Linnaeus University Dissertations
No 318/2018

NADEEM ABBAS

DEsiGNING SELF-ADAPTIVE
SOFTWARE SYSTEMS WITH REUSE

LINNAEUS UNIVERSITY PRESS

Designing Self-Adaptive Software Systems with Reuse

Linnaeus University Dissertations

No 318/2018

DESIGNING SELF-ADAPTIVE
SOFTWARE SYSTEMS WITH REUSE

NADEEM ABBAS

LINNAEUS UNIVERSITY PRESS

Designing Self-Adaptive Software Systems with Reuse
Doctoral Dissertation, Department of Computer Science, Linnaeus University,

Viixjo, 2018

ISBN: 978-91-88761-51-4 (print), 978-91-88761-52-1 (pdf)
Published by: Linnaeus University Press, 351 95 Vixjo
Printed by: Danagird LiTHO, 2018

Abstract

Abbas, Nadeem (2018). Designing Self~Adaptive Software Systems with Reuse,
Linnaeus University Dissertations No 318/2018, ISBN: 978-91-88761-51-4
(print), 978-91-88761-52-1 (pdf). Written in English.

Modern software systems are increasingly more connected, pervasive, and
dynamic, as such, they are subject to more runtime variations than legacy
systems. Runtime variations affect system properties, such as performance and
availability. The variations are difficult to anticipate and thus mitigate in the
system design.

Self-adaptive software systems were proposed as a solution to monitor and
adapt systems in response to runtime variations. Research has established a vast
body of knowledge on engineering self-adaptive systems. However, there is a
lack of systematic process support that leverages such engineering knowledge
and provides for systematic reuse for self-adaptive systems development.

This thesis proposes the Autonomic Software Product Lines (ASPL), which is
a strategy for developing self-adaptive software systems with systematic reuse.
The strategy exploits the separation of a managed and a managing subsystem
and describes three steps that transform and integrate a domain-independent
managing system platform into a domain-specific software product line for self-
adaptive software systems.

Applying the ASPL strategy is however not straightforward as it involves
challenges related to variability and uncertainty. We analyzed variability and
uncertainty to understand their causes and effects. Based on the results, we
developed the Autonomic Software Product Lines engineering (ASPLe)
methodology, which provides process support for the ASPL strategy. The
ASPLe has three processes, 1) ASPL Domain Engineering, 2) Specialization
and 3) Integration. Each process maps to one of the steps in the ASPL strategy
and defines roles, work-products, activities, and workflows for requirements,
design, implementation, and testing. The focus of this thesis is on requirements

and design.

We validate the ASPLe through demonstration and evaluation. We developed
three demonstrator product lines using the ASPLe. We also conducted an
extensive case study to evaluate key design activities in the ASPLe with
experiments, questionnaires, and interviews. The results show a statistically
significant increase in quality and reuse levels for self-adaptive software systems
designed using the ASPLe compared to current engineering practices.

Keywords: Variability, Uncertainty, Self-Adaptation, Software Reuse, Software
Design, Methodology, Domain Engineering.

To beloved parents and wife

Acknowledgments

In the name of Allah, the Most Gracious and the Most Merciful. 1
bow down to Him with the humblest gratitude to thank for His countless
blessings.

I would like to express sincere gratitude to my advisor, Jesper An-
dersson, for all the encouragement, support, and guidance. His deter-
mination, commitment, and high spirits helped me a lot to develop and
flourish. There was a time when I lost belief in myself, but it was he who
stood with me, restored the confidence and lead me to where I stand to-
day. I would also like to thank Prof. Welf Lowe for accepting me as a
Ph.D. student, sharing his knowledge and being supportive throughout
the years.

I am deeply grateful to Prof. Danny Weyns who has been a great
source of inspiration and learning. His invaluable knowledge and feed-
back helped me a lot to learn, improve and publish my work. Sincere
thanks to Ass. Prof. Sarfraz Igbal for guidance and proof-reading the
thesis.

Special thanks to Anna Wingkvist, Sharafat Ali, Arianit Kurti, Jonas
Lundberg, Mathias Hedenborg and Andreas Kerren for being around
with a lot of positive energy and assistance. Many thanks to all the fac-
ulty and the administrative staff at the department of computer science,
Linnaeus University.

I am very thankful to all my colleagues and friends Muhammad Us-
man Iftikhar, Amir Rasheed, Mirza Tassaduq Baig, Kostiantyn Kucher
and Stepan Shevtsov for all the discussions and good time together.

I will always remain indebted and profoundly grateful to my parents
for all the sacrifices they made for my upbringing. Sadly, they could
not witness this milestone, but surely will be glad to know that their
efforts have paid off. Special thanks to my mother and grandmother,
who indeed would have loved staying me closer to home, yet sent me
abroad for a better future. Special thanks to my uncle, cousins and all
other family members for supporting and encouraging me whenever |
felt low.

Last but not least, I am grateful to my beloved wife Maryyam and
daughter Dua for all the prayers, support, and care. I would not have
been able to achieve this goal without your backing throughout the
years. You girls are my main source of energy, and I owe you a lot.
Thank you for everything.

Vixjo, Sweden
March 10, 2018

Contents

1

Introduction

1.1 ThesisOverview
1.2 Problem Definition and Motivation
1.3 Objectives for the Solution
1.4 Research Questions
1.5 Thesis Contributions
1.6 ResearchScope,
1.7 Thesis Map and Organization
Theoretical Foundations

2.1 Self-Adaptive Software Systems (SASS)
22 SoftwareReuse oo
2.3 Variability
24 Uncertainty oo it e e
25 SoftwareDesign. 0oL
Research Methods

3.1 Design Science Research Methodology
32 Literature Review L oL
3.3 Prototyping
34 CaseStudy
Results - Thesis Contributions

4.1 PrimaryResults o
42 SecondaryResults.
Validation

5.1 Validation by Demonstration
5.2 Validation by Evaluation
Publications

6.1 Overview of Appended Publications
6.2 Additional Publications
6.3 Technical Reports,
Conclusion

7.1 ConcludingRemarks
72 FutureWorko

O NN DN AW ==

iX

Chapter 1

Introduction

This chapter provides an overview of the thesis. First, we specify and motivate
the problem statement. Then, we outline objectives for the desired solution. We
map the problem statement to a set of research questions, list the thesis contribu-
tions, and define the research scope. The chapter ends with the thesis map and an
overview of the chapters to follow.

1.1 Thesis Overview

Software systems are traditionally designed based on the assumption that there are
no runtime variations in the systems’ goals, the environments, and the systems
themselves [Garl0]. Change is, however, an inevitable characteristic of systems,
and requires software systems to be modified and adapted [C+09]. The adapta-
tions are usually performed offline as software maintenance. However, for large
and complex systems, the maintenance often exceeds system administrators’ ca-
pabilities, and impacts system quality negatively, which calls for automated online
capabilities.

With the development of new technologies, such as internet of things and cyber-
physical systems, software systems are at the center of runtime variations. The
runtime dynamics and growing complexity of software systems call for improved
methods of software design and development [Bru+09; KMO7]. Self-adaptive soft-
ware systems have been proposed as a solution to develop software systems with
self-managing characteristics. The self-managing or self-adaptive characteristics
refer to capabilities of a software system to adapt and manage itself with no or
minimal human intervention.

A Self-Adaptive Software System (SASS) is capable of modifying its behavior
or structure in response to changes in its goals, environment, and in the system
itself [De +13]. A SASS is conceptually composed of a managed subsystem and
a managing subsystem. The managed subsystem models the application logic that
provides a system’s primary functionality. The managing subsystem models adap-
tation logic to monitor and manage the managed subsystem.

Designing SASS systematically and cost-effectively is known to be an engi-
neering challenge [Bru+09; KMO7] and requires well defined, disciplined, and
systematic process support [De +13]. Software reuse [Kru92] is a proven approach
to develop software systems in a controlled and cost-effective way. The reuse en-
ables developers to improve quality and productivity at reduced cost and shorter

1

1 Introduction

time-to-market [Gri93]. A vast body of knowledge to engineer self-adaptive sys-
tems has been established over the years. However, to the best of our knowledge,
there is lack of systematic and repeatable process support to design and develop
SASS with reuse. Thus, the problem this thesis addresses is the lack of process
support to design and develop self-adaptive software systems with reuse.

The thesis presents an Autonomic Software Product Lines (ASPL) [AA15] strat-
egy to address the problem. The ASPL is a multi product-lines strategy to design
and develop self-adaptive systems. The basic concept of the ASPL is to establish
a general platform and reuse it across several application domains. The strategy is
realized in three steps. The first step defines and maintains an application domain-
independent ASPL platform. The ASPL platform provides managing system ar-
tifacts for reuse across several application domains. It is established independent
of application domains and is likely to have gaps between what is needed by a
domain and what is offered by the platform. The second step addresses these gaps
by transforming the ASPL platform into an application domain specific Managing
System Platform. The third step integrates the managing system platform, derived
in the second step, with an independently developed Managed System Platform.
The integration is needed to align the managed and managing system platforms
so that the artifacts from the two platform can be used to produce self-adaptive
software systems.

Applying the ASPL strategy is challenging and requires process support. For
instance, defining an ASPL platform (the first step) raises uncertainties due to lack
of knowledge about target application domains [AAW18]. The principal cause of
uncertainty in self-adaptive software systems is runtime variability [EM13]. The
development with reuse, i.e., ASPL, introduces additional uncertainties caused by
domain variability and cross-domain variability [AA15]. The domain variabil-
ity originates from reuse within a single domain and refers to differences among
systems within a domain. The cross-domain variability stems from reuse across
several domains and refers to differences among systems across multiple domains.
The three variability dimensions add to the design uncertainty. The uncertainty
may lead to technical debt in the system, if not identified and addressed [EM13;
Garl0]. To that end, we analyzed the variabilities and resulting uncertainties in
context of the ASPL strategy. The analysis helped to discern factors causing un-
certainty and to establish the Autonomic Software Product Lines engineering (AS-
PLe) methodology [AAW18].

The ASPLe is a methodology to design and develop self-adaptive software sys-
tems with reuse. It provides process support with step-wise activities and devel-
opment artifacts to realize the ASPL strategy. The strategy involves two principal
challenges, 1) variability and 2) uncertainty handling. For variability handling, the
ASPLe provides process-level instructions and specially designed artifacts to iden-
tify, model, and manage variability. The explicit variability modeling enables sys-
tem designers to better analyze and reason about design alternatives, and resolve
uncertainties. For uncertainties caused by lack of knowledge, the ASPLe offers im-
plicit support to mitigate such uncertainties by delaying requirements and design
decisions [VBSO01] till the point where complete or more knowledge is available.
The ASPLe also advocates mitigating such uncertainties by collecting knowledge

2

1.2 Problem Definition and Motivation

from state-of-the-art analysis and design methods. To that end, it provides devel-
opers with an extended Architectural Reasoning Framework (eARF) [AJ15]. The
eARF encapsulates SASS specific architectural knowledge and guides developers
how to use this knowledge. It also includes an analytical framework [Abb+16],
which provides rigorous and objective support to model and verify design options.

We developed three prototype product lines of self-adaptive software systems to
demonstrate and validate the use of the ASPLe. An extensive case study was also
conducted to evaluate the ASPLe with respect to support for reuse and uncertainty
mitigation. The analysis of data from the case studies and prototypes shows that
the ASPLe provides well defined and organized process support to design SASS
with a significant increase in reuse and decrease in the number of faults. Based on
the results, we conclude that the ASPLe helps developers to improve quality and
efficiency with systematic reuse of artifacts and knowledge across several applica-
tion domains.

The remainder of this chapter is organized as follows. Section 1.2 defines and
motivates the problem, followed by Section 1.3 that specifies objectives for the
desired solution. Research questions answered by the thesis are stated in Section
1.4. Section 1.5 summarizes the thesis contributions, followed by Section 1.6 that
describes the research scope. The chapter ends with Section 1.7 that presents the
thesis map and provides an overview of the subsequent chapters.

1.2 Problem Definition and Motivation

The problem addressed by the thesis is:

lack of process support to design and develop self-adaptive software sys-
tems with reuse.

Software reuse, described in Section 2.2, has been long acclaimed as a useful
method to build software systems efficiently and cost-effectively [Kru92]. It en-
ables developers to resolve complexity and improve quality and productivity at
reduced cost and shorter time-to-market [Gri93]. However, a systematic approach
is required to achieve the goals and claimed benefits of development with reuse. A
systematic approach to reuse requires much more than just code and library tech-
nology. It requires well planned, controlled and repeatable process support with
purposefully designed tools and infrastructure [AA15; Fra94].

Self-adaptation is a common concern for a large class of systems and support-
ing its realization by generic reusable development artifacts would be a big step
to improve quality, affordability, and productivity of software systems [HSF04].
Research has established a vast body of knowledge on engineering self-adaptive
systems over the years. However, to the best of our knowledge, there is no or little
work available that has considered systematic reuse of this knowledge. The re-
search gap and benefits of development with reuse provided necessary motivation
to investigate the design and development of self-adaptive software systems with
systematic reuse.

The initial exploratory research we conducted showed that the development of
SASS with reuse involves challenges of variability and uncertainty. Software

3

1 Introduction

variability, described in Section 2.3, is a central concept in development with
reuse [SVBO5]. For development with reuse, software developers are required
to specify requirements for variability and model reconfigurable software sys-
tems which can be extended or customized for reuse in a specific context. The
current variability specification and modeling methods, such as feature modeling
[Kan90], primarily support variability in functional requirements. There is lack
of explicit support to identify and model variability in requirements for quality
attributes [ESB07; MGA13]

Self-adaptive system properties referred as self-adaptation or self-management
properties, such as self-healing and self-optimization, are quality attributes in
essence. The development of SASS with systematic reuse requires specifying the
self-adaptation properties with their commonalities and variabilities across sev-
eral applications or application domains [AA15; AAL10]. The state-of-the-art
variability modeling approaches lack explicit support for identifying and model-
ing self-adaptation properties with variability across several application domains.
Moreover, knowledge about runtime variability of self-adaptation properties is of-
ten not available at design time. By analyzing and understanding an application
domain, the designers may predict some, but not all variations that may occur
at runtime. The lack of knowledge and hard to predict nature of self-adaptation
properties lead to uncertainties in requirements engineering and design.

Uncertainty, described in Section 2.4, refers to a situation of specifying and
modeling systems with imprecise or incomplete knowledge [MHO5]. Uncertainty
is closely related to software variability. It leads to variability in systems design
when multiple design alternatives are available and designers are not sure about
which one to select. High-quality software design is a necessary condition for
a software system to satisfy its goals and requirements [BCKO03]. The condition
becomes more vital in the development of large and complex systems coupled with
variability and uncertainty.

The combination of runtime variability and uncertainty broadens the design
space. The designers are required to identify a number of design options and rea-
son about them for several design parameters, such as business goals, application
requirements, and operating conditions. The lack of knowledge about design pa-
rameters and their runtime variations makes designers less confident and uncertain
in the architectural analysis and design. The problem of architectural analysis and
design grows with the complexity of self-adaptive systems and calls for improved
methods of design and development with systematic process support [Gar10].

1.3 Objectives for the Solution

We identified the following objectives for the solution:

01 The solution should be a methodology to design and develop self-adaptive
systems with systematic reuse.

02 The methodology should be based on a well-defined strategy with separation
of managed and managing subsystems concerns.

1.4 Research Questions

03 The solution should be derived by exploring existing design principles and
methods, such as design patterns and tactics [BCKO03].

We set the objective O1 to devise a solution that provides developers of self-
adaptive software systems with a well-organized, documented, and repeatable pro-
cess support. The objective O2 was set to reduce complexity, improve reusability,
and facilitate runtime adaptations [Tar+99] by maintaining the disciplined split be-
tween managed and managing systems concerns. The motivation for the objective
03 was to gain from the available knowledge and build the solution on top of the
current engineering and design practices.

1.4 Research Questions

A primary goal of the thesis is to address the problem described in Section 1.2. To
achieve the goal, we identified following research questions:

Q.1 What is the current state-of-the-art in design and development of self-
adaptive software systems with reuse?

(a) What are the challenges confronted by system designers while designing
SASS with systematic reuse?

(b) How can the challenges identified in question 1(a) be addressed?

Q.2 How can self-adaptive software systems be designed with systematic reuse
in an application domain and across several application domains?

(a) How can we design and develop generic application domain independent
artifacts for reuse across several application domains of SASS?

(b) How can the generic reusable artifacts be specialized for reuse in a spe-
cific application domain of SASS?

The first question aims to explore and understand the background and the cur-
rent state-of-the-art in the SASS. The focus here is to investigate available knowl-
edge, methods, and tools from design with reuse perspective. The two sub-
questions, Q. 1(a) and Q. 1(b), are defined to identify known challenges and pro-
posed solutions.

The second research question calls for a research effort that should result in a
systematic approach to design and develop SASS with and for reuse. It requires
developers to support reuse across several applications and application domains.
Two crucial steps in development with systematic reuse are: 1) to design artifacts
on purpose for reuse in several applications or application domains, and 2) special-
ize the reusable artifacts for reuse in a specific application or application domain.
The research efforts needed to achieve the two steps are expressed as questions Q.
2(a) and Q. 2(b), respectively.

1 Introduction

1.5 Thesis Contributions

The primary contributions of the thesis are:

1. Variability and uncertainty analysis in the context of the SASS design with
reuse (Section 4.1.1).

2. The ASPL, a systematic reuse strategy to design and develop SASS (Section
4.1.2).

3. The ASPLe, a development methodology with process support to implement
the ASPL strategy (Section 4.1.3).

4. The eAREF, an extended reasoning framework with rigorous support for archi-
tectural analysis and decision making (Section 4.1.4).

Besides the above-listed contributions, the thesis also contributes with two sec-
ondary results:

1. Online learning and knowledge sharing mechanism to support evolution in
software product lines; see [AAW11] for details.

2. An educational package for teachers and researchers to teach and experiment
with self-adaptive systems. We see this as a valuable resource for future
research and development in the field. The package can be downloaded at
http://homepage.lnu.se/staff/janmsi/sass—edu/.

1.6 Research Scope

In this thesis, we study the development of self-adaptive software systems with
reuse. The scope of reuse is limited to the managing subsystem level. We focus
on the requirement and design phases of development. The implementation and
testing phases are out of scope, and we plan these as future work. In requirements
engineering and design, we target the problem of uncertainty and variability and
provide repeatable process support to mitigate uncertainty and manage variability
systematically.

1.7 Thesis Map and Organization

Figure 1.1 depicts the thesis research map. We follow Design Science Research
Methodology (DSRM) [Pef+07] and Shaw’s recommendations [Sha03] to struc-
ture and present the thesis. The DSRM, described in chapter 3, defines a nom-
inal process composed of six activities: problem identification and motivation,
objectives of a solution, design and development, demonstration, evaluation, and
communication. These activities are depicted as regular rectangles in the research
map, i.e., Figure 1.1. The arrows in the map show data and control flow between
activities.

The activities shown as rounded rectangles are not originally part of the DSRM
methodology. These activities, however, help in presenting and understanding a

6

1.7 Thesis Map and Organization

research project. For instance, the background and research questions help in un-
derstanding a thesis context and research questions answered by the thesis. It is
hard to understand and validate results without knowing the context and target
research questions. Thus, we combined the background, research questions, and
research methods activities with the DSRM to improve the thesis presentation and
aid understanding.

As shown on the left of the research map, the thesis started with a review of
journal articles and conference publications about self-adaptive software systems
and related disciplines that form the background of the studied problem. Along
with describing the background, we used the literature review to understand the
problem domain, formulate the problem statement, research questions, and objec-
tives for the solution. Other research methods used in the thesis are prototyping,
case study, questionnaires, and interviews. We combined the prototyping and lit-
erature review methods to design and develop a solution that builds upon existing
knowledge. The case study and other research methods listed in the research map
were mainly used to demonstrate and evaluate the solution. The demonstration
and evaluation are depicted as a single activity as we use them together to validate
the solution. The last activity in the map, on the rightmost side, depicts a set of
publications used to communicate the thesis problem, the solution elements, and
studies performed to evaluate and validate the solution. We used the demonstra-
tion and evaluation results and feedback from publications to refine the objectives
for the solution and the design and development activities to build the solution.

The rest of this thesis is organized as follows. Chapter 2 introduces theoretical
foundations followed by an overview of the applied research methods in chapter
3. Chapter 4 reports the thesis results. Chapter 5 describes how we evaluate and
validate the results. The publications made to communicate the thesis effort and
results are introduced in chapter 6. Chapter 7 concludes the thesis with a discus-
sion on the thesis results and future work.

1 Introduction

Background

) v

v

(Chapter 02)
Objectives for the Solution

Theoretical Foundations (Chapter 01)

O1. The solution should contribute a
methodology to design and develop
@ self-adaptive systems with

_ Publications: P1, AP1, TR1)

Problem Identification & systematic reuse
Motivation 02. The methodology should be

(Chapter 01) |—| based on a well defined strategy
with separation of managed and
managing subsystems concerns
03. The solution should be built
upon existing design principles and
methods

“Lack of process support to design
and develop self-adaptive software
systems (SASS) with reuse”

Publications: P1, P4, AP1, TR1 Publications: P1, P4, AP1

| |

Research Questions
(Chapter 01)

Ve

Q.1 What is the current state of the art in the design and develop of SASS
with reuse?

(a) What are the challenges confronted by system designers while
designing SASS with systematic reuse?

(b) How can the challenges identified in question 1(a) be addressed?

Q. 2 How can SASS be designed and developed with systematic reuse in an
application domain and across several application domains?

(a) How can we design and develop generic application domain
independents artifacts for reuse across several application domains
of SASS?

(b) How can the generic reusable artifacts be specialized for reuse in a
specific application domain of SASS?

!

H:v:am:c:w“ P1, AP1, TR1

(Chapter 03)

1. Literature Review
2. Prototyping
3. Case Study
3.1 Questionnaire
3.2 Interview

Publications: P1, P3, APl
o

(Research Methods)

A

Design and Development
(Chapter 04)

Primary Results:

PR1. Variability and uncertainty
analyses

PR2. The ASPL strategy

PR3. The ASPLe methodology

PR4. An extended architectural
reasoning framework

Secondary Results:
SR1. Online learning and knowledge
sharing
SR2. An educational package

Publications: P2, P3, P4, AP2, AP3,
AP4, AP5, TR2

Demonstration and Evaluation
(Chapter 05)

Three Prototype:
1. Matrix Multiplication
2. Sorting Algorithms
3. Graph Algorithms

Three Demonstrators:
1. Distributed Games Environment
2. News Service Product Line
3. PhotoShare Software Product
Line

A Case Study

1. Controlled Experiment
2. Questionnaires

3. Interviews

Publications: P1, P3, P4, AP3, APS,
TRI1

Figure 1.1: Research Map

Communications
(Chapter 06)

Appended Publication

P1. Abbas N, Andersson J, Lowe W. Autonomic software product
lines (ASPL). In Proceedings of the Fourth European Conference on
Software Architecture, Companion Volume, Pages 324-331. ACM,
2010.

P2. Abbas N, Andersson J. Harnessing variability in product-lines of
self-adaptive software systems. In Proceedings of the 19th
International Conference on Software Product Line, Pages 191-200.
ACM, 2015.

P3. Abbas N, Andersson J. Architectural Reasoning Support for
Product-Lines of Self-adaptive Software Systems-A Case Study. In:
Weyns D., Mirandola R., Crnkovic I. (eds) Software Architecture.
Lecture Notes in Computer Science, Volume 9278, Pages 20-36.
Springer, 2015.

P4. Abbas N, Andersson J, Weyns D. ASPLe: a methodology to
develop self- adaptive software systems with systematic reuse. In:
Submitted to Software & Systems Modeling, 2018.

Additional Publications

AP1. Abbas N, Towards autonomic software product lines. In
Proceedings of the 15th International Software Product Line
Conference (SPLC'11), Munich, Germany, Volume 2, Article 44, 8
pages. ACM, 2011.

AP2. Abbas N, Andersson J, Weyns D. Knowledge evolution in
autonomic software product lines. In Proceedings of the 15th
International Software Product Line Conference, Volume 2, Pages
36:1-36:8. ACM, 2011.

AP3. Abbas N, Andersson J, Weyns D. Modeling variability in
product lines using domain quality attribute scenarios. In
Proceedings of the WICSA/ECSA, Companion Volume, Pages 135-
142. ACM, 2012.

AP4. Abbas N, Andersson J. Architectural reasoning for dynamic
software product lines. In Proceedings of the 17th International
Software Product Line Conference, Co-located Workshops 2013,
Pages 117-124. ACM, 2013.

APS. Abbas N, Andersson J, Iftikhar MU, Weyns D. Rigorous
architectural Reasoning for Self-Adaptive Software Systems. In
Proceedings of the 1st Workshop on Qualitative Reasoning about
Software Architectures (QRASA'16), Pages 11-18. IEEE, 2016.

Technical Reports

TR1. Abbas N, Andersson J, Léwe, W. Towards autonomic
software product lines (ASPL) - a technical report. Tech. rep.
Linnaeus University, Department of computer science and media
technology (CM), p. 20, 2011.

TR2. Abbas N, Andersson J. ASPLe A Methodology to Develop
Self-Adaptive Software Systems with Reuse. Tech. rep. Linnaeus
University, Department of computer science and media technology
(CM), p. 118,2017.

Chapter 2

Theoretical Foundations

This chapter introduces the concepts of self-adaptive software systems, software
reuse, variability, uncertainty, and software design. These concepts together form
the thesis theoretical foundations.

2.1 Self-Adaptive Software Systems (SASS)

A Self-Adaptive Software Systems (SASS) is a software system that is capable of
adapting its behavior and structure in response to its perception of the environment,
goals and the system itself [De +13]. The principal motive to develop self-adaptive
software systems was to fulfill software engineering’s promise of developing sys-
tems that can retain flexibility throughout their lifecycle and are as easy to adapt
in a field as are on a drawing board [O+99]. The complexity of current and emerg-
ing systems, such as pervasive computing and internet of things, has provoked the
need for self-adaptive software systems even more.

As shown in Figure 2.1, a SASS is conceptually a combination of a managed
system and a managing system [De +13]. The managed system is a software
system responsible for primary application functionality. The managing system
models adaptation logic to monitor and manage the managed system. Both the
managed and managing systems are situated in an environment. The environment
is an abstraction of an external world with which a self-adaptive system interacts,
and in which effects of a system are observed and evaluated [Wey+13].

e -
Self-adaptive software system
monitor | Managing System

A

monitor adapt

7
Managed System

N

\. . J

monitor effect

Non-controllable software hardware,
network, physical context

. A 4
Environment }

Figure 2.1: Conceptual Architecture of a Self-Adaptive Software System

2 Theoretical Foundations

According to the conceptual architecture of a SASS, both managed and manag-
ing systems monitor the environment. The managed system may affect the envi-
ronment, but the managing system has no direct effect on the environment. How-
ever, the managing system may perform adaptive actions on the managed system,
which in turn may affect the environment. The interactions between managed and
managing systems are carried through the monitor and adapt interfaces.

2.1.1 Self-Adaptation Mechanisms

Plenty of research on SASS has been done, and much work is in progress. The
state-of-the-art in self-adaptive systems distinguishes three adaptation mechanism
types to design and develop SASS: internal vs. external, model-based vs. model-
free, and closed vs. open adaptations.

The internal and external adaptations are distinguished based on the separation
of adaptation and application logic. The internal adaptation mechanisms do not
separate adaptation and application logic. Such mechanisms use programming
language constructs such as exceptions, reflection, and conditional expressions
to interweave application and adaptation logic [SGP13]. Due to tight coupling
between adaptation and application logic, the internal adaptation approaches suffer
from poor scalability, maintainability, and reusability of development artifacts.

The external adaptation mechanisms model external closed-loop type control
mechanism, such as managing system shown in Figure 2.1, to analyze and adapt
a managed system. Here, adaptation logic is separated from application logic.
Due to the clear separation of concerns, external adaptation approach offers better
support for scalability, reusability, and maintainability. Some of the most acknowl-
edged external adaptation approaches include Rainbow [G+04], StarMX [AST09],
MADAM [F+06], and MUSIC [Rou+09].

The model-based and model-free mechanisms are distinguished based on the
use of the model(s) representing managed and managing systems and their en-
vironment. The model-based adaptation mechanisms use system models at run-
time [VG14] to analyze and reason about adaptation decisions. Whereas, the
model-free adaptations do not have predefined system models and, instead, use
other adaptation mechanisms such feedback loop [KCO3] or programming lan-
guage constructs.

The closed vs. open adaptation mechanisms are distinguished based on support
to incorporate new changes and adaptation actions at runtime. The closed type
adaptation mechanisms support a fixed set of variations and adaptation actions;
no new moves and strategies to adapt can be introduced at runtime. The open
adaptation mechanisms are extendable, i.e., they allow changes in requirements
and system behavior and support addition of new adaptation strategies at runtime.

2.1.2 SASS and Autonomic Computing

Autonomic Computing (AC) labels systems that can manage themselves given
high-level objectives from administrators [HMOS; KCO03]. The concept of au-
tonomic computing was envisioned by IBM to handle large-scale, complex sys-
tems that cannot be controlled and maintained efficiently by humans. The AC

10

2.1 Self-Adaptive Software Systems (SASS)

——1 Sensor | —| Effector |—

Analyze ™ Plan

y / Knowledge \\ Execute
/

V4
NG Sensor || Effector |/

L LI L L

Managed Element

Figure 2.2: MAPE-K Feedback Loop

and SASS research communities resemble in their goals to produce systems with
self-managing characteristics. Both communities often work together. For in-
stance, the Monitor, Analyze, Plan, Execute and Knowledge (MAPE-K) feedback
loop [KCO03], a widely used mechanism to realize self-adaptation in SASS, has its
origin in the autonomic computing. As shown in Figure 2.2, the MAPE-K loop
consists of monitor, analyze, plan, execute, and knowledge components that work
together to monitor and adapt a managed system. Below is a brief description of
the MAPE-K components:

Monitor (M) component uses sensors to collect data from a managed system and
its environment. The collected data are reported to the knowledge element.

Analyze (A) component analyzes the up-to-date data in the knowledge element.
The analysis is performed to check whether adaptation is required or not.

Plan (P) component prepares an action plan to achieve system’s goals based on
the results of the analysis. The action plan is a workflow of adaptation actions.

Execute (E) component receives a plan and executes it, i.e., performs adaptive
actions using effectors.

Knowledge (K) component is a central knowledge base accessible by the other
MAPE components. The MAPE components use the knowledge base to co-
ordinate and plan adaptive actions. In addition to the data reported by the
MAPE components, the knowledge base may contain additional information
such as architectural models, goal models, adaptation policies and change
plans.

Despite the similarities, the SASS and AC differ in scope. The scope of
the SASS community is limited to self-adaptation at application software level,
whereas the autonomic computing studies self-adaptation at entire system level in-
cluding network, operating systems and hardware layers [ST09]. In other words,
the managed element in the SASS is a software system, while in the autonomic
computing the managed element can be both software and hardware systems. Fur-
thermore, the AC and SASS communities differ in the use of terminology for self-
managing characteristics. The self-managing characteristics are referred as self-
adaptation and self-management properties by the SASS and AC communities,

11

2 Theoretical Foundations

respectively. In this thesis, we use the terms self-adaptation and self-management
interchangeably.

The self-adaptation properties are, in fact, self-oriented forms of traditional
quality attributes and require software systems to adapt themselves at runtime in
response to changes in the quality attributes. Kephart and Chess [KC03] described
four such properties: 1) self-optimization, 2) self-healing, 3) self-configuration,
and 4) self-protection. These properties are self-oriented forms of performance,
availability, configurability and security quality attributes, respectively.

2.2 Software Reuse

Software reuse is a process of creating software systems from existing artifacts in-
stead of developing them from scratch [Kru92]. In the late 1960s, Mcllroy [McI68]
proposed to build large, reliable software systems in a controlled and cost-effective
manner - a challenge that still holds valid after about half a century [FKO05].

Advances in reuse technology have leveraged software development with sig-
nificant improvements in quality and productivity [FKO5]. Software reuse is now
acknowledged as one of the most efficient and effective ways to produce software
systems. It enables developers to deliver high-quality systems with reduction in
cost and time-to-market. However, a systematic approach is needed to achieve the
claimed benefits of development with reuse.

2.2.1 Systematic Reuse

Griss [Gri96; Lan+] defined systematic reuse as an “institutionalized organiza-
tional approach to product development in which reusable assets are purposely
created or acquired, and then consistently used and maintained to obtain high lev-
els of reuse”. We consider a systematic reuse approach as one that is based on
a well-defined strategy and follows a repeatable and controlled process [Fra94;
JGJ97]. Unlike ad-hoc reuse approaches [Pri93] with opportunistic reuse of lower
level artifacts, such as code snippets, systematic reuse is planned for reuse of high-
level artifacts such as requirements and design engineering artifacts. The artifacts
are on purpose defined and maintained for reuse across several applications or
application domains.

The systematic reuse approaches are anchored in three hypotheses: 1) rede-
velopment hypothesis, 2) the oracle hypothesis, and 3) organizational hypothe-
sis [WL99]. According to the redevelopment hypothesis, most of the software de-
velopment projects construct systems that are variants of existing systems [Par76].
Usually, these variants have more in common than what differs. The redevelop-
ment hypothesis suggests that software developers should avoid redevelopment
and find out ways for reuse by exploiting commonalities among software systems
and their variants.

The oracle hypothesis is about predicting changes confronted by a system over
its lifetime. It suggests that by anticipating and predicting changes, developers
can constrain variability to some extent if not entirely. By defining variability,

12

2.2 Software Reuse

developers may scope a product line and formulate a systematic reuse approach
accordingly.

The organization hypothesis is about establishing an organization and control-
ling development activities. It suggests that by following a proper organizational
structure, the software developers can take advantage of commonality and pre-
dictability from the redevelopment and oracle hypotheses, respectively. The three
hypotheses, together, lay a strong foundation to formulate a systematic reuse strat-
egy [AA15].

2.2.2 Software Product Lines Engineering (SPLE)

The SPLE [PBV05; WL99] is a systematic and widely used software reuse ap-
proach. It supports reuse by exploiting commonalities in a product line while man-
aging differences (variability). A software product line for an application domain
is a set of software applications that share features satisfying needs of a specific
market segment, and are developed from a shared set of artifacts [N+07]. In this
thesis, we use the terms software product line and application domain interchange-
ably. The fundamental principles of SPLE are the use of common platforms and
mass customization. The mass customization is a process of producing systems in
bulk and customizing them according to individual users needs. The production is
supported by establishing platforms. A platform is a set of development artifacts
designed and developed for reuse across several systems. Based on the concept of
vertical and horizontal reuse [Pri93], we distinguish between vertical and horizon-
tal platforms. A vertical platform is a collection of artifacts developed for reuse
within a single application domain, whereas the horizontal platform is a collection
of artifacts developed for reuse across several domains.

SPLE separates software development into two processes: 1) domain engineer-
ing and 2) application engineering. The domain engineering defines a vertical plat-
form of reusable artifacts. The application engineering customizes artifacts from
the common platform to derive individual application of a product line. The two
processes with separation of concerns work together to achieve systematic reuse
by exploiting commonality while managing variability in a planned, organized,
and efficient way.

Pohl et al. [PBVO0S5] define a SPLE framework that provides developers with
guidelines to perform domain and application engineering processes. The frame-
work divides the two processes into requirements, design, implementation, and
testing subprocesses. There is no workflow defined for the subprocesses. How-
ever, the framework provides details on how to define and exploit commonalities
and variabilities in each subprocess.

To support reuse across several applications or application domains, the SPLE
and other reuse approaches are required to support variability. An overview of the
variability is given below.

13

2 Theoretical Foundations

2.3 Variability

Variability is an ability of a software system or artifact to be efficiently extended,
changed, customized or configured for (re)use in a specific context [VBSO01]. It is
a widely used concept in software reuse communities such as software product line
engineering [PBVO05; VBSO01]. In software reuse literature, the term variability is
often used to represent differences or variations among systems. SPLE develops a
set of software systems by managing commonalities and variations in systems’ ar-
tifacts such as requirements, architectures, components, and test cases [CAA09].
Svahnberg et al. [SVBO0S5] described a framework to get required variability in
place and manage it. The framework is composed of four activities, 1) variabil-
ity identification, 2) constraining variability, 3) variability implementation and 4)
variability management. The framework activities are introduced as follows.

2.3.1 Variability Identification and Modeling

The variability identification is concerned with the identification, i.e., where varia-
tions may occur and where support is needed. The identification is often performed
as a part of requirements engineering. However, it can be identified or refined in
later development phases such as design, implementation, and testing. A number
of feature model-based approaches, such as FODA [Kan90], FORM [Kan+98],
and FeatureRSEB [GFd98], have been proposed to identify and model variability
in terms of features. A feature is a prominent or distinctive end-user visible aspect,
quality or characteristic of a system(s) [Kan90]. It abstracts a set of functional and
quality requirements that specify a logical unit of system behavior [Bos00].

Variability modeling is the explicit representation of variability [Sin+04]. Vari-
ability can be modeled either as a part of traditional development artifacts, such
as requirements specification and component diagram, or as a separate variability
model. Pohl et al. [PBVO0S5] argued to model variability as a separate Orthogo-
nal Variability Model (OVM). Modeling variability as a separate OVM helps to
maintain separation of concerns with a reduction in complexity and improvement
in consistency and maintainability.

2.3.2 Constraining Variability

Once variability has been identified and modeled, it needs to be constrained to
keep it within manageable limits [SVBO0S5]. Variability is constrained by defining a
set of variation points, variants, variability dependencies and constraints [LSRO7;
PBVO05]. A variation point refers to a system attribute which may vary, for in-
stance, at design or runtime. A variant is an alternative that can be bound or
rebound to a variation point.

2.3.3 Variability Implementation

The variability implementation deals with identifying suitable variability realiza-
tion techniques to implement variation points defined to constrain the variability.
Conditional compilation [GAO1], Aspect-oriented Programming [Kic+97], and
Open Services Gateway Initiative [OSGO07] are few examples of the variability

14

2.4 Uncertainty

realization mechanisms [AMA17]. Svahnberg et al. [SVBO0S5] argued that con-
straining variation points enables more informed decisions for how to implement
the variability.

2.3.4 Variability Management

The variability management activity manages feature models, variation points,
variants and variability constraints defined to model and constrain variability. Sys-
tem variability may evolve due to changes in the system’s requirements or oper-
ating environments. Thus, the artifacts and techniques used to model, constrain
and implement variability must be adapted, for instance by adding new or prun-
ing old, no longer used variation points, variants, and corresponding variability
mechanisms.

2.3.5 Variability in the Development of SASS with Reuse

Software development with systematic reuse involves variability across two di-
mensions, 1) domain variability and 2) cross-domain variability. Domain variabil-
ity originates from vertical reuse and refers to differences among systems in an
application domain [AA15]. An example of domain variability is the differences
in performance requirements among different systems in a domain. The second di-
mension, cross-domain variability originates from reuse across several application
domains and refers to differences among systems in different domains.

The development of self-adaptive software systems with systematic reuse intro-
duces a third variability dimension, runtime variability. Runtime variability comes
from self-adaptation and refers to the variability needed to incorporate runtime
variation in a system’s requirements, goals, environment, and the system itself [De
+13]. It enables a self-adaptive software system to add, change, or remove variants
dynamically at runtime with minimal or no human intervention [COH14; Hel+09].

The three variability dimensions complicate the design space architects have to
consider and add to uncertainty in the design and development of SASS with reuse.

2.4 Uncertainty

Uncertainty is an inherent property in complex systems with effects on all system
development activities. Walker et al. [Wal+03] define uncertainty as “any devi-
ation from the unachievable ideal of complete determinism”, that is, it refers to
things which are not or imprecisely known at a specific point in time [MHO5].
From a software design perspective, uncertainty affects decision making and lead
to suboptimal or invalid design decisions.

Hastings and McManus [MHOS5] presented a framework, shown in Figure 2.3,
to manage uncertainties and their effects. Primary sources of uncertainty are lack
of knowledge and lack of definition. These sources lead to risks, such as failure,
degradation, and cost/schedule deviation. The risks can be handled using mitiga-
tion techniques such as margins, redundancies, and proper design strategies. The
uncertainties are not necessarily bad things; these may add value if identified and

15

2 Theoretical Foundations

Emergent
Capabilities

Tradespace Exploration
Portfolios &Real
Options

Uncertainties Risks Mitigations Outcomes

= Lack of Knowledge = Disaster = Margins = Reliability

= Lack of Definition = Failure = Redundancy = Robustness

= Statistically = Degradation = Design Choices = Versatility
Characterized = Cost/Schedule (+/-) = Verification and Test = Flexibility
Variables = Market shifts (+/-) = Generality = Evolvability

= Known Unknowns = Need shifts (+/-) = Upgradeability = Interoperability

= Unknown Unknowns| |= Extra Capacity * Modularity

<Uncertainty> causes <Risk> handled by
<Mitigation> resulting in <Outcome>

Figure 2.3: Framework for Managing Uncertainties (reproduced from [MHO05])

mitigated appropriately. Below is an overview of the uncertainty in software en-
gineering in general and in the development of self-adaptive systems in particular.

2.4.1 Uncertainty in Software Engineering

Until recently, uncertainty has been treated as a second-order concern in software
engineering [EM13; Gar10]. However, challenges, such as complexity, in modern
systems require uncertainty to be addressed as a first-order concern. A software
system designed without considering uncertainty is likely to suffer from risks, such
as technical failures, degradations, cost and schedule deviations.

Two primary sources of uncertainty are 1) lack of knowledge and 2) lack of
definition [MHOS]. The lack of knowledge refers to a state of having incomplete
or imprecise data needed to model a system architecture and other design artifacts.
The lack of definition points to a situation in which system attributes, such as
functional or quality requirements, are not decided or declared precisely.

At the beginning of a software development project, the system attributes are
often undefined, unknown or known only partially. As the development proceeds
towards design and later stages of development, more knowledge about user re-
quirements, business goals, and target environments become available. Thus, un-
certainties caused by both the lack of knowledge and definition can be mitigated
by collecting or creating (defining) knowledge. However, collecting and defining
knowledge are challenging and lead to problems. For instance, defining too much
about a system too early may result in a collection of imprecise or false informa-
tion. Moreover, some of the required knowledge may not be available at design
time and may require design decisions to be delayed until runtime.

2.4.2 Uncertainty in the Development of SASS with Reuse

Uncertainty is an intrinsic characteristic of complex systems and self-adaptive soft-
ware systems are no exception to it [EM13; Gie+14; PM14]. Runtime variability

16

2.5 Software Design

is a principal factor that leads to uncertainty in the design of self-adaptive systems.
It has its roots in several areas of concern, including:

1. Functional and non-functional requirements
2. Operating environments

3. Interconnected systems

4. Market forces

The knowledge about runtime variations in these areas is either not available or
partially available at design time. Due to this lack of knowledge, system devel-
opers are less able to specify requirements and model design decisions [MHO5].
For instance, runtime variations in a system’s operating environment cannot be
predicted or known entirely and precisely at design time. Even if predicted, there
remain uncertainties about when a prediction will come true and how will it impact
a system. Such uncertainties caused by runtime variations challenge developers in
each phase of development, particularly in requirements and design phases.

Esfahani and Malek [EM13] studied uncertainty in SASS and characterized sev-
eral sources of uncertainty that challenge the confidence with which the adaptation
decisions are made. The sources are identified based on FORMS [WMA10], a ref-
erence architecture for SASS, and cover a wide range of factors, such as interfaces
between managed and managing systems, human in the loop, and differences be-
tween models used for decision making and actual systems. Mahdavi-Hezavehi et
al. [MAW17] proposed a classification framework for uncertainty and its sources
for architecture-based self-adaptive systems. The framework classifies uncertainty
with respect to several dimensions and sources such as environment, goals, re-
sources, and adaptation functions.

Several others researchers, such as [Esf11; Gie+14; PM14; Whi+10], have stud-
ied uncertainty in self-adaptive systems domain. However, none has investigated
uncertainty in the context of this thesis.

2.5 Software Design

Software design is a process of transforming requirements specifications into soft-
ware architecture [Bos00; TMDO09] and adding details to the architecture’s com-
ponents to a level where implementation is straight-forward. The two levels of
design, architectural and detailed design, are both concerned with decision mak-
ing and aim at best decisions to provide for the requested requirements. In this
thesis, we focus on software design at the architectural level and thus, describe
software architecture and architectural design activities below.

The software architecture is a “structure or structures of the system, which com-
prises software elements, the externally visible properties of those elements, and
the relationship among them” [BCKO3]. The externally visible properties are the
assumptions that other elements make about an element. The assumptions are
generally modeled in the form of provide and required interfaces. The provide and
required interfaces enable an element to interact with other elements and provide
or request services from other elements [Bac+02].

17

2 Theoretical Foundations

Designing an architecture in principle is a decision-making activity where de-
sign decisions are modeled as architectural elements. The architectural level deci-
sions are concerned with large parts or the whole system and require support for
architectural reasoning [Dia+08]. The architectural reasoning is a complex activity
of identifying design alternatives, analyzing and reasoning about the options, make
trade-offs, and eventually decide, create, and structure architectural elements. The
architectural reasoning for specific quality attributes can find the necessary sup-
port from a reasoning framework [Bac+05]. Unlike most functional requirements,
quality attributes are system-wide and as such difficult to localize and realize in
isolation [BCKO3]. The design decisions made for one quality attribute typically
affect one or more of the other quality attributes. In these situations, the architects
must decide on trade-offs among decisions for multiple quality attributes to find
a balance. The performance quality attribute, for instance, is negatively affected
by almost all other quality attributes. Moreover, a quality attribute can be satisfied
through many design options. For example, the availability attribute can be satis-
fied through multiple design options derived from the availability tactics [BCKO03].
Tactics are “reusable knowledge” that focuses on system capabilities that can be
used to achieve a certain quality goal. The dependencies among quality attributes
and numerous design options make architectural reasoning for quality attributes a
challenging task.

Traditionally, software design is confined to a distinct “design phase” in the
software development lifecycle [Roy87]. The development cycle begins with re-
quirements engineering followed by design phase. A complete design is produced
at the end of the design phase and is handed to programmers for implementation.
Iterative and incremental processes call for more agility and try to avoid the big
design up front. Architectural and detailed design are both considered continuous
activities that architects and designers perform throughout the system’s lifecycle.

18

Chapter 3
Research Methods

This chapter introduces the design science research methodology (DSRM)
[Pef+07]. We also present the research methods we used in the thesis, such as
literature review, prototyping, case study, questionnaire, and interview.

3.1 Design Science Research Methodology

The design science research methodology provides researchers with a system of
principles, practices, and procedures for conducting design science research in
computer science, information systems, and related disciplines. The methodology
was presented by Peffers et al. [Pef+07]. It provides researchers with a nominal
process model for organizing research, and a mental model for structuring and
presenting the research outputs.

As depicted in Figure 3.1, the DSRM process model consists of six activities:

Problem identification and motivation
Defining objectives for a solution
Design and development
Demonstration

Evaluation

AN A

Communication

We group the activities into three phases: 1) problem identification, 2) solution
development, and 3) validation [Off+09]. The problem identification phase con-
sists of activities 1 and 2 that urge researchers to define a specific research prob-
lem, justify its significance, and establish a set of requirements for the desired
solution. The solution development phase includes only one activity “design and
development” that models and develops a solution to the problem. The validation
phase groups demonstration and evaluation activities. These activities are used to
demonstrate and evaluate the contributed solution.

The DSRM structures activities in sequential order from activity one to six.
However, there are no restrictions to change the sequence. Moreover, other re-
search methods, such as literature review and case study, can be used for the
DSRM activities. For instance, literature review and expert interviews can be used
for the problem identification and motivation [Off+09].

19

3 Research Methods

| l | l

Identify Problem [{ Define Objectives | | Design & || Demonstration (5| E i —»| C ication
& Motivate ofa i D
Find suitable Observe how Scholarly
Define problem What should the Solution context effective, efficient publications
show importance solution
accomplish? Use the solution to Iterate back to Professional
solve the problem design publications

Figure 3.1: DSRM Process Model

We followed the DSRM methodology to plan, structure and organize the re-
search project and thesis into units, including problem definition, motivation, solu-
tion, and validation. We started with problem definition, defined objectives for the
desired solution and a set of research questions. Next, we designed and developed
solution elements. The solution elements were validated through demonstration
and evaluation. We communicated the results through a set of publications de-
scribed in chapter 6. The validation output and the publications feedback helped
us to revise the solution elements and objectives.

3.2 Literature Review

The literature review is a type of the review method used to explore and describe
published materials about an area of study [GB09]. It enables researchers to iden-
tify what has been done previously, what needs to be done, and what are the chal-
lenges [Gral3]. Furthermore, it allows researchers to learn about a field and build
upon the current knowledge while avoiding duplication.

The literature review begins by defining goals and forming a set of research
questions. Next, it requires establishing a search strategy to explore bodies of lit-
erature and explore relevant literature. The search strategy may include inclusion
and exclusion criteria to filter irrelevant contents and focus on specific publica-
tion or areas of research. The material found as a result of the search strategy
is analyzed for the research questions. The analysis results are documented and
communicated to strengthen evidence-based research [KDJ04].

We used the literature review to get an up-to-date understanding of the prob-
lem and establish the basis of the contributed solution. We used automated search
to find state-of-the-art publications including journal articles, conference proceed-
ings, technical reports, and books. Table 3.1 lists the search engines, journals and
conference proceedings that were mainly used to search the literature. The litera-
ture review was performed as a continuous activity throughout the thesis to keep
with the progress in the field,

3.3 Prototyping

Prototyping is an iterative development method to build an early type of a system,
test and explore the early type, and rework on it until an acceptable version is
achieved [Hoy+87]. The prototyping method is used for a variety of purposes

20

3.3 Prototyping

Search Engines Journals and Conference Proceedings

Proceedings of Symposiums on Software Engineering for Adaptive and
IEEE Xplore

Self-Managing Systems (SEAMS)

ACM Digital Library | Proceedings of the Self-Adaptive and Self-Organizing Systems (SASO) Conference Series

Springer Link Proceedings of the Systems and Software Product Line Conference (SPLC) Series

Google Scholar Proceedings of the International Conference on Software Engineering (ICSE) Series

ScienceDirect Proceedings of the Dagstuhl Seminars on Software Engineering for Self-Adaptive Systems (SEfSAS) Series
Elsevier Proceedings of the International Workshop on Dynamic Software Product Lines (DSPL) Series

ACM Transactions on Autonomous and Adaptive Systems (TAAS),
ISI Web of Science ACM Transactions on Software Engineering and Methodology (TOSEM), and

IEEE Transactions on Software Engineering (TSE)

Table 3.1: Search Engines, Journals and Conference Proceedings used for Literature Re-
view

including exploration, evaluation, validation, and acceleration of the development
process [Flo84; Hoy+87].

We used prototypes to explore the problem area and to demonstrate and evaluate
the solution. At first, we developed three prototype systems:

1. Matrix-Multiplication
2. Sorting
3. Graph Algorithms

Matrix-Multiplication is a product line of matrix multiplication applications. It
implements matrix multiplication algorithm with four variants: 1) Inline, 2) Base-
line, 3 Recursive and 4) Strassen. Sorting prototype forms a product line of data
sort algorithms with two variants, mergesort, and quicksort. Graph Algorithms
is a product line of graph algorithms with five variants, 1) Depth First Search, 2)
Breadth First Search, 3) Connected Components, 4) Strongly Connected Compo-
nents, and 5) Transitive Closure.

The above prototypes were used to explore the initial concept of the ASPL
[AAL10; AAW18], a part of the solution, and underlying challenges. Three ex-
periments were conducted to evaluate and test the ASPL for variability handling
and online learning and knowledge sharing mechanism. See [AAL11] for further
details about the prototypes and the experiments.

The prototypes helped us to identify a need for explicit process support for
variability and uncertainty handling in the design and development of SASS with
reuse. We addressed the need by reforming the ASPL concept into a systematic
ASPL strategy [AA15] with well-defined process support [AAW18; AJ15].

The revised ASPL strategy and process support, the ASPLe methodology, were
validated by designing three prototypes. The prototypes were designed as prod-
uct lines of self-adaptive systems using process support offered by the ASPLe.
Table 5.1 lists three application domains, one for each prototype, and required
self-adaptation properties. The application domains and self-adaptation properties
were used as problem domains to demonstrators and validate the use of the AS-

21

3 Research Methods

PLe in practice. The publication TR2 [AA17] describes the example application
domains and how we used them to demonstrate the ASPLe methodology.

3.4 Case Study

A case study is a research method used for in-depth investigation of contemporary
phenomena in their natural context [R+12]. The investigated phenomena are com-
monly known as cases of a study. Based on research purpose, there are three main
types of case studies:

1. Exploratory case study
2. Descriptive case study

3. Explanatory case study

An exploratory case study explores one or more phenomena of interest to find
out what is happening, seek new insights, and provoke ideas for future research.
A descriptive case study examines one or more cases to understand and describe
their current status. The primary objective of such case studies is to characterize
studied cases. An explanatory case study examines data or phenomena deeply and
thoroughly to explain a situation or problem, generally but not necessarily, in the
form of a causal relationship.
We performed a case study for two purposes:

1. to explore and validate the ASPLe methodology, principal contribution of the
thesis.

2. to collect user experiences and feedback for improvement of the ASPLe.

We used a planning template defined by Wohlin et al. [W+12] to design and
plan the case study activities. The case studies involved both quantitative and
qualitative data. The data were collected using mixed data collection methods
including test assignments, questionnaires, and interviews. The mixed methods
were used to strengthen the case study findings by collecting data using different
ways at different occasions, i.e., triangulation. Below is an overview of the data
collection methods.

3.4.1 Questionnaire

The questionnaire is a research method used to collect data by asking a set of
questions in a pre-determined order [Gral3]. There are two types of questions,
1) open questions, and 2) closed questions. The open questions have no definite
answer and allow respondents to answer in detail. The closed questions limit the
answers to a set of pre-defined replies, such as yes/no, and multiple-choices. Both
types have merits and demerits, for instance, the open questions have potential to
collect more detailed and in-depth data, but are hard to analyze.

We used the questionnaire method with closed type questions to collect and
analyze the data to compare the eARF, a core part of the ASPLe, with a refer-
ence approach. The data were collected from subjects who participated in the case

22

3.4 Case Study

study and used both the eARF and the reference approach to design self-adaptive
software systems with reuse. We asked closed questions to get data suitable for
comparison. However, using closed questions prevented respondents from provid-
ing details. We addressed this limitation with interviews.

3.4.2 Interview

An interview is a data collection method in which one or more persons, the inter-
viewers, attempt to inquire and record information from other persons, the intervie-
wees [Gral3]. It enables researchers to ask direct questions, observe interviewees
behavior and body language, and adapt questions. The nonverbal cues often help
to understand verbal responses better.

There are three primary types of the interview method: 1) structured, 2) semi-
structured, and 3) unstructured interviews [Gil+08]. A structured interview is like
a verbally administered questionnaire in which predefined questions are asked with
little or no variations. There is minimum interaction, other than questions and re-
sponses between interviewer and interviewees and there is no scope for follow-up
questions. A semi-structured interview is based on predefined questions but al-
lows the interviewers to rephrase, add or remove, and adapt the questions based on
interviewees’ responses. It enables researchers to reflect, probe and ask follow-up
questions. An unstructured interview is performed with no predefined questions
and little or no organization. It begins with an opening question and lets the con-
versation to develop based on interviewees’ responses.

In this research project, we used the interview method, as a part of the case
study, to explore and evaluate the eARF and the design support provided by the
ASPLe. We did semi-structured interviews with subjects who participated in the
case study to clarify the questionnaires data and to probe and collect additional
details.

23

Chapter 4

Results - Thesis Contributions

This chapter presents the thesis claimed contributions. We classify contributions
into two groups, 1) primary results and 2) secondary results. The primary results
group major contributions of the thesis. The secondary results group intermediary
outcomes of the thesis. To report the results, we use a common structure compris-
ing:

e The research questions addressed

the objectives satisfied
e a description of results

the research methods used

the publications that communicate the results

4.1 Primary Results
4.1.1 PR1: Variability and Uncertainty Analyses

Research Questions The variability and uncertainty analyses answer research
questions Q. 1(a) and Q. 1(b). The Q. 1(a) is answered by identifying and
analyzing challenges raised by variability and uncertainty in the design of
SASS with reuse. The results of the analyses provide insight to address the
challenges, i.e., answers Q. 1(b).

Objectives The analyses contribute to objective O1.

Research Methods We used literature review and prototyping methods for both
variability and uncertainty analyses. Beginning with literature review, we ex-
plored the state-of-the-art journals and conference proceedings in software
reuse, product lines, self-adaptive software systems and autonomic comput-
ing research communities. The literature review was used to identify principal
issues, existing work, and proposed solutions. The findings drawn from the
literature review were tested and refined by developing six prototypes.

Results Variability handling and uncertainty mitigation are two principal chal-
lenges in the design and development of self-adaptive software systems with
reuse. We analyzed both variability and uncertainty to identify their root
causes, gain better insight and to provide developers with systematic process

25

4 Results - Thesis Contributions

26

support to address the challenges. Both the analyses were performed from
system designer’s perspective.

The development of self-adaptive systems with and for reuse involves three
types of variability [AA15; AJ15]:

1. Domain variability
2. Cross-domain variability
3. Runtime variability

We analyzed each variability type for reuse at three levels, 1) single system, 2)
vertical platform, and 3) horizontal platform [Pri93]. The analysis was struc-
tured and performed according to variability handling framework defined by
Svahnberg et al. [SVBO5].

The analysis showed that reuse at single system level involves runtime vari-
ability, i.e., there are no domain and cross-domain variabilities. The reuse
at vertical platform level involves runtime and domain variabilities, whereas
the reuse at horizontal platform level involves all three types of variabilities.
The managed and managing subsystems of a self-adaptive system form two
distinct domains. Thus, the domain and cross-domains variabilities for the
managed and managing system domains can be identified and specified sepa-
rately, but cannot be constrained independently due to dependencies between
the managing and managed system domains. The runtime variability is hard
to predict, identify and constrain. It is caused due to runtime variation in sys-
tems’ environment, goals, and system themselves, which may change at run-
time. We do not know precisely when, where and how a change may occur.
For the three reuse levels, runtime variability is easier to identify, constrain
and manage at a single system level. This is because systems’ requirements,
environments, and user goals with runtime variations are better known at the
single system level than at the vertical and horizontal platform levels. The
horizontal platform is most challenging because here the developers do not
know application domains (managed systems) and their application require-
ments, goals, and environments precisely.

Uncertainty in the design of self-adaptive systems with reuse was analyzed
using Ishikawa fishbone diagram [Ish86] and uncertainty handling framework
depicted in Figure 2.3. The uncertainty analysis revealed two primary factors
causing uncertainty in the design of SASS with reuse:

1. Runtime variability
2. Development for reuse

The first factor, runtime variability, has roots in several areas of concern in-
cluding functional and non-functional requirements, operating environments,
interconnected systems, and market forces. The knowledge about runtime
variations in these areas of concern is not available at design time. The lack
of knowledge leads to uncertainties in system design. Uncertainties induced
by lack of knowledge can be addressed with time and effort, for instance
by collecting knowledge [MHOS5], however, collecting complete and precise

4.1 Primary Results

knowledge about runtime variability is not feasible. Runtime variations at
best can be predicted, however, even if predicted, there are no guarantees
whether the predictions will come true or not. The analysis showed that a
suitable strategy to mitigate uncertainties caused by runtime variability is to
delay design activities such as design decisions [VBS01] until the time, e.g.,
runtime, when complete or more knowledge becomes available.

The second factor, development for reuse, requires designers to design arti-
facts for reuse in several applications or application domains. While design-
ing such artifacts for reuse, knowledge about target application or application
domains is usually missing or available only partially. The lack of knowledge
leads to uncertainties that may lead to technical debt.

Based on the combined results of the variability and uncertainty analyses, we
conclude that software variability and uncertainty have a bidirectional cause-
effect relationship. The two-way cause-effect relationship means uncertainty
may lead to variability and vice versa. The uncertainty leads to variability in
systems design when multiple design alternatives are available, and a designer
is not sure about alternatives that need to to be selected. On the other side, the
different types of variability may lead to uncertainty. For instance, consider
an application domain that differs in its requirements for user authentication.
Some of the domain applications require simple user-id/password authenti-
cation, while others require a one-time password with an option to switch
between email and SMS based authentication at runtime. Such differences
in product requirements both at design and runtime result in uncertainty in
architectural analysis and decision making.

Papers Details about the variability and uncertainty analyses are given in publi-
cations P2 [AA15] and P4 [AAW18], respectively.

4.1.2 PR2: Autonomic Software Product Lines (ASPL) Strategy

Research Questions The ASPL provides the basis to answer the research ques-
tions 2(a) and 2(b).

Objectives The ASPL satisfies the objective O2 by defining systematic reuse
strategy with separation of managed and managing subsystem concerns.

Research Methods We used literature review and prototyping methods to define
and validate the ASPL strategy. The literature review was used to explore
existing methods and tools that support development with reuse. The proto-
typing was used for preliminary evaluation of the ASPL. The results derived
from the prototypes and the knowledge gained from literature review helped
to reform the initial idea of the ASPL into a systematic reuse strategy.

Results The ASPL is a multi product-line based strategy to design and develop
self-adaptive systems. The essence of the ASPL strategy is the separation of
the managed and the managing system concerns. The ASPL exploits this sep-
aration by establishing an application domain independent platform for man-
aging system artifacts and reusing the platform to realize self-management
properties across a set of managed system domains.

27

4 Results - Thesis Contributions

ASPL Platform for M i

o == (=]
sep1| I % ===

Requirements Design Model ~ Components Test Model

Reuse Reuse ¢ e« Reuse
¥ v A"}

Managing System Managing System Managing System
Platform; Platform, Platform,

Step 3
Integrate Integrate| « « * Integrate

Managed System
Platform,

Managed System
Platform,

Managed System
Platform,

Product Line, Product Line, Product Line,

Figure 4.1: The ASPL Strategy

As shown in Figure 4.1, the ASPL strategy is composed of three steps sum-
marized below:

Step 1: Establish an ASPL Platform To support reuse across several do-
mains, the first step is to establish a horizontal ASPL platform. The
ASPL platform targets adaptation logic and provides application domain-
independent artifacts for managing systems. To support reuse across sev-
eral domains, the platform artifacts are systematically defined indepen-
dent of any application domain.

Step 2: Derive Managing System Platform(s) from the ASPL Platform
The second step of the ASPL strategy is to transform the horizontal
ASPL platform into a vertical (application domain-specific) managing
system platform. To support reuse across several domains, any number
of managing system platforms may be derived from a single ASPL
platform. Each of the derived platforms targets adaptation logic in a
specific domain and provides reusable artifacts to realize managing
systems in that domain.

Step 3: Integrate Managing and Managed System Platform(s) The
third step of the ASPL is to integrate the managing system platform,
derived from step 2, with an independently developed managed system
platform. This step is required because a managing system platform
targets adaptation logic only. The application logic is developed
separately in the form of a managed system platform. As the managed
and managing system platforms are developed separately, there exist
mismatches between the platforms. The mismatches are analyzed
and addressed in this step so that the artifacts from the managed and
managing platforms can be used to derive a product line of self-adaptive
systems.

Papers The publication P1 [AAL10] and TR1 [AAL11] introduce the initial con-
cept of the ASPL. The publication P2 [AA15] and TR2 [AA17] describe the
reformed ASPL strategy.

28

4.1 Primary Results

4.1.3 PR3: Autonomic Software Product Lines engineering (AS-
PLe) Methodology

Research questions The ASPLe answers the research questions 2(a) and 2(b).
Objectives The ASPLe contributes to the objectives O1 and O2.

Research Methods We used literature review, prototyping, and case study meth-
ods to define and validate the ASPLe methodology. The literature review
helped us to comprehend domain engineering and application engineering
processes [PBV0S]. The two processes, particularly the domain engineer-
ing, form the basis of the ASPLe. We developed prototypes and performed a
case study to evaluate the ASPLe and collect user experiences to improve the
ASPLe.

Results The ASPLe is a software development methodology with process sup-
port to design and develop self-adaptive systems with systematic reuse.
Aligned with the ASPL strategy, the ASPLe is composed of three principal
processes: 1) ASPL Domain Engineering, 2) Specialization, and 3) Integra-
tion. We provide an overview of the processes below.

ASPL Domain Engineering Process The ASPL Domain Engineering
(ADE) process defines activities, work-products, and roles to establish
a horizontal ASPL platform. It is composed of requirements engi-
neering, design, implementation, and testing subprocesses. The ASPL
requirements engineering scopes the ASPL platform and specifies
application domain-independent requirements for self-adaptation. The
requirements are then mapped to a reference architecture by the ASPL
design subprocess. The reference architecture models high-level design
decisions with variation points and variants, i.e., variability, to support
reuse across multiple domains. The ASPL implementation subprocess
provides guidelines to transform reference architecture into reusable
code components or libraries. The ADE ends with ASPL testing
subprocess, which provides guidelines to produce reusable test artifacts
to validate and verify the reusable code components produced by the
ASPL implementation.

Specialization Process The specialization process defines activities, work-
products, and roles to transform a horizontal ASPL platform into a ver-
tical managing system platform. Following the ADE process structure,
the specialization process is also composed of requirements, design, im-
plementation, and tests specialization subprocesses. Instead of devel-
oping artifacts from scratch, each specialization subprocess searches for
reusable artifacts in the ASPL platform and specializes the found arti-
facts according to needs of a given application domain. For instance, the
requirements specialization subprocess searches the ASPL platform to
find requirement specifications that match requirements of a given appli-
cation domain. The found requirement specifications are analyzed and
customized according to needs of the given domain. All the subsequent
specialization subprocesses follow the same workflow.

29

4 Results - Thesis Contributions

Integration Process The integration process defines activities, work-
products and roles to align and integrate a managing system platform
with a separately developed managed system platform. In line with the
ADE and specialization processes, the integration process is composed
of requirements, design, implementation, and testing subprocesses. The
general workflow for each integration subprocesses is same. Each inte-
gration subprocess begins with analysis activity and provides developers
with guidelines to identify mismatches in the managed and managing
system platforms. The analysis activity is followed by an integration ac-
tivity that addresses the identified mismatches, for instance, by adding,
removing or modifying requirements and other development artifacts.
The integration process comes to an end with an assurance that the ar-
tifacts in the managed and managing system platforms can be used to-
gether to derive a product line of self-adaptive systems.

Papers The publication P2 [AA15] introduces the ASPLe. The publications
P4 [AAW18] and TR2 [AA17] provide the detail description of the ASPLe.

4.14 PR4: extended Architectural Reasoning Framework
(eARF)

Research questions The eARF answers question Q. 1(b) by providing architec-
tural knowledge and reasoning support to address uncertainty and variability.
The eARF also partially answers question Q. 2 by complementing the ASPLe
methodology with reasoning support.

Objectives The eARF satisfies the objective O3 by building upon existing design
principles and methods.

Research methods We used literature review and case study methods to define
and evaluate the eARF.

Results The extended Architectural Reasoning Framework is a body of knowl-
edge composed of proven best design methods, architectural practices, and
templates for requirements and design artifacts. The uncertainties and vari-
abilities induced by systematic reuse and self-adaptation complicate archi-
tectural reasoning in the ASPLe design processes. To that end, the eARF
complements the ASPLe with knowledge and reasoning support in the form
of self-management properties driven architectural tactics, patterns, and de-
sign methods. Initially, the eARF was composed of five elements: 1) Quality
Attribute Scenario (QAS), 2) domain QAS, 3) domain Responsibility Struc-
ture, 4) Architecture Patterns, and 5) Architecture Tactics. The eARF was
later enhanced with an analytical framework to address the lack of rigor for
architectural analysis and reasoning [Abb+16]. Below is an overview of the
eARF elements.

Quality Attribute Scenario (QAS) A quality attribute scenario (QAS) is a
quality attributes requirements specification template defined by Bass et
al. [BCKO3]. It consists of six elements: stimulus, source, environment,
artifact, response and response measure.

30

4.2 Secondary Results

domain QAS (dQAS) A dQAS is an extended form of the QAS. The QAS
provides a basic structure for characterizing quality attributes. However,
it lacks in explicit support to specify quality attributes with variability at
an application domain level. To that end, we extended the standard QAS
template to the domain Quality Attribute Scenario [AAW12].

domain Responsibility Structure (ARS) A dRS is an architectural repre-
sentation of design decisions made to realize a self-management prop-
erty [AA13; AJ15]. It consists of two parts: 1) responsibility part, and
2) variability part. The responsibility part is defined by extracting a set
of responsibilities from a dQAS and mapping the responsibilities to ar-
chitectural elements. The elements are called responsibility components.
The variability part is defined by defining variation points and variants
for the responsibility components.

Architectural Tactics The tactics are the design options being using for
years to realize quality attributes [BCKO3]. The eARF recommends
the use of tactics to identify and reason about design options for self-
management properties specified in the form of dQASs.

Architectural Patterns An architectural pattern expresses a fundamental
structural organization schema for software systems [BCKO3]. The re-
sponsibilities extracted for a self-management property are likely to fall
in monitoring, analysis, planning, and execute categories. Thus, the
eARF recommends the use of Monitor, Analyze, Plan, Execute, and
Knowledge (MAPE-K) feedback loop [KC03; Wey+13] as a principal
pattern to structure and model the responsibilities as architectural ele-
ments of the dRS.

Analytical Framework The analytical framework provides designers with
rigorous analytical means to verify the architectural models, such as dRS.
It describes activities to transform dQASs to architecture models, specify
desired properties, and evaluate the models for the properties using a
model checker [Abb+16].

Papers The eARF is introduced in additional publication AP4 [AA13] and

is validated and explained with more details in the appended publication
P3 [AJ15]. The QAS and dQAS elements of the eARF are described
in the additional publication AP3 [AAWI12]. The additional publication
APS5 [Abb+16] introduces and exemplifies the analytical framework element.

4.2 Secondary Results

4.2.1 SR1: Online Learning and Knowledge Sharing

Research questions The online learning and knowledge sharing answer the

questions Q. 2(a) and Q. 2(b) partly by providing support mechanisms for
knowledge evolution and reuse.

31

4 Results - Thesis Contributions

Objectives The online learning and knowledge sharing contribute to satisfying
the objective Ol.

Research methods We used the prototyping method to formulate the online
learning and knowledge sharing mechanisms.

Results The knowledge available at design time of self-adaptive systems may
become obsolete at runtime due to changes in design parameters, such as en-
vironment and business goals. Thus, a dynamic knowledge evolution mecha-
nism is required to update the knowledge. To that end, we defined two mech-
anisms: 1) online learning and 2) knowledge sharing.

Online Learning Online learning is a dynamic knowledge evolution mech-
anism that updates knowledge-base used by managing systems to ana-
lyze and plan adaptation actions. It consists of three sequential phases:
1) instrumentation, 2) monitored execution, and 3) learning. The in-
strumentation phase begins when an instrumentation-monitor detects an
active managing system. The instrumentation-execute preempts the man-
aging system and takes control of adaptations in an underlying managed
system. It executes a learning strategy, for instance, reinforcement learn-
ing [KLM96], and triggers monitored execution phase. The monitored-
execution phase uses a monitor component to record outcomes of the
learning strategy. The recorded properties and measures are used in the
learning phase to update the knowledge-base. The learning phase ana-
lyzes the knowledge-base in comparison with the recorded data and up-
dates the knowledge-base based on results of the analysis.

Online Knowledge Sharing Online knowledge sharing is a mechanism to
exchange knowledge and learn from each other’s experiences at runtime.
It enables software systems to self-optimize and improve quality faster
by capitalizing on knowledge derived by other software systems. Based
on communication mode, we distinguished two kinds of knowledge shar-
ing: 1) direct exchange and 2) indirect exchange. In the direct exchange,
software systems share knowledge directly with their partners, such as
similar applications in an application domain. In the indirect exchange,
software systems share knowledge with each other through a middle-
ware, such as a knowledge broker or manager. Different communication
styles such as “push”, “pull”, and “broadcast” can be used for both the
direct and indirect knowledge exchange mechanisms.

Papers The additional publication AP2 [AAW11] describes the online learning
and knowledge sharing mechanisms.

4.2.2 SR2: Educational Package

Research questions The educational package does not answer any of the re-
search questions directly. It is a by-product of the thesis effort.

Objectives The educational package does not contribute to any objectives of the
solution. However, it adds value to the thesis by providing resources for
teaching and experimenting with self-adaptive systems.

32

4.2 Secondary Results

Research methods The educational package was defined as a result of the case
study design exercises that were defined and used to evaluate primary results
of the thesis.

Results The educational package is a set of academic resources that can be used
in a classroom environment to teach and experiment with self-adaptive soft-
ware systems. We used the package in a two years master degree program, but
it can be adopted for undergraduate programs as well. The package consists
of following items:

Lecture Notes A set of lecture slides prepared to introduce and describe the
ASPL strategy and the ASPLe methodology. The slides are organized
into two lectures, each lecture prepared for a 3 hours time slot.

Reading Assignment A home assignment that requires students to study a
set of articles and textbook chapters distributed as reading material. As a
solution, students are required to send a summary with critical reflection
on the reading material.

Technical Report A technical report that extensively describes and demon-
strates the ASPLe methodology.

Example Application Domains Four example application domains that
require three self-management properties: 1) self-healing, 2) self-
optimization, and 3) self-upgradability.

Workshops and Test Assignments The educational package contains a set
of workshops and test assignments to demonstrate and test the use of the
ASPLe methodology in practice. The workshops are designed to refresh
design skills and to prepare the students for test assignments. There are
two test assignments provided with solutions. Each assignment specifies
tasks with requirements for self-adaptation and requires to analyze and
map requirements to design artifacts using the ASPLe methodology.

Reusable Artifacts The package provides a set of application domain inde-
pendent artifacts created for reuse in several applications and application
domains. Following the ASPLe methodology, the reusable artifacts are
collected as ASPL Platform for managing systems.

Questionnaires A set of questionnaires with closed type questions. The
questionnaires are designed to measure learning outcomes and collect
user experiences and feedback on the use of the ASPLe methodology.

Papers The technical report TR2 describes and demonstrates the ASPLe
methodology. The educational package can be downloaded at http://
homepage.lnu.se/staff/janmsi/sass—edu/.

33

Chapter 5

Validation

This chapter introduces the activities we conducted to validate the contributions.
In line with the design science research methodology [Pef+07], we used demon-
stration and evaluation methods for validation.

5.1 Validation by Demonstration

A demonstration exhibits the operation or use of an artifact, such as program, pro-
cess, methodology, or the like, to prove that the artifact works and solves a problem
[Pef+07]. The main resource required for the demonstration method is knowledge
of how to use the validated artifact. The demonstration method is simple and easy
to use, however, lacks in rigor and formal evaluation.

We used the demonstration method to show that the ASPLe methodology works
in practice and actually provides developers with support to handle variability and
mitigate uncertainties in the development of self-adaptive systems [AA17]. Begin-
ning with the first ASPLe process, ASPL Domain Engineering, we demonstrated
the use of the ASPL requirements and design subprocesses to develop an example
ASPL platform. The scope of the example platform was constrained to two self-
adaptation properties, self-upgradability and self-optimization. For each property,
we defined application domain independent requirements and design artifacts us-
ing the ASPL requirements and design processes.

Next, we demonstrated the use of the Specialization process to derive managing
system platforms for example application domains listed in Table 5.1. Each of the
managing system platforms was established with reuse from the example ASPL
platform. We used the requirements and design specialization subprocesses to
reuse the requirements and design artifacts from the example ASPL platform and
specialize them for self-adaptation properties required by the example application
domains.

Then, we demonstrated the use of the Integration process to integrate each man-
aging system platform, derived using the specialization process, with an indepen-
dently developed managed system platform. The requirements and design artifacts
in the managed system platforms were produced using conventional methods, such
as use case scenarios and architectural views. We performed the requirements and
design integration processes to integrate the requirements and design artifacts, re-
spectively. See [AA17] for further details about how we performed the Integration
and other ASPLe processes.

35

5 Validation

Application Domains Required Properties

Distributed Game Environment | Self-Upgradability

News Service Product Line Self-Optimization, Self Healing

PhotoShare Product Line Self-Upgradability, Self-Healing

Table 5.1: Example Application Domains

5.2 Validation by Evaluation

An evaluation is a systematic study performed to observe and measures how well
a proposed solution addresses a problem [Pef+07]. The evaluation studies are
classified into two distinct groups: 1) formative and summative evaluations, 2)
outcome and process evaluations [Rob93]. A formative evaluation aims to help
in the development of an artifact, for example, program, process or method. A
summative evaluation focuses on assessing results and effectiveness of the artifact
being evaluated. An outcome evaluation measures to what extent the evaluated
artifact meets its claimed goals or objectives. A process evaluation observes an
artifact being evaluated and answers the question “what happens, and how?”.

Different research methods, such as experiments, case study, questionnaires,
and interviews, can be used to perform an evaluation. We used the case study
method to evaluate the ASPL strategy and the ASPLe methodology, which are
primary contributions of the thesis. The case study’s primary objective was to
assess the ASPLe design subprocesses and architectural analysis and reasoning
support provided by eARF part of the ASPLe. We compared the design support
provided by the ASPLe and the eARF with a state of the art reference approach.
The comparison was made for two principal goals, maximizing total reuse and mit-
igating uncertainties in system design. The data, for comparison, were collected
using mixed methods including controlled experiment, questionnaires, and inter-
views. The data were analyzed using hypothesis testing, descriptive statistics, and
graphical visualizations. The results of the analysis show that the ASPLe provides
systematic process support to design self-adaptive systems with reuse and mitigate
uncertainties. In comparison to the reference approach, the ASPLe and the eARF
enabled the developers to model self-adaptive systems with a statistically signif-
icant increase in total reuse and decline in fault-density. The decrease in fault-
density indicates that the ASPLe provides better support to mitigate uncertainties
in the design of self-adaptive software systems with reuse. See the publication P4
for details about the case study design, data collection, analysis, and results.

We used the case study for two purposes. First, to assess the ASPLe for its target
goals, maximizing total reuse and mitigating uncertainty. Second to get feedback
from subjects and use the feedback to refine and enhance the ASPLe. Hence, we
classify our case study evaluation as a mix of formative, summative and outcome
evaluation.

36

Chapter 6

Publications

This chapter introduces publications used to communicate the thesis findings. The
publications are classified into three groups:

1. Appended publications
2. Additional publications

3. Technical reports

The appended publications report primary results to address the research ques-
tions. The additional publications communicate secondary findings that helped to
achieve the primary results. The technical reports provide a detailed description of
the solution elements, the ASPL and the ASPLe.

6.1 Overview of Appended Publications

Appended Publication - P1
Abbas N, Andersson J, Lowe W. Autonomic software product lines (ASPL).
In Proceedings of the Fourth European Conference on Software Architec-
ture (ECSA’10), Copenhagen, Denmark, Companion Volume, Pages 324-331.
ACM, 2010.

Summary: This publication introduces the initial concept of the Autonomic
Software Product Lines (ASPL). It presents the ASPL as a dynamic software
product line with variability handling mechanism. The variability handling
mechanism enables a software product line to adapt itself at runtime in re-
sponse to variations in its context, resources, and goals.

The variability handling mechanism comprises three activities:
1. Offline Training
2. Context-Aware Composition

3. Online Learning
We describe and exemplify all the activities using two scenarios: 1) open
world, and 2) closed world. The closed world scenario represents a class of

systems with a fixed set of resources and contexts, whereas the open world
scenario represents a class of systems with variable resources and settings.

37

6 Publications

Appended Publication P2

Abbas N, Andersson J. Harnessing variability in product-lines of self-
adaptive software systems. In Proceedings of the 19th International Con-
ference on Software Product Line (SPLC’15), Nashville, Tennessee, Pages
191-200. ACM, 2015.

Summary: This publication reports variability analysis in the context of de-
signing and developing self-adaptive software systems (SASS) with reuse. It
argues variability handling as a key to accomplish systematic reuse. The de-
velopment of SASS with reuse involves variability across three dimensions:
1) domain variability, 2) cross-domains variability and 3) runtime variability.
We analyze the variability dimensions for four activities: 1) identify vari-
ability, 2) constrain variability, 3) implement variability, and 4) manage vari-
ability. The analysis pinpoints opportunities and challenges. The challenges
are primarily caused due to the complex interaction of variabilities across
three dimensions and require a systematic approach to address them. To that
end, this publication introduces the ASPLe methodology as a framework.
The framework consists of three processes that form the basis of a system-
atic approach to address the challenges identified as a result of the variability
analysis.

Appended Publication P3

Abbas N, Andersson J. Architectural Reasoning Support for Product-Lines of
Self-adaptive Software Systems-A Case Study. In: Weyns D., Mirandola R.,
Crnkovic 1. (eds) Software Architecture. Lecture Notes in Computer Science,
Volume 9278, Pages 20-36. Springer, 2015.

Summary: This publication emphasizes the role of software architecture in
the development of large and complex software systems. It reports a prob-
lem of architectural analysis and reasoning in the context of this thesis and
presents the extended Architectural Reasoning Framework (e ARF) to address
the problem. It describes elements of the eARF and defines a workflow to use
these elements. We use an example application domain to illustrate the use of
the eARF for analysis and design. Moreover, the publication reports a feasi-
bility case study to validate the reasoning framework. Based on results of the
case study, we conclude that the eARF provides better support to analyze and
reason about design alternatives while designing SASS with reuse.

Appended Publication P4

38

Abbas N, Andersson J, Weyns D. ASPLe: a methodology to develop self-
adaptive software systems with systematic reuse. In: Submitted to Software
& Systems Modeling, 2018.

Summary: This publication describes uncertainty, variability, and lack of
process support as principal problems in the development of self-adaptive
software systems with reuse. It motivates the need for a separation of con-
cerns based strategy to mitigate complexity and uncertainty and presents the
ASPL strategy as an enhanced form of the ASPL approach introduced in the
publication P1. We argue that implementation of the ASPL strategy involve

6.2 Additional Publications

uncertainties in system analysis and design, and requires well-organized pro-
cess support. To that end, the publication presents the ASPLe methodology
with a focus on design activities. The ASPLe encapsulates systematic process
support to implement the ASPL strategy and address underlying challenges
of uncertainty and variability handling. We demonstrate the use of the AS-
PLe methodology for an example application. We also report an extensive
case study performed to evaluate the ASPLe.

6.2 Additional Publications

Additional Publication AP1

Abbas N, Towards autonomic software product lines. In Proceedings of the
15th International Software Product Line Conference (SPLC’11), Munich,
Germany, Volume 2, Article 44, 8 pages. ACM, 2011.

Abstract: “We envision an Autonomic Software Product Line (ASPL). The
ASPL is a dynamic software product line that supports self-adaptable prod-
ucts. We plan to use reflective architecture to model and develop ASPL. To
evaluate the approach, we have implemented three autonomic product lines
which show promising results. The ASPL approach is at initial stages and
requires additional work. We plan to exploit online learning to realize more
dynamic software product lines to cope with the problem of product line evo-
lution. We propose online knowledge sharing among products in a product
line to achieve continuous improvement of quality in product line products”.

Additional Publication AP2
Abbas N, Andersson J, Weyns D. Knowledge evolution in autonomic software
product lines. In Proceedings of the 15th International Software Product Line
Conference (SPLC’11), Munich, Germany, Volume 2, Pages 36:136:8. ACM,
2011.
Abstract: “We describe ongoing work in knowledge evolution management
for autonomic software product lines. We explore how an autonomic prod-
uct line may benefit from new knowledge originating from different source
activities and artifacts at runtime. The motivation for sharing run-time knowl-
edge is that products may self-optimize at runtime and thus improve quality
faster compared to traditional software product line evolution. We propose
two mechanisms that support knowledge evolution in product lines: online
learning and knowledge sharing. We describe two basic scenarios for run-
time knowledge evolution that involves these mechanisms. We evaluate on-
line learning and knowledge sharing in a small product line setting that shows
promising results”.

Additional Publication AP3
Abbas N, Andersson J, Weyns D. Modeling variability in product lines us-
ing domain quality attribute scenarios. In Proceedings of the WICSA/ECSA
2012, Helsinki, Finland, Companion Volume, Pages 135-142. ACM, 2012.
“The concept of variability is fundamental in software product lines and suc-
cessful implementation of a product line largely depends on how well domain

39

6 Publications

requirements and their variability are specified, managed, and realized. While
developing an educational software product line, we identified a lack of sup-
port to specify variability in quality concerns. To address this problem, we
propose an approach to model variability in quality concerns, which is an
extension of quality attribute scenarios. In particular, we propose domain
quality attribute scenarios, which extend standard quality attribute scenarios
with additional information to support specification of variability and deriv-
ing product specific scenarios. We demonstrate the approach with scenar-
ios for robustness and upgradability requirements in the educational software
product line”.

Additional Publication AP4

Abbas N, Andersson J. Architectural reasoning for dynamic software product
lines. In Proceedings of the 17th International Software Product Line Confer-
ence (SPLC’13) Co-located Workshops 2013, Tokyo, Japan, Pages 117-124.
ACM, 2013.

Abstract: “Software quality is critical in today’s software systems. A chal-
lenge is the trade-off situation architects face in the design process. Designers
often have two or more alternatives, which must be compared and put into
context before a decision is made. The challenge becomes even more com-
plex for dynamic software product lines where domain designers have to take
runtime variations into consideration as well. To address the problem, we
propose extensions to an architectural reasoning framework with construct-
s/artifacts to define and model a domain’s scope and dynamic variability. The
extended reasoning framework encapsulates knowledge to understand and
reason about domain quality behavior and self-adaptation as a primary vari-
ability mechanism. The framework is demonstrated for a self-configuration
property, self-upgradability on an educational product-line”.

Additional Publication AP5

40

Abbas N, Andersson J, Iftikhar MU, Weyns D. Rigorous architectural Reason-
ing for Self-Adaptive Software Systems. In Proceedings of the 1st Workshop
on Qualitative Reasoning about Software Architectures (QRASA’16), Venice,
Italy, Pages 11-18. IEEE, 2016.

Abstract: “Designing a software architecture requires architectural reason-
ing, i.e., activities that translate requirements into an architecture solu-
tion. The architectural reasoning is particularly challenging in the design
of product-lines of self-adaptive systems, which involve variability both at
development time and runtime. In previous work, we developed an extended
Architectural Reasoning Framework (e ARF) to address this challenge. How-
ever, evaluation of the eARF showed that the framework lacked support for
rigorous reasoning, ensuring that the design complies with the requirements.
In this paper, we introduce an analytical framework that enhances e ARF with
such support. The framework defines a set of artifacts and a series of activ-
ities. Artifacts include templates to specify domain quality attribute scenar-
ios, concrete models, and properties. The activities support architects with
transforming requirement scenarios to architecture models that comply with

6.3 Technical Reports

required properties. Our focus in this paper is on architectural reasoning sup-
port for a single product instance. We illustrate the benefits of the approach
by applying it to an example client-server system and outline challenges for
future work”.

6.3 Technical Reports

Technical Report TR1

Abbas N, Andersson J, Lowe, W. Towards autonomic software product lines
(ASPL) - a technical report. Tech. rep. Linnaeus University, Department of
computer science and media technology (CM), p. 20, 2011.

Summary: This publication provides a detailed description of the initial con-
cept of the ASPL strategy. It describes software product line engineering and
autonomic computing as a background of the ASPL. The publication presents
the need for runtime variability handling mechanisms as a fundamental mo-
tivation for the ASPL strategy. We define the ASPL as a dynamic software
product line [Hal+08] and describe three core activities that work together
to provide for self-adaptation. Each of the three activities is discussed using
FORMS primitives [WMA12].

We also report three experiments conducted to evaluate the ASPL approach.
The experiments were performed using three prototypes systems: 1) Matrix-
Multiplication, 2) Sorting, and 3) Graph Algorithms. Moreover, we discuss
and position the ASPL approach in connection with related works.

Technical Report TR2
Abbas N, Andersson J. ASPLe A Methodology to Develop Self-Adaptive Soft-
ware Systems with Reuse. Tech. rep. Linnaeus University, Department of
computer science and media technology (CM), p. 118, 2017.
Summary: This publication complements the appended publication P4 with
an extensive description of the ASPLe methodology and its process activi-
ties. An introduction to the ASPL strategy and the ASPLe methodology is
presented followed with a detailed description of the three ASPLe processes:
1) ASPL Domain Engineering, 2) Specialization, and 3) Integration. An ex-
ample application domain that requires a self-upgradability property is used
to demonstrate each of the three processes. In line with the thesis research
scope, the scope of the described processes is limited to the requirement and
design engineering.

41

Chapter 7

Conclusion

This chapter summarizes the thesis, discusses its findings and contributions, points
at some limitations, and outlines directions for future research.

7.1 Concluding Remarks

This thesis studies development of self-adaptive software systems with systematic
reuse. Self-adaptation has been recognized as an essential property to manage
complexity and runtime variations in software systems [De +13]. There exist a
vast body of knowledge on engineering self-adaptive systems. However, there is
lack of process support to design and develop self-adaptive software systems with
reuse. The thesis targets this lack of process support as a principal problem. We
identified two research questions, restated below for clarity.

Q.1 What is the current state of the art in design and development of self-
adaptive software systems with reuse?

(a) What are the challenges confronted by system designers while designing
SASS with systematic reuse?

(b) How can the challenges identified in question 1(a) be addressed?

Q.2 How can self-adaptive software systems be designed with systematic reuse
in an application domain and across several application domains?

(a) How can we design and develop generic application domain independent
artifacts for reuse across several application domains of SASS?

(b) How can the generic reusable artifacts be specialized for reuse in a spe-
cific application domain of SASS?

The thesis answers Q. 1(a), by identifying and analyzing variability and uncer-
tainty in the context of software reuse and self-adaptive software systems. The
analysis shows that the following three variability dimensions are the primary
causes of the lack of knowledge and induced uncertainties:

1. Domain variability
2. Cross-domain variability

3. Runtime variability

43

7 Conclusion

The analysis results show that managing variability and mitigating uncertainty
in this context is an overwhelming challenge for system developers. To that end,
the thesis contributes separation of concerns based ASPL strategy and process
support with purposefully defined activities and work-products to address the chal-
lenge. This answers question Q. 1(b).

The ASPL strategy also provides a theoretical foundation that answers Q. 2(a)
and Q. 2(b) partially. It describes how the development artifacts can be designed
and specialized for reuse across several domains of self-adaptive systems. It is
necessary but not sufficient to answer Q. 2 completely. The Autonomic Software
Product Lines engineering (ASPLe) methodology answers the practical part of Q.
2(a) and Q. 2(b). The methodology provides process support to realize the ASPL
strategy and consists of three steps. The first step is a development of an appli-
cation domain-independent platform for managing systems. The second step is a
transformation of the domain-independent platform to domain-specific platforms
for reuse across several domains. The third step is the integration of the domain-
specific platforms with independently developed managed system platform.

We specified three objectives to steer the thesis effort and validate the solution,
i.e., the ASPL and the ASPLe.

e The objective O1 directed the solution to be a methodology with organized
and repeatable process support.

e The objective O2 required the solution to be founded on a well-defined strat-
egy with separation of managed and managing system concerns.

o The objective O3 specified use of existing practices and knowledge, such
as variability management mechanisms and design patterns, to develop the
solution.

We developed three example application domains and conducted a comprehensive
case study to demonstrate and validate the solution elements, the ASPL, ASPLe,
and eAREF. In the case study, we used controlled experiment, questionnaire, and
interview methods to evaluate the solution. The case study data were analyzed
using hypothesis testing, descriptive statistics, and graphical visualizations. The
use of the ASPLe to produce example systems and results of the case study show
that the contributed solution elements satisfy all the three objectives.

The thesis meets the objective O1 by providing a well-documented and demon-
strated methodology, the ASPLe. The case study data show that the ASPLe helps
to mitigate uncertainties, manage variabilities and design self-adaptive systems
with a higher degree of total reuse and reduced fault density. The reduced fault-
density and higher degree of reuse enable developers to produce systems with
improvement in quality and reduction in cost and time to develop and market.

The thesis meets the objective O2 by defining the separation of concerns based
strategy, the ASPL, to address the problem. The ASPL maintains a clear sepa-
ration between managed and managing systems The ASPLe methodology, which
provides process support for the ASPL, also preserves the separation of manag-
ing and managed systems in its processes. For the separation of concerns, about
95% subjects who participated in the case study rated the ASPLe better or equal
to current engineering practices.

44

7.2 Future Work

The thesis fulfills the objective O3 by building the solution elements on top of
the current practices for software reuse and design of self-adaptive software sys-
tems. For instance, the ASPLe employs domain engineering, selection, specializa-
tion, integration, and application engineering concepts from research on software
reuse [Kru92; PBV05]. The eARF recommends the use of proven best design
practices, such as architectural patterns and tactics, to analyze and reason about
design decisions. The ASPLe design processes use the responsibility driven design
approach [WMO03] to extract responsibilities from requirements and map them to
design components. Furthermore, the MAPE-K feedback loop [KCO03; Wey+13]
is used as a principal architectural pattern by the ASPLe to identify and structure
design components.

Based on combined analysis of quantitative and qualitative data from the case
study and the demonstrators, we conclude that the thesis contributes significant
research effort to address the problem of designing self-adaptive software systems
with systematic reuse. Although there remains work to make the ASPLe a compre-
hensive methodology, yet it contributes significantly to improve the current state of
design practices for the development of self-adaptive software systems with reuse.

7.2 Future Work

Future work comprises several steps to address limitations and to consolidate the
thesis contributions. The ASPLe currently lacks process support for implemen-
tation and testing. Thus, the first step we plan is to extend the ASPLe with such
support. There exist several approaches, such as [AST09; Bru+09; G+04; KD07;
Kic+97; VG14], to design and implement self-adaptive software systems. How-
ever, there is only a little work done for runtime verification and validation of
self-adaptive systems [De +13]. Furthermore, testing methods used for conven-
tional systems are not easy to adopt for SASS because the interfaces between
managing and managed systems are often quite different from that of traditional
systems [HVG15]. Thus, we conjecture that adding testing process support to the
ASPLe will be challenging.

As a second step, we plan to augment the requirements and design process
support offered by the ASPLe. For the design part, we intend to develop tool
support for architectural analysis and reasoning. The tool support is aimed to
provide designers with design alternatives for given requirements, model and as-
sess the alternatives, and select best-fit alternatives. A potential challenge here
will be scalability and trade-off to model and reason about alternatives for mul-
tiple self-adaptation properties. For the requirements part, we plan to study and
develop a more formalized language for expressing elements and fragments of
dQAS. The dQAS formalization is likely to support automation of the reasoning
process. However, a challenge here will be preserving sufficient expressiveness,
while providing machine-readable specifications that can be interpreted automati-
cally.

The third step, we aim for is to explore patterns and tactics to develop as a library
of best practices to design and develop self-adaptive systems with reuse. The

45

7 Conclusion

library will be incorporated into the eARF and can be used by other frameworks,
methods, and tools for design support.

The fourth step, we plan is to further evaluate the ASPLe and the e ARF for other
self-adaptation properties, such as self-configuration and self-protection, both in
controlled environments and in real-world settings.

46

Bibliography

[AA13]

[AA1S]

[AA17]

[AAL10]

[AAL11]

[AAW11]

Nadeem Abbas and Jesper Andersson. “Architectural Reasoning for
Dynamic Software Product Lines”. In: Proceedings of the 17th Inter-
national Software Product Line Conference Co-located Workshops.
SPLC ’13 Workshops. Tokyo, Japan: ACM, 2013, pp. 117-124.
ISBN: 978-1-4503-2325-3. DOI: 10.1145/2499777.2500718.
URL: http: //doi.acm.org/ 10 . 1145 /2499777 .

2500718.

Nadeem Abbas and Jesper Andersson. “Harnessing Variability in
Product-lines of Self-adaptive Software Systems”. In: Proceedings of
the 19th International Conference on Software Product Line (SPLC).
SPLC ’15. Nashville, Tennessee: ACM, 2015, pp. 191-200. ISBN:
978-1-4503-3613-0. DOI: 10.1145/2791060.2791089. URL:
http://doi.acm.org/10.1145/2791060.2791089.

Nadeem Abbas and Jesper Andersson. ASPLe — A Methodology to
Develop Self-Adaptive Software Systems with Reuse. Tech. rep. Lin-
naeus University, Department of computer science and media tech-
nology (CM), 2017, p. 118.

N. Abbas, J. Andersson, and W. Léwe. “Autonomic Software Prod-
uct Lines (ASPL)”. In: Proceedings of the 4th European Conference
on Software Architecture: Companion Volume. ACM. 2010, pp. 324—
331.

Nadeem Abbas, Jesper Andersson, and Welf Lowe. Towards Auto-
nomic Software Product Lines (ASPL) - A Technical Report. Tech.
rep. Linnaeus University, Department of computer science and me-
dia technology (CM), 2011, p. 20.

Nadeem Abbas, Jesper Andersson, and Danny Weyns. “Knowledge
evolution in autonomic software product lines”. In: Proceedings of
the 15th International Software Product Line Conference, Volume 2.
SPLC ’11. Munich, Germany: ACM, 2011, 36:1-36:8. 1SBN: 978-
1-4503-0789-5. DOL: http : / /doi .acm.org/10.1145/
2019136 .2019177. URL: http://doi.acm.org/10.
1145/2019136.2019177.

47

BIBLIOGRAPHY

[AAW12]

[AAW18]

[Abb+16]

[AJ15]

[AMA17]

[ASTO9]

[Bac+02]

[Bac+05]

[BCKO3]

[Bos00]

48

Nadeem Abbas, Jesper Andersson, and Danny Weyns. “Modeling
variability in product lines using domain quality attribute scenarios”.
In: Proceedings of the WICSA/ECSA 2012 Companion Volume. WIC-
SA/ECSA ’12. Helsinki, Finland: ACM, 2012, pp. 135-142. 1SBN:
978-1-4503-1568-5. DOI: 10.1145/2361999.2362028. URL:
http://doi.acm.org/10.1145/2361999.2362028.

Nadeem Abbas, Jesper Andersson, and Danny Weyns. “ASPLe: A
Methodology to Develop Self-Adaptive Software Systems with Sys-
tematic Reuse”. In: Submitted to Software & Systems Modeling (Mar.
2018).

Nadeem Abbas et al. “Rigorous Architectural Reasoning for Self-
Adaptive Software Systems”. In: /st Workshop on Qualitative Rea-
soning about Software Architectures. IEEE, 2016, pp. 1-8.

Nadeem Abbas and Andersson Jesper. “Architectural Reasoning Sup-
port for Product-Lines of Self-adaptive Software Systems - A Case
Study”. English. In: Proceedings of the 9th European Conference on
Software Architecture (ECSA). Ed. by Danny Weyns, Raffaela Miran-
dola, and Ivica Crnkovic. Vol. 9278. LNCS. Springer, 2015, pp. 20—
36. ISBN: 978-3-319-23726-8. URL: http://dx.doi.org/10.
1007/978-3-319-23727-5_2.

Loreno Freitas Matos Alvim, Ivan do Carmo Machado, and Eduardo
Santana de Almeida. “A Preliminary Assessment of Variability Im-
plementation Mechanisms in Service-Oriented Computing”. In: Mas-
tering Scale and Complexity in Software Reuse. Ed. by Goetz Botter-
weck and Claudia Werner. Cham: Springer International Publishing,
2017, pp. 31-47. 1SBN: 978-3-319-56856-0.

R. Asadollahi, M. Salehie, and L. Tahvildari. “StarMX: A framework
for developing self-managing Java-based systems”. In: Software En-
gineering for Adaptive and Self-Managing Systems, 2009. SEAMS
’09. ICSE Workshop on. May 2009, pp. 58-67. pDOI: 10 .1109/
SEAMS.2009.5069074.

Felix Bachmann et al. Documenting software architecture: Docu-
menting interfaces. Tech. rep. CMU/SEI-2002-TN-015. Pittsburgh,
PA 15213-3890: Software Engineering Institute, Carnegie Mellon
University, 2002.

F. Bachmann et al. “Designing software architectures to achieve qual-
ity attribute requirements”. In: Software, IEE Proceedings - 152.4
(Aug. 2005), pp. 153—-165. 1SSN: 1462-5970. DOI: 10.1049/ip-
sen:20045037.

L. Bass, P. Clements, and R. Kazman. Software Architecture in Prac-
tice. 2nd. Addison-Wesley Professional, 2003.

Jan Bosch. Design and Use of Software Architectures: Adopting
and Evolving a Product-line Approach. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 2000. ISBN: 0-201-67494-7.

[Bru+09]

[C+09]

[CAAQ9]

[COH14]

[De +13]

[Dia+08]

[EM13]

[ESBO7]

[Esf11]

[F+06]

BIBLIOGRAPHY

Yuriy Brun et al. “Engineering Self-Adaptive Systems Through Feed-
back Loops”. In: Software Engineering for Self-Adaptive Systems
5525 (2009), pp. 48-70.

B. Cheng, R. de Lemos, H. Giese, et al. “Software engineering for
self-adaptive systems: A research roadmap”. In: Software Engineer-
ing for Self-Adaptive Systems (2009), pp. 1-26.

L. Chen, M. Ali Babar, and N. Ali. “Variability management in soft-
ware product lines: a systematic review”. In: Proceedings of the 13th
International Software Product Line Conference. Carnegie Mellon
University. 2009, pp. 81-90.

R. Capilla, 0. Ortiz, and M. Hinchey. “Context Variability for
Context-Aware Systems”. In: Computer 47.2 (Feb. 2014), pp. 85-87.
ISSN: 0018-9162. DO1: 10.1109/MC.2014.33.

Rogério De Lemos et al. “Software engineering for self-adaptive sys-
tems: A second research roadmap”. In: Software Engineering for Self-
Adaptive Systems II. Springer, 2013, pp. 1-32.

Andres Diaz-Pace et al. “Integrating Quality-Attribute Reasoning
Frameworks in the ArchE Design Assistant”. In: Proceedings of the
4th International Conference on Quality of Software-Architectures:
Models and Architectures. QoSA *08. Karlsruhe, Germany: Springer-
Verlag, (2008), pp. 171-188. 1SBN: 978-3-540-87878-0. DOI: 10 .
1007/978-3-540-87879-7_11. URL: http://dx.doi.
0rg/10.1007/978-3-540-87879-7_11.

Naeem Esfahani and Sam Malek. “Uncertainty in Self-Adaptive Soft-
ware Systems”. In: Software Engineering for Self-Adaptive Systems
1I: International Seminar, Dagstuhl Castle, Germany, October 24-29,
2010 Revised Selected and Invited Papers. Ed. by Rogério de Lemos
et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 214—
238. ISBN: 978-3-642-35813-5. DOI: 10 .1007/978~-3-642—
35813-5_9. URL: http://dx.doi.org/10.1007/978~-
3-642-35813-5_09.

Leire Etxeberria, Goiuria Sagardui, and Lorea Belategi. “Modelling
variation in quality attributes”. In: First International Workshop on
Variability of Software-Intensive Systems (VaMos 2007). Vol. 1. 2007,
pp- 51-59.

N. Esfahani. “A framework for managing uncertainty in self-adaptive
software systems”. In: 2011 26th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE 2011). Nov. 2011,
pp- 646-650. DO1: 10.1109/ASE.2011.6100147.

J. Floch, S. Hallsteinsen, E. Stav, et al. “Using architecture models for
runtime adaptability”. In: Software, IEEE 23.2 (Mar. 2006), pp. 62—
70. 1SSN: 0740-7459. DO1: 10.1109/MS.2006.61.

49

BIBLIOGRAPHY

[FKO5]

[Flo84]

[Fra94]

[G+04]

[GAO1]

[Gar10]

[GB09]

[GFd98]

[Gie+14]

[Gil+08]

[Gral3]

50

W.B. Frakes and Kyo Kang. “Software reuse research: status and fu-
ture”. In: Software Engineering, IEEE Transactions on 31.7 (July
2005), pp. 529-536. 1SSN: 0098-5589. por: 10 . 1109 / TSE .
2005.85.

Christiane Floyd. “A Systematic Look at Prototyping”. In: Ap-
proaches to Prototyping. Ed. by Reinhard Budde et al. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1984, pp. 1-18. ISBN: 978-3-
642-69796-8. DOI1: 10.1007/978-3-642-69796-8_1. URL:
http://dx.doi.org/10.1007/978-3-642-69796-8_1.
W. Frakes. “Systematic software reuse: a paradigm shift”. In: Pro-
ceedings of 1994 3rd International Conference on Software Reuse.
Nov. 1994, pp. 2-3. DOI: 10.1109/ICSR.1994.365817.

D. Garlan, S.W. Cheng, A.C. Huang, et al. “Rainbow: Architecture-
based self-adaptation with reusable infrastructure”. In: Computer
37.10 (2004), pp. 46-54.

Critina Gacek and Michalis Anastasopoules. “Implementing Product
Line Variabilities”. In: SIGSOFT Softw. Eng. Notes 26.3 (May 2001),
pp- 109-117.1SSN: 0163-5948. DO1: 10.1145/379377.375269.
URL: http://doi.acm.org/10.1145/379377.375269.
David Garlan. “Software Engineering in an Uncertain World”. In:
Proceedings of the FSE/SDP Workshop on Future of Software Engi-
neering Research. FOSER ’10. Santa Fe, New Mexico, USA: ACM,
2010, pp. 125-128. 1SBN: 978-1-4503-0427-6. DOI: 10 . 1145/
1882362 .1882389. URL: http://doi.acm.org/10.
1145/1882362.18823809.

Maria J. Grant and Andrew Booth. “A typology of reviews: an analy-
sis of 14 review types and associated methodologies”. In: Health In-
formation & Libraries Journal 26.2 (2009), pp. 91-108. 1SSN: 1471-
1842. DO1: 10.1111/3.1471-1842.2009.00848.x. URL:
http://dx.doi.org/10.1111/3.1471-1842.2009.
00848.x.

Martin L Griss, John Favaro, and Massimo d’ Alessandro. “Integrat-
ing feature modeling with the RSEB”. In: Software Reuse, 1998. Pro-
ceedings. Fifth International Conference on. IEEE. 1998, pp. 76-85.
Holger Giese et al. “Living with Uncertainty in the Age of Run-
time Models”. In: Models @run.time: Foundations, Applications, and
Roadmaps. Ed. by Nelly Bencomo et al. Cham: Springer Interna-
tional Publishing, 2014, pp. 47-100. ISBN: 978-3-319-08915-7. DOI:
10.1007/978-3-319-08915-7_3. URL: http://dx.
doi.org/10.1007/978-3-319-08915-7_3.

Paul Gill et al. “Methods of data collection in qualitative research:
interviews and focus groups”. In: British dental journal 204.6 (2008),
p- 291.

David E Gray. Doing research in the real world. Ed. by Jai Seaman.
Sage, 2013.

[Gri93]

[Gri96]

[Hal+08]

[Hel+09]

[HMOS]

[Hoy+87]

[HSF04]

[HVG15]

[Ish86]

[JGJIT]

[Kan+98]

[Kan90]

[KCO03]

BIBLIOGRAPHY

M. L. Griss. “Software reuse: From library to factory”. In: IBM Sys-
tems Journal 32.4 (1993), pp. 548-566. 1SSN: 0018-8670. DOI: 10 .
1147/s3.324.0548.

Martin L. Griss. Systematic Software Reuse: Architecture, Process
and Organization are Crucial. http://martin.griss.com/
pubs/fusionl.htm. 1996.

S. Hallsteinsen et al. “Dynamic Software Product Lines”. In: /[EEE
Computer 41.4 (2008), pp. 93-95.

Alexander Helleboogh et al. “Adding variants on-the-fly: Modeling
meta-variability in dynamic software product lines”. In: Proceed-
ings of the Third International Workshop on Dynamic Software Prod-
uct Lines (DSPL@ SPLC 2009). Carnegie Mellon University. 2009,
pp. 18-27.

M.C. Huebscher and J.A. McCann. “A Survey of Autonomic Com-
puting - Degrees, Models, and Applications”. In: ACM Computing
Surveys (CSUR) 40.3 (2008), p. 7.

C Graf Hoyos et al. “Software Design with the Rapid Prototyping
Approach: A Survey and some Empirical Results”. In: Cognitive En-
gineering in the Design of Human-Computer Interaction and Expert
Systems 2 (1987).

Svein Hallsteinsen, Erlend Stav, and Jacqueline Floch. “Self-
adaptation for Everyday Systems”. In: Proceedings of the 1st ACM
SIGSOFT Workshop on Self-managed Systems. WOSS ’04. Newport
Beach, California: ACM, 2004, pp. 69-74. 1SBN: 1-58113-989-6.
DOI: 10.1145/1075405.1075419. URL: http://doi.
acm.org/10.1145/1075405.10754109.

J. Hinsel, T. Vogel, and H. Giese. “A Testing Scheme for Self-
Adaptive Software Systems with Architectural Runtime Models”.
In: 2015 IEEE International Conference on Self-Adaptive and Self-
Organizing Systems Workshops. Sept. 2015, pp. 134-139. DOI: 10.
1109/SASOW.2015.27.

Kaoru Ishikawa. Guide to quality control. Tokyo, Japan: Asian Pro-
ductivity Organization, 1986.

Ivar Jacobson, Martin Griss, and Patrik Jonsson. Software Reuse:
Architecture, Process and Organization for Business Success. New
York, NY, USA: ACM Press/Addison-Wesley Publishing Co., 1997.
ISBN: 0-201-92476-5.

K.C. Kang et al. “FORM: A feature-oriented reuse method with
domain-specific reference architectures”. In: Annals of Software En-
gineering 5.1 (1998), pp. 143-168.

K.C. Kang. Feature-oriented domain analysis (FODA) feasibility
study. Tech. rep. DTIC Document, 1990.

J.O. Kephart and D.M. Chess. “The Vision of Autonomic Comput-
ing”. In: Computer 36.1 (2003), pp. 41-50.

51

BIBLIOGRAPHY

[KDO07]

[KDJ04]

[Kic+97]

[KLM96]

[KMO7]

[Kru92]

[Lan+]

[LSRO7]

[MAW17]

[McI68]

[MGA13]

52

J.O. Kephart and R. Das. “Achieving Self-Management via Utility
Functions”. In: IEEE Internet Computing (2007), pp. 40-48.
Barbara A. Kitchenham, Tore Dyba, and Magne Jorgensen.
“Evidence-Based Software Engineering”. In: Proceedings of the 26th
International Conference on Software Engineering. ICSE *04. Wash-
ington, DC, USA: IEEE Computer Society, 2004, pp. 273-281. ISBN:
0-7695-2163-0. URL: http://dl.acm.org/citation.cfm?
1d=998675.999432.

Gregor Kiczales et al. “Aspect-oriented programming”. In:
ECOOP’97 — Object-Oriented Programming. Ed. by Mehmet
Aksit and Satoshi Matsuoka. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1997, pp. 220-242. I1SBN: 978-3-540-69127-3.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore.
“Reinforcement learning: A survey”. In: Journal of artificial intelli-
gence research 4 (1996), pp. 237-285.

J. Kramer and J. Magee. “Self-Managed Systems: an Architectural
Challenge”. In: Future of Software Engineering, 2007. FOSE ’07.
May 2007, pp. 259-268. DOI: 10.1109/FOSE.2007.19.
Charles W Krueger. “Software reuse”. In: ACM Computing Surveys
(CSUR) 24.2 (1992), pp. 131-183.

Caroline Lange et al. “Systematic reuse and platforming: Application
examples for enhancing reuse with model-based systems engineering
methods in space systems development”. In: Concurrent Engineering
0, p- 1063293X17736358. D0O1: 10.1177/1063293X17736358.
eprint: https://doi.org/10.1177/1063293X17736358.
URL: https://doi.org/10.1177/1063293X17736358.
Frank J. van der Linden, Klaus Schmid, and Eelco Rommes. Software
Product Lines in Action: The Best Industrial Practice in Product Line
Engineering. Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
2007. ISBN: 3540714367.

Sara Mahdavi-Hezavehi, Paris Avgeriou, and Danny Weyns. “A
classification framework of uncertainty in architecture-based self-
adaptive systems with multiple quality requirements”. In: Manag-
ing Trade-Offs in Adaptable Software Architectures. Elsevier, 2017,
pp. 45-717.

M. D. Mcllroy. “Mass-produced software components”. In: ed. by P.
Naur and B. Randell. Garmisch, Germany, 1968, pp. 138—150.

Sara Mahdavi-Hezavehi, Matthias Galster, and Paris Avgeriou. “Vari-
ability in Quality Attributes of Service-based Software Systems: A
Systematic Literature Review”. In: Inf. Softw. Technol. 55.2 (Feb.
2013), pp.- 320-343. 1SSN: 0950-5849. por: 10 . 1016 / j .
infsof.2012.08.010. URL: http://dx.doi.org/10.
1016/j.infsof.2012.08.010.

[MHO5]

[N+07]

[0+99]

[Off+09]

[OSGO07]

[Par76]

[PBVO5]

[Pef+07]

[PM14]

[Pri93]

BIBLIOGRAPHY

Hugh McManus and Daniel Hastings. “A Framework for Under-
standing Uncertainty and its Mitigation and Exploitation in Com-
plex Systems”. In: INCOSE International Symposium 15.1 (2005),
pp- 484-503. 1SSN: 2334-5837. DOI: 10.1002/5.2334-5837.
2005.tb00685.x. URL: http://dx.doi.org/10.1002/
3.2334-5837.2005.tb00685.x.

LM Northrop, PC Clements, et al. A Framework for Software Product
Line Practice, Version 5.0. 2007. URL: http://www.sei.cmu.
edu/productlines/frame_report/index.html.

P. Oreizy, M.M. Gorlick, R.N. Taylor, et al. “An architecture-based
approach to self-adaptive software”. In: Intelligent Systems and their
Applications 14.3 (1999), pp. 54-62.

Philipp Offermann et al. “Outline of a Design Science Research Pro-
cess”. In: Proceedings of the 4th International Conference on Design
Science Research in Information Systems and Technology. DESRIST
’09. Philadelphia, Pennsylvania: ACM, 2009, 7:1-7:11. 1SBN: 978-1-
60558-408-9. DOT: 10.1145/1555619.1555629. URL: http:
//doi.acm.org/10.1145/1555619.15556209.

OSGi Alliance. OSGi Service Platform Release 4. [Online]. Avail-
able: http://www.osgi.org/Main/HomePage. [Accessed: Jun. 17,
2009]. 2007.

D. L. Parnas. “On the Design and Development of Program Fam-
ilies”. In: IEEE Transactions on Software Engineering 2.1 (1976),
pp- 1-9.

K. Pohl, G. Bockle, and F. Van Der Linden. Software product line en-
gineering: foundations, principles, and techniques. Springer-Verlag
New York, Inc., 2005.

Ken Peffers et al. “A Design Science Research Methodology for In-
formation Systems Research”. In: Journal of Management Informa-
tion Systems 24.3 (2007), pp. 45-77. DOI: 10.2753 /MIS0742~
1222240302. eprint: http : / / www . tandfonline . com/
doi/pdf/10.2753/MIS0742-1222240302. URL: http://
www . tandfonline.com/doi/abs/10.2753/MIS0742~
1222240302.

Diego Perez-Palacin and Raffaela Mirandola. “Uncertainties in the
Modeling of Self-adaptive Systems: A Taxonomy and an Example
of Availability Evaluation”. In: Proceedings of the 5th ACM/SPEC
International Conference on Performance Engineering. ICPE ’14.
Dublin, Ireland: ACM, 2014, pp. 3—14. 1SBN: 978-1-4503-2733-6.
DOI: 10.1145/2568088.2568095. URL: http://doi.
acm.org/10.1145/2568088.2568095.

R. Prieto-Diaz. “Status report: software reusability”. In: Software,
IEEE 10.3 (May 1993), pp. 61-66. 1SSN: 0740-7459. poI: 10 .
1109/52.210605.

53

BIBLIOGRAPHY

[R+12]

[Rob93]

[Rou+09]

[Roy87]

[SGP13]

[Sha03]

[Sin+04]

[STO09]

[SVBO05]

[Tar+99]

54

Per Runeson, Martin Host, Austen Rainer, et al. Case Study Research
in Software Engineering: Guidelines and Examples. 1st. Wiley Pub-
lishing, 2012. 1SBN: 1118104358, 9781118104354.

C. Robson. Real World Research: A Resource for Social Scien-
tists and Practitioner-Researchers. Blackwell Publishers Inc., 1993.
ISBN: 9780631176893. URL: https: //books . google. se/
books?id=gNO6QgAACAAJ.

Romain Rouvoy et al. “MUSIC: Middleware Support for Self-
Adaptation in Ubiquitous and Service-Oriented Environments”. In:
Software Engineering for Self-Adaptive Systems. Ed. by Betty Cheng
et al. Vol. 5525. Lecture Notes in Computer Science. 10.1007/978-
3-642-02161-9.9. Springer Berlin / Heidelberg, 2009, pp. 164-182.
ISBN: 978-3-642-02160-2. URL: http://dx .doi.org/10.
1007/978-3-642-02161-9_0.

W. W. Royce. “Managing the Development of Large Software Sys-
tems: Concepts and Techniques”. In: Proceedings of the 9th Inter-
national Conference on Software Engineering. ICSE ’87. Monterey,
California, USA: IEEE Computer Society Press, 1987, pp. 328-338.
ISBN: 0-89791-216-0. URL: http://dl.acm.org/citation.
cfm?id=41765.41801.

Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. “An Analy-
sis of Language-Level Support for Self-Adaptive Software”. In: ACM
Trans. Auton. Adapt. Syst. 8.2 (July 2013), 7:1-7:29. 1SSN: 1556-
4665. DOI: 10 .1145/2491465.2491466. URL: http://
doi.acm.org/10.1145/2491465.2491466.

Mary Shaw. “Writing Good Software Engineering Research Pa-
pers: Minitutorial”. In: Proceedings of the 25th International Con-
ference on Software Engineering. ICSE *03. Portland, Oregon: IEEE
Computer Society, 2003, pp. 726-736. 1SBN: 0-7695-1877-X. URL:
http://dl.acm.org/citation.cfm?id=776816.
776925.

Marco Sinnema et al. “Covamof: A framework for modeling vari-
ability in software product families”. In: Software Product Lines.
Springer, 2004, pp. 197-213.

M. Salehie and L. Tahvildari. “Self-adaptive software: Landscape
and research challenges”. In: ACM Transactions on Autonomous and
Adaptive Systems (TAAS) 4.2 (2009), p. 14.

M. Svahnberg, J. Van Gurp, and J. Bosch. “A Taxonomy of Variabil-
ity Realization Techniques”. In: Software: Practice and Experience
35.8 (2005), pp. 705-754.

Peri Tarr et al. “N degrees of separation: multi-dimensional separa-
tion of concerns”. In: Proceedings of the 21st international confer-
ence on Software engineering. ACM. 1999, pp. 107-119.

[TMDO09]

[VBSO01]

[VG14]

[W+12]

[Wal+03]

[Wey+13]

[Whi+10]

[WL99]

[WMO3]

[WMA10]

BIBLIOGRAPHY

R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software Archi-
tecture: Foundations, Theory, and Practice. Wiley Publishing, 2009.
ISBN: 0470167742, 97804701677438.

J. Van Gurp, J. Bosch, and M. Svahnberg. “On the notion of vari-
ability in software product lines”. In: Proceedings of the Work-
ing IEEE/IFIP Conference on Software Architecture (WICSA’2001).
IEEE. 2001, pp. 45-54.

Thomas Vogel and Holger Giese. “Model-Driven Engineering of
Self-Adaptive Software with EUREMA”. In: ACM Trans. Auton.
Adapt. Syst. 8.4 (Jan. 2014), 18:1-18:33. ISSN: 1556-4665. DOI: 10.
1145/2555612. URL: http://doi.acm.org/10.1145/
2555612.

Claes Wohlin, Per Runeson, Martin Host, et al. Experimentation in
Software Engineering. 1st. Springer-Verlag Berlin Heidelberg, 2012.
ISBN: 978-3-642-29044-2.

W.E. Walker et al. “Defining Uncertainty: A Conceptual Basis for
Uncertainty Management in Model-Based Decision Support”. In: In-
tegrated Assessment 4.1 (2003), pp. 5-17. DOI: 10.1076/1aij.
4.1.5.16466. eprint: http://dx.doi.org/10.1076/
iaij.4.1.5.16466. URL: http://dx.doi.org/10.
1076/iaij.4.1.5.16466.

Danny Weyns et al. “On patterns for decentralized control in self-
adaptive systems”. In: Software Engineering for Self-Adaptive Sys-
tems I1. Springer, 2013, pp. 76-107.

Jon Whittle et al. “RELAX: a language to address uncertainty in self-
adaptive systems requirement”. In: Requirements Engineering 15.2
(2010), pp. 177-196. 1SSN: 1432-010X. DO1: 10.1007/s00766~
010-0101-0. URL: http://dx.doi.org/10.1007/
s00766-010-0101-0.

David M. Weiss and Chi Tau Robert Lai. Software Product-line En-
gineering: A Family-based Software Development Process. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999.
ISBN: 0-201-69438-7.

Rebecca Wirfs-Brock and Alan McKean. Object design: roles,
responsibilities, and collaborations. Addison-Wesley Professional,
2003.

D. Weyns, S. Malek, and J. Andersson. “FORMS: a formal refer-
ence model for self-adaptation”. In: Proceeding of the 7th interna-
tional conference on Autonomic computing (ICAC ’10). New York,
NY, USA: ACM, (2010), pp. 205-214.

55

[WMA12]

Danny Weyns, Sam Malek, and Jesper Andersson. “FORMS: Unify-
ing Reference Model for Formal Specification of Distributed Self-
adaptive Systems”. In: ACM Trans. Auton. Adapt. Syst. 7.1 (May
2012), 8:1-8:61. 1SSN: 1556-4665. DOI: 10 . 1145/ 2168260 .
2168268. URL: http : / /doi . acm. org/ 10 . 1145/
2168260.2168268.

