed to naively revert the list representation, functional data structures can
be used by several threads without synchronisation, etc.

To understand better why we can not use the last reference to update the
data structure, we will explain structural sharing, a technique that most func-
tional data structures use.

Structural Sharing
We have explained that “updating” an object in a purely functional data struc-
ture does not mutate the object, but produces a new version — a slightly modi-
fied copy — instead.

For performance reasons, it is crucial to understand that not the whole data
structure needs to be copied, just a part of it that needs to change in the new
version. The newly copied part can share memory with the old version—this
is called structural sharing.

Structural sharing, however, is affected by aliasing itself—the more aliasing
there is in a data structure, the less structural sharing can be used.

First, to give an example of structural sharing, consider the immutable linked
list data structure in Figure 2.13: version n of the data structure contains the
values (1,7,2,9,13,4,8). Version n+ 1, however, has been updated to negate
the sign of the 4" element: (1, 7,2, —9, 13, 4, 8). To make this change from
version n to version n + 1 without changing version n, it is not sufficient to
only copy the marked node T, because the node reaching it now needs to be
updated to refer to the copy; but updating this node triggers copying it as well,
meaning its predecessor also needs to be updated, and so on. The copying pro-
cess propagates back all the way to the root object of the data structure. The
“tail” (all nodes after the marked nodes) can be simply shared by versions n
and n + 1. Crucially, the tail of the list is not copied, versions n and n + 1
share part of their structure.

Structural sharing works for more data structures than just lists: consider
the binary search tree in Figure 2.14. After inserting the value 13 into the tree,
a large part (the shaded part) of the old tree can be reused by the new version.

60

version n

version n + 1

Figure 2.13. Structural sharing in a linked list. Version n contains the values
(1,7,2,9,13,4,8), version n + 1 has inserted the value —9 instead of 9. Both ver-
sions can share a substantial part of their structure (shaded grey).

version n version n + 1

Figure 2.14. Structural sharing in a binary search tree. Version n contains the values
(3,5,6,10,11,14), version n + 1 additionally contains the value 13. Both versions
can share a substantial part of their structure (shaded grey).

61

version n

version n + 1

version n + 2

Figure 2.15. When we modify/replace the last node in version n + 2 to refer to
the newly inserted node containing the value 17, we need to modify/replace version
n + 1’s last node to refer to the new node. From there, we have to propagate the
updates/replacements back to all of the IV list nodes. This means that the last field
does not improve the complexity of append from O(N) to O(1) like it would have in
a mutable data structure.

Aliasing, Cycles, and Structural Sharing

When using structural sharing to limit the overhead of copying, aliasing is
highly relevant. Aliasing can make structural sharing ineffective, in the worst
case, the whole data structure has to be copied for any new version that is being
produced.

To give an example of the cost of aliasing in immutable data, let’s extend
our list. The list data structure we have shown is simplistic—it does not have a
constant time append(List, int) operation that inserts a given integer at the
end of a given list. In an imperative language, we would improve the complex-
ity of append by adding a last pointer from the list head to the last node, as
we have showed before. If we would do the same for an functional data struc-
ture, it would not fix our problem of asymptotic append complexity: from the
viewpoint of structural sharing, the crucial change is that the data structure now
uses aliasing (the last node is reachable both via iteration through the list, as
well as by following that new field). This affects what data we need to copy.
In particular, we need to copy not only the objects on the path we took to reach
the element which we modify, but also the objects on other paths between the
version root and the modified object. In the case of appending at the end, we
modify an aliased object and therefore have to copy more data. In Figure 2.15,
we accordingly copy the whole spine of the data structure to ensure that from
the version n + 2 we can find the change both by dereferencing the last field
as well as by iteration through the spine. The immutable version of the data
structure will not see the same asymptotic improvement—in fact, its append
operation still has the same complexity O (V) as without the last reference.

Cyclic data structures are rare in pure functional programming because to
close a cycle, one generally needs to modify a previously existing object, but

62

there are ways around that (£.g., lazy evaluation permits a technique called
“tying the knot” that can construct cyclic structures, or work by [26] lets a pro-
grammer freeze a mutable cyclic data structure to make it object immutable).

A reason why they are uncommonly used is that they exacerbate the prob-
lem that we get when using aliasing even further. Consider the tree in Fig-
ure 2.16. It is the same tree data structure as in Figure 2.14, but with added
parent pointers that refer from each node to its parent. Structural sharing in
this data structure does no longer work at all: for every new version, we must
copy the whole spine of the tree. If we would not do that, it would always be
possible to find a path from the new version root that lets us read back outdated
data. Figure 2.16a shows such a path: starting at version root n+ 1, we read the
path root.right.right.parent.value that gives us the value 11. But reading
the path root.right.value gives us 13. The invariant that for any node n, the
equality n.right.parent.value = n.value holds is broken.

Figure 2.16b shows the correct implementation that copies the whole spine
which is prohibitively expensive at an O(NN) cost to insert something into a
sorted binary tree.

To conclude, we have shown that functional data structures can be an effec-
tive solutions for aliasing problems. However, by removing mutability from
the design space of data structures, they can incur a performance cost. Addi-
tionally, we showed how — perhaps ironically — the implementation of func-
tional data structures themselves must treat aliasing with great care in order to
not sacrifice performance.

Automatically Making Data Structures Immutable

Functional data structures solve an important problem: we can have side-effect
free sharing without giving up part of the interface of our data structure. To
give an example, one practical advantage over read-only references that simply
make the mutable part of data inaccessible is that we do not have to rewrite our
code when we start to use multiple threads (which otherwise would require
e.g., locking or not using the mutable part of our data’s interface).

But using mutable data structures in situations where there is no aliasing is
permissible even in pure functional programming (Section 2.1.3), and is useful
to avoid the performance overhead that functional data structures can incur.

This section covers a set of techniques that produce data structures that can
be configured'® to be either mutable or immutable, giving us the attractive abil-
ity to implement a data structure once, but instantiate it mutably or immutably,
whichever the situation requires. Then, rather than implementing mutable and
immutable versions of data structures and picking the appropriate one for each
use case, it would be useful to implement the data structure once, and be able
to obtain a mutable and an immutable version from the same source.

6Whether this is done during compile- or run-time is not relevant for our purposes.

63

64

version n version n + 1

(a) The binary search tree with parent pointers that
copies as much data as the one without parent point-
ers is broken: in version n + 1, accessing the
path right.right.parent.value yields the result
11, when we expected 13.

version n version n + 1

(b) In order to solve this problem, we have to copy the whole spine
of the data structure, at a O(NN) cost.

Figure 2.16. Structural sharing becomes ineffective with aliasing.

This means we can switch between mutability and permanent, deep object
immutability in our taxonomy of mutability restrictions!”.

As a side-product, these techniques address the problems with structural
sharing with aliasing that we have highlighted in the previous section on struc-
tural sharing.

Figure 2.17a shows a correct functional doubly linked list. Since the data
structure is cyclic, the whole spine lies on paths (highlighted by the dashed
path) from the version root to the modified object—this means, like in the
previous tree example that used parent references, that the whole spine must be
copied. Therefore, producing any new version of an immutable double linked
list has O(IN') complexity.

A solution that copies less data is depicted in Figure 2.17b: the so-called
“fat node method” by Driscoll et al. [22] handles this case without copying an
excessive amount of memory. This method generates a so-called “persistent”
data structure'® that returns new versions on every update. The basic idea of
the fat node method is to, instead of overwriting a field that is being assigned
in an update, record the new value, but also the old value that the field held. In
order to achieve that, each object in the fat-node instantiation of a data struc-
ture contains the same fields as in the mutable instantiation, but ficlds are able
to store an unbounded number of values—each value they ever had, and each
value is tagged with a “version stamp” that specifies the version at which that
particular value was assigned. For each update operation, in the fat-node in-
stantiation, we generate a new version 1D, and for each field assignment during
that operation, we add that value, tagged with the operation’s version ID to the
target field. If the field already has a value with that same ID, we overwrite
it. For each read, we read the “newest” value: the value with the highest ID
smaller or equal than the version ID. Figure 2.17b shows a linked list that is
implemented using the fat node method, and — for comparison — Figure 2.17a
shows the corresponding functional data structure using structural sharing that
needs to copy the whole spine for each update due to aliasing.

The fat node method has the advantage that it only needs extra space in the
object that is actually changed in the new version, but does not need to copy
all paths that lead to that object. But it has two disadvantages:

1. Reading a field value has an asymptotic overhead because it has to select
newest value for the version being read from from a collection of field
values.

2. We can not update any version of the data structure other than the newest
one. This comes from the fact that versions (as presented) are linearly
ordered; this can not model a version tree that we would expect to get

17 Assuming we apply the same techniques to the data contained in our data structures, if we
would leave the data mutable, the immutability would be classified as shallow instead.
"®Ppersistence in data structures is a generalisation of immutability; in short, a persistent data
structure may use mutation internally, but it still has to produce versions that protect from inter-
ference.

65

version n \ED"
version n+1 - 7= =

(a) To correctly update the doubly linked list, we must copy the whole
list spine, not just the part leading up to it. This means that even a
modification at the head of the list, which would be O(1) for a muta-
ble doubly linked list, would cost O(N) for the immutable version.

(b) A doubly linked list using fat nodes can avoid copying the whole
structure. The node we have modified has now not one, but two ele-
ment references that are each tagged with their respective version ID
(IDs not drawn). Inserting at the end of this list is O(1), but access-
ing the end is O(lgm) (m is the size of the number of versions of
this node), as each field is implemented as a collection containing all
references the field ever stored.

The 5th overflows: it creates a node copy and
updates the previous and next nodes to refer
to the new copy for any version starting

with the 5th.

The first 4 versions can
use the extra space in
the original node.

(c) A doubly linked list using node copying may need to copy data
on the path from the root, but only when a node overflows. Here, one
node has overflowed, and the nodes referring to it (previous and next
node of the list) have added references to the new version of the node.
This requires all nodes to maintain references to their predecessors
(not drawn, but this is done automatically; they are parallel to the
forward- and back-references of the list structure in this example).

Figure 2.17. When aliasing occurs in a data structure, fat nodes can be cheaper than
traditional immutable data structures.

66

when we mutate older versions of data structures, which are only partially
ordered.

In order to solve the first of these problems, they design a more sophisticated
technique to represent nodes altogether, the “node-copying” technique.

Instead of storing the whole history of a field in the original object, we only
make space in the object for a fixed number of version ID/value pairs (we will
arbitrarily choose 4 for our examples). When we assign a field value for the
Sth time, an object overflows. In this case, we create a new object of the same
layout that contains for each field the newest value in the now-full version and
then space for 3 more values for each of its fields. Since we have created a
new object for that newest version, we must be able to find all objects in the
data structure that referred to the old version (the “predecessors”), and update
their reference to our new version with available space at the current version
ID. In order to be able to find these objects, each version needs to maintain
a list of inverse references that contains references to all versions of objects
that refer to itself. Updating the predecessors to refer to the new version of our
node may cause the predecessors to be full, requiring the copying to propagate
backwards through the data structure. This looks much like in a functional
data structures, but the difference is that a back-propagated copy only happens
when a node overflows, which is rare. Figure 2.17c shows our list after a node
has overflowed due to it’s element field being assigned 5 times. Note how the
new version of that node is reachable from the predecessor in the list, as well
as the successor. The authors prove how operations on objects in these data
structures, provided each node in the mutable instantiation has a bounded in-
degree of references, have an amortized bound of O(1) on the nodes copied
and time per update.

The second problem can be solved using using a significantly more complex
technique, called “node splitting”, which is derived from the node copying
methods we just explained, it retains the same asymptotic complexity as node
copying.

In Chapter 4, Paper I, and Paper IV, we will show how two of our contribu-
tions, relate to this body of work:

1. Disjointness domains in Paper I relate by giving programmers a tool to
statically limit the number of references that can refer to an object.

2. Cb in Paper 1V relates by being able to declaratively configure objects
to be immutable; the technique Cb uses is different (it can also produce
many other configurations for performance reasons). This different tech-
nique is made possible by Cb not only limiting the number of aliases of
an object to some fixed number, but to only one unique reference.

67

2.3 Summary

We have shown means of alias control as they are used in practice today, as
well as the research community has proposed them. We have categorised those
means into a small set of differences, both in this chapter, as well as in Sec-
tion 1.4 and Section 1.5. We think that even though these means vary widely on
first sight, many can still be understood as ultimately being founded on a com-
parably small set of seminal concepts, and we have attempted to make those
concepts explicit by placing these means of alias control in our taxonomies of
restrictions of aliasing and mutability.

It is easy to think of immutability as a technique that replaces techniques
like encapsulation and uniqueness (or the other way around). But the chapter
demonstrated in many places how systems that constrain the flow of references
can benefit from immutability (for example, islands permit deeply immutable
objects to be aliased freely; ownership types are extended with effects sys-
tems, etc), as well as how immutability can profit from a lack of aliasing (func-
tional programming languages that use linear types for performance; aliasing
makes structural sharing difficult; and automatic conversions of mutable to
immutable data structures require the number of references to an object to be
bounded to achieve good asymptotic complexity). Therefore, we claim, that
these approaches should be seen as best being used in concert, rather than as
mutually exclusive choices. Another reason to support both kinds of technique
is that this kind of knowledge can be very useful to expose to a compiler or lan-
guage run-time for performance reasons. Apart from micro-optimisations, this
knowledge can be (perhaps surprisingly) useful: one example are techniques
that use aliasing and immutability in order to optimise concurrent garbage col-
lection [17, 24].

In the next chapter, we will survey techniques for understanding how com-
mon alias control is in practical programs.

68

3. Mining for Alias Control

In Chapter 1, we showed that aliasing is hard to analyse precisely. Yet, in
order to design mechanisms to mitigate the risks inherent in aliasing of mutable
state, we should ask ourselves: have programmers found that “engineering
discipline required to produce high quality software” (Section 1.3)? We will
not be able to conclusively answer this question in full. But we will, in this
section, present certain evidence that programmers are using less aliasing and
mutation than their languages would permit them to. To this end, we survey
work that looks for evidence of uniqueness, encapsulation, and immutability
in its various forms in programs.

In Section 3.1, we survey fechniques for finding such evidence. Many of
these systems analyse several properties, covering versions of immutability as
well as uniqueness and encapsulation.

In Section 3.2, we will show selected results obtained by using these tech-
niques, that show, amongst other things, that much of aliasing comes from
using a relatively small number of code idioms, and shared data is often im-
mutable. These results are relevant input for programming language design:
safety properties that are often used may be supported by new type systems or
may be applied for optimisations.

3.1 Mining Techniques

The techniques to mining for uniqueness and encapsulation that we present
here are drawn from the fields of static analysis, type inference, dynamic anal-
ysis, and snapshot analysis. These different approaches have different relative
strengths and weaknesses, and no one approach is universally preferable. Static
analysis has the advantage that a result is usually valid for all program inputs—
after all, all code paths in the program have been subject to analysis. Dynamic
analysis, on the other hand, has the advantage that results only include the
code that is actually being executed (and also how often each instruction was
executed), ignoring unreachable code and emphasising code that is often used.
Snapshot analysis has the advantage that it can easily achieve a very complete
picture of the running program, making it comparably straightforward to inves-
tigate the deep structure of the program’s memory.

Some of the techniques that we present are sound — they will not classify an
object as immutable, unless it really is, and some are not. But while soundness
is sometimes a strict requirement, we should not ignore unsound results: for

69

the kinds of information that we are looking for in this chapter, soundness is
not strictly required.

The systems presented are made for a wide range of purposes: they range
from summarising program snapshots for programmers to quickly understand
a program they might have never seen before [43] to understanding and cate-
gorising the specific intentions programmer have when using aliasing [28] and
to type inference of different versions of immutability. Due to this wide range
of purposes, the selection of work is not complete — our intention is to give the
reader of the variety of available techniques.

3.1.1 Snapshot- and Trace-Analysis

Query-Based Snapshot Analysis

The “Fox” tool by Potanin, Noble, and Biddle [S1] analyses snapshots of pro-
grams to search for, amongst other properties, object uniqueness, and evidence
of nested heap structures similar to the ones that ownership types enforce. They
define ownership as graph-domination!. But that definition, they note, is po-
tentially not yielding the result that one would expect: the authors note that the
“average-depth” metric, that measures the average depth of all objects in the
ownership tree varies greatly between applications. When investigating this
circumstance, they found that their definition had classified many of linked
data structures as deep ownership hierarchies; to give an example, just looking
at graph domination, a singly linked list would be seen as having the ownership
structure in Figure 3.1. The programmer’s mental view of ownership in this
case, though, is most likely that the head of the list owns all the nodes, which
are at a single level.

N

7/

Figure 3.1. Using the dominator relation to mine for ownership gives us overly deeply
nested results. The programmer’s mental model of the data structure was, most likely,
to only draw the outermost ownership context.

'A node n in a graph dominates another node n’ if all paths to n’ pass through n; this is similar
to our definition of encapsulation (Definition 4, p. 30).

70

They mitigate this problem by counting successive chains of objects of the
same type to count as chains of length 1, thereby putting all nodes of the list at
the same depth.

Fox comes with a query language that lets users formulate their own queries;
we will quote some of the results obtained in Section 3.2.

Query-Based Trace Analysis

This thesis contributes, in Paper II and Paper I1I, Spencer. Spencer is a tool that
instruments running Java programs to emit comprehensive traces: these traces
contain, amongst other information, details on ever variable and field-read, or -
update. Spencer hosts these traces in a data base. Spencer lets users explore the
behaviour of programs, in order to understand a wide range of safety properties
discussed in this thesis. Spencer is a web service that users can interact with
that hosts a selection of large data sets of dynamic program traces. A user of
Spencer can query that data set by formulating query expressions using a small
domain specific language that is accessible via a web browser (for interactively
exploring a data set), or a web API (for building further analysis on top of the
of the capabilities of the domain specific language).

Chapter 4, Paper 11, and Paper III treat this contribution in more detail.

Summaries of Snapshots

Work by Mitchell [43] attempts to summarise large snapshots of program heaps
in order to make the program more easy to understand by developers. To sum-
marise means to simplify the program’s memory graph by clustering connected
objects into representative nodes. The resulting graph ideally hides irrelevant
detail, but preserves the essential, birds-eye view of a program’s memory. A
common question in software development is which part of the program is
responsible for high memory usage in order to understand or optimise an ap-
plication. Unfortunately, it is rarely sufficient to look at the class of objects
responsible for most of the used memory: e.g.,, in a Java program, much of
the memory is usually used by primitive arrays [43]. Many of those primitive
arrays are arrays of characters contained in strings, which are commonly used
by a lot of code everywhere in the system under analysis. In general, the prob-
lem is that some basic types are used in many places, and finding a program
feature that is responsible for high memory use is hard. In their work, an algo-
rithm takes that snapshot and simplifies it by applying a series of graph edits
(a graph edit maps many objects to one “representative object” and changing
edges to originate/refer to the respective representative object). These graph
edits recognise a variety of common structures that appear in programs and
picks, for a group of objects, a representative object that it keeps in the graph
instead of the group. For example: objects that are dominated by another are
removed from the graph, and the dominator is kept as their representative. The
algorithm produces overviews of program memory that contain only a small

71

set of remaining nodes (much less than 100 in their examples of real-world
programs) with computation times that are in the seconds to minutes range.

Static Analysis and Type Inference

Hackett and Aiken [28] build a static analysis of aliasing which they use to
analyse more than one million lines of C code. In addition to implementing a
scalable static analysis, their contribution is manually classify all occurrences
of aliasing, finding that “just nine idioms of aliasing account for nearly all
aliasing in [the] study”. Such a finding is important: it suggests that language
constructs can be built comparably easily that can express aliasing at a higher
level of abstraction than simply using references for all applications of aliasing.
We will describe their results in closer detail in Section 3.2.

Work by Quinonez, Tschantz, and Ernst [53] introduces the Javarifier tool
that statically analyses Java source code and annotates it to use the reference im-
mutability of the previously existing Javari Java dialect that we have presented
in Section 2.2. The system infers type annotations by emitting constraints; by
default a variable is read-only. Type constraints are used to record deviations
from this default: the type constraint x states that variable x is mutable. This
constraint would be generated from analysing a statement like x. f = y. There
are also guarded constraints that are generated by analysing dereferences of
fields and assignments. For instance, the statement x = y would generate the
constraint x->y, meaning that x being a mutable variable implies that y must
also be mutable. Similarly, a method call y.m(p ..) generates (amongst other
constraints) a guarded constraint that states that if the this reference inside
the m method is mutable, so must be y. Solving these constraints works by es-
sentially using unguarded constraints x to trigger guarded constraints x->y and
adding y to the constraint pool, executing this process until no further guarded
constraints can be matched.

The Relm type system and RelmlInfer tool by Huang et al. [36], similarly to
Javarifier, infers reference immutability type annotations in an extended ver-
sion of Java. Work by Milanova and Dong [42] extends Relm by Huang et
al. [36] by elegantly constructing support for deep object immutability on top
of support for reference immmutability, as we have mentioned in Section 2.2.1:
the core idea is to split an object’s life time into two phases, one phase where
the object is initialised and one phase where it is used without further muta-
tion. If the system can show that at the end of the initialisation phase, the fol-
lowing properties hold, it can soundly conclude that the object itself is object
immutable:

— There is only one canonical reference to the object.
— The object only contains references to other immutable objects.
— The canonical reference is, from here on, reference immutable.

Work by Haller and Axelsson [29] contributes a Scala compiler plugin that

conducts a static analysis of Scala programs in order to empirically study how

72

common (shallow and deep class-) immutability in Scala programs is. They
also categorise types that are not immutable by reasons for why they are.

3.2 How Common Uniqueness, Encapsulation, and
Immutability are in Practice

The kind of results that the systems in Section 3.1 produce are extremely varied,
and even the purposes they were built for are. This sometimes makes it difficult
to compare the results obtained from these works, especially when mining for
encapsulation.

It is still possible to summarise the results that they obtain that are relevant
to this thesis. We will summarise the most relevant results, preferring to give
numbers for the strongest properties that the research investigates.

3.2.1 Immutability

Immutability has been investigated by a comparably large number of proposals;
Table 3.1 contains an overview of the systems whose results we mention here
and, what kind of results those system deliver, and what technique they use.

Haller and Axelsson [29] report that of the Scala programs they analyse,
between 45% and 61.3% of the types they analyse are deeply permanently class
immutable or “conditionally immutable”. A conditionally immutable type is
one that is conventionally deeply immutable but has e.g., a type parameter that
may be bound to type with unknown (im)mutability.

Quinonez, Tschantz, and Ernst [53] find that between 35%—-59% of all ref-
erence type variables and fields can be annotated as deeply read-only.

Spencer in Paper III shows that on average, 47.3% of all objects in Java
programs are permanently deeply object immutable, and 21% of the classes
that produce at least 10 instances produce on/y immutable objects (these types
might have deep class immutability). Spencer is an unsound dynamic analy-

Table 3.1. The analysis tools referred in Section 3.2.1 and the granularities they anal-
yse. Legend: d) analyses deep immutability, s) analyses shallow immutability; d + s)
analyses both, deep and shallow immutability.

Tool | Granularity — Ref.- Obj.- Class Technique
Imm.

Haller and Axelsson [29] v ats Static analysis.
Hackett and Aiken [28] Ve Ve v'e Static analysis.
Quinonez, Tschantz, and va Type inference.
Ernst [53]

Milanova and Dong [42] Ve Ve Type inference.
Paper 11, Paper I11 v aFs v s | Trace analysis.

73

sis, it might judge that an object is immutable only because it was not mutated
for a particular execution, even though it would have been with other execu-
tions; we can contrast that by a sound analysis by Milanova and Dong [42]
that finds that 36.5% of all objects are permanently deeply object immutable
or temporarily deeply immutable (their analysis also finds late initialisations
of deeply immutable objects).

Summary
Even though the presented techniques vary a lot, the amount of immutability in
Java programs is high; Scala programs have even higher numbers. This might
be explained by Scala being strongly influenced by functional programming.
Looking at the data reported by all these systems, it seems to us that support
for deep immutability in programming languages is an addition that lets pro-
grammers more reliably implement the forms of immutability that they already
heavily use in their programs.

3.2.2 Uniqueness and Encapsulation

Fox by Potanin, Noble, and Biddle [51] find that, on average, 86.4% of objects
were unaliased, but Spencer Paper III finds “only” 45.5% unaliased objects.
The difference might be because Spencer is analysing comprehensive program
traces, while Fox looks at snapshots of program memory and might therefore
miss aliasing that happens before or after the snapshot is taken. Additionally,
Spencer finds that 46% of all fields and 27% of all classes with 10 or more
instances only ever contain references to/produce instances that are uniquely
referenced.

Fox measures the average depth of objects in the ownership hierarchy. This
depth is 5.3 accross the programs they analyse, avoiding the problem shown
in Figure 3.1. This suggests that the hierarchy of ownership when looking at
the program memory is quite deep (for our expectations).

Finally, Mitchell [43] does not investigate encapsulation directly, but ab-
stracts the shape of the heap using sophisticated patterns they define to simplify
the heap into successively smaller and smaller representations. Their algorithm
does simplify the heap where it finds dominator nodes, but it also does other
simplifications; this means that we can not easily compare their results with
systems that only look at dominators. Nonetheless, the fact that they are able
to summarise a graph that contains between ~ 29.000.000 objects by replacing
it by 14 nodes (and similar numbers for the other programs they analyse) that
represent a high-level view of the graph is strongly suggestive of a structure
being present in the programs we write, and that we can understand and talk
about the shape of these graphs. How to convert these insights into program-
ming language abstractions (and whether that is a worthy goal) is, however,
neither in the scope of their work, nor obvious.

74

Hackett and Aiken [28] conclude that the vast majority of the aliasing found
in the C programs they analyse is due to aliasing invariants that apply to all
instances of a type and global variables—e.g.,, a previous pointer of a doubly-
linked list node should always maintain the invariant node->prev = NULL ||

(node->prev->next = node). Outside of user-defined data structures and
aliasing of global values, aliasing is rare. They find at only 3.5% of functions
make use of aliasing that exceeds aliasing implied by such global and type
invariants. This is a very important insight for us, as Paper IV is a way to im-
plement data structures without relying on aliasing, but executing them with a
data storage that may use aliasing transparently. This way, we can have much
of the performance benefit of aliasing, but ignore the aliasing in our under-
standing of the program, as the high level language is free of aliasing.

Summary
Uniqueness is very common in Java programs: the numbers we have presented
vary between analysis techniques, but are consistently high. Much of the alias-
ing in C programs happens in or around data structures, “regular” data is often
un-aliased.

To mine for encapsulation is less common, and we can not easily compare
results from system to system, as the form of the results varies.

75

4. Conclusion

We have now explained what aliasing is, where it comes from historically, and
what dangers come with aliasing of mutable state. We have shown how the pro-
gramming languages community has tried and is trying to provide to solutions
that tame aliasing. To be able to evaluate trade-offs, we have shown several
techniques for how to analyse the use of aliasing in real world programs. The
contributions of this thesis cover a wide range of topics, but they have the goal
in common to advance the field towards a more unified view of alias control.
The contributions are threefold:

— Paper I: Disjointness Domains, a type system for alias control that forms
a bridge between type systems based on uniqueness and type systems
subdividing the heap.

— Paper II and Paper III: Spencer, a tool to analyse program traces that
comes with a query language. Spencer is an attempt to aid researchers
in the field to focus their efforts on alias control that has practical im-
pact. We use Spencer, in Paper III to mine for safety properties in Java
programs, e.g., different versions of uniqueness, immutability.

— Paper IV: Cb, a domain-specific language for building data-structures
that exploits the fact that aliasing in the spine of data-structures is com-
parably rare and that notably permits automatically deriving mutable and
immutable implementations of data structures from the same data struc-
ture implementation.

These contributions are related to the work described in this introduction in
several ways:

A Type-System for Alias Control

Paper I relates to the work that is presented in Section 2. Disjointness domains
are a type abstraction that enables a programmer to express fine-grained alias-
ing invariants. Disjointness domains are able to express aliasing invariants sim-
ilar to those found in type systems based on unique references, as well as alias-
ing invariants similar to those found in type systems coming from an object-
oriented tradition (ownership types [12, 15, 16, 46], balloons [2, 55], islands
[33]). We believe that disjointness domains are a step forward in the field, as
they can express strong invariants even about aliased state; for instance, a dou-
bly linked list can express that all of its back-references are unique amongst the
back-references, and all of the forward-references are unique amongst the for-
ward references, even though nodes are aliased. Knowledge like this could be

76

applied for data-race-free parallelism. Strong disjointness domains are closely
related to fractional permissions, a core difference is that fractional permis-
sions distinguish between whether or not a reference is aliased for purposes
of controlling mutation, but our work permits to locally reason about aliasing
even for references that are aliased elsewhere: for instance, several references
in the same strong disjointness domain may never be aliases, even though all
of these references might have aliases in other disjointness domains. Shared
domains, then, behave in ways that are reminiscent to encapsulation-based pro-
posals like islands, ownership types, balloons: they permit aliasing amongst a
number of fields that are in the same shared disjointness domain. The objects
that hold fields in that domain can be seen as a unit of encapsulation.! Addi-
tionally, strong domains provide a means of statically limiting the number of
references that may refer to an object; this, we have shown in Section 2.2.3,
is crucial to automatically convert data structures to immutable versions with
good asymptotic complexity. While we do not do this conversion, disjointness
domains are still related as a stepping stone for such techniques.

A Tool for Dynamic Trace analysis and an Empirical Study of Immutability
and Uniqueness

Paper II and Paper III relate to analysis of immutability and aliasing that was
covered in Section 3. Our goal was to build a system that could make it easy
for researchers in programming language design to get quick feedback on de-
sign trade-offs very early in the design process. To this end, we think that it
is important that this tool is easy to install, use, and results are easy to share.
Contrary to the related work covered, Spencer is designed to be used as an on-
line service. This represents an interesting trade-off: Spencer’s query language
is designed to be able to take advantage of caching of sub-expressions—this
makes it feasible for us to routinely use algorithms that would be far too expen-
sive were they run every single time. Using this approach, we are also able to
store a large amount of data in our data sets without requiring users to have ac-
cess to powerful computers. While Spencer’s domain-specific language is not
flexible enough to define every conceivable query (which was not the design
goal), we have found it useful in practise and especially Paper 11l documents
how we can use the tool to find, amongst other properties, deep immutability
and uniqueness in Java programs.

Completely banning aliasing, and having good performance anyway
Paper 1V, finally, is the result of observations we learned from related work, as
well as papers [-111: there is evidence that much of aliasing in data structures is

!To fully encode these systems encapsulation based systems, we would need to add existential
disjointness domains that would permit expressing an object-local disjointness domain, much
like the rep ownership domain. The system as presented in the paper supports only a statically
bounded number of “rep” domains.

77

due to type-invariants (like every doubly-linked list node’s predecessor’s next-
field refers to the node itself [28], Paper I11) and we observed that the spine of
a data structure can often be seen as a canonical tree with additional references
added in for reasons of performance. Examples are:

— A doubly linked list can be seen as a degenerate tree with parent point-
ers; parent pointers are not necessary for correctness, but without them,
operations like backwards iteration would be very slow, at O (N 2).

— A hash map can be seen as a degenerate tree of (key, value) tuples were
most elements are null.

— A 2D matrix can be seen as a list containing a list for each row (or for
each column).

As we can look at all of these data structures as alias-free trees, Cb is a design
that lets a programmer implement the data structures in terms of their canoni-
cal tree representation, and simply choose a memory-layout strategy (by way
of picking a so-called “storage back-end” implementation) that will make the
tree representation execute similar to an optimised data structure implementa-
tion. Aliasing, therefore, exists in program memory, but not in the semantics
of the DSL. For the use cases we test in the paper, Cb leads to code that is sub-
jectively very simple, and has good performance overall (often slightly behind
normal Java implementations and sometimes far ahead; we believe that with
extra engineering effort, we could match normal Java implementations in most
cases). Since there is some evidence that a significant part of aliasing found in
programs is the aliasing in data structure spines, we think that approaches like
Cb that essentially optimise programs by declaratively deciding how aliasing
should be used to alter a data structure’s performance but not its semantics can
be a means of getting rid of many of the uses of aliasing, and we think that
approaches that essentially side-step the issue of aliasing are under-explored
in research today.

Cb is also related to the work in Section 2.2.3: using Cb we can generate
functional as well mutable data structures without losing part of their interface,
and without using their code.

Final words

The rest of the thesis consists of Papers [-1V, which we have already placed
in the wide context of this introduction, but of course not completely covered.
After having read this introduction, a reader has gained relevant background
for reading the papers. Our papers approach the problem of aliasing from mul-
tiple angles, and so did this introduction. We hope that the presentation of the
resulting wide background will prove illuminating for reading the individual,
much more narrowly focused, papers.

78

Bibliography

[1]

[2]

[3]

[5]

[6]

[8]

Amal Ahmed, Matthew Fluet, and Greg Morrisett. “L3: A Linear
Language with Locations”. In: Fundam. Inform. 77.4 (2007),
pp. 397-449.

Paulo Sérgio Almeida. “Balloon Types: Controlling Sharing of State in
Data Types”. In: ECOOP’97 - Object-Oriented Programming, 11th
European Conference, Jyvdskyld, Finland, June 9-13, 1997,
Proceedings. Ed. by Mehmet Aksit and Satoshi Matsuoka. Vol. 1241.
Lecture Notes in Computer Science. Springer, 1997, pp. 32-59. doi:
10.1007/BFb0053373. url: https://doi.org/10.1007/BFb0053373.

Alexis Beingessner. The Rustonomicon: §3.1: References.
https://doc.rust-lang.org/nomicon/references.html. [Online;
accessed 2018-08-02].

John Boyland. “Alias Burying: Unique Variables without Destructive
Reads”. In: Software—Practice and Experience 31.6 (May 2001),
pp- 533-553.

John Boyland. “Checking Interference with Fractional Permissions”. In:
International Symposium on Static Analysis (SAS). 2003, pp. 55-72.
isbn: 978-3-540-40325-8. doi: 10.1007/3-540-44898-5_4.

John Boyland. “Why we should not add readonly to Java (yet)”. In:
ECOOP 2005 Workshop on Formal Techniques for Java-like Programs.
Ed. by Francesco Logozzo and Jan Vitek. July 2005.

Stephan Brandauer, Elias Castegren, and Tobias Wrigstad. “Cb: A New
Modular Approach to Implementing Efficient and Tunable Collections”.
In: Proceedings of the 2018 ACM SIGPLAN International Symposium
on New ldeas, New Paradigms, and Reflections on Programming and
Software, Onward! 2018, Boston, MA, USA, November 7-8, 2018. 2018,
pp. 57-71. doi: 10.1145/3276954.3276956. url:
https://doi.org/10.1145/3276954.3276956.

Stephan Brandauer, Dave Clarke, and Tobias Wrigstad. “Disjointness
Domains for Fine-Grained Aliasing”. In: Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2015, part of
SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015. 2015,

pp- 898-916. doi: 10.1145/2814270.2814280. url:
https://doi.org/10.1145/2814270.2814280.

79

[9]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

80

Stephan Brandauer and Tobias Wrigstad. “Mining for Safety using
Interactive Trace Analysis”. In: Fifteenth International Workshop on
Quantitative Aspects of Programming Languages and Systems (QAPL)
15(2017), p. 14.

Stephan Brandauer and Tobias Wrigstad. “Spencer: Interactive Heap
Analysis for the Masses”. In: Proceedings of the 14th International
Conference on Mining Software Repositories, MSR 2017, Buenos Aires,
Argentina, May 20-28, 2017.2017, pp. 113—123. doi:
10.1109/MSR.2017.35. url: https://doi.org/10.1109/MSR.2017.35

Elias Castegren. “Capability-Based Type Systems for Concurrency
Control”. PhD thesis. Uppsala University, Sweden, 2018. url:
http://nbn-resolving.de/urn:nbn:se:uu:diva-336021.

Dave Clarke and Sophia Drossopoulou. “Ownership, Encapsulation
and the Disjointness of Type and Effect”. In: ACM SIGPLAN Notices
37.11 (2002), p. 292. issn: 03621340. doi: 10.1145/583854.582447.

Dave Clarke and Tobias Wrigstad. “External Uniqueness Is Unique
Enough”. In: ECOOP 2003 - Object-Oriented Programming, 17th
European Conference, Darmstadt, Germany, July 21-25, 2003,
Proceedings. 2003, pp. 176-200. doi: 10.1007/978-3-540-45070-2_9.
url: https://doi.org/10.1007/978-3-540-45070-2_9.

Dave Clarke, Tobias Wrigstad, Johan Ostlund, and
Einar Broch Johnsen. “Minimal Ownership for Active Objects”. In:

Asian Symposium on Programming Languages and Systems. Springer,
Berlin, Heidelberg. 2008, pp. 139-154.

Dave Clarke, Johan Ostlund, Ilya Sergey, and Tobias Wrigstad.
“Ownership Types: A Survey”. In: Aliasing in Object-Oriented
Programming. Types, Analysis and Verification. 2013, pp. 15-58. doi:
10.1007/978-3-642-36946-9_3. url:
https://doi.org/10.1007/978-3-642-36946-9_3

David G. Clarke, John Potter, and James Noble. “Ownership Types for
Flexible Alias Protection”. In: Proceedings of the 1998 ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages &
Applications (OOPSLA °98), Vancouver, British Columbia, Canada,
October 18-22, 1998. Ed. by Bjern N. Freeman-Benson and

Craig Chambers. ACM, 1998, pp. 48—64. doi: 10.1145/286936.286947.
url: http://doi.acm.org/10.1145/286936.286947.

Sylvan Clebsch, Juliana Franco, Sophia Drossopoulou,

Albert Mingkun Yang, Tobias Wrigstad, and Jan Vitek. “Orca: GC and
Type System Co-Design for Actor Languages”. In: Proceedings of the
ACM on Programming Languages 1 (2017), p. 72.

[18]

[19]

[22]

[23]

[24]

[25]

[26]

[27]

Rust community. Rust Documentation of Module: std.:cell. [Online;
accessed 2018-10-11]. 2018.

Robert Deline and Manuel Féahndrich. “Enforcing High-Level
Protocols in Low-Level Software”. In: Proceedings of the 2018 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software. New York: ACM Press,
2001.

Werner Dietl and Peter Miiller. “Universes: Lightweight Ownership for
IML.” In: Journal of Object Technology 4.8 (), pp. 5-32.

Edsger W. Dijkstra. “Structured Programming”. In: Software
Engineering Techniques. Ed. by B. Randell and J. N. Buxton.
Proceedings of the NATO Software Engineering Conference. NATO
Scientific Affairs Division, 1969, pp. 74-88.

James R. Driscoll, Neil Sarnak, Daniel Dominic Sleator, and
Robert Endre Tarjan. “Making Data Structures Persistent”. In: J.
Comput. Syst. Sci. 38.1 (1989), pp. 86—124. doi:
10.1016/0022-0000(89)90034-2. url:
https://doi.org/10.1016/0022-0000(89)90034-2.

Manuel Féahndrich and Robert DeLine. “Adoption and Focus”. In: PLDI
37.5 (2002), pp. 13-24. issn: 03621340. doi: 10.1145/543552.512532.

Juliana Franco, Sylvan Clebsch, Sophia Drossopoulou, Jan Vitek, and
Tobias Wrigstad. “Correctness of a Concurrent Object Collector for
Actor Languages”. In: Programming Languages and Systems. Ed. by
Amal Ahmed. Cham: Springer International Publishing, 2018,

pp. 885-911. isbn: 978-3-319-89884-1.

Google, Inc. Google C++ Style Guide.
https://google.github.io/styleguide/cppguide.html. [Online;
accessed 2018-11-26]. 2018.

Colin S. Gordon, Matthew J. Parkinson, Jared Parsons,

Aleks Bromfield, and Joe Duffy. “Uniqueness and Reference
Immutability for Safe Parallelism”. In: Proceedings of the 27th Annual
ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2012, part of
SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012. Ed. by

Gary T. Leavens and Matthew B. Dwyer. ACM, 2012, pp. 21-40. doi:
10.1145/2384616.2384619. url:
http://doi.acm.org/10.1145/2384616.2384619.

Marc Gregoire. Professional C++ (4th Edition). John Wiley & Sons,
2018. isbn: 978-1-119-42130-6.

81

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

82

Brian Hackett and Alex Aiken. “How is Aliasing Used in Systems
Software?” In: Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2006,
Portland, Oregon, USA, November 5-11, 2006. Ed. by Michal Young
and Premkumar T. Devanbu. ACM, 2006, pp. 69-80. doi:
10.1145/1181775.1181785. url:
http://doi.acm.org/10.1145/1181775.1181785.

Philipp Haller and Ludvig Axelsson. “Quantifying and Explaining
Immutability in Scala”. In: Proceedings Tenth Workshop on
Programming Language Approaches to Concurrency- and
Communication-cEntric Software, PLACES@ETAPS 2017, Uppsala,
Sweden, 29th April 2017. 2017, pp. 21-27. doi: 10.4204/EPTCS.246.5.
url: https://doi.org/10.4204/EPTCS.246.5.

Douglas E. Harms and Bruce W. Weide. “Copying and Swapping:
Influences on the Design of Reusable Software Components”. In: /[EEE
Trans. Software Eng. 17.5 (1991), pp. 424-435. doi:
10.1109/32.90445. url: https://doi.org/10.1109/32.90445.

Herb Sutter. You don 't know const and mutable.
https://channel9.msdn.com/posts/C-and-Beyond-2012-Herb-
Sutter-You-dont-know-blank-and-blank. [Online; accessed
2018-07-31]. 2012.

C. A. R. Hoare. Hints on Programming Language Design. Tech. rep.
STAN//CS-TR-73-403. Stanford University, Dept. of Computer
Science, 1973.

John Hogg. “Islands: Aliasing Protection in Object-Oriented
Languages”. In: Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA 91), Sixth Annual Conference,
Phoenix, Arizona, USA, October 6-11, 1991, Proceedings. Ed. by
Andreas Paepcke. ACM, 1991, pp. 271-285. doi:
10.1145/117954.117975. url:
http://doi.acm.org/10.1145/117954.117975.

John Hogg, Doug Lea, Alan Wills, Dennis deChampeaux, and
Richard Holt. “The Geneva Convention on the Treatment of Object
Aliasing”. In: SIGPLAN OOPS Messenger 3.2 (Apr. 1992), pp. 11-16.
issn: 1055-6400. doi: 10.1145/130943.130947. url:
http://doi.acm.org/10.1145/130943.130947.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. “Multiparty
Asynchronous Session Types”. In: J. ACM 63.1 (2016), 9:1-9:67. doi:
10.1145/2827695. url: https://doi.org/10.1145/2827695.

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Wei Huang, Ana Milanova, Werner Dietl, and Michael D. Ernst. “Reim
& Relmlnfer: Checking and Inference of Reference Immutability and
Method Purity”. In: Proceedings of the 27th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2012, part of SPLASH 2012, Tucson, AZ,
US4, October 21-25, 2012. 2012, pp. 879-896. doi:
10.1145/2384616.2384680. url:
http://doi.acm.org/10.1145/2384616.2384680

IEEE Comp. Soc. 2000 Computer Pioneer Award. computer.org/web/
awards/pioneer-harold-lawson. [Online; accessed 2018-05-29].
2000.

ISO. ISO International Standard ISO/IEC 9899:201x: Programming
Languages — C. [Committee Draft]. Apr. 2011, p. 683.

Jonathan Coe and Robert Mill. A Proposal to Add a Const-Propagating
Wrapper to the Standard Library. http://www.open-
std.org/jtcl/sc22/wg21/docs/papers/2015/n4388.html. [Online;
accessed 2018-07-31]. 2015.

William Landi and Barbara G. Ryder. “Pointer-Induced Aliasing: A
Problem Classification”. In: Conference Record of the Eighteenth
Annual ACM Symposium on Principles of Programming Languages,
Orlando, Florida, USA, January 21-23, 1991. 1991, pp. 93—-103. doi:
10.1145/99583.99599. url:
http://doi.acm.org/10.1145/99583.99599.

William Alexander Landi. “Interprocedural Aliasing in the Presence of
Pointers”. PhD thesis. Rutgers University, 1992.

Ana Milanova and Yao Dong. “Inference and Checking of Object
Immutability”. In: Proceedings of the 13th International Conference on
Principles and Practices of Programming on the Java Platform: Virtual
Machines, Languages, and Tools, Lugano, Switzerland, August 29 -
September 2, 2016. 2016, 6:1-6:12. doi: 10.1145/2972206.2972208.
url: http://doi.acm.org/10.1145/2972206.2972208.

Nick Mitchell. “The Runtime Structure of Object Ownership”. In:
Proceedings of 20th European Conference on Object-Oriented
Programming (ECOOP), Nantes, France. Ed. by Dave Thomas.
Vol. 4067. Lecture Notes in Computer Science. Springer, 20006,
pp. 74-98. doi: 10.1007/11785477_5. url:
https://doi.org/10.1007/11785477_5.

Peter Mouller, Arnd Poetzsch-Heffter, and Fernuniversitéat Hagen.
Universes: A Type System for Alias and Dependency Control. Tech. rep.
2001.

83

[45]

[50]

[51]

84

Peter Miiller and Arnd Poetzsch-Heffter. “A type system for controlling
representation exposure in Java”. In: ECOOP Workshop on Formal
Techniques for Java Programs. Technical Report. Vol. 269. Citeseer.
2000.

Alan Mycroft and Janina Voigt. “Notions of Aliasing and Ownership”.
In: Aliasing in Object-Oriented Programming. Types, Analysis and
Verification. 2013, pp. 59-83. doi: 10.1007/978-3-642-36946-9_4.
url: https://doi.org/10.1007/978-3-642-36946-9_4.

James Noble, Jan Vitek, and John Potter. “Flexible Alias Protection”.
In: ECOOP’98. Springer-Verlag, 1998, pp. 158—185.

Chris Okasaki. Purely Functional Data Structures. Cambridge
University Press, 1999. isbn: 978-0-521-66350-2.

Johan Ostlund. “Language Constructs for Safe Parallel Programming
on Multi-Cores”. PhD thesis. Uppsala University, Computing Science,
2016, p. 105. isbn: 978-91-554-9413-1.

Emil Leon Post. “A variant of a recursively unsolvable problem”. In:
Bulletin of the American Mathematical Society 52 (1946), pp. 264-269.
doi: 10.1090/s0002-9904-1946-08555-9.

Alex Potanin, James Noble, and Robert Biddle. “Checking Ownership
and Confinement”. In: Concurrency - Practice and Experience (2004),
pp. 671-687. doi: 10.1002/cpe.799. url:
https://doi.org/10.1002/cpe.799.

Alex Potanin, James Noble, Dave Clarke, and Robert Biddle. “Generic
Ownership for Generic Java”. In: ACM SIGPLAN Notices. Vol. 41. 10.
ACM. 2006, pp. 311-324.

Jaime Quinonez, Matthew S. Tschantz, and Michael D. Ernst.
“Inference of reference immutability”. In: ECOOP 2008 —
Object-Oriented Programming, 22nd European Conference. Paphos,
Cyprus, July 2008, pp. 616—641.

G. Ramalingam. “The Undecidability of Aliasing”. In: TOPLAS 16.5
(1994), pp. 1467-1471. issn: 01640925. doi: 10.1145/186025.186041.

Marco Servetto, David J Pearce, Lindsay Groves, and Alex Potanin.
“Balloon Types for Safe Parallelisation Over Arbitrary Object Graphs”.
In: Workshop on Determinism and Correctness in Parallel
Programming (WoDet). Citeseer. 2013, p. 107.

Sjaak Smetsers, Erik Barendsen, Marko C. J. D. van Eekelen, and
Marinus J. Plasmeijer. “Guaranteeing Safe Destructive Updates
Through a Type System with Uniqueness Information for Graphs”. In:
Graph Transformations in Computer Science, International Workshop,
Dagstuhl Castle, Germany, January 1993, Proceedings. Ed. by

[57]

[58]

[59]

[60]

[61]

Hans Jiirgen Schneider and Hartmut Ehrig. Vol. 776. Lecture Notes in
Computer Science. Springer, 1993, pp. 358-379. doi:
10.1007/3-540-57787-4_23. url:
https://doi.org/10.1007/3-540-57787-4_23.

Bjarne Stroustrup. Programming: Principles and Practice Using C++.
Pearson Education, 2014.

Matthew S. Tschantz and Michael D. Ernst. “Javari: adding reference
immutability to Java”. In: Proceedings of the 20th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2005, October 16-20, 2005,
San Diego, CA, USA. 2005, pp. 211-230. doi:
10.1145/1094811.1094828. url:
http://doi.acm.org/10.1145/1094811.1094828.

Philip Wadler. “Linear Types Can Change the World!” In:
Programming Concepts and Methods. North, 1990.

Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam Kiezun,
and Michael D. Ernst. “Object and Reference Immutability Using Java
Generics”. In: Proceedings of the 6th joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT
International Symposium on Foundations of Sofiware Engineering,
2007, Dubrovnik, Croatia, September 3-7, 2007. 2007, pp. 75-84. doi:
10.1145/1287624.1287637. url:
https://doi.org/10.1145/1287624.1287637.

Yoav Zibin, Alex Potanin, Paley Li, Mahmood Ali, and

Michael D. Ernst. “Ownership and Immutability in Generic Java”. In:
Proceedings of the 25th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2010, October 17-21, 2010, Reno/Tahoe, Nevada, USA. 2010,
pp- 598-617. doi: 10.1145/1869459.1869509. url:
http://doi.acm.org/10.1145/1869459.1869509.

85

Acta Universitatis Upsaliensis

Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1749

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through

the series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-366932

ACTA
UNIVERSITATIS
UPSALIENSIS
UPPSALA
2018

	List of papers
	Contents
	Summary in Swedish
	Thanks, but not Goodbye

	Part 1: Introduction
	1. Overview
	1.1 Background
	1.2 Contributions
	1.3 A Short History of References
	1.3. l References for Dynamically Sized Data Structures
	l.3.2 References For Constant Time Passing ofLarge Data
	l.3.3 References For Sharing ofMutable State
	l.3.4 Unintended Sharing of Mutable State

	1.4 Restricting Aliasing: A Taxonomy
	1.5 Forms of Immutability: A Taxonomy

	2. Language Abstractions for Alias Control
	2.1 Restricting Aliasing
	2.1.1 Encapsulation of Mutable State
	2.1.2 Alias Control by Subdivisions of the Heap
	2.1.3 Uniqueness, Linear Types, Permissions
	2.1.4 Summary

	2.2 Preventing Modification
	2.2. l Immutability through Read-Only References
	2.2.2 Limitations of Reference-Immutability
	2.2.3 Immutability Through Functional Data Structures

	2.3 Summary

	3. Mining for Alias Control
	3.1 Mining Techniques
	3.1.l Snapshot- and Trace-Analysis

	3.2 How Common Uniqueness, Encapsulation, and Immutability are in Practice
	3.2.1 Immutability
	3.2.2 Uniqueness and Encapsulation

	4. Conclusion
	Bibliography

