Bachelor Degree Project

Evaluation of Security of Service
Worker and Related APIs

N
RS
DN

N
-,
R

~,
2w,

2,
N
W)

\\

~—

N

e =
AR

==
_—= 77
= '[/’%/7'
I
i/ ~

Author: Maxim Kravchenko
Supervisor: Jesper Andersson
Examiner: Dr. Johan HAGELBACK
Semester: VT 2018

Subject: Computer Science

Abstract

The Service Worker is a programmable proxy that allows the clients to keep offline
parts of websites or even the whole domains, receive push notifications, have back-
ground synchronization and other features. All of these features are available to the
user without having to install an application - the user only visits a website. The
service worker has gained popularity due to being a key component in the Progres-
sive Web Applications (PWAs). PWAs have already proven to drastically increase
the number of visits and the duration of browsing for websites such as Forbes [1],
Twitter [2], and many others. The Service Worker is a powerful tool, yet it is hard for
clients to understand the security implications of it. Therefore, all modern browsers
install the service workers without asking the client. While this offers many con-
veniences to the user, this powerful technology introduces new security risks. This
thesis takes a closer look at the structure of the service worker and focuses on the vul-
nerabilities of its components. After the literature analysis and some testing using the
demonstrator developed during this project, the vulnerabilities of the service worker
components are classified and presented in the form of the vulnerability matrix; the
mitigations to the vulnerabilities are then outlined, and the two are summarized in
the form of security guidelines.

Keywords: Service Worker API, Push API, Cache API, Application Cache, se-
curity, Progressive Web Apps, HTTPS

Contents

List of Figures

List of Tables

Listings

1

Introduction

1.1 Background
1.2 Relatedwork
1.3 Problem formulation
1.4 Motivation e e e
1.5 Objectives e
1.6 Scope and Limitation
1.7 Targetgroup L e e
1.8 Outline e

Method

2.1 Method Description
2.2 Reliability and Validity oo
2.3 Ethical Considerations

The Service Worker

3.1 Promise APL.
32 FetchAPI e
33 Cache API.
3.4 Push API and Notification API
3.5 HTTPS e
3.6 ApplicationCache
3.7 Service Worker API
Developing Vulnerability Matrix
4.1 Demonstrator e e e e e e e e e
4.1.1 ClientSide e
4.1.2 ServerSide
4.2 Vulnerabilities e
42.1 Service Worker API
422 Push API
423 HTTPS e
Results
5.1 Vulnerability Matrix
5.2 MItIgations e e e e
5.2.1 Service Worker API
522 PushAPI
523 HTTPS e

5.3 Security Guidelines L Lo

6 Discussion

6.1 Understanding-related Objectives
6.2 Security-related Objectives
6.2.1 Security Guidelines
6.2.2 Service Worker API
6.23 PushAPI
6.2.4 HTTPS

7 Conclusions and Future Work

References

26
26
26
27
27
27
28

29

30

List of Figures

3.1 Service Worker Architectureo Lo 6
3.2 "Callback hell" [3] 7
3.3 Diffie-Hellman Key Exchange 9
34 TLSHandshake [4] 10
3.5 Service Worker Life Cycle [5] 11
4.6 Anexample of DOM-based XSS [6] 15
4.7 Anexample of persistent XSS [6] L. 16
4.8 Result of Successful XSS Attack oL 18
4.9 Standard PushMessage 19
4.10 Example of a Default Message for Push Message in Chrome [7] 20
4.11 Console Printout of an Invisible Push Message 20
5.12 Notification Displayed in Chrome for Misconfigured Service Worker . . . 23
5.13 Error Message - Visiting a website With an Untrusted Certificate 24
List of Tables
4.1 Criteria Used in the Service Worker Vulnerability Matrix 13
4.2 Example of a Service Worker Vulnerability Matrix 14
5.3 The Service Worker Vulnerability Matrix 22
54 Security Guidelines 25
Listings
1 Callback Example o 6
2 Promise Chainingo 7
3 Service Worker Registration oL 11
4 Service Worker Installation 12
5 Intercepting fetch Requests 12
6 Unsafe Handling of User Input 17
7 Example XSS Payload 17
8 Printing Out a Message in Console on Receiving a Push Message 19
9 Standard Approach to ReactingtoaPushEvent 19
10 Safe Handling of User Input 23

1 Introduction

The Service Worker is a web technology that allows the clients to browse websites com-
fortably while on a poor internet connection or even entirely of ine, receive push noti -
cations from the websites, and have more native app-like functionality without having to
install a native application form the Application Store. Service worker is still a new web
technology, and while many new technologies disappear quite quickly, the service worker
Is set to be a keystone in the future of the web platform.

While the Service Worker is an incredible technology, it can be quite challenging to
explain to a client and check if they would like to allow it since most of the clients "do
not generally have suf cient context to understand permission requests.” [8] Therefore,
the browsers do not ask the clients if they would like to allow a service worker from a par-
ticular website to be installed, they install it without the client's awareness. Unauthorized
installation raises an issue of security - can it be harmful to the client to have a service
worker installed on their machine?

1.1 Background

The Service Worker has an application programming interface (API) and makes use of
multiple other APIs. Unlike some other web technologies - such as Application Cache -
the service worker is a collection of software functions and procedures interacting with
other such collections: Promise, Fetch, Cache, Push, and Noti cation. Furthermore, the
service worker uses HTTPS for secure communication. This abundance of programming
interfaces and technologies increases the complexity and exibility of the service worker
signi cantly. Thus, it is important to make sure that the service worker is implemented
and used safely, as well as understand how it could potentially be used in an attack against
the client or the server.

1.2 Related work

There has been some research done regarding the security of more traditional technologies
used by the service worker. For example, this report covers security of HTTPS, and in
that area, much extensive research has been done. Some of the HTTPS-related works are
used in this project, for instance, “Imperfect Forward Secrecy: How Dif e-Hellman Fails

in Practice” is written on the security of common Dif e-Hellman implementations [9]

and “DROWN: Breaking TLS with SSLv2" which focuses on DROWN attack on SSLv2,

but also touches upon attacks on older versions of SSL and TLS. [10] Furthermore, some
of the vulnerabilities are known to the developers of the service worker. An example
of that is a service worker exploit utilizing the cross-site scripting attack via JSONP,
which is covered in "Service Worker Security FAQ" by Jake Archibald, one of the creators

of the service worker. [8] However, there is little to no research regarding the security
and potential abuse of some newer parts of the service worker, for example, Push and
Noti cation APIs.

1.3 Problem formulation

The Service Workers are installed on the clients' machines without the clients' awareness.
The most that the client can do is to block the noti cations from the website, yet the
service worker will still be installed and run. The service worker is a programmable proxy,
it is a piece of code which is sneaked into clients' computers and which can be triggered

remotely by the server. Taking into account all the aforementioned APIs, the service
worker as technology is fairly complex; it is also a new and developing technology. The
combination of all these factors makes the service worker an additional attack surface, a
target for existing attacks, and a tool for new attacks.

1.4 Motivation

The Service Worker is a powerful tool aimed towards improving web performance and
client experience, especially on mobile devices. The service worker is one of the crucial
parts of a larger technology called Progressive Web Apps, which brings a native-like
experience for mobile users in their browsers when they enter a website. With it, the high-
friction step of strongly encouraging - or in some cases even forcing - the clients to go to
the Application Store and download an application to use a website's service comfortably
can be avoided entirely. Furthermore, the clients can enjoy the of ine experience, which
Is extremely potent in situations when there is no connection at all, for example being
on a plane. Alternatively, the connection might be so weak that there is no connection
in effect, yet the device still tries to reach the server, for example when the client is on
the underground. In addition to that, the service workers offer other bene ts, such as
background synchronization and push noti cations.

All these bene ts improve the user experience, which in turn encourages clients to
continue using a service or browsing a website. For example, when Forbes redesigned
their website as a Progressive Web App, only about 25% of users could get the experience
of the PWA right away for various reasons. Nonetheless, Forbes' website "has seen a 20%
increase in impressions per page ... 12% increase in the number of users that get to the site
... 6X increase in the number of readers completing articles.” [1] The success of PWAs is
seen more and more on the web; a website c&#M\stats.cormhowcases an abundance
of statistics from various websites who redesigned their websites as progressive web apps.
One of the statistics featured on this website is about Twitter Lite PWA, which "became
the default mobile web experience for all users globally in April 2017" [2] and helped
"65% increase in pages per session, 75% increase in Tweets sent, 20% decrease in bounce
rate” [2]. A considerable part of this success is attributed to the Service Worker which
allows for "enabling users to view and create Tweets as quickly as possible." [2]

1.5 Objectives

In this section the objectives of this thesis work are presented. "SW" in the table below
refers to Service Worker.

o1 Understand why an API like SW is desirable from users' and busi-
ness' points of view

02 Understand successes and failures of SW's predecessors and their in-
uence on SW

03 Understand security threats related to the technologies used by [SW

04 Make a vulnerability matrix that outlines existing SW vulnerabilities

05 Make a list of mitigations for discovered vulnerabilities

06 Make a list of security guidelines

1.6 Scope and Limitation

This project takes into consideration two scenarios. The rst scenario is the server in-
stalling a malicious service worker on the client's computer aiming to either obtain some
information from the client or compromise their device. The second scenario is the man-
in-the-middle attacks - a third party trying to compromise the client.

This project does not take into consideration the situation when the client attempts to
attack the server or gain unauthorized access to some resources. The exclusion is mostly
due to the fact that this level of attack would require either an unrealistically oversim-
pli ed implementation of the server side or decompilation and alteration of an installed
service worker.

1.7 Target group

The target group of this project is computer science bachelor students, who have some
interest in web development and security of the APIs and technologies covered in this pa-
per. Basic understanding of JavaScript and web communication is required to understand
the result and discussion of this project report.

1.8 Outline

The following section covers methodology used in this project to achieve the aforemen-
tioned objectives. After that, The Service Worker section covers in-depth Service Worker
APl and other technologies that it utilizes. Subsequently, Developing Vulnerability Matrix
covers the implementation of the artifacts of this project: the service worker vulnerabil-
ity matrix, list of mitigations, and security guidelines for using the parts of the service
worker. In Results, the vulnerabilities are classi ed according to the criteria outlined in
Developing Vulnerability Matrix. Consequently, the artifacts are presented. In Discussion
the vulnerabilities, their classi cation, and mitigations are discussed further. Conclusion
and Future Work presents the nal overview of the paper and the overall security of the
service worker, based on the ndings made during this project; suggestions are made
regarding further research.

2 Method

This project sets out to point out which parts of the service worker are the weakest, what
their vulnerabilities are, and exactly how dangerous they are. This task is achieved by
analyzing relevant literature and showcasing the vulnerabilities by using a demonstrator
developed during this project. After discovering, discussing, and in some cases demon-
strating the vulnerabilities, they are categorized based on the severity, exploitability, and
complexity of mitigation. The result of this categorization is a vulnerability matrix, which

can be used to keep track of vulnerability management of the service worker in a partic-
ular setting. Furthermore, some mitigations to the vulnerabilities are presented. Finally,
the technologies and mitigations are mapped to each other in the Security Guidelines.

2.1 Method Description

Firstly, basic information was gathered about the technologies covered in this report and
their impact on business and security. After con rming the current and potential utility
of the service worker and related technologies, the search for implementation guidelines
has been conducted, with the focus on implementation presented by Mozilla and Google,
since those guides go into great depth of implementation. Furthermore, these guidelines
outline potential bugs and security issues that developers might come across; these se-
curity issues served as the starting point in the search for vulnerabilities. Subsequently,
the drafts of the related standards have been consulted to obtain inspiration for additional
attack vectors. These attack vectors have been con rmed either by showing them through
a demonstrator developed during this project or by referring to related academic papers.
Consequently, the vulnerabilities are gathered and classi ed in a vulnerability matrix, in
style similar to that of OWASP Top 10; the mitigations to these vulnerabilities are then
presented.

2.2 Reliability and Validity

The web technologies are notorious for being ever-changing. While some of the web
technologies covered in this project have been established decades ago, tested, and re-
searched thoroughly - such as SSL/TLS - most of the APIs included in this report are in
experimental state or rely on standards that are still in the draft state. Thus, the technolo-
gies analyzed throughout this project might not change much in the near future, but they
have changed incredibly in the past few months and are likely to keep transforming at a
steady pace for a few years. For this reason, the most contemporary resources available
for the research has been used; additionally, the access dates to all the resources have
been attached so that in future it is possible to look into the speci ¢ versions of the docu-
ments that are known for being dynamic, such as developer blogs by Mozilla and Google.
Where possible, the versions of the technologies and third-party software are speci ed.

2.3 Ethical Considerations

The security testing mentioned in this report does not involve any participants hence it
does not pose a threat to anybody directly. For the most part, the web server has been run
on a local network behind a NAT, meaning that apart from the author of this paper nobody
could have been affected by the web page. For the tests where the web server has been
tunneled and made accessible on the internet using ngrok [11], a part of the URL of the
web page has been randomized, making it less likely that people not aware of the project

would connect to the web server. Furthermore, the web page had warnings in the title and
the header so that accidental clients would not allow noti cations on their devices. A tool
calledOne Signahas been used in this project; it allowed for tracking which clients have
installed the service worker, and it shows that the only clients that installed the service
worker were the test machines. The les stored by the vulnerable service worker and the
service worker itself have been erased from all the devices used in this research project.

~NOoO O~ WNPE

Figure 3.1: Service Worker Architecture

3 The Service Worker

This thesis project is concerned with the security of the Service Worker, so it is essen-
tial to have a solid understanding of what the Service Worker is. However, the Service
Worker as technology makes use of several other technologies and Application Program-
ming Interfaces (APIs): Promise API, Fetch API, Cache API, Push API, Noti cation
API, HTTPS, and Service Worker API. Figure 3.1 is a visual representation of the service
worker architecture. Note that Promise API is used in all parts (APIs) presented in the
Figure 3.1.

3.1 Promise API

Traditionally, when a sequence of commands needs to be executed, the callback functions
have been used:

doSomething(successCallback, failureCallback);
function successCallback () {
/IProceed execution
}
function failureCallback () {
/IDisplay error

}

Listing 1: Callback Example

Multiple callbacks can be used for one function. For example, if an HTTP package is
received and the program must act differently depending on the status code of the package,
the functionreceiveHTTPcan have multiple callbacks corresponding to different status
codes.

While this way of structuring execution of a program is useful in some scenarios, it
has some downsides. For example, structuring code in this manner while trying to achieve
asynchronous functionality is prone to becoming something that is known as "callback
hell" or "pyramid of doom." Callback hell is a situation in which multiple callback func-
tions are nested, which makes the code hard to read and debug. Figure 3.2 is a demon-
stration of callback hell.

One way to avoid this problem is using a different approach to asynchronicity -
Promise API. "A Promise is an object representing the eventual completion or failure
of an asynchronous operation.” [12] At rst, the difference between callback functions

O©oO~NOULA,WNERE

Figure 3.2: "Callback hell" [3]

and promises is inconsequential - instead of passing callbacks into a function, they are at-
tached to an object. However, using an object allows for chaining - using the result of one
promise as a trigger for starting the following operation. Passing the results of promises
allows for avoiding the callback hell, hence for more readable and easier to debug code.
Furthermore, Promise API guarantees error propagation and completion of the concur-
rent run. Error propagation means that once an exception is encountered in the chain of
promises, the execution stops and looks down in the chain for the catch statement. Thus,
error propagation eliminates the need for having multiple catch statements that are often
present in callback hell. The guarantee of completion of the concurrent run means that
the next promise will never be executed until the promise that is running at the moment
has nished executing. This guarantee allows for promise chaining, where every action
Is taken based on the success or failure of the previous action. An example of that can
be seen in Listing 2 from Google, which fetches an image, converts the response to a
blob, works with this blob and returns the resulting array and a promise, meaning that the
function can be a part of a promise chain as well. The beauty of this way of coding is that
it is as easily read as synchronous code yet it is asynchronous which means that it is far
more ef cient.

/I function for loading each image via fetch
function imgLoad (imgJSON) {
/Il return a promise for an image loading
return fetch(imgJSON.url)
.then((response) => response.blob())
.then(function (response) {
/ldo stuff
return arrayResponse
}). catch (function (Error) {
console.log(Error)

)

}

Listing 2: Promise Chaining

Since all APIs that are used by the Service Worker utilize Promise API, itis key to the
functionality of the Service Worker.

3.2 Fetch API

Fetch API is responsible for HTTP and HTTPS requests and responses. The key global
method of this API isfetch() which "provides an easy, logical way to fetch resources
asynchronously across the network." [13]

While fetching in an asynchronous way can be achieved using XMLHttpRequest API,
Fetch APl is more modular, exible, and easier to use, which gives it an edge over XML-
HttpRequest. An example of the exibility of Fetch is its support of Cross-Origin Re-
source Sharing (CORS) and RequestMode parameters &ante-origin no-cors cors,
navigate Choosing between these modes allows for different degrees of exposure and
modi cation of HTTP headers, which aids security and privacy. Another important bene-

t of using Fetch is that it can use Cache API to interact with cache: a developer can de ne
which request and response objects to store locally for future use, what should come only
from the cache and what should never be stored. This functionality is crucial for an ap-
plication with of ine support yet it is not available in XMLHttpRequest. Moreover, Fetch
supports streaming, which is particularly useful when looking for smaller parts of larger
les.

3.3 Cache API

Cache API is storage for network request and response pairs. It can store "any kind of
data that can be transferred over HTTP" [14], and this data can be retrieved and used
again. Unlike more traditional caching in browsers, Cache API was designed to be used
by developers and software to provide of ine functionality to websites and applications, in
particular by Service Worker API. An example of extended control over stored les is the
fact that the les stored in Cache API never expire, nor do they get updated automatically
- it is up to developers to ensure that the cache stays up-to-date and is removed when it is
no longer useful. Moreover, Cache API is asynchronous meaning that it can be used by
Service Worker API, which is designed to be fully asynchronous.

Apart from the Service Worker, it can be accessed from fatldowobject and other
workers, meaning that it can be used as general storage. In the context of the service
worker, the cache is often used to store the les that form the "shell" of the website
or application and therefore do not change frequently - "the minimal HTML, CSS and
JavaScript powering the user interface." [15]

3.4 Push API and Noti cation API

The core goal of Push API is to push noti cations to clients. The pushed messages are
then received by Service Worker API and are displayed using the Noti cation API even if
the user's browser is closed. Push APl is based on Service Worker API since the service
worker provides the entry point for Push. The user subscribes to push messages via the
service worker, and the service worker is then responsible for reacting to push messages
appropriately, e.g., displaying a noti cation on the screen. The push noti cations are quite
interactive - apart from the usual "click" action, the messages can have multiple types of
interaction, e.g., asking the user a question and giving them two answer buttons, clicking
which triggers different actions. Furthermore, the push noti cations can have sound and
vibration which can be con gured, for example, it is possible to specify the number of
milliseconds a device will vibrate and the length of the pause between the vibrations.

A notable drawback to involving Service Worker API for processing the push mes-
sages is "increased resource usage, particularly of the battery" [16]. At the moment of

Figure 3.3: Dif e-Hellman Key Exchange

writing this paper, there is no standard for taking care of resource usage, so different
browsers handle this in different ways that are discussed in later sections of this paper.

3.5 HTTPS

HTTPS is an improved version of HTTP - Hyper Text Transfer Protocol. HTTP is used
for transferring data across the web, and it is used mostly for transfer of various web pages
and multimedia les. While this is an incredibly useful protocaol, it lacks security features
and can, therefore, be exploited for malicious actions. On the higher level, HTTP can be
exploited for active alteration - e.g., insertion of unauthorized advertisements into a web
page [17] - and for passive observation of users. The observation is often linked with
sensitive data exposure. However, it is not only the sensitive data that has to be protected
- by observing browsing patterns of a user an attacker can learn their identity and use it
maliciously.

HTTPS utilizes the HTTP protocol in combination with Secure Socket Layer protocol
(SSL) or, with its improved version, Transport Layer Security protocol (TLS). The TLS
handshake is used to establish the connection between the client and the server. First, the
client communicates a series of security parameters to the server, then the server responds
with its certi cate and con rms whether it can use the security parameters speci ed by
the client. This part is encrypted with asymmetric encryption, by the client using the
public key of the server, which is found in the server's certi cate. If the two agree on
the ciphers to be used, they then proceed to negotiate the private key, via Dif e-Hellman
key exchange, that will be used for encrypting the application data; the encryption, in
this case, will be symmetric. Figure3.3 demonstrated the Dif e-Hellman key exchange
process; note that prime numberandy are generated by the client and the server. Figure
3.4 demonstrates the TLS handshake.

HTTPS is required by the Service Worker and Push APIs, though they can work with
HTTP in development mode, i.e., when the Service Worker and the corresponding page
are accessed via the localhost address.

Figure 3.4: TLS Handshake [4]

3.6 Application Cache

One of the key capabilities of Service Worker is the ability to cache parts of the websites

- or entire websites - and serve them to users when necessary. There have been previous
attempts to design a technology to do just that; the most successful predecessor of the
service worker is ApplicationCache. The websites can be divided into two categories:
websites for looking up content - e.g., Wikipedia, YouTube - and for creating content, for
example, Google Docs. ApplicationCache (AppCache) was designed to cache the second
types of websites and allow clients to use them of ine [18]. While it is possible to use
AppCache for the websites type of les, many of the quirks of AppCache make it highly
impractical on a bigger scale, such as Wikipedia.

The AppCache has many quirks which resulted in a need for a new of ine technology
for the web. The quirks are there in the rst place because the AppCache has many
implicit behaviors, which are useful when one wants to use the technology out-of-the-box,
without having to go deep into the con guration. However, the problem with AppCache
Is that once somebody starts to adjust and con gure the tool more precisely, the result is
often unexpected and counter-intuitive, due to the fact that the technology "assumes" too
much of its role and desired functionality. While it does not render AppCache completely
useless, it means that the technology is dif cult to use effectively.

Despite its aws, AppCache provides an important feature - of ine capability. It is
clear that this feature is desirable, especially for mobile users, and since AppCache is
challenging to use effectively, the need for a new, improved technology arises. That is
where Service Worker comes into play. Continuing with the idea of of ine-capability,
Service Worker is even more powerful, allowing for the features described previously.
However, learning from the mistakes of AppCache, Service Worker has little to no implicit
behaviors. While it does mean that to utilize the technology fully one has to go through
more trouble of setting it up according to their needs, it also means that the obscure quirks
are no longer there - the developer can de ne when and how to use Service Worker with
notable granularity. Thus, a service worker on the website can be as simple or as complex
as the developer needs it to be.

10

O©CoOO~NOULA,WNPE

Figure 3.5: Service Worker Life Cycle [5]

/I register service worker
if (‘serviceWorker' in navigator) {
navigator.serviceWorker.register('sw.js")
.then(function (reg) {
if (reg.installing) {
console.log('Service worker installing’)
} else if (reg.waiting) {
console.log('Service worker installed’)
} else if (reg.active) {
console.log('Service worker active')
}

swRegistration = reg
initializeUl()
. catch (function (error) {
/I registration failed
console.log('Registration failed with ' + error)
)
}

Listing 3: Service Worker Registration

3.7 Service Worker API

A service worker is a programmable proxy that the server installs on the client, and that
is used to process all requests to the domain. Itis run in a separate thread, meaning that
it is not thread-blocking, and it utilizes only asynchronous technologies; the combination
of the two makes it fully asynchronous. Service worker is terminated when not in use in
an attempt to improve the resource usage.

Although the service worker is installed upon visiting a web page, the service worker's
life cycle is not dependent upon the web page. Figure 3.5 demonstrates "overly simpli ed
version of the service worker life cycle on its rst installation.” [5]

Listing 3 demonstrates registration of the service worker. The actual registration oc-
curs in line 3, while the rest is checking the browser support for service workers, logging,
and error handling. Note that the Listing 3 is a part of the main Javascript le (in this case

app.j9

11

=

=

QWO ~NOULDWNLE

QWO ~NOOULEA,WNE

After the registration, the actual installation of the service worker takes place. Once
the installation begins, the Listing 4 froew.jsis run, where caching begins in line 4.
Most commonly, the les that are cached on installation are the les that form the shell
of the app/website or the les that are often used but rarely changed, for example, as
mentioned previously, menus, information pages, and CSS les.

/Iservice worker installation

self.addEventListener(‘install’, function (event) {
event.waitUntil(
caches.open('vl').then(function (cache) {

return cache.addAll([
IIspecify the files to be cached
D
)
)

)

Listing 4: Service Worker Installation

Now the service worker is fully installed and can be con gured to one's needs. For
example, the service worker can intercegithrequests and act depending on the connec-
tion of the client; Listing 5 demonstrates this functionality. Note that the line 5 returns the
result ofeitherthe cached response to the requeshe network response to this request.
This race is done to improve the user experience - it can be hard to determine whether it
is faster to contact the server for a new response or obtain it from the cache, so the service
worker makes both requests and displays whichever returns rst.

By utilizing aforementioned technologies, Service Worker API achieves different func-
tionality. When it intercepts requests and responses from the client and the server, it can
use Cache API to store them and use in future, for example when the internet connection
is slow or when there is no connection at all. Using the service worker in combination
with cache allows for very granular selection of which resources should be stored, when
they should be updated, and when they should be deleted. The combination of Push and
Noti cation APIs is used for noti cations from the sources that the user has subscribed to
using service workers. Service Worker also supports background synchronization, though
it is not yet standardized.

/lintercepting network requests

self.addEventListener(‘fetch’, function (event) {
event.respondWith(
caches.match(event.request).then(function (response) {

return response || fetch(event.request)
}. catch (function (error) {
console.log(error)
)
)
)

Listing 5: InterceptingetchRequests

12

4 Developing Vulnerability Matrix

The inspiration for the vulnerabilities is taken from of cial sources that outline the ex-
isting problems, such as sources [6, 8, 19], standards that outline what practices should
be followed by the developers, such as sources [20, 21], and advanced tutorials that are
published by credible sources, such as [5,7, 14,16, 22, 23].

The threats concluded from these sources are then divided based on the part of the
service worker that they target (API or technology), for example, Push APl and HTTPS.
Such separation allows for a more systematic and focused look into the parts of the ser-
vice worker and as a result the service worker as a whole; it offers a de nite conclusion
regarding the security of the service worker since technology is only as safe as its weakest
point.

Potential vulnerabilities found in the separate sections are then studied more closely,
either by showing them through a basic demonstrator, build during the work on this
project, or through studies of academic papers that point out the issues in the parts of the
service worker, such as sources [9, 10, 24-31]. After the demonstration of or the review
of the research done about the vulnerabilities of the technologies and APIs in question, an
analysis of the vulnerabilities is produced. The vulnerabilities are measured against three
criteria presented in Table 4.1, in a manner similar to that of the OWASP Top 10 [29].

Criterion Variation | Meaning

to exploit the vulnerability the attacker must be

Dif cult experienced, in proximity to the victim, and in a
fortunate situation, e.g. a rare outdated version of the
software

the vulnerability exploitation requires some level of ski
and luck

the vulnerability can be exploited by an average
computer user

Minor the impact of the attack is negligible

Moderate | the attack has a considerable impact on user experience

Exploitability

Average |

Easy

Severity the impact of the attack is detrimental to the user's
Severe .)
information safety
Low the vulnerability can be mitigated quickly and without

additional monetary costs such as buying

Complexity | Moderate | the vulnerability requires some time to be mitigated

High the vulnerability _takes a long time and additional
resources to mitigate

Table 4.1: Criteria Used in the Service Worker Vulnerability Matrix

The result is the service worker vulnerability matrix that maps the technologies used
by the service worker, their vulnerabilities, and the level of each category outlined above.
The table 4.2 is an example of such matrix.

Once the vulnerabilities have been found and classi ed, various ways of mitigation are
outlined, and security guidelines are presented. The remediation is based mainly on the
developer guidelines written by developers from large companies - such as Mozilla and

13

Technology | Vulnerability Exploitability | Severity | Complexity
API 1 V1 dif cult minor low

V2 average moderate moderate
API 2 V3 easy severe | high

Table 4.2: Example of a Service Worker Vulnerability Matrix

Google - who have been developing the service worker technology, as well as research
papers used throughout this report that focus on various vulnerabilities in technologies
that form the service worker. The demonstrator is used to show vulnerabilities associated
with Service Worker and Push APIs.

4.1 Demonstrator

As of the time of writing this thesis, the W3C speci cation of Service Worker implemen-
tation is a working draft [20], meaning that the implementations and guidelines on how
to build service workers differ from one website to another. Currently, Service Worker

is supported by Chrome, Firefox, Opera, Samsung Internet, and Safari; it is under devel-
opment in Edge. With the exceptions of Safari and Edge, all companies provide some
guides and examples on how to build service workers. The guides can be separated into
two categories: low level (building a service worker from scratch) and high level (using
external tools to build a service worker) development. Guides of both categories are de-
signed to be entry-level, meaning that they expect the reader to be completely new to the
service worker technology, though the low-level guides go into much greater depth.

Opera and Samsung have high-level guides for developing a service worker. Instead
of programming a new service worker, they provide the user with the generating tools and
templates - Samsung, [32]- or offer a higher level library that takes care of setting up the
service worker (Opera, [33]). Because of that, it is impossible to compare the similarities
and differences in their approach.

Mozilla and Google offer low-level approach - unlike the high-level guides, they set
out to teach the reader to implement a service worker themselves and provide some demos
to play with the written code. Low-level guides go into details of implementation and
practices of all APIs and technologies related to service Worker API.

4.1.1 Client Side

The Service Worker demonstrator that was developed during this bachelor project focused
mostly on the two low-level guides and their demos, as well as guidelines from W3C
Working Draft for the service Worker [20]. The implementation in this project uses some
code for from Google - Service Worker shell, basic of ine functionality, and basic Push
message noti cations. While one of the initial goals of this project was to analyze the
differences in implementation of service workers between the low-level guides, it turned
out that they are complementary to each other - each contains information that the other
is lacking, and they cross-reference each other continuously.

4.1.2 Server Side

The implementation is complementary to the research of this project and not the main
focus, hence instead of creating a brand new back-end server, multiple technologies and
libraries are used to form the back-end. One of this technologies is an extension for

14

Figure 4.6: An example of DOM-based XSS [6]

Chrome calledMeb Server for Chromeffered bychromebeat.comit is an easy-to-use

web server, which works over a network and can (given some additional privileges on the
network) work over the internet. However, as mentioned in Section 3.5, the websites and
apps that use Service Workersist be run over HTTPS, which is not provided by Web
Server for Chrome. For that reasargrokis used - it is an application which "exposes
local servers behind NATs and rewalls to the public internet over secure tunnels” [11].
While it offers many useful features, the most important features of this project are the
ease of making the website available on the LAN and providing communication between
the server and the client over HTTRSne Signals used for management of the clients'
push noti cation subscriptions and the push noti cations themselves. Some of the push
noti cation testings have been done usi@gogle Push Companion

15

Figure 4.7: An example of persistent XSS [6]

4.2 \ulnerabilities

While there are a plethora of attacks related to web applications and web technologies in
general, the focus of this paper is security vulnerabilities of the service worker. Therefore,
the following sections contain vulnerabilities that are mostly service worker-speci c. For
convenience, the attacks are separated by the APIs or technologies that they target.

4.2.1 Service Worker API

Service Worker can be vulnerable to a Cross-Site Scripting (XSS) attack using JSON with
Padding (JSONP). [8] An XSS attack allows the attacker to "perform cookie stealing,
malware-spreading, session-hijacking, and malicious redirection.” [24] There are differ-
ent taxonomies of XSS - traditionally, the XSS attacks have been classi ed as DOM-
based, Re ected, or Stored [24, 29]. However, these types are rarely well-de ned, in
practice, they often overlap. Therefore, a more modern taxonomy is Server XSS and
Client XSS. Server XSS occurs when the attacker stores malicious script on the server
and the client receives this script. Figure 4.6 is an example of DOM-based XSS, which
can also be classi ed as a Server XSS. Client XSS means that the page that was received
from the server is not malicious, but a script on the client's machine alters the page.

There are numerous ways in which an XSS attack can be executed. For example,
suppose the following scenario from source [6], demonstrated in Figure 4.6:

1. The attacker crafts a URL containing a malicious string and sends it to the victim.
2. The victim is tricked by the attacker into requesting the URL from the website.

3. The website receives the request but does not include the malicious string in the
response.

4. The victim's browser executes the legitimate script inside the response, causing the
malicious script to be inserted into the page.

16

O©CoO~NOUILEAWNPE

5. The victim's browser executes the malicious script inserted into the page, sending
the victim's cookies to the attacker's server.

This particular example focuses on stealing victim's cookies. Now suppose that the
goal of the attacker is to install a malicious service worker on the website. Since the
service worker is a programmable proxy that can span the entire domain, if the attacker
can install a malicious service worker on the victim's machine, then they will execute a
successful persistent man-in-the-middle (MITM) attack.

Another example of a persistent XSS attack can be seen in Figure 4.7. Consider the
code snippet from the demonstrator, presented in Listing 6, which simulates the scenario
presented in Figure 4.6. The users are expected to insert their name into an input eld
in line 1 and press the button to send it to the server. In this case, instead of sending to
the server, the value is storedlotalStorage Line 4 represents fetching information that
was stored by other users from the server (in this case it is loadedldwatStoragg.

Taking into account that the input data is simptyingi ed in line 13 andparsedin line

16, an attacker can inject a malicious payload which will then be send to the victim once
it enters the page (in this case - presBa# button). An example of a malicious payload
can be seen in Listing 7.

First name: <input id="name" name="fname">
<button value="Submit" onclick="push()">Submit</button>
<p id="test"></p>
<button value="previous" onclick="pull()">Pull</button>
<p id="past"></p>
<script>
function push () {
let n = document.getElementByld('name")
window.localStorage.setltem(‘'name’, '[])
let name = JSON.parse(window.localStorage.getltem('name’))
name.length = 0
name.push({name: n.value})
window.localStorage.setltem('name’, JSON.stringify(name))

function pull () {
let name = JSON.parse(window.localStorage.getlitem('name"))
let p = document.getElementByld('past’)
p.innerHTML = name[0].name

}

</script>

Listing 6: Unsafe Handling of User Input

In this case, once the victim enters the page, the DOM will be updated to contain the
malicious script, as displayed in Figure 4.8. The victim's browser will try to fetch an
image from an invalid source, which will trigger an error. The attacker speci ed the script
that is to be executed when an error occurs, in this case, it is displaying an alert.

<image src=x onerror=window.alert('xss")>

Listing 7: Example XSS Payload

Referring to the examples shown in Figure 4.6 and Figure 4.7, an attacker could try to
include afetchin the payload to download the malicious script and then install it as shown
in Listing 3, but the call would not succeed. It would fail due to the same-origin policy

17

Figure 4.8: Result of Successful XSS Attack

(SOP) that prevents downloading resources from other domains. However, the attacker
can attempt to use JSONP.

Using JSON a client can send AMLHttpRequesto the server to execute a function.
Using JSONP a newcripttag is appended to the HTML page and then the call is made to
the functionfoo speci ed in the call. Therefordpo must exist in the global scope during
the time that the request is made and the function has to exist on the server side. Since
the client does not have access to the list of the server functions, the server often declares
callbackfunction, which is de ned by the client. Cruciallgcript tag does not comply
with SOP, hence downloading something from a different origin is not an issue. Fetching
resources from other domains is the primary use of JSONP in the industry. An attacker
can modify thecallbackfunction to fetch and install a malicious service worker and take
over a domain.

4.2.2 Push API

Social Engineering

"A push subscription has an associated push endpoint. It MUST be the absolute URL
exposed by the push service where the application server can send push messages to.
A push endpoint MUST uniquely identify the push subscription." [21] With the push
endpoint the client is uniquely identi ed by the server, and without the endpoint, a third
party cannot send any noti cations to the client. However, "the application server is able
to share the details necessary to use a push subscription with a third party at its own
discretion." [21] This means that there is no guarantee that a push noti cation came to the
client from the "the same origin as the web app." [21] While not a vulnerability in itself,
this allows for a plethora of social engineering attacks. Suppose the following: the user
entering a website X - which they deem trustworthy - allows noti cations from X. Now if

X provides the push endpoint of the client to another company Y - e.g., for advertising -
the client will receive a noti cation from website/application X, which in reality was sent

by Y. Y could be an obvious scam or a cover-up for a malicious website, but the client
will think that the noti cation came from X, so they will be likely to trust it.

Push Without Noti cation

Another potential problem is excessive battery usage. Once the push messages arrive on
the client's machine, the service worker is activated in order to deliver the push noti -
cation to the client. While this is not going to drain the battery signi cantly after one

18

O©oOo~NOULA,WNPRE

push message, a signi cant amount of them could affect the battery life. It is stated on
the Mozilla Development website that "activating a service worker to deliver a push mes-
sage can result in increased resource usage, particularly of the battery” [16], and that it
is browser's responsibility to handle the battery usage. Chrome, for example "applies no
limit, but requires that every push message causes a noti cation to be displayed” [16]. The
need for displaying the push noti cations is also stated numerous times in Chrome Push
guides: "you must show a noti cation when you receive a push."” [22] However, there is
no speci ¢ information regarding what happens to the push message itself in the situation
when a Push message is not displayed.

Consider the example presented in Listing 9 Note that the line 12 makes the event
wait until the noti cation is displayed - shown to the user and either timed-out, closed,
or interacted with by the user. Figure 4.9 is an example of a push message received with
this code. Now consider a situation in which instead of the line 12 in the Listing 9 service
worker does something without showing the noti cation, for example, Listing 8.

event.waitUntil(console.log('A Push message without a notification!"))
Listing 8: Printing Out a Message in Console on Receiving a Push Message
self.addEventListener('push’, function (event) {
console.log([Service Worker] Push Received.")
console.log(‘[Service Worker] Push had this data:
"${event.data.text()}"")
let text = “${event.data.text()}’
const title = 'Push Codelab’
const options = {
body: text,
icon: 'images/icon.png’,
badge: ‘'images/badge.png'
}
event.waitUntil(self.registration.showNotification(title, options))})

Listing 9: Standard Approach to Reacting to a Push Event

According to [16], Chrome requires that the push message triggers the noti cation,
which implies that not showing the noti cation should cause no reaction from Chrome.
Similarly, Google states in [7] that "Chrome will only show the [default] noti cation [as
presented in Figure 4.10] when a push message is received, and the push event in the
service worker does not show a noti cation..." However, this does not seem to function
as intended. The demonstrator service worker is con gured not to display noti cations
on push messages and print in the console. Figure 4.11 demonstrates that the console
printing works, while the default message is not being displayed to the user. The ability
to execute code without notifying the user raises the issue of battery drainage.

Firefox, on the other hand, ignores the push message entirely - there is neither a printed

Figure 4.9: Standard Push Message

19

	List of Figures
	List of Tables
	Listings
	Introduction
	Background
	Related work
	Problem formulation
	Motivation
	Objectives
	Scope and Limitation
	Target group
	Outline

	Method
	Method Description
	Reliability and Validity
	Ethical Considerations

	The Service Worker
	Promise API
	Fetch API
	Cache API
	Push API and Notification API
	HTTPS
	Application Cache
	Service Worker API

	Developing Vulnerability Matrix
	Demonstrator
	Client Side
	Server Side

	Vulnerabilities
	Service Worker API
	Push API
	HTTPS

	Results
	Vulnerability Matrix
	Mitigations
	Service Worker API
	Push API
	HTTPS

	Security Guidelines

	Discussion
	Understanding-related Objectives
	Security-related Objectives
	Security Guidelines
	Service Worker API
	Push API
	HTTPS

	Conclusions and Future Work
	References

