
Author: Maxim Kravchenko
Supervisor: Jesper Andersson
Examiner: Dr. Johan HAGELBÄCK

Semester: VT 2018
Subject: Computer Science

Bachelor Degree Project

Evaluation of Security of Service
Worker and Related APIs

Abstract

The Service Worker is a programmable proxy that allows the clients to keep offline
parts of websites or even the whole domains, receive push notifications, have back-
ground synchronization and other features. All of these features are available to the
user without having to install an application - the user only visits a website. The
service worker has gained popularity due to being a key component in the Progres-
sive Web Applications (PWAs). PWAs have already proven to drastically increase
the number of visits and the duration of browsing for websites such as Forbes [1],
Twitter [2], and many others. The Service Worker is a powerful tool, yet it is hard for
clients to understand the security implications of it. Therefore, all modern browsers
install the service workers without asking the client. While this offers many con-
veniences to the user, this powerful technology introduces new security risks. This
thesis takes a closer look at the structure of the service worker and focuses on the vul-
nerabilities of its components. After the literature analysis and some testing using the
demonstrator developed during this project, the vulnerabilities of the service worker
components are classified and presented in the form of the vulnerability matrix; the
mitigations to the vulnerabilities are then outlined, and the two are summarized in
the form of security guidelines.

Keywords: Service Worker API, Push API, Cache API, Application Cache, se-
curity, Progressive Web Apps, HTTPS

Contents

List of Figures

List of Tables

Listings

1 Introduction 1
1.1 Background . 1
1.2 Related work . 1
1.3 Problem formulation . 1
1.4 Motivation . 2
1.5 Objectives . 2
1.6 Scope and Limitation . 3
1.7 Target group . 3
1.8 Outline . 3

2 Method 4
2.1 Method Description . 4
2.2 Reliability and Validity . 4
2.3 Ethical Considerations . 4

3 The Service Worker 6
3.1 Promise API . 6
3.2 Fetch API . 8
3.3 Cache API . 8
3.4 Push API and Notification API . 8
3.5 HTTPS . 9
3.6 Application Cache . 10
3.7 Service Worker API . 11

4 Developing Vulnerability Matrix 13
4.1 Demonstrator . 14

4.1.1 Client Side . 14
4.1.2 Server Side . 14

4.2 Vulnerabilities . 16
4.2.1 Service Worker API . 16
4.2.2 Push API . 18
4.2.3 HTTPS . 20

5 Results 22
5.1 Vulnerability Matrix . 22
5.2 Mitigations . 22

5.2.1 Service Worker API . 22
5.2.2 Push API . 23
5.2.3 HTTPS . 23

5.3 Security Guidelines . 25

6 Discussion 26
6.1 Understanding-related Objectives . 26
6.2 Security-related Objectives . 26

6.2.1 Security Guidelines . 27
6.2.2 Service Worker API . 27
6.2.3 Push API . 27
6.2.4 HTTPS . 28

7 Conclusions and Future Work 29

References 30

List of Figures

3.1 Service Worker Architecture . 6
3.2 "Callback hell" [3] . 7
3.3 Diffie-Hellman Key Exchange . 9
3.4 TLS Handshake [4] . 10
3.5 Service Worker Life Cycle [5] . 11
4.6 An example of DOM-based XSS [6] . 15
4.7 An example of persistent XSS [6] . 16
4.8 Result of Successful XSS Attack . 18
4.9 Standard Push Message . 19
4.10 Example of a Default Message for Push Message in Chrome [7] 20
4.11 Console Printout of an Invisible Push Message 20
5.12 Notification Displayed in Chrome for Misconfigured Service Worker . . . 23
5.13 Error Message - Visiting a website With an Untrusted Certificate 24

List of Tables

4.1 Criteria Used in the Service Worker Vulnerability Matrix 13
4.2 Example of a Service Worker Vulnerability Matrix 14
5.3 The Service Worker Vulnerability Matrix 22
5.4 Security Guidelines . 25

Listings

1 Callback Example . 6
2 Promise Chaining . 7
3 Service Worker Registration . 11
4 Service Worker Installation . 12
5 Intercepting fetch Requests . 12
6 Unsafe Handling of User Input . 17
7 Example XSS Payload . 17
8 Printing Out a Message in Console on Receiving a Push Message 19
9 Standard Approach to Reacting to a Push Event 19
10 Safe Handling of User Input . 23

1 Introduction

The Service Worker is a web technology that allows the clients to browse websites com-
fortably while on a poor internet connection or even entirely offline, receive push notifi-
cations from the websites, and have more native app-like functionality without having to
install a native application form the Application Store. Service worker is still a new web
technology, and while many new technologies disappear quite quickly, the service worker
is set to be a keystone in the future of the web platform.

While the Service Worker is an incredible technology, it can be quite challenging to
explain to a client and check if they would like to allow it since most of the clients "do
not generally have sufficient context to understand permission requests." [8] Therefore,
the browsers do not ask the clients if they would like to allow a service worker from a par-
ticular website to be installed, they install it without the client’s awareness. Unauthorized
installation raises an issue of security - can it be harmful to the client to have a service
worker installed on their machine?

1.1 Background

The Service Worker has an application programming interface (API) and makes use of
multiple other APIs. Unlike some other web technologies - such as Application Cache -
the service worker is a collection of software functions and procedures interacting with
other such collections: Promise, Fetch, Cache, Push, and Notification. Furthermore, the
service worker uses HTTPS for secure communication. This abundance of programming
interfaces and technologies increases the complexity and flexibility of the service worker
significantly. Thus, it is important to make sure that the service worker is implemented
and used safely, as well as understand how it could potentially be used in an attack against
the client or the server.

1.2 Related work

There has been some research done regarding the security of more traditional technologies
used by the service worker. For example, this report covers security of HTTPS, and in
that area, much extensive research has been done. Some of the HTTPS-related works are
used in this project, for instance, “Imperfect Forward Secrecy: How Diffie-Hellman Fails
in Practice” is written on the security of common Diffie-Hellman implementations [9]
and “DROWN: Breaking TLS with SSLv2" which focuses on DROWN attack on SSLv2,
but also touches upon attacks on older versions of SSL and TLS. [10] Furthermore, some
of the vulnerabilities are known to the developers of the service worker. An example
of that is a service worker exploit utilizing the cross-site scripting attack via JSONP,
which is covered in "Service Worker Security FAQ" by Jake Archibald, one of the creators
of the service worker. [8] However, there is little to no research regarding the security
and potential abuse of some newer parts of the service worker, for example, Push and
Notification APIs.

1.3 Problem formulation

The Service Workers are installed on the clients’ machines without the clients’ awareness.
The most that the client can do is to block the notifications from the website, yet the
service worker will still be installed and run. The service worker is a programmable proxy,
it is a piece of code which is sneaked into clients’ computers and which can be triggered

1

remotely by the server. Taking into account all the aforementioned APIs, the service
worker as technology is fairly complex; it is also a new and developing technology. The
combination of all these factors makes the service worker an additional attack surface, a
target for existing attacks, and a tool for new attacks.

1.4 Motivation

The Service Worker is a powerful tool aimed towards improving web performance and
client experience, especially on mobile devices. The service worker is one of the crucial
parts of a larger technology called Progressive Web Apps, which brings a native-like
experience for mobile users in their browsers when they enter a website. With it, the high-
friction step of strongly encouraging - or in some cases even forcing - the clients to go to
the Application Store and download an application to use a website’s service comfortably
can be avoided entirely. Furthermore, the clients can enjoy the offline experience, which
is extremely potent in situations when there is no connection at all, for example being
on a plane. Alternatively, the connection might be so weak that there is no connection
in effect, yet the device still tries to reach the server, for example when the client is on
the underground. In addition to that, the service workers offer other benefits, such as
background synchronization and push notifications.

All these benefits improve the user experience, which in turn encourages clients to
continue using a service or browsing a website. For example, when Forbes redesigned
their website as a Progressive Web App, only about 25% of users could get the experience
of the PWA right away for various reasons. Nonetheless, Forbes’ website "has seen a 20%
increase in impressions per page ... 12% increase in the number of users that get to the site
... 6x increase in the number of readers completing articles." [1] The success of PWAs is
seen more and more on the web; a website called PWAstats.com showcases an abundance
of statistics from various websites who redesigned their websites as progressive web apps.
One of the statistics featured on this website is about Twitter Lite PWA, which "became
the default mobile web experience for all users globally in April 2017" [2] and helped
"65% increase in pages per session, 75% increase in Tweets sent, 20% decrease in bounce
rate" [2]. A considerable part of this success is attributed to the Service Worker which
allows for "enabling users to view and create Tweets as quickly as possible." [2]

1.5 Objectives

In this section the objectives of this thesis work are presented. "SW" in the table below
refers to Service Worker.

O1 Understand why an API like SW is desirable from users’ and busi-
ness’ points of view

O2 Understand successes and failures of SW’s predecessors and their in-
fluence on SW

O3 Understand security threats related to the technologies used by SW
O4 Make a vulnerability matrix that outlines existing SW vulnerabilities
O5 Make a list of mitigations for discovered vulnerabilities
O6 Make a list of security guidelines

2

1.6 Scope and Limitation

This project takes into consideration two scenarios. The first scenario is the server in-
stalling a malicious service worker on the client’s computer aiming to either obtain some
information from the client or compromise their device. The second scenario is the man-
in-the-middle attacks - a third party trying to compromise the client.

This project does not take into consideration the situation when the client attempts to
attack the server or gain unauthorized access to some resources. The exclusion is mostly
due to the fact that this level of attack would require either an unrealistically oversim-
plified implementation of the server side or decompilation and alteration of an installed
service worker.

1.7 Target group

The target group of this project is computer science bachelor students, who have some
interest in web development and security of the APIs and technologies covered in this pa-
per. Basic understanding of JavaScript and web communication is required to understand
the result and discussion of this project report.

1.8 Outline

The following section covers methodology used in this project to achieve the aforemen-
tioned objectives. After that, The Service Worker section covers in-depth Service Worker
API and other technologies that it utilizes. Subsequently, Developing Vulnerability Matrix
covers the implementation of the artifacts of this project: the service worker vulnerabil-
ity matrix, list of mitigations, and security guidelines for using the parts of the service
worker. In Results, the vulnerabilities are classified according to the criteria outlined in
Developing Vulnerability Matrix. Consequently, the artifacts are presented. In Discussion
the vulnerabilities, their classification, and mitigations are discussed further. Conclusion
and Future Work presents the final overview of the paper and the overall security of the
service worker, based on the findings made during this project; suggestions are made
regarding further research.

3

2 Method

This project sets out to point out which parts of the service worker are the weakest, what
their vulnerabilities are, and exactly how dangerous they are. This task is achieved by
analyzing relevant literature and showcasing the vulnerabilities by using a demonstrator
developed during this project. After discovering, discussing, and in some cases demon-
strating the vulnerabilities, they are categorized based on the severity, exploitability, and
complexity of mitigation. The result of this categorization is a vulnerability matrix, which
can be used to keep track of vulnerability management of the service worker in a partic-
ular setting. Furthermore, some mitigations to the vulnerabilities are presented. Finally,
the technologies and mitigations are mapped to each other in the Security Guidelines.

2.1 Method Description

Firstly, basic information was gathered about the technologies covered in this report and
their impact on business and security. After confirming the current and potential utility
of the service worker and related technologies, the search for implementation guidelines
has been conducted, with the focus on implementation presented by Mozilla and Google,
since those guides go into great depth of implementation. Furthermore, these guidelines
outline potential bugs and security issues that developers might come across; these se-
curity issues served as the starting point in the search for vulnerabilities. Subsequently,
the drafts of the related standards have been consulted to obtain inspiration for additional
attack vectors. These attack vectors have been confirmed either by showing them through
a demonstrator developed during this project or by referring to related academic papers.
Consequently, the vulnerabilities are gathered and classified in a vulnerability matrix, in
style similar to that of OWASP Top 10; the mitigations to these vulnerabilities are then
presented.

2.2 Reliability and Validity

The web technologies are notorious for being ever-changing. While some of the web
technologies covered in this project have been established decades ago, tested, and re-
searched thoroughly - such as SSL/TLS - most of the APIs included in this report are in
experimental state or rely on standards that are still in the draft state. Thus, the technolo-
gies analyzed throughout this project might not change much in the near future, but they
have changed incredibly in the past few months and are likely to keep transforming at a
steady pace for a few years. For this reason, the most contemporary resources available
for the research has been used; additionally, the access dates to all the resources have
been attached so that in future it is possible to look into the specific versions of the docu-
ments that are known for being dynamic, such as developer blogs by Mozilla and Google.
Where possible, the versions of the technologies and third-party software are specified.

2.3 Ethical Considerations

The security testing mentioned in this report does not involve any participants hence it
does not pose a threat to anybody directly. For the most part, the web server has been run
on a local network behind a NAT, meaning that apart from the author of this paper nobody
could have been affected by the web page. For the tests where the web server has been
tunneled and made accessible on the internet using ngrok [11], a part of the URL of the
web page has been randomized, making it less likely that people not aware of the project

4

would connect to the web server. Furthermore, the web page had warnings in the title and
the header so that accidental clients would not allow notifications on their devices. A tool
called One Signal has been used in this project; it allowed for tracking which clients have
installed the service worker, and it shows that the only clients that installed the service
worker were the test machines. The files stored by the vulnerable service worker and the
service worker itself have been erased from all the devices used in this research project.

5

Figure 3.1: Service Worker Architecture

3 The Service Worker

This thesis project is concerned with the security of the Service Worker, so it is essen-
tial to have a solid understanding of what the Service Worker is. However, the Service
Worker as technology makes use of several other technologies and Application Program-
ming Interfaces (APIs): Promise API, Fetch API, Cache API, Push API, Notification
API, HTTPS, and Service Worker API. Figure 3.1 is a visual representation of the service
worker architecture. Note that Promise API is used in all parts (APIs) presented in the
Figure 3.1.

3.1 Promise API

Traditionally, when a sequence of commands needs to be executed, the callback functions
have been used:

1 doSomething(successCallback, failureCallback);
2 function successCallback () {
3 //Proceed execution
4 }
5 function failureCallback () {
6 //Display error
7 }

Listing 1: Callback Example

Multiple callbacks can be used for one function. For example, if an HTTP package is
received and the program must act differently depending on the status code of the package,
the function receiveHTTP can have multiple callbacks corresponding to different status
codes.

While this way of structuring execution of a program is useful in some scenarios, it
has some downsides. For example, structuring code in this manner while trying to achieve
asynchronous functionality is prone to becoming something that is known as "callback
hell" or "pyramid of doom." Callback hell is a situation in which multiple callback func-
tions are nested, which makes the code hard to read and debug. Figure 3.2 is a demon-
stration of callback hell.

One way to avoid this problem is using a different approach to asynchronicity -
Promise API. "A Promise is an object representing the eventual completion or failure
of an asynchronous operation." [12] At first, the difference between callback functions

6

Figure 3.2: "Callback hell" [3]

and promises is inconsequential - instead of passing callbacks into a function, they are at-
tached to an object. However, using an object allows for chaining - using the result of one
promise as a trigger for starting the following operation. Passing the results of promises
allows for avoiding the callback hell, hence for more readable and easier to debug code.
Furthermore, Promise API guarantees error propagation and completion of the concur-
rent run. Error propagation means that once an exception is encountered in the chain of
promises, the execution stops and looks down in the chain for the catch statement. Thus,
error propagation eliminates the need for having multiple catch statements that are often
present in callback hell. The guarantee of completion of the concurrent run means that
the next promise will never be executed until the promise that is running at the moment
has finished executing. This guarantee allows for promise chaining, where every action
is taken based on the success or failure of the previous action. An example of that can
be seen in Listing 2 from Google, which fetches an image, converts the response to a
blob, works with this blob and returns the resulting array and a promise, meaning that the
function can be a part of a promise chain as well. The beauty of this way of coding is that
it is as easily read as synchronous code yet it is asynchronous which means that it is far
more efficient.

1 // function for loading each image via fetch
2 function imgLoad (imgJSON) {
3 // return a promise for an image loading
4 return fetch(imgJSON.url)
5 .then((response) => response.blob())
6 .then(function (response) {
7 //do stuff
8 return arrayResponse
9 }).catch(function (Error) {

10 console.log(Error)
11 })
12 }

Listing 2: Promise Chaining

Since all APIs that are used by the Service Worker utilize Promise API, it is key to the
functionality of the Service Worker.

7

3.2 Fetch API

Fetch API is responsible for HTTP and HTTPS requests and responses. The key global
method of this API is fetch(), which "provides an easy, logical way to fetch resources
asynchronously across the network." [13]

While fetching in an asynchronous way can be achieved using XMLHttpRequest API,
Fetch API is more modular, flexible, and easier to use, which gives it an edge over XML-
HttpRequest. An example of the flexibility of Fetch is its support of Cross-Origin Re-
source Sharing (CORS) and RequestMode parameters for it: same-origin, no-cors, cors,
navigate. Choosing between these modes allows for different degrees of exposure and
modification of HTTP headers, which aids security and privacy. Another important bene-
fit of using Fetch is that it can use Cache API to interact with cache: a developer can define
which request and response objects to store locally for future use, what should come only
from the cache and what should never be stored. This functionality is crucial for an ap-
plication with offline support yet it is not available in XMLHttpRequest. Moreover, Fetch
supports streaming, which is particularly useful when looking for smaller parts of larger
files.

3.3 Cache API

Cache API is storage for network request and response pairs. It can store "any kind of
data that can be transferred over HTTP" [14], and this data can be retrieved and used
again. Unlike more traditional caching in browsers, Cache API was designed to be used
by developers and software to provide offline functionality to websites and applications, in
particular by Service Worker API. An example of extended control over stored files is the
fact that the files stored in Cache API never expire, nor do they get updated automatically
- it is up to developers to ensure that the cache stays up-to-date and is removed when it is
no longer useful. Moreover, Cache API is asynchronous meaning that it can be used by
Service Worker API, which is designed to be fully asynchronous.

Apart from the Service Worker, it can be accessed from both window object and other
workers, meaning that it can be used as general storage. In the context of the service
worker, the cache is often used to store the files that form the "shell" of the website
or application and therefore do not change frequently - "the minimal HTML, CSS and
JavaScript powering the user interface." [15]

3.4 Push API and Notification API

The core goal of Push API is to push notifications to clients. The pushed messages are
then received by Service Worker API and are displayed using the Notification API even if
the user’s browser is closed. Push API is based on Service Worker API since the service
worker provides the entry point for Push. The user subscribes to push messages via the
service worker, and the service worker is then responsible for reacting to push messages
appropriately, e.g., displaying a notification on the screen. The push notifications are quite
interactive - apart from the usual "click" action, the messages can have multiple types of
interaction, e.g., asking the user a question and giving them two answer buttons, clicking
which triggers different actions. Furthermore, the push notifications can have sound and
vibration which can be configured, for example, it is possible to specify the number of
milliseconds a device will vibrate and the length of the pause between the vibrations.

A notable drawback to involving Service Worker API for processing the push mes-
sages is "increased resource usage, particularly of the battery" [16]. At the moment of

8

Figure 3.3: Diffie-Hellman Key Exchange

writing this paper, there is no standard for taking care of resource usage, so different
browsers handle this in different ways that are discussed in later sections of this paper.

3.5 HTTPS

HTTPS is an improved version of HTTP - Hyper Text Transfer Protocol. HTTP is used
for transferring data across the web, and it is used mostly for transfer of various web pages
and multimedia files. While this is an incredibly useful protocol, it lacks security features
and can, therefore, be exploited for malicious actions. On the higher level, HTTP can be
exploited for active alteration - e.g., insertion of unauthorized advertisements into a web
page [17] - and for passive observation of users. The observation is often linked with
sensitive data exposure. However, it is not only the sensitive data that has to be protected
- by observing browsing patterns of a user an attacker can learn their identity and use it
maliciously.

HTTPS utilizes the HTTP protocol in combination with Secure Socket Layer protocol
(SSL) or, with its improved version, Transport Layer Security protocol (TLS). The TLS
handshake is used to establish the connection between the client and the server. First, the
client communicates a series of security parameters to the server, then the server responds
with its certificate and confirms whether it can use the security parameters specified by
the client. This part is encrypted with asymmetric encryption, by the client using the
public key of the server, which is found in the server’s certificate. If the two agree on
the ciphers to be used, they then proceed to negotiate the private key, via Diffie-Hellman
key exchange, that will be used for encrypting the application data; the encryption, in
this case, will be symmetric. Figure3.3 demonstrated the Diffie-Hellman key exchange
process; note that prime numbers x and y are generated by the client and the server. Figure
3.4 demonstrates the TLS handshake.

HTTPS is required by the Service Worker and Push APIs, though they can work with
HTTP in development mode, i.e., when the Service Worker and the corresponding page
are accessed via the localhost address.

9

Figure 3.4: TLS Handshake [4]

3.6 Application Cache

One of the key capabilities of Service Worker is the ability to cache parts of the websites
- or entire websites - and serve them to users when necessary. There have been previous
attempts to design a technology to do just that; the most successful predecessor of the
service worker is ApplicationCache. The websites can be divided into two categories:
websites for looking up content - e.g., Wikipedia, YouTube - and for creating content, for
example, Google Docs. ApplicationCache (AppCache) was designed to cache the second
types of websites and allow clients to use them offline [18]. While it is possible to use
AppCache for the websites type of files, many of the quirks of AppCache make it highly
impractical on a bigger scale, such as Wikipedia.

The AppCache has many quirks which resulted in a need for a new offline technology
for the web. The quirks are there in the first place because the AppCache has many
implicit behaviors, which are useful when one wants to use the technology out-of-the-box,
without having to go deep into the configuration. However, the problem with AppCache
is that once somebody starts to adjust and configure the tool more precisely, the result is
often unexpected and counter-intuitive, due to the fact that the technology "assumes" too
much of its role and desired functionality. While it does not render AppCache completely
useless, it means that the technology is difficult to use effectively.

Despite its flaws, AppCache provides an important feature - offline capability. It is
clear that this feature is desirable, especially for mobile users, and since AppCache is
challenging to use effectively, the need for a new, improved technology arises. That is
where Service Worker comes into play. Continuing with the idea of offline-capability,
Service Worker is even more powerful, allowing for the features described previously.
However, learning from the mistakes of AppCache, Service Worker has little to no implicit
behaviors. While it does mean that to utilize the technology fully one has to go through
more trouble of setting it up according to their needs, it also means that the obscure quirks
are no longer there - the developer can define when and how to use Service Worker with
notable granularity. Thus, a service worker on the website can be as simple or as complex
as the developer needs it to be.

10

Figure 3.5: Service Worker Life Cycle [5]

1 // register service worker
2 if (’serviceWorker’ in navigator) {
3 navigator.serviceWorker.register(’sw.js’)
4 .then(function (reg) {
5 if (reg.installing) {
6 console.log(’Service worker installing’)
7 } else if (reg.waiting) {
8 console.log(’Service worker installed’)
9 } else if (reg.active) {

10 console.log(’Service worker active’)
11 }
12 swRegistration = reg
13 initializeUI()
14 }).catch(function (error) {
15 // registration failed
16 console.log(’Registration failed with ’ + error)
17 })
18 }

Listing 3: Service Worker Registration

3.7 Service Worker API

A service worker is a programmable proxy that the server installs on the client, and that
is used to process all requests to the domain. It is run in a separate thread, meaning that
it is not thread-blocking, and it utilizes only asynchronous technologies; the combination
of the two makes it fully asynchronous. Service worker is terminated when not in use in
an attempt to improve the resource usage.

Although the service worker is installed upon visiting a web page, the service worker’s
life cycle is not dependent upon the web page. Figure 3.5 demonstrates "overly simplified
version of the service worker life cycle on its first installation." [5]

Listing 3 demonstrates registration of the service worker. The actual registration oc-
curs in line 3, while the rest is checking the browser support for service workers, logging,
and error handling. Note that the Listing 3 is a part of the main Javascript file (in this case
app.js)

11

After the registration, the actual installation of the service worker takes place. Once
the installation begins, the Listing 4 from sw.js is run, where caching begins in line 4.
Most commonly, the files that are cached on installation are the files that form the shell
of the app/website or the files that are often used but rarely changed, for example, as
mentioned previously, menus, information pages, and CSS files.

1 //service worker installation
2 self.addEventListener(’install’, function (event) {
3 event.waitUntil(
4 caches.open(’v1’).then(function (cache) {
5 return cache.addAll([
6 //specify the files to be cached
7])
8 })
9)

10 })

Listing 4: Service Worker Installation

Now the service worker is fully installed and can be configured to one’s needs. For
example, the service worker can intercept fetch requests and act depending on the connec-
tion of the client; Listing 5 demonstrates this functionality. Note that the line 5 returns the
result of either the cached response to the request or the network response to this request.
This race is done to improve the user experience - it can be hard to determine whether it
is faster to contact the server for a new response or obtain it from the cache, so the service
worker makes both requests and displays whichever returns first.

By utilizing aforementioned technologies, Service Worker API achieves different func-
tionality. When it intercepts requests and responses from the client and the server, it can
use Cache API to store them and use in future, for example when the internet connection
is slow or when there is no connection at all. Using the service worker in combination
with cache allows for very granular selection of which resources should be stored, when
they should be updated, and when they should be deleted. The combination of Push and
Notification APIs is used for notifications from the sources that the user has subscribed to
using service workers. Service Worker also supports background synchronization, though
it is not yet standardized.

1 //intercepting network requests
2 self.addEventListener(’fetch’, function (event) {
3 event.respondWith(
4 caches.match(event.request).then(function (response) {
5 return response || fetch(event.request)
6 }).catch(function (error) {
7 console.log(error)
8 })
9)

10 })

Listing 5: Intercepting fetch Requests

12

4 Developing Vulnerability Matrix

The inspiration for the vulnerabilities is taken from official sources that outline the ex-
isting problems, such as sources [6, 8, 19], standards that outline what practices should
be followed by the developers, such as sources [20, 21], and advanced tutorials that are
published by credible sources, such as [5, 7, 14, 16, 22, 23].

The threats concluded from these sources are then divided based on the part of the
service worker that they target (API or technology), for example, Push API and HTTPS.
Such separation allows for a more systematic and focused look into the parts of the ser-
vice worker and as a result the service worker as a whole; it offers a definite conclusion
regarding the security of the service worker since technology is only as safe as its weakest
point.

Potential vulnerabilities found in the separate sections are then studied more closely,
either by showing them through a basic demonstrator, build during the work on this
project, or through studies of academic papers that point out the issues in the parts of the
service worker, such as sources [9, 10, 24–31]. After the demonstration of or the review
of the research done about the vulnerabilities of the technologies and APIs in question, an
analysis of the vulnerabilities is produced. The vulnerabilities are measured against three
criteria presented in Table 4.1, in a manner similar to that of the OWASP Top 10 [29].

Criterion Variation Meaning

Exploitability

Difficult
to exploit the vulnerability the attacker must be
experienced, in proximity to the victim, and in a
fortunate situation, e.g. a rare outdated version of the
software

Average
the vulnerability exploitation requires some level of skill
and luck

Easy
the vulnerability can be exploited by an average
computer user

Severity

Minor the impact of the attack is negligible
Moderate the attack has a considerable impact on user experience

Severe
the impact of the attack is detrimental to the user’s
information safety

Complexity

Low
the vulnerability can be mitigated quickly and without
additional monetary costs such as buying

Moderate the vulnerability requires some time to be mitigated

High
the vulnerability takes a long time and additional
resources to mitigate

Table 4.1: Criteria Used in the Service Worker Vulnerability Matrix

The result is the service worker vulnerability matrix that maps the technologies used
by the service worker, their vulnerabilities, and the level of each category outlined above.
The table 4.2 is an example of such matrix.

Once the vulnerabilities have been found and classified, various ways of mitigation are
outlined, and security guidelines are presented. The remediation is based mainly on the
developer guidelines written by developers from large companies - such as Mozilla and

13

Technology Vulnerability Exploitability Severity Complexity

API 1
V 1 difficult minor low
V 2 average moderate moderate

API 2 V 3 easy severe high

Table 4.2: Example of a Service Worker Vulnerability Matrix

Google - who have been developing the service worker technology, as well as research
papers used throughout this report that focus on various vulnerabilities in technologies
that form the service worker. The demonstrator is used to show vulnerabilities associated
with Service Worker and Push APIs.

4.1 Demonstrator

As of the time of writing this thesis, the W3C specification of Service Worker implemen-
tation is a working draft [20], meaning that the implementations and guidelines on how
to build service workers differ from one website to another. Currently, Service Worker
is supported by Chrome, Firefox, Opera, Samsung Internet, and Safari; it is under devel-
opment in Edge. With the exceptions of Safari and Edge, all companies provide some
guides and examples on how to build service workers. The guides can be separated into
two categories: low level (building a service worker from scratch) and high level (using
external tools to build a service worker) development. Guides of both categories are de-
signed to be entry-level, meaning that they expect the reader to be completely new to the
service worker technology, though the low-level guides go into much greater depth.

Opera and Samsung have high-level guides for developing a service worker. Instead
of programming a new service worker, they provide the user with the generating tools and
templates - Samsung, [32]- or offer a higher level library that takes care of setting up the
service worker (Opera, [33]). Because of that, it is impossible to compare the similarities
and differences in their approach.

Mozilla and Google offer low-level approach - unlike the high-level guides, they set
out to teach the reader to implement a service worker themselves and provide some demos
to play with the written code. Low-level guides go into details of implementation and
practices of all APIs and technologies related to service Worker API.

4.1.1 Client Side

The Service Worker demonstrator that was developed during this bachelor project focused
mostly on the two low-level guides and their demos, as well as guidelines from W3C
Working Draft for the service Worker [20]. The implementation in this project uses some
code for from Google - Service Worker shell, basic offline functionality, and basic Push
message notifications. While one of the initial goals of this project was to analyze the
differences in implementation of service workers between the low-level guides, it turned
out that they are complementary to each other - each contains information that the other
is lacking, and they cross-reference each other continuously.

4.1.2 Server Side

The implementation is complementary to the research of this project and not the main
focus, hence instead of creating a brand new back-end server, multiple technologies and
libraries are used to form the back-end. One of this technologies is an extension for

14

Figure 4.6: An example of DOM-based XSS [6]

Chrome called Web Server for Chrome offered by chromebeat.com. It is an easy-to-use
web server, which works over a network and can (given some additional privileges on the
network) work over the internet. However, as mentioned in Section 3.5, the websites and
apps that use Service Workers must be run over HTTPS, which is not provided by Web
Server for Chrome. For that reason, ngrok is used - it is an application which "exposes
local servers behind NATs and firewalls to the public internet over secure tunnels" [11].
While it offers many useful features, the most important features of this project are the
ease of making the website available on the LAN and providing communication between
the server and the client over HTTPS. One Signal is used for management of the clients’
push notification subscriptions and the push notifications themselves. Some of the push
notification testings have been done using Google Push Companion.

15

Figure 4.7: An example of persistent XSS [6]

4.2 Vulnerabilities

While there are a plethora of attacks related to web applications and web technologies in
general, the focus of this paper is security vulnerabilities of the service worker. Therefore,
the following sections contain vulnerabilities that are mostly service worker-specific. For
convenience, the attacks are separated by the APIs or technologies that they target.

4.2.1 Service Worker API

Service Worker can be vulnerable to a Cross-Site Scripting (XSS) attack using JSON with
Padding (JSONP). [8] An XSS attack allows the attacker to "perform cookie stealing,
malware-spreading, session-hijacking, and malicious redirection." [24] There are differ-
ent taxonomies of XSS - traditionally, the XSS attacks have been classified as DOM-
based, Reflected, or Stored [24, 29]. However, these types are rarely well-defined, in
practice, they often overlap. Therefore, a more modern taxonomy is Server XSS and
Client XSS. Server XSS occurs when the attacker stores malicious script on the server
and the client receives this script. Figure 4.6 is an example of DOM-based XSS, which
can also be classified as a Server XSS. Client XSS means that the page that was received
from the server is not malicious, but a script on the client’s machine alters the page.

There are numerous ways in which an XSS attack can be executed. For example,
suppose the following scenario from source [6], demonstrated in Figure 4.6:

1. The attacker crafts a URL containing a malicious string and sends it to the victim.

2. The victim is tricked by the attacker into requesting the URL from the website.

3. The website receives the request but does not include the malicious string in the
response.

4. The victim’s browser executes the legitimate script inside the response, causing the
malicious script to be inserted into the page.

16

5. The victim’s browser executes the malicious script inserted into the page, sending
the victim’s cookies to the attacker’s server.

This particular example focuses on stealing victim’s cookies. Now suppose that the
goal of the attacker is to install a malicious service worker on the website. Since the
service worker is a programmable proxy that can span the entire domain, if the attacker
can install a malicious service worker on the victim’s machine, then they will execute a
successful persistent man-in-the-middle (MITM) attack.

Another example of a persistent XSS attack can be seen in Figure 4.7. Consider the
code snippet from the demonstrator, presented in Listing 6, which simulates the scenario
presented in Figure 4.6. The users are expected to insert their name into an input field
in line 1 and press the button to send it to the server. In this case, instead of sending to
the server, the value is stored in localStorage. Line 4 represents fetching information that
was stored by other users from the server (in this case it is loaded from localStorage).
Taking into account that the input data is simply stringified in line 13 and parsed in line
16, an attacker can inject a malicious payload which will then be send to the victim once
it enters the page (in this case - presses Pull button). An example of a malicious payload
can be seen in Listing 7.

1 First name: <input id="name" name="fname">
2 <button value="Submit" onclick="push()">Submit</button>
3 <p id="test"></p>
4 <button value="previous" onclick="pull()">Pull</button>
5 <p id="past"></p>
6 <script>
7 function push () {
8 let n = document.getElementById(’name’)
9 window.localStorage.setItem(’name’, ’[]’)

10 let name = JSON.parse(window.localStorage.getItem(’name’))
11 name.length = 0
12 name.push({name: n.value})
13 window.localStorage.setItem(’name’, JSON.stringify(name))
14 }
15 function pull () {
16 let name = JSON.parse(window.localStorage.getItem(’name’))
17 let p = document.getElementById(’past’)
18 p.innerHTML = name[0].name
19 }
20 </script>

Listing 6: Unsafe Handling of User Input

In this case, once the victim enters the page, the DOM will be updated to contain the
malicious script, as displayed in Figure 4.8. The victim’s browser will try to fetch an
image from an invalid source, which will trigger an error. The attacker specified the script
that is to be executed when an error occurs, in this case, it is displaying an alert.

1 <image src=x onerror=window.alert(’xss’)>

Listing 7: Example XSS Payload

Referring to the examples shown in Figure 4.6 and Figure 4.7, an attacker could try to
include a fetch in the payload to download the malicious script and then install it as shown
in Listing 3, but the call would not succeed. It would fail due to the same-origin policy

17

Figure 4.8: Result of Successful XSS Attack

(SOP) that prevents downloading resources from other domains. However, the attacker
can attempt to use JSONP.

Using JSON a client can send an XMLHttpRequest to the server to execute a function.
Using JSONP a new script tag is appended to the HTML page and then the call is made to
the function foo specified in the call. Therefore, foo must exist in the global scope during
the time that the request is made and the function has to exist on the server side. Since
the client does not have access to the list of the server functions, the server often declares
callback function, which is defined by the client. Crucially, script tag does not comply
with SOP, hence downloading something from a different origin is not an issue. Fetching
resources from other domains is the primary use of JSONP in the industry. An attacker
can modify the callback function to fetch and install a malicious service worker and take
over a domain.

4.2.2 Push API

Social Engineering
"A push subscription has an associated push endpoint. It MUST be the absolute URL
exposed by the push service where the application server can send push messages to.
A push endpoint MUST uniquely identify the push subscription." [21] With the push
endpoint the client is uniquely identified by the server, and without the endpoint, a third
party cannot send any notifications to the client. However, "the application server is able
to share the details necessary to use a push subscription with a third party at its own
discretion." [21] This means that there is no guarantee that a push notification came to the
client from the "the same origin as the web app." [21] While not a vulnerability in itself,
this allows for a plethora of social engineering attacks. Suppose the following: the user
entering a website X - which they deem trustworthy - allows notifications from X. Now if
X provides the push endpoint of the client to another company Y - e.g., for advertising -
the client will receive a notification from website/application X, which in reality was sent
by Y. Y could be an obvious scam or a cover-up for a malicious website, but the client
will think that the notification came from X, so they will be likely to trust it.

Push Without Notification
Another potential problem is excessive battery usage. Once the push messages arrive on
the client’s machine, the service worker is activated in order to deliver the push notifi-
cation to the client. While this is not going to drain the battery significantly after one

18

push message, a significant amount of them could affect the battery life. It is stated on
the Mozilla Development website that "activating a service worker to deliver a push mes-
sage can result in increased resource usage, particularly of the battery" [16], and that it
is browser’s responsibility to handle the battery usage. Chrome, for example "applies no
limit, but requires that every push message causes a notification to be displayed" [16]. The
need for displaying the push notifications is also stated numerous times in Chrome Push
guides: "you must show a notification when you receive a push." [22] However, there is
no specific information regarding what happens to the push message itself in the situation
when a Push message is not displayed.

Consider the example presented in Listing 9 Note that the line 12 makes the event
wait until the notification is displayed - shown to the user and either timed-out, closed,
or interacted with by the user. Figure 4.9 is an example of a push message received with
this code. Now consider a situation in which instead of the line 12 in the Listing 9 service
worker does something without showing the notification, for example, Listing 8.

1 event.waitUntil(console.log(’A Push message without a notification!’))

Listing 8: Printing Out a Message in Console on Receiving a Push Message

1 self.addEventListener(’push’, function (event) {
2 console.log(’[Service Worker] Push Received.’)
3 console.log(‘[Service Worker] Push had this data:
4 "${event.data.text()}"‘)
5 let text = ‘${event.data.text()}‘
6 const title = ’Push Codelab’
7 const options = {
8 body: text,
9 icon: ’images/icon.png’,

10 badge: ’images/badge.png’
11 }
12 event.waitUntil(self.registration.showNotification(title, options))})

Listing 9: Standard Approach to Reacting to a Push Event

According to [16], Chrome requires that the push message triggers the notification,
which implies that not showing the notification should cause no reaction from Chrome.
Similarly, Google states in [7] that "Chrome will only show the [default] notification [as
presented in Figure 4.10] when a push message is received, and the push event in the
service worker does not show a notification..." However, this does not seem to function
as intended. The demonstrator service worker is configured not to display notifications
on push messages and print in the console. Figure 4.11 demonstrates that the console
printing works, while the default message is not being displayed to the user. The ability
to execute code without notifying the user raises the issue of battery drainage.

Firefox, on the other hand, ignores the push message entirely - there is neither a printed

Figure 4.9: Standard Push Message

19

Figure 4.10: Example of a Default Message for Push Message in Chrome [7]

Figure 4.11: Console Printout of an Invisible Push Message

message in the console nor a default notification that the website has updated in the back-
ground.

4.2.3 HTTPS

The main reason as to why the service worker requires the communication to be transmit-
ted using SSL/TLS is to protect both the client and the server from the man-in-the-middle
(MITM) attacks. During the MITM attack, a third party hijacks the communication and
is able to passively view the communication, or even alter the communication without
the rightful parties’ awareness. This attack is detrimental to the client, as their private
information can be used maliciously by the attacker. For example, an attacker could get
client’s credit card information and steal their money. From the server’s point of view, this
attack is harmful because once it is revealed to the public that a company communicates
with users and handles their data incautiously, it is likely to affect the company’s business
negatively.

Most of the attacks on HTTPS are more difficult to execute than other attacks pre-
sented in this project. This difficulty is largely due to the fact that there are two general
attack scenarios - either the attacker impersonates a legitimate server and tricks the client
into connecting to them, or the attacker decrypts the communication between the client
and the server.

Impersonating a legitimate server is addressed by the first two HTTPS attacks, and
the main difficulty with this attack vector is that the attacker needs to prevent the user
from connecting to the legitimate server. The attacker is often in the proximity of the
victim that is connected to a public wireless access point, e.g., in an airport or a cafe. The
attacker pretends to be the access point X, then drops the victim from the legitimate access
point X, for example by using Kali Linux and the airodump suite. The victim’s machine
then reconnects to the malicious access point X. Now the attacker, acting as a proxy, can
redirect the victim from the legitimate domain to a fake one. If the attacker successfully
impersonates the legitimate domain by using an untrustworthy certificate, or if certificate
validation is not implemented correctly on the victim’s machine, then the victim will not
notice that they are on a fake domain.

Decrypting the communication between the client and the server can be done if the
Diffie-Hellman key exchange protocol is implemented poorly on the server, e.g., the

20

server uses small-sized keys or weak encryption ciphers. Alternatively, the attacker has a
high chance of success if the server uses outdated protocol versions.

Untrustworthy Certificates
HTTPS offers protection from MITM attacks, yet it is not flawless. The client uses cer-
tificates to prove the server’s identity and encrypt the communication between the client
and the server using the public key stated in the certificate. However, an attacker could
pretend to be a legitimate server by cryptographically impersonating the server. In theory,
this should not be possible because the certificates that prove one’s identity online must
be issued by trustworthy certificate authorities. In practice, however, there are certificate
authorities that are considered reliable, yet they "improperly issue certificates" [25]. An
example of this situation is Symantec - one of the biggest certificate authorities - which
has been distrusted by Google after a scandal in 2017 [25]. During the writing of this the-
sis project, Mozilla also made a public statement [26] showing their disdain of Symantec.

Improper Certificate Validation
Another vulnerability of HTTPS lies in the verification of certificates. A famous example
of this is the Apple’s "goto fail" bug, which resulted in lack of verification of certifi-
cates. This bug allowed attackers to "trick users of OS X 10.9 into accepting SSL/TLS
certificates that ought to be rejected" [27], which made it much easier to impersonate a le-
gitimate server. Similar problems have been discovered in some Microsoft packages. [34]

Poor Diffie-Hellman Implementation
Even if certificates are issued by trustworthy certificate authorities and adequately verified
by the clients, there is still no guarantee that the communication is not being subject to a
MITM attack. The security of HTTPS largely relies on the fact that Diffie-Hellman key
exchange is secure, meaning that the communication between the client and the server is
encrypted. This key exchange protocol requires the client, and the server to each calcu-
late a large prime number and use it for computation of a shared key. However, finding a
large prime number is computationally expensive, hence "the overwhelming majority [of
servers] use one of a handful of primes." [9] To give the size of the "overwhelming ma-
jority," the source [9] states that "just two 512-bit primes account for 92.3% of Alexa Top
1M domains that support DHE_EXPORT, and 92.5% of all servers with browser-trusted
certificates that support DHE_EXPORT." There is also evidence that in some cases - e.g.,
Apache servers - the primes are hard-coded into the server configuration. That means that
the communication with these servers can be attacked by a MITM.

Outdated Protocol Versions
Outdated versions of TLS are riddled with vulnerabilities. Because HTTPS is a crucial
technology in secure communication, "TLS and its precursor SSLv3 have been the target
of a large number of cryptographic attacks in the research community, both on popular
implementations and the protocol itself." [10] Apart from the aforementioned attacks,
some others that have seen a considerable amount of success are DROWN, "Lucky 13,
BEAST, and POODLE" [10]. Importantly, most of the successful attacks target the out-
dated versions of the protocol - DROWN targets SSLv2, POODLE targets SSLv3, and
BEAST targets TLSv1.0.

21

5 Results

This section covers the vulnerability matrix, which points out the vulnerabilities in the ser-
vice worker and related technologies and mitigations to these vulnerabilities. Following
the vulnerability matrix, the mitigations are presented. The vulnerabilities and mitigations
to them are then summarized in the form of security guidelines.

5.1 Vulnerability Matrix

Technology Vulnerability Exploitability Severity Complexity
Service
Worker API

JSONP XSS easy severe moderate

Push API
Social Engineering average severe low
Push Without Notification average moderate moderate

HTTPS

Untrustworthy Certificate difficult severe high
Improper Certificate
Validation

difficult severe low

Poor Diffie-Hellman
Implementation

difficult severe high

Outdated Protocol Versions easy severe moderate

Table 5.3: The Service Worker Vulnerability Matrix

5.2 Mitigations

This section outlines the mitigations to the vulnerabilities presented in the Service Worker
Vulnerability Matrix 5.3. The mitigations have been discovered from sources [5–10, 14,
16, 19–31] and experiments with the demonstrator during the work on this paper.

5.2.1 Service Worker API

XSS using JSONP can be avoided in several ways. First of all, JSONP should not be
used. Instead, the developers can use Cross-Origin Resource Sharing (CORS), which is
a modern substitution of JSONP. It is supported by 95.37% users globally - according to
caniuse.com - and is a substantially safer alternative to JSONP. Additionally, it is sup-
ported in fetch, making it easier to use. Secondly, XSS must be prevented, for example
by using the guidelines from OWASP Top 10 [29]:

1. Use frameworks that "automatically escape XSS by design" [29], such as Ruby on
Rails and React JS

2. Escape "untrusted HTTP request data based on the context in the HTML output"
[29]; this resolves Reflected and Stored XSS

3. Apply "context-sensitive encoding when modifying the browser document on the
client side" [29]; this resolves DOM XSS

This vulnerbility is shown in Figure 4.7, and to mitigate it, the code in Listing 6 is
modified as presented in Listing 10 to serialize the user input using serialize-javascript
module. Now the HTML characters are escaped, i.e., the payload in Listing 7 is not
treated as HTML code, hence the attack will not succeed.

22

1 function push () {
2 //same code as before
3 window.localStorage.setItem(’name’, serialize({name}))
4 }
5 function pull () {
6 let name = deserialize(window.localStorage.getItem(’name’))
7 //same code as before
8 }

Listing 10: Safe Handling of User Input

5.2.2 Push API

Social Engineering
From the domain’s point of view, in order to prevent social engineering attacks using
push notifications, the domain must run extensive security checks on the party that gains
access to the application endpoints. Furthermore, educating users that notifications can
come from another domain through the same application is advised.

From the client’s point of view, the client must consider whether it is necessary to
allow notifications from particular domains and stay vigilant even after allowing push
notifications. In case of the domain or its notifications starting to act suspiciously, denying
push notifications is advised.

Push without notification
During the production of this paper, this vulnerability was partly addressed in a major
Chrome update. [31] Figure 5.12 demonstrates that now if the service worker does not
trigger the notifications for push events, Chrome notifies the user that a website has up-
dated in the background, as described in [7]. However, this message is not displayed if
the user is browsing the website when they receive a notification. Thus, although Chrome
66.0.3359.117 is more protected from this attack than Chrome 63.0.3239.132 and previ-
ous versions, this vulnerability is still not fully mitigated.

Figure 5.12: Notification Displayed in Chrome for Misconfigured Service Worker

5.2.3 HTTPS

Untrustworthy certificate
The trustworthiness of a certificate is determined by the browser that navigates to the web
page. Therefore the client does not have to do anything - most of the modern browsers
block the web page when something is wrong with its certificate; Figure 5.13 demon-
strates an error message displayed by Chrome when visiting a website whose certificate
has been issued by an untrusted certificate authority. The job of the domain is therefore
to obtain a certificate from a trustworthy certificate authority.

As a client, it is difficult to protect oneself from this type of attack. However, the
clients should always keep their browsers and operating system updated, since security

23

Figure 5.13: Error Message - Visiting a website With an Untrusted Certificate

patches tend to remove certificates from certificate authorities that have been detected to
be untrustworthy. Additionally, the clients should not use sensitive web services, e.g.,
accessing bank or hospital accounts, when connected to public networks, e.g., in airports
or cafes.

Improper Certificate Validation
Improper Certificate Validation occurs primarily due to developers disabling certificate
validation during development to make the product work without requesting a valid cer-
tificate. In most cases, the issue occurs when the developers forget to re-enable certificate
validation before releasing the product. To avoid that, the developers should not disable
certificate validation in the first place but instead obtain a certificate specifically for de-
velopment purposes.

Poor Diffie-Hellman Implementation
As stated in source [9], there are a few steps to be taken in order to use the Diffie-Hellman
key exchange more securely:

1. Transition to elliptic curves - while there is some critique of the elliptic curves in
cryptography "due to NSA influence on their design" [9], they show no weakness,
have shorter keys, and have faster shared-key computations

2. Increase minimum key strengths - the minimum key strength, as suggested in source
[9], should be 1024-bit long, the length of 2048-bit should be considered the secure
standard

3. Avoid fixed-prime 1024-bit groups - the servers should not use the primes that are
easy to compute. Subsequently, if the server has to use fixed primes instead of

24

computing them, the fixed primes should be updated regularly

Outdated Protocol Versions
Outdated versions of TLS are detrimental to the security of both server and the client.
However, the mitigation for this vulnerability is relatively simple - upgrading to the lat-
est version of TLS and not allowing the clients to downgrade the connection to SSL or
TLSv1.0.

5.3 Security Guidelines

Table 5.4 is the security guidelines for developing and using Service Worker components
safely. The "Actor" in the table is the side that ought to follow the guideline - either the
Domain or the Client.

Technology Guidelines Actor

Service Worker API
use frameworks Domain
escape untrusted HTTP request data Domain
apply context-sensitive encoding Domain

Push API

ensure that any third party with access to endpoints
is trustworthy

Domain

educate users about third-party notifications Domain
keep the browser updated Client

HTTPS

avoid accessing sensitive web services when
connected to public hot spots

Client

use a certificate during development Domain
use eliptic curves Domain
increase minimum key strength Domain
avoid fixed-prime 1024-bit groups Domain
use TLS and keep it updated Domain

Table 5.4: Security Guidelines

25

6 Discussion

"JavaScript is now [2017] the primary language of the web" [29] Therefore, JavaScript
and the technologies that it utilizes are heavily targeted by attackers and are often miscon-
figured by less experienced developers. Furthermore, the Service Worker is a relatively
new technology that is rapidly gaining popularity. The combination of these factors calls
for clear guidelines on how to develop service workers in a safe manner.

6.1 Understanding-related Objectives

O1 and O2 are aimed towards understanding why service workers are important and why
they are designed in this way. This section provides the summary of answers to these
objectives.

O1 - Understand why an API like Service Worker is desirable from users’ and busi-
ness’ points of view. From users’ point of view, the service worker offers convenience.
The clients can use web resources when they are offline or on slow connections; if they
want, they can receive notifications from the domain even when their browser is closed,
and other features are currently being developed to add more functionality to service
workers. With the success of Progressive Web Applications, it has been shown that of-
fering clients convenience is very beneficial for businesses. Due to its functionality, the
service worker is a key part of the progressive web applications, hence it contributes to
profits of a business and the improvement of the experience for the clients.

O2 - Understand successes and failures of Service Workers’ predecessors and their
influence on Service Worker. The only significant predecessor of the service worker
that has seen some success is Application Cache. The success of AppCache was the user
convenience that it offered - the ability to use web resources offline was much needed.
AppCache thrived when it was used for websites that clients used for creating content,
such as Google Docs. However, Application Cache was difficult to use for developers. To
deploy AppCache on a domain was challenging due to numerous implicit behaviors of the
service worker, which caused unwanted behavior for the clients. Both success and failures
of AppCache influenced the Service Worker tremendously because it demonstrated that
the offline capability for domains was necessary and that the technology that is used to
offer this functionality must be highly flexible.

6.2 Security-related Objectives

Objectives O3 - O6 aim towards understanding security threats to the Service Worker
components, classifying these threats, and mitigating them. These objectives are:

• O3 - Understand security threats related to the technologies used by Service Worker

• O4 - Make a vulnerability matrix that outlines existing Service Worker vulnerabili-
ties

• O5 - Make a list of mitigations for discovered vulnerabilities

• O6 - Make a list of security guidelines

This section aims to discuss the artifacts presented in Section 5 that address these objec-
tives.

26

6.2.1 Security Guidelines

From the Security Guidelines Table 5.4 it becomes clear that it is mostly the provider of
the service worker that is responsible for running the service worker safely, the client can
do very little to enhance their protection. While it is partly due to the fact that the service
worker is installed without the client’s awareness, the main reason is that the browser
ensures that the service worker is working as intended. Thus, it is crucial that the client’s
browser is frequently updated.

6.2.2 Service Worker API

"XSS is the second most prevalent issue in the OWASP Top 10, and is found in around
two-thirds of all applications." [29] This makes XSS a critical attack to consider, espe-
cially taking into account that it can be exploited fairly easily, as there are tools that "can
find some XSS problems automatically." [29] However, XSS prevention can be incredibly
difficult - if the system has not been designed with security in mind from the beginning,
and it cannot be rewritten because it is in production, patching specific XSS vulnerabil-
ities can be challenging. For example, mitigating the vulnerability presented in Listing
6 requires separation of Javascript from the HTML, and either import of a module or
additional programming, which can be cumbersome on a medium-sized domain.

During the work on this thesis, the major Chrome update [31], mentioned previously,
addressed several security issues with the service worker and related APIs. Two of them
are related to bypass of the Same Origin Policy of medium (CVE-2018-6093) and high
(CVE-2018-6089) severity. This shows how difficult it can be to mitigate cross-site script-
ing vulnerabilities.

Although XSS can be challenging to patch, shift from JSONP to CORS can be made
with relative ease, and that shift prevents installation of malicious service workers by the
MITM. Taking into account that a MITM attack is likely to result in theft of sensitive
information, such as credentials and sessions, it is one of the first vulnerabilities that
should be addressed.

6.2.3 Push API

Social Engineering
The exploitability of this vulnerability varies depending on the perspective. On the one
hand, it can be difficult to execute because to gain access to the endpoints the attacker
needs to either gain trust from the company X that serves the application to its clients or
steal the endpoints. If X thoroughly checks third-party companies before trusting them
with endpoints, then it can be difficult for the attacker to maintain a trustworthy image;
theft of sensitive information like endpoints is often difficult. On the other hand, if the
attacker somehow obtains the endpoint, then the vulnerability becomes easy to exploit.

Similarly, the complexity of mitigation of this vulnerability varies. It might be diffi-
cult to carry out a background check on the third party companies sufficiently in-depth.
Furthermore, the only way of detecting malicious notifications from a third party com-
pany which has passed the background checks successfully but has gone rogue afterward
is by receiving complaints from the clients.

Push Without Notification
Push messages that do not trigger notifications are possible if a malicious service worker
has been installed on the client. The results regarding the level of threat of this type of

27

attack are inconclusive. On the one hand, a push notification does not have a notable
impact on battery [28]. Thus, one would expect a push message without notification
to have even less impact on battery life of a device. On the other hand, it is important
to realize that push messages could be spammed by the attacker and that the service
worker can be configured to trigger more resource demanding operations on push events,
such as executing code, triggering vibration and sound. The impact of spamming push
messages that trigger some expensive computations remains to be seen, as it could not be
tested during this project due to the usage of third-party services, such as Google Push
Companion and One Signal, for managing push notifications.

6.2.4 HTTPS

Untrustworthy Certificates allow attackers to impersonate legitimate servers. Improper
Certificate Validation is a similar scenario in which the attacker’s certificate has an even
higher chance of being trusted by the client. As described in section 4.2.3, imperson-
ating attacks are challenging to execute, but when the attacker succeeds their impact is
tremendous. The primary concern with service workers is that the attacker installs a ser-
vice worker that spans a legitimate domain and then uses it to eavesdrop and steal client’s
information.

Since the clients do not have explicit mechanisms of defending themselves on public
networks, the attack is difficult to protect against. However, taking into account the dif-
ficulty of executing these attacks properly and the inability of a domain to prevent these
attacks entirely, they should not be the primary concern of the domain.

Poor Diffie-Hellman Implementation
Although "the common practice of using standardized, hard-coded, or widely shared
Diffie-Hellman parameters" [9] reduces the cost of cryptanalysis of Diffie-Hellman, it
is important to recognize that the cost of this cryptanalysis is still substantial. For the
attack to be worth the cost, it has to be done on a large scale - e.g., National Security
Agency (NSA) breaking the cipher to surveil the internet - or target the most successful
businesses. This means that a small or medium-sized business is unlikely to face this
attack from competitors.

Mitigating this vulnerability can also be costly. While it is possible to use a fixed
prime on the server but increase its length, better mitigations require an increase in com-
putational power (using dynamically calculated primes) or partial redesign of the system
(using elliptic curves).

Outdated Protocol Versions
Starting from 31st June 2018, all versions of SSL and TLSv1.0 are prohibited by the
Payment Card Industry (PCI) Security Council [19]; industries that involve managing
card information are required to use TLSv1.1 or TLSv1.2. However, while SSL and
TLSv1.0 are banned in the card industry, they can still be used in other areas, which calls
for patching the existing vulnerabilities in TLS protocols.

The attacks on the outdated SSL and TLS protocols are some of the easiest covered in
this paper - some software tools can test the vulnerability of the server to certain attacks
after a single click. Because of that, making sure that the protocols are being kept up-to-
date is extremely important for any domain.

28

7 Conclusions and Future Work

The primary goal of this thesis was security examination of the service worker. Con-
sidering that the amount of information available about this topic is very limited, the
service worker appeared to be incredibly unsafe to use. However, during the work on
this project it became clearer that since the service worker was designed recently, it was
made with many security features in mind. Furthermore, the service worker is run through
a browser, and most of the modern browsers can handle the service workers safely. The
weakest point of the service worker technology is cross-site scripting using JSONP, which
can be difficult to remediate, but it is not impossible. The second-worst vulnerability is
outdated protocol versions because they are easy to exploit and they lead to severe con-
sequences. However, the mitigation for this vulnerability is relatively inexpensive and
straightforward.

While this project took into consideration man-in-the-middle attacks and malicious
domains, it did not consider situations in which the client attempts to perform some unau-
thorized action using the service worker. Therefore, in future, it is worthwhile investigat-
ing if the client can modify the installed service worker to gain unauthorized access to a
domain’s resources.

29

References

[1] D. Eldridge. (2017, Oct. 5) To launch a pwa, forbes
had to change its culture first. NAPCO Media. Ac-
cessed: 25.03.2018. [Online]. Available: http://www.pubexec.com/article/
forbes-progressive-web-app-supercharged-mobile-engagement-revenue/

[2] (2017, May 17) Twitter lite pwa significantly increases engagement and reduces
data usage. Google Developers. Accessed: 13.04.2018. [Online]. Available:
https://developers.google.com/web/showcase/2017/twitter

[3] B. McLain. (2017, Sep. 8) Callback hell. Accessed: 06.03.2018. [Online].
Available: http://blog.mclain.ca/assets/images/callbackhell.png

[4] B. Hoffman. (2014, Dec. 9) Ssl performance diary #4: Optimizing the tls
handshake. Rigor, Inc. Accessed: 25.03.2018. [Online]. Available: https:
//zoompf.com/blog/2014/12/optimizing-tls-handshake/

[5] M. Gaunt. (2018, Mar. 29) Service workers: an introduction. Google Developers.
Accessed: 10.04.2018. [Online]. Available: https://developers.google.com/web/
fundamentals/primers/service-workers/

[6] J. Kallin and I. L. Valbuena. (2013) Excess xss. Chalmers University of Technology.
Accessed: 30.04.2018. [Online]. Available: https://excess-xss.com/

[7] M. Gaunt. (2018, Jan. 3) Push events. Google Developers. Accessed:
12.04.2018. [Online]. Available: https://developers.google.com/web/fundamentals/
push-notifications/handling-messages

[8] J. Archibald. (2017, May 12) Service worker security faq. The
Chromium Project. Accessed: 17.04.2018. [Online]. Available: https://dev.
chromium.org/Home/chromium-security/security-faq/service-worker-security-faq#
TOC-Why-doesn-t-Chrome-prompt-the-user-before-registering-a-Service-Worker-

[9] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A.
Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta, B. VanderSloot,
E. Wustrow, S. Zanella-Béguelin, and P. Zimmermann, “Imperfect forward
secrecy: How diffie-hellman fails in practice,” in Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications Security, ser.
CCS ’15. New York, NY, USA: ACM, 2015, pp. 5–17. [Online]. Available:
http://doi.acm.org/10.1145/2810103.2813707

[10] N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger, M. Dankel, J. Steube,
L. Valenta, D. Adrian, J. A. Halderman, V. Dukhovni, E. Käsper, S. Cohney,
S. Engels, C. Paar, and Y. Shavitt, “DROWN: Breaking TLS with SSLv2,”
in 25th USENIX Security Symposium, Aug. 2016. [Online]. Available: https:
//drownattack.com/drown-attack-paper.pdf

[11] A. Shreve. What is ngrok? ngrok.com. Accessed: 13.04.2018. [Online]. Available:
https://ngrok.com/product

[12] (2018, Mar. 31) Using promises. Mozilla Developer. Accessed: 06.03.2018. [On-
line]. Available: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/
Using_promises

30

http://www.pubexec.com/article/forbes-progressive-web-app-supercharged-mobile-engagement-revenue/
http://www.pubexec.com/article/forbes-progressive-web-app-supercharged-mobile-engagement-revenue/
https://developers.google.com/web/showcase/2017/twitter
http://blog.mclain.ca/assets/images/callbackhell.png
https://zoompf.com/blog/2014/12/optimizing-tls-handshake/
https://zoompf.com/blog/2014/12/optimizing-tls-handshake/
https://developers.google.com/web/fundamentals/primers/service-workers/
https://developers.google.com/web/fundamentals/primers/service-workers/
https://excess-xss.com/
https://developers.google.com/web/fundamentals/push-notifications/handling-messages
https://developers.google.com/web/fundamentals/push-notifications/handling-messages
https://dev.chromium.org/Home/chromium-security/security-faq/service-worker-security-faq#TOC-Why-doesn-t-Chrome-prompt-the-user-before-registering-a-Service-Worker-
https://dev.chromium.org/Home/chromium-security/security-faq/service-worker-security-faq#TOC-Why-doesn-t-Chrome-prompt-the-user-before-registering-a-Service-Worker-
https://dev.chromium.org/Home/chromium-security/security-faq/service-worker-security-faq#TOC-Why-doesn-t-Chrome-prompt-the-user-before-registering-a-Service-Worker-
http://doi.acm.org/10.1145/2810103.2813707
https://drownattack.com/drown-attack-paper.pdf
https://drownattack.com/drown-attack-paper.pdf
https://ngrok.com/product
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises

[13] (2018, Apr. 10) Using fetch. Mozilla Developer. Accessed: 23.04.2018. [Online].
Available: https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_
Fetch

[14] M. Scales. (2018, Jan. 3) Using the cache api. Google Developers. Accessed:
25.03.2018. [Online]. Available: https://developers.google.com/web/fundamentals/
instant-and-offline/web-storage/cache-api

[15] M. Gaunt and A. Osmani. (2015, Nov. 17) Instant loading
web apps with an application shell architecture. Medium. Accessed:
15.04.2018. [Online]. Available: https://medium.com/google-developers/
instant-loading-web-apps-with-an-application-shell-architecture-7c0c2f10c73

[16] (2018, Feb. 15) Push api. Accessed: 25.03.2018. [Online]. Available: https:
//developer.mozilla.org/en-US/docs/Web/API/Push_API

[17] K. Basques. (2018, Jan. 11) Why https matters. Google Developers. Accessed:
20.03.2018. [Online]. Available: https://developers.google.com/web/fundamentals/
security/encrypt-in-transit/why-https

[18] J. Archibald. (2012, May 8) Application cache is a douchebag. A List
Apart. Accessed: 26.03.2018. [Online]. Available: https://alistapart.com/article/
application-cache-is-a-douchebag

[19] L. K. Gray. (2017, Jun 30) Are you ready for 30 june 2018? say-
ing goodbye to ssl/early tls. The PCI Security Standards Council. Ac-
cessed: 01.05.2018. [Online]. Available: https://blog.pcisecuritystandards.org/
are-you-ready-for-30-june-2018-sayin-goodbye-to-ssl-early-tls

[20] A. Russell, J. Song, J. Archibald, and M. Kruisselbrink, Service Workers 1,
W3C Working Draft, Nov. 2 2017. [Online]. Available: https://www.w3.org/TR/
service-workers-1/

[21] P. Beverloo, M. Thomson, M. van Ouwerkerk, B. Sullivan, and E. Fullea,
Push API, W3C Working Draft, Dec. 15 2017. [Online]. Available: https:
//www.w3.org/TR/push-api/

[22] M. Gaunt. (2018, Jan. 3) Common notification patterns. Google Developers.
Accessed: 12.04.2018. [Online]. Available: https://developers.google.com/web/
fundamentals/push-notifications/common-notification-patterns

[23] S. Larsen. (2016, Jun. 17) Xss persistence using jsonp and serviceworkers.
Accessed: 27.04.2018. [Online]. Available: https://c0nradsc0rner.wordpress.com/
2016/06/17/xss-persistence-using-jsonp-and-serviceworkers/

[24] N. Ahuja, “Review on cross site scripting,” in International Conference on
Recent innovations in Sciences, Management, Education and Technology, ser.
ICRISMET-16. Conference World, 2016, pp. 891–895. [Online]. Available:
http://data.conferenceworld.in/ICRISMET/P891-895.pdf

[25] C. Doctorow. (2017, Mar. 24) Google: Chrome will no longer trust symantec
certificates, 30% of the web will need to switch certificate authorities. Boing
Boing. Accessed: 10.04.2018. [Online]. Available: https://boingboing.net/2017/03/
24/symantec-considered-harmful.html

31

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developers.google.com/web/fundamentals/instant-and-offline/web-storage/cache-api
https://developers.google.com/web/fundamentals/instant-and-offline/web-storage/cache-api
https://medium.com/google-developers/instant-loading-web-apps-with-an-application-shell-architecture-7c0c2f10c73
https://medium.com/google-developers/instant-loading-web-apps-with-an-application-shell-architecture-7c0c2f10c73
https://developer.mozilla.org/en-US/docs/Web/API/Push_API
https://developer.mozilla.org/en-US/docs/Web/API/Push_API
https://developers.google.com/web/fundamentals/security/encrypt-in-transit/why-https
https://developers.google.com/web/fundamentals/security/encrypt-in-transit/why-https
https://alistapart.com/article/application-cache-is-a-douchebag
https://alistapart.com/article/application-cache-is-a-douchebag
https://blog.pcisecuritystandards.org/are-you-ready-for-30-june-2018-sayin-goodbye-to-ssl-early-tls
https://blog.pcisecuritystandards.org/are-you-ready-for-30-june-2018-sayin-goodbye-to-ssl-early-tls
https://www.w3.org/TR/service-workers-1/
https://www.w3.org/TR/service-workers-1/
https://www.w3.org/TR/push-api/
https://www.w3.org/TR/push-api/
https://developers.google.com/web/fundamentals/push-notifications/common-notification-patterns
https://developers.google.com/web/fundamentals/push-notifications/common-notification-patterns
https://c0nradsc0rner.wordpress.com/2016/06/17/xss-persistence-using-jsonp-and-serviceworkers/
https://c0nradsc0rner.wordpress.com/2016/06/17/xss-persistence-using-jsonp-and-serviceworkers/
http://data.conferenceworld.in/ICRISMET/P891-895.pdf
https://boingboing.net/2017/03/24/symantec-considered-harmful.html
https://boingboing.net/2017/03/24/symantec-considered-harmful.html

[26] K. Wilson. (2018, Mar. 12) Distrust of symantec tls certificates. Mozilla.
Accessed: 10.04.2018. [Online]. Available: https://blog.mozilla.org/security/2018/
03/12/distrust-symantec-tls-certificates/

[27] P. Ducklin. (2014, Feb. 24) Anatomy of a “goto fail” – apple’s ssl
bug explained, plus an unofficial patch for os x! Sophos. Accessed:
10.04.2018. [Online]. Available: https://nakedsecurity.sophos.com/2014/02/24/
anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/

[28] I. Malavolta, G. Procaccianti, P. Noorland, and P. Vukmirovic, “Assessing the im-
pact of service workers on the energy efficiency of progressive web apps,” in 2017
IEEE/ACM 4th International Conference on Mobile Software Engineering and Sys-
tems (MOBILESoft), May 2017, pp. 35–45.

[29] A. van der Stock, B. Glas, N. Smithline, and T. Gigler. (2018, Feb. 4)
Owasp top 10 - 2017: The ten most critical web application security
risks. OWASP Top 10. Accessed: 17.04.2018. [Online]. Available: https:
//www.owasp.org/index.php/Category:OWASP_Top_Ten_2017_Project

[30] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri, “Code injection
attacks on html5-based mobile apps: Characterization, detection and mitigation,”
in Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’14. New York, NY, USA: ACM, 2014, pp.
66–77. [Online]. Available: http://doi.acm.org/10.1145/2660267.2660275

[31] A. Syed. (2018, Apr. 17) Stable channel update for desktop. Google Chrome.
Accessed: 08.05.2018. [Online]. Available: https://chromereleases.googleblog.
com/2018/04/stable-channel-update-for-desktop.html

[32] uve. (2017, Jul. 25) A beginner’s guide to service workers. Samsung Internet
Developers. Accessed: 13.04.2018. [Online]. Available: https://medium.com/
samsung-internet-dev/a-beginners-guide-to-service-workers-f76abf1960f6

[33] T. Ater. (2016, Jan. 19) Building offline sites with serviceworkers and
upup. Opera Software ASA. Accessed: 13.04.2018. [Online]. Available:
https://dev.opera.com/articles/offline-with-upup-service-workers/

[34] J. Yu and H.-K. Choi. (2017, May 12) Improper certificate valida-
tion. Snyk. Accessed: 01.05.2018. [Online]. Available: https://snyk.io/vuln/
SNYK-DOTNET-MICROSOFTASPNETCOREMVCAPIEXPLORER-60110

32

https://blog.mozilla.org/security/2018/03/12/distrust-symantec-tls-certificates/
https://blog.mozilla.org/security/2018/03/12/distrust-symantec-tls-certificates/
https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/
https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_2017_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_2017_Project
http://doi.acm.org/10.1145/2660267.2660275
https://chromereleases.googleblog.com/2018/04/stable-channel-update-for-desktop.html
https://chromereleases.googleblog.com/2018/04/stable-channel-update-for-desktop.html
https://medium.com/samsung-internet-dev/a-beginners-guide-to-service-workers-f76abf1960f6
https://medium.com/samsung-internet-dev/a-beginners-guide-to-service-workers-f76abf1960f6
https://dev.opera.com/articles/offline-with-upup-service-workers/
https://snyk.io/vuln/SNYK-DOTNET-MICROSOFTASPNETCOREMVCAPIEXPLORER-60110
https://snyk.io/vuln/SNYK-DOTNET-MICROSOFTASPNETCOREMVCAPIEXPLORER-60110

	List of Figures
	List of Tables
	Listings
	Introduction
	Background
	Related work
	Problem formulation
	Motivation
	Objectives
	Scope and Limitation
	Target group
	Outline

	Method
	Method Description
	Reliability and Validity
	Ethical Considerations

	The Service Worker
	Promise API
	Fetch API
	Cache API
	Push API and Notification API
	HTTPS
	Application Cache
	Service Worker API

	Developing Vulnerability Matrix
	Demonstrator
	Client Side
	Server Side

	Vulnerabilities
	Service Worker API
	Push API
	HTTPS

	Results
	Vulnerability Matrix
	Mitigations
	Service Worker API
	Push API
	HTTPS

	Security Guidelines

	Discussion
	Understanding-related Objectives
	Security-related Objectives
	Security Guidelines
	Service Worker API
	Push API
	HTTPS

	Conclusions and Future Work
	References

