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Abstract

Partitioning temporal networks 

Axel Lindegren

Many of the algorithms used for community detection in temporal 
networks have been adapted from static network theory. A common 
approach in dealing with the temporal dimension is to create multiple 
static networks from one temporal, based on a time condition. In this 
thesis, focus lies on identifying the optimal partitioning of a few 
temporal networks. This is done by utilizing the popular community 
detection algorithm called Generalized Louvain. Output of the 
Generalized Louvain comes in two parts. First, the created community 
structure, i.e. how the network is connected. Secondly, a measure 
called modularity, which is a scalar value representing the quality 
of the identified community structure. The methodology used is aimed 
at creating a comparable result by normalizing modularity. The 
normalization process can be explained in two major steps: 1) study 
the effects on modularity when partitioning a temporal network in an 
increasing number of slices. 2) study the effects on modularity when 
varying the number of connections (edges) in each time slice. The 
results show that the created methodology yields comparable results 
on two out of the four here tested temporal networks, implying that 
it might be more suited for some networks than others. This can serve 
as an indication that there does not exist a general model for 
community detection in temporal networks. Instead, the type of 
network is key to choosing the method.
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Populärvetenskaplig sammanfattning
Inom nätverksteori är det av intresse att hitta så kallade communities (grupperingar
eller kluster). De definieras vanligen som en samling aktörer inom nätverket som är
starkare kopplade till varandra än vad de är till andra aktörer i nätverket genom så
kallade kontakter (edges). Målet med att hitta grupperingar är kunna göra obser-
vationer om det studerade nätverket, exempelvis identifiera kärngrupperingar (com-
munity detection). Inom sociala nätverk, till exempel Facebook-nätverk, kan det
exempelvis vara av intresse att se hur information sprids. För att identifiera detta
krävs då att man kan finna de specifika grupper som agerar och framförallt skapar
och sprider information. Tidigare har man vanligtvis modellerat sociala nätverk med
hjälp av så kallade statiska nätverk. Dessa förändras inte över tid vilket leder till att
identifiering av utveckling är problematiskt. Av detta skäl myntades den nya forskn-
ingsgrenen tidsnätverk (temporal networks). Inom tidsnätverk är målet ofta likaså
att identifiera grupperingar men till skillnad från statiska nätverk innehåller de en
tidsdimension. Därav anses tidsnätverk i mindre utsträckning förenkla verkligheten
än vad statiska nätverk gör. De är således en fördjupning inom forskningsfältet
nätverksteori. De algoritmer som används inom tidsnätverk är emellertid hämtade
från det äldre forskningsfältet statiska nätverk. Med anpassningen till en mer kom-
plex nätverksuppfattning har det även följt problem: Hur ska tid hanteras?

Förenklat går det att säga att det finns tre övergripande typer av metoder som
används vid identifiering av grupperingar. Den första innefattar att man reducerar
tidsnätverken till ett statiskt nätverk men försöker att bibehålla en del av tidsdi-
mensionen genom att lägga till så kallade vikter (weights). Dessa fungerar som
en indikator på intensiteten av kontakterna mellan aktörerna i nätverket. Därefter
appliceras en algoritm från statisk nätverksteori som har blivit modifierat något.
Den andra metoden innebär att tidsnätverket delas in i så kallade tidsfönster (time
slices eller time windows), varefter man sedan analyserar dessa med algoritmer från
statisk nätverksteori. Målet är då att hitta grupperingar som är någotsånär lika från
ett tidsfönster till ett annat. Argumentet är då att grupperingarna uppvisar en viss
utveckling. I den tredje och sista övergripande metoden delar man upp tidsnätverk
på samma sätt. Skillnaden ligger i hur grupperingarna identifieras. Alla tidsfön-
ster har en koppling till varandra, ordnade efter tid, vilket påverkar vilka typer av
grupperingar som hittas. Alla ovan nämnda metoder för att identifiera grupperingar
inom tidsnätverk delar ett gemensamt problem, nämligen hur tidsnätverket ska de-
las upp. Eftersom forskningsfältet är nytt ligger mycket av dess fokus på att försöka
skapa nya algoritmer snarare än att lösa detta grundläggande problem. Vidare är
det svårt att säga varför identifieringen och avgränsningen av en viss gruppering
bättre relaterar till något objektivt påvisbart än en annan avgränsning. Forskn-
ingsfältet är således subjektivt och resultat påverkas av vilken typ av algoritm som
används samt vilket nätverk som studeras.

Inom den ovan sistnämnda övergripande metoden är algoritmen Generalized Louvain
ett populärt val för att identifiera grupperingar. Generalized Louvain traverserar ett
nätverk och maximerar en kvalitetsfunktion. Mätvärdet kallas för modulairtet och
avser beskriva hur modulärt eller "välanpassad" en viss gruppering är. Mätvärdet
är en skalär mellan -1 och 1. Det är beroende av hur många aktörer och kopplingar



som existerar. Ett underliggande problem med modularitet är dock att det inte
är jämförbart från ett nätverk till ett annat. Problemet ligger i att varje gång ett
nätverk har blivit uppdelat i tidsfönster kan det anses bilda ett "nytt" nätverk. Ex-
empelvis kan ett tidsnätverk delas upp i fem respektive tio tidsfönster vid två olika
tillfällen. Vid applicering av algoritmen kommer då den resulterande modulariteten
att vara olika i dessa båda fall. Detta är en konsekvens av att många kopplingar
mellan aktörer kommer att brytas upp, samt att andra skapas. Således kommer
den slutgiltiga övergripande grupperingen att se annorlunda ut. Vidare kommer det
skalära värdet modularitet att vara baserat på olika antal aktörer och kopplingar
tidsfönsterna sinsemellan. Av detta skäl skapades en normaliserad version av mod-
ularitet genom en ingående studie i Generalized Louvain. Studien resulterade i att
det gick att påvisa att en jämförbar modularitet hade uppnåtts vid två av de fyra
tidsnätverk som studerades. En möjlig förklaring till att tydliga resultat inte kan
hittas i alla nätverk kan vara att det beror på tidsnätverken själva. Exempelvis
är det en möjlighet att vissa topologiska förhållanden inom nätverket påverkar al-
goritmen och i förlängning, resultaten. Förslag till vidare forskning är således att
studera hur nätverkets beståndsdelar kan påverka ett mätvärde av denna typ. Vi-
dare kan det vara av intresse att skapa ett likande mätvärde baserat på en av de
andra övergripande metoderna för identifiering av grupperingar inom tidsnätverk.
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Abbreviations and definitions

Actor Vertex in a graph. In a social network, the actors are
the people which interact within it.

Clique An all-to-all connected community.

Degree The degree of a node is the number of edges connected
to it.

Edge The interaction or contact between two actors.

Horizontal community A community that spans multiple time slices (often
all).

Layer A time slice. Layer is the more general term when
operating with multiplex or multilayer network. Time
slice is temporal network specific.

Multilayer network A network which is comprised of multiple layers.
Each layer can represent some type of environment,
e.g. if one layer is a school network, another could be
a football team network. The full network would then
be both of the afore mentioned networks, divided into
different layers, sharing a large set of the same actors.

Multiplex network A type of multilayer network. In a multiplex network
all actors are replicated in all layers.

Node Time slice specific actor.

OGL The Ordered Generalized Louvain.

Singleton A community consisting of only one node (Bazzi et al.
2014).

UGL The Unordered Generalized Louvain.



1 Introduction
For the last few decades, the empirical study of social networks has been a popular
field, especially with the growth of social media. For example, Yogeeswaran et al.
(n.d.) studied the Twitter network of the top five presidential candidates — with
focus towards Donald Trump and Hillary Clinton — for the election in the US in
2016. The data was collected for a total of 9 weeks, 4 weeks prior and 4 weeks
post-election. The goal of the study was to see if there were decidedly more people
connected to leaders or followers of American hate groups whose networks coincided
with any of the candidates’. Using network theory, and other means, they could
conclude that there was a significant number more strongly connected to Donald
Trump than to the other candidates.

The study of large networks, social and other types, requires tools, many of which
have been adapted from graph theory. In its most reduced form, a network can be
seen as a graph. The graph is built of a set of nodes, which represent entities in
the network, such as people in a social network, and a set of edges, connecting the
nodes as a form of contact or interaction. A network graph can also be weighted
or unweighted (Bazzi et al. 2014). This indicates the intensity of the interaction
between two nodes, compared to the network as a whole. Networks can also be con-
sidered to be static or dynamic. The former type implies that the network does not
change its structure over a set condition, whereas dynamic networks do. A temporal
network is a type of dynamic network, where the network structure changes over
time. This causes a number of different problems whilst trying to study it using
algorithms from the well developed field of static networks. As mentioned before, a
static network graph can be depicted by nodes which are connected by edges. The
difference to a temporal network is that the edges (contacts) may not be present
at all times. The general goal of studying temporal, instead of static, networks is
avoiding the significant simplification that a static representation of such a network
imposes.

As an example, think of a small social network of three people, person A, B and
C. If A interact with B at time t1 and B interact to C at time t2, then both of the
two edges (contacts/interactions) are not active at the same time. Compare this
to a static network where the edges always are present, meaning that the network
does not change. In a temporal network the edges are extended to contain a time t,
showing when the edge was active. Since the emergence of social media, the study
of social networks has seen an ever increasing interest as a field of study. There
are also other types of networks worth mentioning, for example technological and
biological networks. They will not be actively treated in this thesis, but temporal
networks of such composition use the same theoretical framework.

1.1 Problem statement
An ever prominent challenge when studying temporal networks is the definition of
time. For some sociotemporal networks, such as a network where the population
exchanges emails, the aspect of time is quite straight forward, i.e. the time when
an email is sent or received. In contrast, other temporal networks can have con-
tacts taking place over a time period. An example of such a network is one with
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meetings between individuals. A meeting can then be described with a time interval.

Often when studying temporal networks, the goal is to find or detect meso-scale
structures. These can be described as non-random occurring groups of actors, often
referred to as communities. Communities are commonly defined as clusters or sub-
graphs of densely connected actors in a network (Fortunato 2010; Bazzi et al. 2014;
He et al. 2017). Several algorithms have been developed for community detection
in static networks. However, many possible application areas contain a temporal
dimension. With temporal networks, one tries to reduce the simplification which
lies in static networks. Following such an argument, there are several applications
for community detection in temporal networks: one-to-many information spreading
through social media like Facebook (Zhao et al. 2010) or Twitter (González-Bailón
et al. 2011), neuroscience (Bassett et al. 2010), ecology (Holme & Saramäki 2011),
among others. While all of these are not social networks, it is important to mention
the wide area of application of temporal networks.

A few main approaches have been used in the later years to detect communities
in temporal networks (Bazzi et al. 2014; Holme 2014). The first includes construct-
ing a static network by aggregating contacts from a temporal network. By using
weights on the edges, the created static network contained more information than
a regular static network. A second way of attacking the problem is to use commu-
nity detection algorithms developed for static networks on multiple partitions of a
temporal network. Then from each of the partitions (or aggregations), one tries to
match the communities found, identifying communities spanning some time interval.
The third way entails similarly aggregating parts of a temporal network into slices
(or layers) of a multilayer network. While this share similarities with the second
approach, the main difference is that the slices or layers are connected, creating a
type of dependency (Bazzi et al. 2014). The two latter, and arguably more promis-
ing, above mentioned strategies of community detection share a prominent feature
in common; the partitioning of a temporal network. However, it is not abundantly
clear as to how the aggregation affect the final outcome of the community detection
algorithm.

Formally, a temporal network can be defined as a network where edges have time
annotations, which are based on an ordered set of times T . While in general, one
can think of time being continuous, and maybe even unbounded on one or both
sides, the focus of this thesis is on temporal networks that can be represented and
processed using computers. Following that argument, consider a discrete, lower-
and upper-bounded set T = {tmin, t2, . . . , tmax}, with ti < tj∀i < j. The annotation
ti here represents a time or timestamp. In some cases one can also assume that
ti+1 − ti = tj+1 − tj, for all i and j — that is, both ordinal and interval attribute
types are allowed.

Sometimes it is practically useful to transform T into a coarser set T ′, so that a
larger number of edges is present at each timestamp. This operation is called slic-
ing. For example, if we have a set T where each element t ∈ T corresponds to one
minute, one can aggregate groups of 60 timestamps so that every t′ ∈ T ′ corresponds
to one hour. The objective of slicing is typically to have enough edges associated to
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each slice, so that existing network analysis algorithms can be applied slice by slice.

Figure 1 shows an example of a temporal network. The actors are annotated with
A ∈ {1, 2, 3, 4, 5} and are connected with edges (black lines). Each edge have some
time points, indicating when it was active, i.e. when two actors had a contact. Run-
ning a static community detection algorithm on the network in figure 1 does not
work. The extra information of a set of times when the edges were active cannot be
properly handled by a such an algorithm. What is possible though is to aggregate
an ordered series of networks, i.e. slicing the temporal network, based on some time
condition. Figure 2 shows the hypothetical result of partitioning a network into three
static networks, and then applying a community detection algorithm. Communities
can then be visualized as in the figure, some actors are in community 1, while the
others are in community 2. Continuing the argument, figure 3 represents hypo-
thetical results of running the same community detection algorithm on the same
temporal network (shown in figure 1). The hypothetical results yield a different
number of communities and internal community structure. The only difference is
that the network has been partitioned into four static networks instead of three.
The goal is then to decide which partition is better, based on the quality of the
found communities. As a real-life example, one can think of the network in figure
1 as a family of five individuals, where some of the family members talk or interact
more often than others. In such a case, a community detection algorithm will most
likely find a community within the network, i.e. find the family members that talk
more often to each other. In a sense, the community is then based on the frequency
of the interaction in time. That being said, if the input is different, i.e. if the tem-
poral network is partitioned differently, the community detection algorithm might
find other communities yet again. This is a consequence of partitioning a temporal
network, to enable for a current community detection algorithm to be applied.

For one of the two above mentioned temporal community detection approaches,
the quality of the found communities is described as a scalar value between -1 and
1 where higher is better. That the measure is scalar, and dependent on the network
of study, implies that it is not feasible to compare one networks qualitative measure
to another networks. In extension, this implies that when a temporal network has
been sliced differently twice, e.g. into 3 and 4 slices at separate times (like figure 2
and 3), the output of the algorithm cannot be compared. Normalizing a measure of
this type, i.e. making it comparable, is then paramount in deciding which of the two
partitions is better. As an example of this problem from previous research, He et al.
(2017) partitions a network into multiple layers according to the Moore visualization
method. They create different partitions of the same network which overlap heavily
and then apply their community detection algorithm. This implies that they do not
know of an optimal partition for their studied networks, thus the reason for testing
different settings.

As a result of this inconclusiveness, it is of importance to study the effect of partition-
ing temporal networks. The goal is then to find an optimal, or at least measurably
better, partition. Creating a good measure is key to understanding how a community
detection algorithm might be affected by partitioning temporal networks. This will
be done by taking a few temporal networks as input and applying a modified com-
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munity detection algorithm which utilizes partitioning, to decide where in time the
split should be done. The output will then be a specific number of wanted partition
for each temporal network individually, but is retrieved from the attained commu-
nity structure, i.e. the original output from the community detection algorithm.
This could further the research of temporal networks, aiding in other applications
than social temporal networks alone.

Figure 1: A temporal network consisting of actors A ∈ {1, 2, 3, 4, 5} and edges.
Edges are annotated with discrete time, indicating when a contact between two actors
happened.

Figure 2: Toy results of running a community detection algorithm on the network
in figure 1, after is has been partitioned into 3 slices.
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Figure 3: Toy results of running a community detection algorithm on the network
in figure 1, after is has been partitioned into 4 slices.

1.2 Thesis purpose
The purpose of this thesis is to research the effect of partitioning temporal net-
works, with the intention of finding an optimal aggregation in comparison to previ-
ous research using a community detection algorithm. The algorithm will be decided
through a literature review of the state-of-the-art research in community detection
in temporal networks, with the intention of choosing a popular algorithm that takes
partitioned temporal networks as input.

1.2.1 Research questions

The purpose of this thesis can be summarized in the following research questions:

What is state-of-the-art in community detection in temporal networks?

Which algorithm is the best fit for optimizing a partitioning method for tem-
poral networks?

What is an optimal partition of a temporal network?

1.2.2 Limitations

As a consequence of the scope of this thesis, a few limitations will be introduced to
limit the field of study. First, the state-of-the-art section will group community de-
tection techniques into the three mentioned approaches in section 1.1. Secondly, the
thesis focus will be to continue exploring the limitations of one of the surveyed tech-
niques, as part of one approach. Thirdly, only unweighted and undirected networks
will be considered.

2 State-of-the-art in temporal networks
In this section, definitions used in temporal network theory will presented under
collected definitions and the three common approaches for community detection
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will be described. This was done as to survey the relatively new field of temporal
networks, where the jargon remains fluid or indecisive.

2.1 Data models
Recall the formal definition of a temporal network and the operation of slicing a
temporal network from 1.1. In literature, time slices have been called in different
ways in the literature: Holme (2014) describes time windows which are aggregated
contacts (edges) over some time period, while Wang et al. (2016) use the term
snapshots. Here, all afore mentioned versions will be seen as synonymous. Formally,
when given a set T , that can also be the result of slicing, one can then make a
distinction between two types of time annotations:

A set of points in time (P), each defined by an element t in T .

A set of time intervals (I), each defined by a pair of elements ti, tj in T .

While edges must have some kind of time annotation in temporal networks, actors
may have no time annotation (N), which practically corresponds to the interval
[tmin, tmax] indicating that all actors are always present.

Table 1 shows which combinations of time annotations that are meaningful for ac-
tors and edges, leading to five main types of temporal network models. The relevant
combinations are numbered 1 to 5 below.

Table 1: Main types of temporal network data models. If both actors and edges are
associated with time (*), the edges’ recorded times are constrained by their actors’
recorded times, that is, an edge cannot be associated to a time that is not associated
to both its actors.

Actors
Edges N P I

N Not temporal Yes Yes
P Not consistent Yes* Not typical
I Not consistent Yes* Yes*

The following are examples of the types of temporal networks in Table 1.

1. Actor (N), Edge (P): Email, forums, and other online communication networks
where the users are always considered potentially active. This is the most
popular format for raw network data.

2. Actor (N), Edge (I): Face-to-face contacts, with discussions spanning a time
interval.

3. Actor (P), Edge (P): This is typically used when elements of T correspond
to long periods of times, e.g., after slicing. For example, a set of daily email
networks.
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4. Actor (I), Edge (P): Actors who are on-line on a social media platform "liking",
"re-tweeting" or similar, where the actors’ on-line time are being recorded as
well as the time of the operation.

5. Actor (I), Edge (I): Workshop, conference or similar, where both the actors’
time spent at the event as well as their social interactions (edge) times are
recorded.

Formally, there is no need for any special data model for sliced temporal networks.
An Actor (P) Edge (P) model works both for sliced networks and networks with finer
timestamps. However, a practical difference can be identified between data where
the networks at each timestamp t are very sparse and data inside some timestamps
where we have enough active edges to be able to observe some community structure.
This difference is important because the two cases are typically handled by different
types of algorithms.

2.1.1 Visualizing temporal networks

One way to represent a temporal network, which works for all types of data models,
is to draw the network and specify time annotations on its actors and edges. An
example of a temporal network visualized in this way is shown in Figure 4. Table 1
can then serve as an indication of how temporal networks can be represented. Any
of the possible combinations — motivated above — of time annotations can be used.

Figure 4: Overall visual representation of a temporal network. The different time
annotations associated with edges can be thought of as either point time (P) or
interval time (I). Following the statement above, actors cannot have point times
(P) associated with them and can therefore only be associated with no time (N) or
interval time (I).

Contact sequences are another way of modeling a temporal network, as in figure
5. This format encapsulates the same information as the time-annotated network
graph, but can be useful to understand the different types of community that can
exist in a temporal network. At the same time, this visualization does not work well
in general if too many edges have the same timestamp (Holme 2014).
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Figure 5: An alternative graphical representation of a temporal network. Each black
vertical line serves as an interaction or contact (Holme 2014) between two actors at
a given time. Notice contact labeled as A. The curvature indicates that actor 2 is
not included in the contact. Compare that to contact B, which spans actor 1, 2 and
3. This indicates that all three actors have some interaction at the same time.

Another way of representing temporal networks is to show the actors and edges that
are active at each timestamp. This representation, shown in Figure 6, is typically
meaningful only when enough edges are active inside the same timestamp. There-
fore in the figure, a network that has already been divided into slices is presented,
each time slice corresponding to a set of consecutive timestamps.

Figure 6: Visual representation of a temporal network where the network has been
partitioned into time slices or snapshots. Each time slice only includes the edges
(and attached actors), which were active in a given interval [ti, tj]. In this example,
the time slices are evenly partitioned, i.e. the time intervals span the same number
of discrete points in time or time intervals.

2.2 Definition of temporal community
There seems to exist an overall consensus in current temporal network literature
that the definition of a community is a variation of: "A community — cluster, sub-
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graph, module — in a network is a set of nodes more tightly — densely, strongly
— connected to each other than they are to the rest of the nodes outside of the
community" (Fortunato (2010); Bazzi et al. (2014); He et al. (2017); Kuncheva &
Montana (2015); Wang et al. (2016)). Interestingly enough, only a few authors try
to discuss the core of the definition, namely the part about "densely, strongly or
tightly connected". Bazzi et al. (2014) argue that it is difficult giving a precise defi-
nition of what densely connected means. What they do conclude though, is that the
definition is subjective and in particular, may depend on the proposed application.

In this section, an attempt will be made as to define what types of communities
exist in the literature. In fact, while most researchers seem to be in agreement
regarding the loose definition of what a community is, existing algorithms produce
different structures. While the line between the definition of community and a com-
munity type sometimes feels more philosophical than factual, this section is aimed
at shedding some light on the current situation. The different types of communities
are presented in the list below.

1. Actor-only (Ao). This type of community has no temporal annotation. In this
case we assume an underlying stable division of the actors into communities,
that one can identify based on their timed interactions. The community itself
is persistent through time and the actors in the community do not change.
Mathematically, this community type can be represented as a set of actors:
{a1, . . . am}

2. Actor-static (As). An actor static community can be represented mathe-
matically as the cross product of a set of actors A and one time interval:
{a1, . . . an} × [ti, tj]. Ao communities are a special case of As communities,
where [ti, tj] = [tmin, tmax]

3. Actor-varying (Av). This type of community can be mathematically repre-
sented as a set of time-reachable triplets { ( a1, t

min
1 , tmax

1 ), . . . , ( am, t
min
m , tmax

m ) }.
Time-reachability means that it is possible to go from each triplet in the set
to every other triplet through a set of steps ( ai, t

min
i , tmax

i )→ ( aj, t
min
j , tmax

j )
so that the intersection between [tmin

i , tmax
i ] and [tmin

j , tmax
j ] is not empty. Av

communities may contain different actors at different times, and the same ac-
tor can be active inside disjoint time intervals if it is present in more than one
triple. An As community is a special case of an Av community where tmin

i and
tmax
i are the same for each actor ai in the community.

Figure 7 shows how the three types of communities defined above look like:

Community 1 (C1): The first community in Figure 7 is what has been defined
as an actor only (Ao) community.

Community 2 (C2): This community is an actor static (As) type. The differ-
ence to C1 above is that the time interval is a subset of the full recorded time
in the temporal network.

Community 3 (C3): Shows an actor varying (Av) community type. The com-
munity is still considered to be the same, even though the two "original" actors
(actor 7 and 8) have left it at the end.
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Figure 7: Graphical representation of the three main types of communities. Com-
munities are shown as a dense region of contacts between actors. To make the figure
more understandable, only contacts in community 2 (C2) are shown as an example.

Apart from their external shape, it is also possible for communities to have specific
internal time patterns: inside a community one can find denser interactions at spe-
cific times. As an example, a group of students may work together during a course,
forming a community for the whole duration of the course, and during this time
students interact more with each other during the day, or every Monday morning in
case they have weekly meetings, etc.

2.3 Temporal community structure
It is important to clarify the difference between a community and a community
structure. A community is defined as one of the cases in the section above. A
community structure is a set of communities. This section is further divided into
three subsection, each describing one type of community structure. These are not
always mutually exclusive, but will be treated so here as a consequence of the scope
of this thesis.

2.3.1 Dynamic community structure

Sometimes, instead of only having a set of communities one may also want to identify
the relationships between them. In particular, two or more communities can be
connected by events of type: grow, shrink, merge and split. There are various
definitions in the literature related to dynamic communities. He et al. (2017) define
a dynamic community as a time line of several "step communities", ordered by
time (see Figure 8). A "step community" is a community in each time step, which
here is considered to be synonymous with a time slice. Wang et al. (2016) describe
community evolution in terms of a small set of core vertices. For instance, when
two successive communities share a common core vertex but possibly more vertices
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overall, then the second community (from a temporal point of view) is considered as
an evolved version of the first. Wang et al. (2016) definition of evolving communities
is here interpreted as dynamic communities.

Figure 8: Dynamic communities (represented by D1 to D4), with step communities
(represented by C1,1 to C3,3), for each given time step t. He et al. (2017)

2.3.2 Overlapping community structure

A feature of temporal networks is that actors can exist in more than one community
at the same time. This definition has an intuitive explanation in real-life. As indi-
viduals, we are more often than not associated with multiple social groups, which
is also the motivation behind overlapping communities. As in real-life, many social
group can, for example, partly share the same individuals (Wang et al. 2016). Take
three friends who play in the same football team and go to school together as an
example. If the football team and the school are communities, then the three friends
are what makes the communities overlap.

There are two ways of defining an overlapping community structure. First, ac-
tors can exist in two or more communities at the same time, i.e. communities are
time overlapping (mathematically represented in equation 1). Figure 9 shows a time
overlapping community structure. Secondly, actors can exist in two or more commu-
nities at different times. Communities are then actor overlapping. This is formally
defined mathematically as one actor existing in two or more communities at two
or more time points. The base case of two different time points and two different
communities are shown in equation 2 and 3. Lastly, it is important to clarify that
actors can exist outside of a community. All actors do not have to be partitioned
into communities (shown in equation 4).

(a, t) ∈ c1 ∩ c2 ∩ ..., ∩ cn (1)

(a, t ) ∈ ci (2)
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(a, t′) ∈ cj i 6= j (3)

(a, t) ∈ ∅ (4)

Figure 9: A special feature of temporal networks is that actors can exist in multiple
communities at the same time. Actor 1 and two are here present in both C4 and C5
over the time period of the communities intersect.

2.3.3 Hard partitioned community structure

Bazzi et al. (2014) describes what they call hard partitioned communities. A hard
partitioned community is when an actor only can be subject to one community at any
given time. Another way of describing hard partitioned communities is presented by
Kuncheva & Montana (2015), who defines a community which is limited to one layer
(here interpreted as a time slice), as a non-shared community. A difference between
hard partitioned community and non-shared, is that a non-shared cannot exist in
the following time slice. Therefore, a non-shared community can arguably be though
of as a discretization of a hard partitioned community structure. This implies that
a non-shared community can be represented as a hard partitioned community which
has, in turn, been discretized into time slices. It is therefore a generalization of a
hard partitioned community. Kuncheva and Montana continue describing a shared
community, which is a community that exist in multiple time slices, i.e. a hard
partitioned community.

2.4 State-of-the-art approaches for community detection
In this section, an attempt will be made to make a brief classification of state-of-
the-art approaches for community detection in the field of temporal network mining.
The approaches are divided into three major approaches: 1) Two step approach; 2)
Generative models; 3) Null models. As mentioned in section 1.1, the two latter
mentioned approaches have one thing in common: the temporal network used as in-
data has to be partitioned. Furthermore, they imply an arguably lesser simplification
than the first mentioned approach. Each approach will be presented briefly in the
following sections, respectively.

2.4.1 Two step approach

The two step approach, is based on the thought that every temporal network can be
partitioned into time slices. The first step of the approach, disregarding the actual
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partitioning, is to find communities in each time slice, often using some community
detection algorithm borrowed from static network theory. The second step is to
map the communities across the time slices according to some principle.Wang et al.
(2016) Similarity indices are often used in this step. The belief behind a similarity
index is that if two communities in different adjacent time slices are similar enough
(with some ratio), they can be considered as a dynamic temporal community. For
example, He et al. (2017) uses the Blondel method for detecting communities in
each time slice.

2.4.2 Generative models

Generative models are often based on a combination of Stochastic Block Model and
a dynamic system. These approaches represent a temporal network as a sample of
a dynamic generative model. Generative models are designed to emulate statistical
behavior in networks, e.g. degree distribution, which can then be used for validating
analysis Tantipathanananandh & Berger-wolf (n.d.). The popularity of the stochas-
tic block model came from its wide use in static network community detection, and
a lot of attention has been put into adapting it to temporal networks (see Guo et al.
(2007); Xu et al. (2014); Matias & Miele (2017) ) A major underlying assumption
of the stochastic block model is that each node i of a network belongs to one of
K-hidden communities with some probabilities. The goal of using a stochastic block
model is to find a benchmark for finding "real" communities in the studied dataset.
Tang & Yang (2014) describe an extensive approach using stochastic block modeling
as a base. They built their approach on Yang et al. (2011) presented approach for
community detection in 2011.

2.4.3 Null models

Null models are created to study different topological relationships within a temporal
network. Generating a null model can be done in multiple ways, and each way
correspond to a different fundamental constraint. The constraint itself depends on
the system and type of analysis that is to be done (He et al. 2017). Null models
are often used in conjunction with a modularity function. The idea is to optimize
the modularity function, which includes comparing the actual connections (edges)
in a network to the connections produced by a random graph (null model). The
communities are then the set of nodes that are more densely connected than would
otherwise be expected from the comparison to the null model (Sarzynska et al.
2014). A popular choice of null network is the Newman-Girvan null network. It
is generated by randomizing edges in the studied network with the constrain that
each edge (or vertex) has the same degree as in the original network (Bazzi et al.
2014). One popular approach for community detection in temporal networks is called
the Generalized Louvain. The original version (called the Louvain) was created
by Blondel et al. (2008) for static community detection. It was later adapted for
multilayer — which a temporal network can be represented as — by Mucha et al.
(2010). The generalized version of the algorithm applies an adapted version of the
Newman-Girvan null model for multilayer networks.
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2.5 Summary table of approaches for community detection
The community definitions and community structures used in the table are defined
in section 2. Notice that the actor static, time static community type (Ao) has been
excluded. This is a result of the definition being a static network community.

Table 2: This table provides an overview over which approaches, models and defini-
tion of community an article includes.

Article Data model Approach Community
type

Community
structure

He et al.
(2017)

Time slice Blondel for
communities
in time slices.
Jaccard index
for matching
across slices

Av Hard parti-
tion

Tang & Yang
(2014)

Time slice Stochastic
block model
(heavily
extended)

As Hard parti-
tion

Xu et al.
(2014)

Time slice Evolutionary
clustering

As Hard parti-
tion (Over-
lapping in
certain cases)

Sarzynska
et al. (2014)

Time slice Null model /
modularity

Av Hard parti-
tion

Wang et al.
(2016)

Time slice Nonnegative
matrix factor-
ization

As Overlapping

Kuncheva
& Montana
(2015)

Point time Random walk Av Hard parti-
tion
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3 Methodology proposition
In section 2.4 the three main approaches for temporal community detection are pre-
sented. Most of the algorithms grouped into any of the three approaches often yield
different results, i.e. they find different communities, when applied on the same
network. However, the communities found is not what ties them together. Their
adhesive is the act of partitioning temporal networks to achieve a data model that
a community detection algorithm can be used on. Therefore, it is not necessarily
the approach it self that is important for this thesis, but rather a measurable com-
munity structure that emerges from any of the state-of-the-art community detection
approaches. A measure can thus help in researching the effect partitioning a tem-
poral network and in extension, optimize it. Thus one has to study the impact of
the different approaches. However, within the scope of this thesis, it is not feasible
to test more than one. For practical reasons this has led to the choice of the pop-
ular algorithm the Generalized Louvain. It’s characteristics and inner workings is
presented more in detail below.

This section consists of four subsection. The first describe the two used partitioning
methods in this thesis. The second gives a detailed explanation of the Generalized
Louvain, its adapted version for temporal networks and a proposed method for test-
ing the validity of said adaptation. Thirdly, a measure is proposed for comparing
different partitions of temporal networks. This measure is based on two underly-
ing assumptions further explained in section 3.3.1. Lastly, a summary table of all
proposed tests for this study are presented.

3.1 Partitioning methods
In this section, two partitioning (slicing) methods of aggregating a temporal network
into time slices are presented. Using different methods when aggregating a temporal
network into time slices have potential to yield different results when applying the
same community detection algorithm on the different aggregations. For example,
He et al. (2017) uses the so called Moore’s Visualization Method, which implies a
certain overlap of time slices. They try out a few different settings, which yield
different results. The partitioning method they use is not studied here, as it does
not comply well with the Generalized Louvain.

Let figure 10 represent a base for visualizing how the two partitioning methods
function. Each method will then be visualized in their respective section.
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Figure 10: Visual representation of a temporal network.

3.1.1 Equal time

Partitioning a temporal network based on equal time implies that the full set of times
T in the network is split as evenly as possible. The edges are then aggregated into
time slices (layers) of a multilayer network. Partitioning the toy network in figure
10 yields the results displayed in figure 11, if assuming that the time is ordinal. In
the setup of figure 11, time slice 1, 2 and 3 contain, 5, 4 and 3 edges respectively.
Notice that some edges have two timestamps, implying that it is in fact two edges,
i.e. edge (A1, A2, t1) and (A1, A2, t3) in time slice 1.

Figure 11: Visual representation of applying time partitioning on the network in
figure 10.

3.1.2 Edge density

When a temporal network has been partitioned using edge density, the split is based
on aggregating an equal amount of edges in each time slice. This is done by ordering
the edges according to ordinal time, then aggregating them in a specified number of
time slices. When partitioning in such a way, the overall edge distribution in each
time slice is as even as possible. In comparison, when aggregating using equal time,
the edge distribution is seldom as even as when aggregating using edge density. As
an example, figure 12 shows the result of aggregating the temporal network displayed
in figure 10 using edge density into 3 time slices. In the example of figure 12, all
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time slices contain 4 edges. The difference between the two partitioning methods
for this small example is apparent, which implies even more noticeable differences
for larger networks.

Figure 12: Visual representation of applying edge partitioning on the network in
figure 10.
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3.2 Generalized Louvain
The version of the Generalized Louvain used in this thesis is a C++ multilayer im-
plementation of the "GenLouvain" created by Jeub et al. (2011-2017) for Matlab.
The algorithm was created for community detection in multilayer networks and de-
fines a quality function in terms of a generalized modularity null model framework.
In turn, the Generalized Louvain applies a two-step approach similar to that of the
original Louvain (see Blondel et al. (2008)). Furthermore, the algorithm utilizes
an adjacency matrix for creating a matrix representation of a multilayer network.
The goal of the algorithm is to maximize the modularity calculated by some qual-
ity function, which in this thesis is a multilayer generalization of Newman-Girvan
modularity, denoted by the authors Qmultilayer (Mucha et al. 2010).

The already implemented C++ version of the Generalized Louvain was further
adapted, according to Jeub et al. (2011-2017) Matlab code, to work on ordered
multilayer networks, i.e. sliced temporal networks. In this thesis, the earlier ver-
sion will be denoted Unordered Generalized Louvain (UGL), and the later version
Ordered Generalized Louvain (OGL). A special subset of multilayer networks are
here used to represent temporal networks, called multiplex networks. In multiplex
networks, all actors are present in all layers, even in the layers where they have no
edges. In this section, the adjacency matrix and modularity will be presented and
explained respectively.

3.2.1 Adjacency matrix

In multilayer networks, the adjacency matrix is often called a supra-adjacency ma-
trix. It specifies both the intra-layer adjacencies between nodes and the between
layer couplings (inter-layer edges). The intra-layer adjacency matrix specifies which
nodes are connected within a layer. If node n1 and n2 are connected, the adja-
cency matrix A will have a value of 1 at element x1,2 and element x2,1. In the
supra-adjacency matrix, all diagonal matrices are intra-layer adjacencies. Take a
toy network with 3 layers (time slices) and 5 actors as an example. The supra-
adjacency matrix will then be of size (3 ∗ 5) ∗ (3 ∗ 5), where the 3 diagonal matrices
specifies intra-layer adjacencies for actors. All other matrices except the diagonal
will then specify the inter-layer edges. These indicate to what degree the other
layers affect each other, specified with the parameter ω (omega). Omega will be
further explained in section 3.2.3. The supra-adjacency matrix is different for an
ordered version of the Generalized Louvain in comparison to an unordered version
Jeub et al. (2011-2017).

3.2.2 Modularity

Modularity is originally defined as a scalar value between -1 and 1 that measure
the number of links inside communities as opposed to between communities Blondel
et al. (2008). The modularity is calculated using a null model which can be described
as a randomly generated network based on some topological condition, for example
having the same node degree, i.e. the overall same amount of edges as the network of
study. The Generalized Louvain computes the Newman-Girvan modularity matrix
(based on the adjacency matrix), using quality function Qmultilayer described by
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Mucha et al. (2010). The quality function is a "multilayerization" of the Newman-
Girvan null model and is presented below in equation 5 (Mucha et al. 2010):

Qmultislice =
1

2µ

∑
ijsr

[(
Aijs − γs

kiskjs
2ms

)
δsr + δijCjsr

]
δ(gis, gjr) (5)

where µ specifies all edges in the network (intra-layer and inter-layer edges). In
the parenthesis, Aijs is an element in the adjacency matrix and details a direct
connection between node i and j in layer s, γs is the resolution parameter, kis and
kjs are the degree of node i and j in layer s and ms are the total number of edges
in layer s. The second part of the sum, Cjsr indicate the conditional probability of
stepping from layer to s to layer r along a inter-layer edge from node j to itself, i.e.
(j, s) to (j, r). The function δ is the Kronecker delta and takes the value of 1 or 0
depending on whether the multislice structure allows for movement between layer s
and r. The last term of the equation, δ(gis, gjr) is 1 if the community assignments gi
and gj are the same and 0 otherwise Mucha et al. (2010). The Generalized Louvain
can compute modularity based on other null models (see Bazzi et al. (2014) for more
null models), but they will not be considered here.

3.2.3 Parameters

The Generalized Louvain take five input parameters:

The temporal network: A C++ representation of a network, from InfoLab’s
MultiEdgeNetwork.

Move: Specifies if the move function is random or not. The Generalized Lou-
vain find a local optimum depending on which node it starts. An implication
is that the results will be differing from one run to another. If the move func-
tion is set to random, where ever the Generalized Louvain start, it have some
probability to jump to another node. If the move function is set to "normal",
the algorithm will iterate through the nodes, always choosing connected nodes.

Gamma (γ): A resolution parameter which decides the wanted resolution of
communities. Mucha et al. (2010) recommend setting gamma to 1, since in-
terpreting resulting output from the algorithm can be problematic. Gamma
was therefore set to 1 in this thesis.

Omega (ω): Is the inter-layer coupling weight parameter which specifies how
much time slices affect each other. If omega is set to 0, the each partition of
the temporal network (time slice) can be interpreted as a static network. The
Generalized Louvain will then yield a modularity of 0. However, communities
can still be found in each time slice, but the overall modularity will be 0. If
omega is set to 1, each time slice of the temporal network will affect all other
equally. For the OGL, only adjacent time slices may affect each other.

Limit: How large the modularity and adjacency matrices can be, i.e. how
much data that fits in memory.

19



3.2.4 Synthetic network creation

In this study, three synthetic networks were created for two reasons. First, to
test if the implementation of the Ordered Generalized Louvain was done correctly,
i.e. to enable for a validity check in a controlled environment. Secondly, a known
community structure can help understand the effect the inter-layer weight coupling
parameter omega (ω) has on an ordered version of the Generalized Louvain. When
creating synthetic networks, focus was on trying to identify "corner cases", i.e. cases
where the algorithm’s community detection could be predicted at the same time as
being unique enough to identify potential issues. The choice of only studying one of
the two hyperparameters (omega), consists of two factors. First, studying the effects
only one parameter heavily reduces the scope of this thesis test section. Secondly,
Mucha et al. (2010) describe omega as a sensitive parameter which should be chosen
for the studied network. For most networks, and in cases of uncertainty, the authors
recommend setting omega to the value of 1. This will be taken into consideration in
the study. If there is support for setting the parameter omega to 1, or close to, in the
validity study, the two factors together will be seen as proof that the input value is
satisfactory. If the validity does not yield any preferable omega, the standard value
of 1 will be chosen. Four temporal networks are studied in this thesis, and choosing
an individual omega for each is not feasible, therefore the validity study will partly
have the goal of finding a preferable omega. To make it easier for the reader, the
synthetic networks are presented in the section they are studied (see section 5.1).

3.2.5 Effect of omega on synthetic networks

After the OGL was adapted to temporal networks (represented as ordered multi-
layer networks), a validity check had to be made. This was done by comparing the
results of the OGL and the UGL when varying the input parameter omega for three
different small synthetic networks. Each synthetic network was used as input to the
OGL with three different values of omega: 0, 0.5 and 1. These values can be con-
sidered meaningful to test for a few different reasons. When omega is 0, the layers
do not affect each other at all. An implication is that each layer can be considered
as a static network and the community detection algorithm is then run on each of
the layers in turn. When omega is 0.5, the impact of actors in other layers are
halved, which could be a breaking point of the algorithm. As a result, the algorithm
would either favor the more static network approach previously mentioned, or find
communities closer to when omega is 1. Lastly, when omega is 1, all layers affect
each other equally, implying that communities can be found horizontally through
the layers. Results is presented showing the structure of the communities found for
different values of omega. A community is represented as a set of nodes where, in
turn, each node is represented as an actor and a layer (time slice), separated by a
colon. Communities can contain one node or more.

To further explore the effect of omega on small synthetic networks, the structure of
the communities is then kept the same, but the number of time slice is increased.
This implies a larger temporal distance between communities present in all synthetic
networks. A few different settings is tried: 1) one time slice is added between the
original two, 2) then two more, 3) and lastly six more. For the last setting, one time
slice is added before the first time slice and after the last time slice. This is done to
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see if any noticeable difference can be discerned for the OGL in comparison to the
UGL as it takes the order of the time slices into account. All settings for omega and
the number of time slices are presented in the results.

3.3 Proposed measure to compare partitions of temporal net-
works

Figure 13 shows a multilayer representation of a network. Each of the rectangles
represent one layer of a partitioned network, numbered 1, 2, 3 and 4. Within each
layer, nodes are represented as dots and they are connected through edges (lines).
The part of the modularity function marked with "within community" shows the
total unweighted modularity that each community has (assuming the four nodes in
the circle are a community). The part marked "interlayer edges" represent edges
connecting two of the same actors in two different layers, i.e. node-to-node inter-
layer edges. Finally, the community index is the index of one community. If the
Kronecker delta is 1, then community index gis is the same as community index gjr.
An important intuition when studying the Generalized Louvain on multilayer net-
works is that the modularity will increase when more layers are added. Therefore,
the same applies if a temporal network is partitioned into an increasing number
of time slices, i.e. when each time slice span a shorter time frame. This can be
primarily be explained with an increase of inter-layer edges, where the increase is
linear to the number of actors. Recall that the multilayer representation of temporal
networks used in this thesis is a so-called multiplex network. In a multiplex network,
actors in one layer are connected (with inter-layer edges) to themselves in adjacent
layers. Therefore, when partitioning a temporal network in an increasing number
of time slices, the number of inter-layer edges increases linearly to the number of
actors and time slices. A proposed methodology to study this effect is presented in
subsection 3.3.1.

A second important intuition about partitioning temporal networks is that the
amount of edges in each layer might be different (see section 3.1). Therefore, it
is important to study the effect of having a varying number of edges present in each
time slice to create a comparable measure. A proposed method for researching this
effect is presented in subsection 3.3.2.

The proposed measure is then presented in section 3.3.3 as an adapted version of
the two normalizations from section 3.3.1 and 3.3.2 for temporal networks.

3.3.1 Temporalizing static networks

The term "temporalize" is here introduced and holds the meaning of replicating a
static network in multiple time slices. The temporalized network is exactly the same
in all time slices with the sole exception that the timestamps associated with edges
are time slice specific. For example, if the same static network is replicated into
two time slices, all edges in time slice 1 will have time t1 = 1 and all edges in time
slice 2 will have time t2 = 2. This is done to study the increase of modularity when
the number of time slices are increased (recall the intuition mentioned in section
3.3). To isolate the afore mentioned effect, the modularity was measured using the
OGL on the temporalized networks. Since the network structure (number of nodes
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Figure 13: A multilayer network representation by Mucha et al. (2010). The fig-
ure has been modified as to show the different parameters of the quality function
(modularity).

and edges) is known in all time slices, a normalization of the modularity could be
proposed.

Assuming that we only consider the part of the modularity function when all i’s
and j are equal and when all s and r are equal yields the following simplified equa-
tion:

Qmultislice =
1

2µ

∑
ijsr

[(
Aijs −

kiskjs
2ms

)
+ Cjsr

]
∀i = j ∀s = r (6)

where all Kronecker deltas (δi,j, δs,r, δ(gis, gjr)) are equal to 1, i.e. when only consid-
ering nodes, time slices and communities which are the same. All other annotations
hold the same meaning as in equation 5. Notice that the resolution parameter

gamma (γ) is set to 1 (see section 3.2.3). In the first part of the sum (Aij −
kiskjs
2ms

),

the negative term is a value that varies in the interval of [-0.5, 1] and is unique for
each solution of the optimization problem, i.e. it varies from one run of the algo-
rithm to another. Likewise, the sum of Aij varies from solution to solution since it
is the total number "within community"-edges. To normalize the quality function
based on the number of time slices, the left part of the sum was annotated asM1 for
the base case, when the static network was temporalized into only one time slice, i.e.
it was still a static network but with temporal information. The sum of Cj — the
total number of inter-layer edges — can also be rewritten as the number of actors a
since it is an always-known constant for each number of time slices in turn in this
controlled testing environment. When only considering one time slice, the term µ
= m and the term Cj = a = 0, since there are no inter-layer edges. The equation
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for the quality function could then be rewritten as follows:

Q1 =
1

2m

(
M1 + 0 ∗ 2a

)
=

1

2m
M1 (7)

where Q1 is the total modularity for a network of 1 time slice. Multiplying a with
two comes from the fact that the networks of study are undirected (or otherwise
handled likewise), which means that all inter-layer edges are counted twice. Adding
one more time slice to the base equation yields the following, assuming that the
optimal partitioning is the same for all time slices since:

Q2 =
1

2(m+m+ a)

(
2 ∗M1 + 1 ∗ 2a

)
(8)

where Q2 is the total modularity for a network. The pattern that emerges can then
be used to write the general formula for the modularity for any number of time
slices, based on M1 and a:

QN =
1

2(Nm+ (N − 1)a)

(
N ∗M1 + (N − 1) ∗ 2a

)
(9)

where QN represents the total expected modularity for N time slices. Notice that
this only holds for the cases where the exact same number of actors and edges are
present in all time slices.

3.3.2 Random edge removal

To study the effect that the number of edges has on modularity, the edges were
removed iteratively. The modularity was then calculated using the OGL. Notice
that the static network was only temporalized into one time slice, while for every
iteration one edge was removed until there were none left in the temporal network.
Assuming that the same community structure is maintained when removing one
random edge at a time, each element of the "within community"-sums (

∑
Aij and∑ kikj

2m
) can be multiplied by the expected remaining fraction.

Let m′ represent the new number of edges while m represent the regular number

of edges. The expected fraction of edges can then be written as
m′

m
. Multiplying

each element of the "within community"-sums yields the following equation for the
expected modularity for one time slice:

Mm′ =
1

2m′

∑
ij

(
Aij ∗

m′

m
− m′

m
∗ kikj

2m
∗ m

′

m

)
=
∑
ij

(
Aij ∗

1

2m
− kikj

2m
∗ m′

2m2

)
(10)

whereMm′ represents the modularity for one time slice withm′ edges remaining. An-

notating the sums for the "within community"-edges and degrees (
∑

ij

(
Aij

)
,
∑

ij

(kikj
2m

)
)

with Ā and K̄ respectively yields the following equation:

Mm′ = Ā ∗ 1

2m
− K̄ ∗ m′

2m2
(11)
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3.3.3 Final measure

Merging equation 11 from section 3.3.2 and equation 9 from section 3.3.1 yield the
final model adapted for temporal networks:

Qnorm(m,
−→
m′, Ā, K̄) =

1

2(Nm+ (N − 1)a)

(
N ∗
(
Ā∗ 1

2m
−K̄ ∗ m

′

2m2

)
+(N−1)∗2a

)
(12)

where Qnorm is the expected modularity of a temporal network where the two un-
derlying assumptions have been applied. The input parameters are the following:
m represent the maximum number of edges of a temporal network,

−→
m′ is a vector

of the number of edges in each time slice, Ā is the total number of edges existing in
all communities and K̄ is the sum of the node degrees existing in all communities.
Ā and K̄ The goal of applying the created model to temporal networks is to create
a comparable measure for modularity. Modularity is a scalar value and is therefore
unique for each network. It is dependent on the structure of the network, i.e. how
many edges and inter-layer edges that are present and how the nodes are connected.
The intuition behind applying the created model from temporalized networks is to
estimate the effect of partitioning a temporal network into more time slices. By then
taking the fraction of the measured and estimated modularity, the effect of increas-
ing the number of time slices can be factored out. Therefore, the resulting graph
should show a peak, which is an indication that the estimated modularity grows
faster than the measured. At the peak, the optimal number of time slices for the
studied network can be attained. No discernible peak could serve as an indication
that the temporal network is not suited for the applied method. Another possi-
ble explanation for such an event is that not enough time slices have been iterated
through. However, for each new time slice added, the size of the modularity matrix
grows quadratically against the number of actors times the number of time slices.
For example, if we have a network with 100 actors and partition it into 300 time
slices, the modularity matrix will contain approximately 9 ∗ 108 elements (mostly
zeros). Therefore, the method is computationally demanding and the highest num-
ber of possible time slices that can be iterated through is dependent of the size of
the network.
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3.4 Summary table of proposed tests
In this section a summary table is presented showing all tests which were proposed
including the input and expected output to each test, respectively.

Table 3: This table provides an overview over all proposed tests studied in this thesis.
The tests are ordered as they appear in the thesis. Note that the number in front
of each test only acts as an indication of which tests are connected and is not the
actual section number.

Test Input Expected output
1.1 Synthetic network
(test case 1)

Synthetic network of 4
actors

Preferable omega

1.2 Synthetic network
(test case 2)

Synthetic network of 6
actors

Preferable omega

1.3 Synthetic network
(test case 3)

Synthetic network of 13
actors

Preferable omega

2.1 Temporalized static
networks

Static networks repli-
cated into multiple time
slices

Discernible pattern of
modularity

2.2 Random edge removal Static networks repli-
cated into 1 time slice

Discernible pattern of
community structure

3. Comparison of mea-
sured and modeled mod-
ularity

Temporal networks Comparable modularity
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4 Data
There are a total of 8 chosen data sets used in this study which are divided into
two subgroups. The first subgroup consists of four temporal networks, i.e. networks
with temporal data on the edges. The second subgroup are static networks, which
consequently have no temporal data on the edges. These networks will be redesigned
into temporal networks for a specific reason motivated in section 3.3.1. For each
subsection, the networks of choice will be motivated and their characteristics will
be accounted for. All data sets used in this thesis are social networks, even though
one is fictional.

4.1 Temporal data sets
The four different data sets used in this thesis was chosen by the following two
criteria. Firstly, they have time stamped edges. Secondly, they are small enough to
run multiple times each without computationally taking too much time to run. The
characteristics of each data set will be presented below.

4.1.1 Data set 1: Infectious, stay away

This network describes face-to-face interactions between visitors during the exhibi-
tion Infectious: stay away in 2009 at the Science Gallery in Dublin. Each edge is
time stamped and represent a face-to-face contact lasting for at least 20 seconds.
There are a total of 410 actors (visitors) and 17 298 edges (contacts). Edges are
unique to their actors and time stamp, but the same two actors can have multiple
contacts at different times (Infectious network dataset – KONECT 2017).

4.1.2 Data set 2: Hypertext 2009

Hypertext 2009 is the network of face-to-face contacts between visitors at the ACM
Hypertext 2009 conference in Turin. The face-to-face contacts had to last for at least
20 seconds to be recorded. Each edge is time stamped and represents a contact be-
tween two visitors. The same two visitors can have multiple contacts at different
times. There are a total of 113 actors (visitors) and 20 818 edges (contacts) (Hyper-
text 2009 network dataset – KONECT 2017)

4.1.3 Data set 3: Reality Mining (MIT)

This undirected network describe the contact between students at the Massachusetts
Institute of Technology (MIT), collected through an experiment named Reality Min-
ing. The experiment was done in 2004 and the data was collected during a period
of 9 months, using 100 mobile phones, distributed to students. Actors represent
students, and edges represent contacts between students. There are a total of 94
actors (students) and 1 086 404 edges (contacts) (Reality Mining network dataset –
KONECT 2017).

4.1.4 Data set 4: Cambridge/Haggle

This network represents contacts between people measured by Bluetooth devices in
different areas around the city of Cambridge, England. Each edge is time stamped
and represents that two people were close in proximity for a small amount of time.

26



The network consists of a total of 274 actors (people) and 28 244 edges (contacts)
(Haggle network dataset – KONECT 2017).

4.2 Static network data sets
The networks presented below are ordered in ascending order by their size, where
the smallest network is smaller (in total number of actors) than any of the temporal
networks. The largest static network is similarly larger than any of the temporal
networks. All static networks have been chosen mainly because of their increas-
ing size, but also to show that there exist a large diversity in types of networks.
Information about the networks are presented in table 4.

Table 4: This table provides an overview over static networks chosen in this study.

Network # Actors # Edges Information
Zachary Karate Club 34 78 Popular data set often used for

community detection in static net-
works (Zachary karate club net-
work dataset – KONECT 2017).

Train bombing 64 243 Contacts between suspected ter-
rorists of the train bombing in
Madrid, 2004 (Train bombing net-
work dataset – KONECT 2017).

Highschool 70 366 A network of friendship between
students at a high school in Illinois,
US. The data was collected during
a year, from 1957 to 1958 (High-
school network dataset – KONECT
2017).

Les Misérables 77 254 A network of co-occurrences be-
tween the characters of the novel
"Les Misérables" by Victor Hugo
(Les Misérables network dataset –
KONECT 2017).
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5 Results
The results are presented in four subsections. First, the result of the validity study of
the adapted version of the Generalized Louvain are presented. Secondly, the results
of the normalized modularity function are presented. Lastly, the results of applying
the created algorithm to temporal networks are shown.

5.1 Omega on synthetic networks
This section is further divided into three subsections, one for each synthetic network.
As mentioned in section 3.2.4, the networks are introduced in this section to make
it easier for the reader to follow.

5.1.1 Test case 1: Synthetic network comprised of 4 actors

As seen in figure 14, the network is comprised of two communities, one in each
time slice. Both of the time slices contain one time, t1 and t2 respectively. This
implies that each edge — interaction between two actors — was active during that
exact time. Running the OGL and the UGL on the network in figure 14 yielded the
following result:

ω = 0: Both the OGL and the UGL found four communities, namely the two
cliques in each time slice and two singular node communities:

{A1 : t1, A2 : t1, A3 : t1}, {A4 : t1}

{A1 : t2}, {A2 : t2, A3 : t2, A4 : t2},

ω = 0.5: Similarly as above, the OGL and the UGL gave the same results.
They both found one large community, encompassing all nodes in the network:

{A1 : t1, A2 : t1, A3 : t1, A4 : t1, A1 : t2, A2 : t2, A3 : t2, A4 : t2}

ω = 1: Once again, as above, the OGL and the UGL yielded the same result,
one large community:

{A1 : t1, A2 : t1, A3 : t1, A4 : t1, A1 : t2, A2 : t2, A3 : t2, A4 : t2}

The results of adding more time slices to the tests are presented below. Notice that
if nothing else is stated, omega = 0.5 and omega = 1 yield the same result:

1. 1 extra time slice:

Omega = 0: Both the OGL and the UGL found similar communities
with the difference that the UGL did not take the order of the time slices
into consideration, which lead it to partition the communities in two
random time slices. That being said, the structure of the communities
were preserved, mirroring the structure of the OGL. All nodes outside of
the found communities were partitioned into singular node communities.
In total, six singular node communities were found, which was a result of
all actors being replicated into the new time slice without any edges:

{A1 : t1, A2 : t1, A3 : t1, }, {A4 : t1}
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Figure 14: Visual representation of a small synthetic network. The temporal network
was divided into two time slices containing four actors, denoted Ai, i ∈ {1, 2, 3, 4}.
Both of the time slices had two communities (cliques) each and consisted of two
sets of actors. Community 1 contained actor A1, A2 and A3, while community 2
contained actor A2, A3 and A4. Transparent actors, A1 in time slice 2 and A4 in
time slice 1, implies that the nodes (layer specific actor) were accounted for by the
Generalized Louvain, but did not have any active edges in those specific time slices.

{A2 : t3, A3 : t3, A4 : t3, }, {A1 : t3}
{A1 : t2}, {A2 : t2}, {A3 : t2}, {A4 : t2}

Omega = 1: Here the OGL found one large community, containing all
nodes of the network. The UGL found four horizontal communities, i.e.
it partitioned same-actor nodes spanning all three time slices:

{A1 : t1, ... , A4 : t1, A1 : t2, ... , A4 : t2, ... , A1 : t3, ... , A4 : t3} (OGL)

{A1 : t1, ... , A1 : t3} (UGL Community 1)

{A2 : t1, ... , A2 : t3} (UGL Community 2)

{A3 : t1, ... , A3 : t3} (UGL Community 3)

{A4 : t1, ... , A4 : t3} (UGL Community 4)

2. 2 extra time slices:

Omega = 0: As with the case above with one extra time slice, both the
OGL and the UGL found the two cliques, and partitioned the rest of the
nodes into one community each. The only noticeable difference is that
the four actors have been replicated in yet another time slice, resulting
in 10 singular node communities.
Omega = 1: The OGL found one large community, spanning all time
slices. In comparison, the UGL still found four horizontal communities,
but spanning three time slices instead of the for the OGL found — which
are the total number of time slices in this case. The nodes excluded from
the horizontal communities are partitioned into singular node communi-
ties.
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3. 6 extra time slices (figure 15):

Omega = 0: As with the cases above, the OGL and the UGL found the
two cliques and the rest of the nodes in singular node communities. It
is worth mentioning again that the communities the UGL found is not
necessarily in the same time slices as the OGL. As previously mentioned
this is a consequence of the UGL not being ordered, and communities are
located in the time slice they have been stored in-memory.

Omega = 1: The behavior here is the same as the case with two extra
time slices. The OGL found one large community spanning all time slices,
while the UGL found four horizontal communities spanning three time
slices.

Figure 15: Visual representation of a small synthetic network. The temporal network
was the same as the one in figure 14, but more time slices were added. Time slice 1,
3, 4, 5, 6 and 8 were empty, i.e. there were no edges connecting any of the nodes.
Nodes were still present in these time slices, albeit without edges. Time slice 4 and
5 are not fully shown to save space, but have the same structure as any of the other
empty time slices.
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5.1.2 Test case 2: Synthetic network comprised of 6 actors

The second test was done on the synthetic network shown in figure 17. It consists of
six individual actors, creating two cliques two different time slices. Similarly as in
test case 1, the effect of omega was studied at first, and then time slices were added
in conjunction with testing different values for omega. To make it easier for the
reader to understand, the tests with increasing number of time slices are presented
in a graph, showing the relationship of omega and the number of time slices for
the network in figure 17. Running the OGL and the UGL on the network of study
yielded the following result:

Omega = 0: Both the OGL and the UGL found four communities, i.e. com-
munity C1, C2, C3 and C4 (as seen in figure 17).

Omega = 0.5: The OGL and the UGL found one large community spanning
all nodes in the network.

Omega = 1: Same results as for omega = 0.5. One large community with all
nodes are found by both versions.

As mentioned above, the results will now be presented with a graph, showing the
number of communities found. Omega and the number of time slices were increased
iteratively and the number of communities found are shown for each two values (see
figure 16). Both the OGL and the UGL followed the same pattern as described in
the beginning of this test case and therefore also in test case 1. When omega is 0,
the other time slices have no impact on the structure of the partitioned communi-
ties, i.e. both the OGL and the UGL found the four cliques (C1, C2, C3 and C4)
and partitioned the rest of the existing nodes into singular node communities. As
the number of time slices were increased, the actors were replicated into each new
time slice, creating a linear pattern for the number of communities found by the
algorithms. All dark tiles in 16a indicate that the OGL found two communities. It
then partitioned community C1 and C2 together with all nodes of the same three
actors A1, A2 and A3, replicated over all intermediate time slices. In comparison, the
UGL displayed a linear pattern over all time slices and values of omega. The UGL
followed the same pattern as in test case 1. It found six horizontal communities
(one for each actor), spanning three time slices where two contain the constructed
cliques. The rest of the nodes were partitioned into singular node communities.
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Figure 16: Generalized Louvain run on the synthetic network in figure 17. Showing
the number of communities found using the OGL (a) and UGL (b) respectively, while
ω was varied in the interval of [0,1], incremented with steps of 0.1. The number of
time slices were increased from 2 to 20.

Figure 17: Visual representation of a constructed synthetic network. The tempo-
ral network was divided into two time slices containing six actors, denoted Ai, i ∈
{1, 2, 3, 4, 5, 6}. Both time slices had two communities (cliques) each, that consisted
of three actors respectively, i.e. community 1 and 2 contained the same actors and
community 3 and 4 contained the same actors.

5.1.3 Test case 3: Synthetic network comprised of 13 actors

The third test was done on the synthetic network shown in figure 18. The results
are presented below.

Omega = 0: Both the OGL and the UGL found the two cliques and partitioned
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the rest of the nodes into singular node communities. In total, the algorithms
found eight communities:

{A1 : t1, ... , A10 : t1}

{A4 : t2, ... , A13 : t2}
{A1 : t2, } , {A2 : t2} , {A3 : t2}
{A11 : t1, } , {A12 : t1} , {A13 : t1}

Omega = 0.5: The OGL and the UGL partitioned everything into one large
community:

{A1 : t1, ... , A13 : t1, A1 : t2, ... , A13 : t2}

Omega = 1: As above, both algorithms found one large community.

Figure 18: Visual representation of a constructed synthetic network. The tem-
poral network were divided into two time slices containing 13 actors, denoted
Ai, i ∈ {1, 2, ..., 13}. Both time slices have two communities (cliques) each, con-
sisting of the 10 actors respectively. In community 1 (C1), actor A1, ..., A10 created
a clique, and in community 2 (C2), actor A4, ..., A13 created another clique. All
edges in time slice 1 had a time of t1, and all edges in time slice 2 had a time of t2.
Transparent actors were replicated nodes without edges to any other actor within the
same time slice.

To further study the effect of omega on the network, omega and the number of time
slices will be increased iteratively. This results in a similar pattern as described in
test case 2. In comparison, the number of communities found are more, but the
structure of the found communities follow the same pattern as described in both
previous test cases. That all three tests yielded similar results, i.e. a pattern where
all omega above 0 behave similarly, serve as an indication that there is no support
for any specific omega. Therefore, and When taking the recommendation of the
authors into account, omega will henceforth be set to 1 in the rest of this thesis.
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Figure 19: Generalized Louvain run on the synthetic network in figure 18. Showing
the number of communities found using the OGL (a) and UGL (b) respectively,
letting ω vary in the interval of [0,1], incrementing with steps of 0.1. The number
of time slices are increased from 2 to 20.

5.2 Modularity of temporalized static networks
The pattern that emerges from replicating the same static network (temporalized)
in an increasing number of time slices is the similar for all data sets (see figure 20).
The modularity levels out relatively fast — after being replicated into around 10
time slices — with the exception that the highest modularity is different for each
network. Since modularity is a scalar value in the interval of Qmultislice ∈ [−1, 1]
and is dependent on the number of nodes and edges in the network, these values
are not comparable. Modularity serves as an indicator of "goodness of fit", i.e.
how well the network has been partitioned (or how modular it is). To be able to
compare modularity the effect of the number of time slices and the number of edges
had to be generalized. The results of the exploratory study — incorporating the
normalizations of the modularity function from section 3.3.1 — is presented below
in two steps. First, the results of removing the effect of the number of time slices
is shown. Secondly, the results of removing the effect of the number of edges is
presented.
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Figure 20: Ordered Generalized Louvain run on all temporalized static data sets.
The maximum modularity Qmultislice was extracted from 30 runs of each number of
time slices.

5.2.1 Normalizing the effect of the number of time slices on modularity

Figure 21 show the maximum modularity found by the OGL for the temporalized
networks. What can be seen is that the model (see section 3.3.1 equation 9) has a
higher expected modularity than the results from the OGL (annotated "Real" in the
figures). The higher modularity in the model can be explained by the underlying
assumption, which is that the maximum modularity for one time slice (see M1 in
equation 9 in section) has a linear correlation with the increase of the number of
time slices.

35



●

●

●

●

●

●

●
●

●
● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.525

0.550

0.575

0.600

0.625

0 10 20 30 40 50
Number of time slices

M
od

ul
ar

ity Data
●

●

Model
Real

(a) Highschool

●

●

●

●

●

●

●
●

●
● ● ● ●

● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.45

0.50

0.55

0.60

0 10 20 30 40 50
Number of time slices

M
od

ul
ar

ity Data
●

●

Model
Real

(b) Zachary Karate Club

●

●

●

●

●

●

● ●

● ●
●

● ● ●
● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.56

0.58

0.60

0.62

0.64

0.66

0 10 20 30 40 50
Number of time slices

M
od

ul
ar

ity Data
●

●

Model
Real

(c) Les Misérables

●

●

●

●

●

●

●
●

● ●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.45

0.48

0.51

0.54

0 10 20 30 40 50
Number of time slices

M
od

ul
ar

ity Data
●

●

Model
Real

(d) Train bombings

Figure 21: The total modularity for each of the temporalzied static networks. The
model is shown in orange while the results of the OGL is shown in light blue under
the label "real". Notice the different maximum modularity each network attains.

5.2.2 Normalizing the effect of the number of edges on modularity

The pattern that emerges in figure 22 is similar for all temporalized networks. As
mentioned in section 3.3.1, the underlying assumption for the edge removal model
was that the community structure should be preserved if one random edge was
removed at a time. The fit of the model is not perfect but describes the general
trend of the effect of removing random edges from a network. After removing about
two-thirds of all edges, each network show similar results; a sudden increase in
modularity, then a drop to 0.
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Figure 22: The modularity for each of the temporalized static networks. Each net-
work was replicated into one time slice. Then the edges were removed iteratively,
storing the maximum modularity attained over 30 runs of the OGL. The model is
shown in orange while the results of the OGL is shown in light blue under the la-
bel "real". Notice the different maximum modularity each network attains and the
different number of edges each network contains.

5.3 Applying the model to temporal networks
In figure 23a, the measured and expected modularity is plotted against the number
of time slices that the temporal networks were partitioned into. The two partition-
ing methods were used separately, with their respective models created. In figure
23b, the measured modularity was divided by the modularity for the models for
both partitioning methods respectively. This resulted in two peaks at 48 and 50
time slices for the edge density and equal time fractions respectively. Notice that
the fraction for one time slice has been removed from the graph since it is always
1. That is a result of the model being built on the starting values of the overall
modularity (Q1 in equation 9).

For the Hypertext network, a similar pattern emerges, albeit with different curves.
The modularity is overall higher for the Hypertext network in comparison to the
MIT network. The results for the data set Infectious: Stay away are less conclusive.
For the first 10 time slices in figure 25a, both models behave differently from the
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(a) Measured and expected modularity of the
OGL and the model respectively.

●

●

●

●

●●

●

●●

●

●

●
●

●
●

●

●
●

●
●●

●
●●
●
●
●●
●
●
●
●●●

●
●●
●●●●

●
●●
●

●●

●

●●

●
●

●●
●●●●

●
●●●●●

●
●
●
●
●●
●●●●●

●●●
●
●●●●●

●
●●●

●●●●●●●●●●
●
●
●●●●●●●●●●●●●●

●
●●●●●●●

●●
●
●●
●
●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●
●●

●●

●
●●●

●●
●
●●

●
●●
●●
●

●
●●●●

●●
●
●●●●●●●●●●

●●
●●●●●●●●

●●●●●●●●●●●●●●
●
●●●●

●●●●●●●
●
●
●●●●●●●●●●●●●

●
●●●●●●●

●

●
●●●

●
●●●●●●●

●●●●●●●●●●●●●●●
●●
●●●●

●●●●●●●●
●●●●●●●●●●

●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.6

0.9

1.2

1.5

1.8

0 100 200 300
Number of time slices

F
ra

ct
io

n 
(r

ea
l/m

od
el

)

Fraction (real/model)
●

●

Edge density
Equal time

(b) Fraction of the measured and expected
modularity of the OGL and the model respec-
tively.

Figure 23: For the MIT data set. The figure in a) show the measured modularity of
the OGL based on the two different ways of accumulating time slices (edge density
and equal time). The model has two different inputs for the number of edges in
each time slice, and similarly has two different results. The figure in b) show the
fraction of the measured ("real" in the figure) and the expected ("model" in the
figure) modularity.
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(a) Measured and expected modularity of the
OGL and the model respectively.
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Figure 24: For the Hypertext data set. The figure in a) show the measured modularity
of the OGL based on the two different ways of accumulating time slices (edge density
and equal time). The model has two different inputs for the number of edges in
each time slice, and similarly has two different results. The figure in b) show the
fraction of the measured ("real" in the figure) and the expected ("model" in the
figure) modularity.

measured modularity. This can either be a result of how many of the edges that
were partitioned into the first time slice or that the community structure is strong
enough to be maintained over the first 10 time slices. The growth of the measured
modularity start to decline at around 50 time slices, while the model continues an
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almost linear growth. This serves as an indication that the optimal number of time
slices will be attained at a higher number of time slices, i.e. when the model grows
faster than the measured modularity. Since this data set contains 410 actors, the
modularity matrix quickly grows in size and further increasing the number of time
slices was not feasible on the machine that the tests were run on.
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(a) Measured and expected modularity of the
OGL and the model respectively.
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(b) Fraction of the measured and expected
modularity of the OGL and the model respec-
tively.

Figure 25: For the data set Infectious: Stay away. The figure in a) show the mea-
sured modularity of the OGL based on the two different ways of accumulating time
slices (edge density and equal time). The model has two different inputs for the num-
ber of edges in each time slice, and similarly has two different results. The figure in
b) show the fraction of the measured ("real" in the figure) and the expected ("model"
in the figure) modularity.

For the data set Cambridge/Haggle, a similar pattern emerges as for the data set
Infectious: Stay away. This data set contains more actors than either of the MIT
or the Hypertext data sets. It thus becomes computationally heavy above 100 time
slices. What can be discerned though is that for partitioning with equal time, the
curve levels out quicker than for edge density, which hints at a possible peak.
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(a) Measured and expected modularity of the
OGL and the model respectively.
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Figure 26: For the data set Cambridge/Haggle. The figure in a) show the measured
modularity of the OGL based on the two different ways of accumulating time slices
(edge density and equal time). The model has two different inputs for the number
of edges in each time slice, and similarly has two different results. The figure in b)
show the fraction of the measured ("real" in the figure) and the expected ("model"
in the figure) modularity.
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6 Discussion
This section is divided into three subsections. First, the impact of setting the param-
eter omega is discussed. Secondly, a discussion about the results from normalizing
the modularity function is presented. Lastly, the completed algorithm is discussed.

6.1 The parameter omega
The results of the study of omega was presented using the found community struc-
ture in conjunction with the measure of how many communities were found. From
the results it was visible that for all synthetic networks, the OGL performed sim-
ilarly when iterating over the number of time slices and omega. Whenever omega
passes the threshold of 0, i.e. in the interval of [0.01, 1], the algorithm produces
horizontal communities. With the support of such a created community structure
and the fact that omega = 1 is considered to be the standard, the research pre-
ceded with this setting. Furthermore, setting omega to a value of over 1 was never
considered. An omega above one would the imply that actors are clustered into
communities based on both past and future interactions. While the former is most
likely probable, i.e. that previous actions affect future in social networks, the latter
is not. When taking time slicing into account, it would seem more prudent to let
the actors and edges within the same time slice affect each other more, or at least
equal, than actors/edges from other, adjacent time slices.

Comparing the validity of the OGL in comparison to the UGL yielded a clear differ-
ence in the community structure. The OGL created fully horizontal communities,
while the UGL did not. The difference is most likely an effect of how every time slice
affect all others in the UGL. Therefore the latter of the two algorithms is not equally
prone to create horizontal communities. That being said, the creation of horizontal
communities by the OGL can be seen as a type of validity in itself, since it implies
that same-actor nodes are being partitioned into the same community. Comparing
to a real-life situation this does seem probable for, at least, social temporal networks.
If communities are created with sole constraint of time, then naturally each node
should be partitioned into the same community. It is still the same actor after all,
only some time have passed.

The results from the study of omega on synthetic networks yielded that there were
no apparent choice of omega which was preferable as long as omega was above 0.
As mentioned in section 3.2.4, if no preferable omega was found the recommended
value of 1 would be used for the continued study of the temporal networks used in
this thesis. That being said, it is important to mention yet again that the creators
of the Generalized Louvain did recommend choosing a suitable for every studied
network individually. Although that might have been beneficial, the scope of this
thesis prevented a deeper study of each temporal network, i.e. finding a preferable
omega for each temporal network here studied. Furthermore, the parameter omega
is subjective to the study since different values yield at times different community
structures and are thus dependent on the wanted results.
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6.2 Normalizing the modularity function
The intuition behind normalizing the modularity function is based on the thought
that increasing the number of time slices also increases the modularity. This is a
consequence of the quality function itself. Inter-layer (inter-time slice) edges are
added each time a new time slice is added. Furthermore, since the input data of this
thesis is undirected networks, each inter-layer edge is counted twice, thus increasing
the modularity when more time slices are added. That being said, all increase in
modularity cannot be attributed to time slices alone. Therefore, studying the effect
of the number of edges existing in the network could attribute the increase of modu-
larity. In total, the created model were built on two major underlying assumptions,
using temporalized networks: 1) the exact same community structure is being repli-
cated into each time slice and 2) removing one random edge at a time will preserve
the community structure (within certain limits). For the first assumption, the cre-
ated model behaved very similar to the measured modularity (see figure 21). That
the measured modularity is slightly lower than the model might be attributed to
the fact that the community structure was not fully preserved. Thus, the measured
modularity was slightly lower than the expected from the model. For the second
assumption, the expected results from the model were less similar to the measured
modularity. This is a consequence of the model not taking the randomness into ac-
count. When community detection is done with the OGL, the algorithm calculates
the modularity based on the number of edges existing within communities as well as
the degree of each node in each community. However, these values can be different
from one run to another, implying an underlying randomness, dependent on which
node the Generalized Louvain start on.

Since the Generalized Louvain is a greedy algorithm, it stops when it finds a lo-
cal maximum of the modularity. Generally, this implies that most solutions are
unique, and therefore the community structure will be somewhat different from one
run to another. As a result, predicting the modularity with the removal of edges was
not as apparent as the underlying reasoning implied. In reality, the removal of edges
did not fully preserve the community structure, since the modularity was more often
than not constant when removing up to 50 percent of the edges (see figure 22). If
studying equation 10 in section 3.3.1, it becomes apparent that the second term of

the sum (
kikj
2m
∗ m

′

m2
) quickly goes towards 0 as m′ represent the number of edges

remaining in the data set. A notable difference is that the model for edge removal
show a linear correlation between the modularity and the number of removed edges.
In reality, it is not feasible to remove more edges than there exists in the network,
therefore the model is constrained by that fact. That being said, what the edge
removal model generally did good was to predict the modularity when almost all
edges were removed.

6.3 Optimal number of time slices
The created estimation model of modularity of temporal networks was based on
temporalizing static networks. This was done under two underlying assumptions
mentioned above. Applying a model based on assumptions taken from a known
community structure does not necessarily translate to estimating the modularity
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for any temporal network. As mentioned in section 3.2, the modularity is a scalar
value, based on the number of existing edges and nodes in a network. Therefore,
a modularity attained through the Generalized Louvain for one network cannot be
compared to the modularity of another network. Take two different networks for
example, even if they contain the same number of edges and nodes, the modularity
will most probably be different since the structure of the network is most likely dif-
ferent. In a random network, the modularity will be close to −1, since it effectively
do not have any measurable communities. A part of the Generalized Louvain is that
it compares the measured number of edges and edge degrees in a community, to that
of a null model. The null model can be built on different assumptions, but the one
used in the Generalized Louvain (Newman-Girvan) calculates the probability that
a certain node is in a community in comparison to a random network. Therefore,
measuring the modularity of a random network is akin to measuring the modularity
of a random network against a random network. The result of −1 comes from the
idea that any random network is as different to the expected null model as possible.
With that in mind, each partitioning of a temporal network, being 20 time slices
or 100 time slices, creates it’s own unique network. The modularity of one specific
partitioning is therefore not comparable to another partitioning.

When partitioning the temporal networks studied in an increasing number of time
slices, the modularity increased as well. Much of the increase can be attributed to
the increasing number of inter-layer edges, i.e. new edges are being created since
more time slices are added. The inter-layer edges are represented by the last term
of the sum in the quality function for modularity:

∑
ijsCijs. When comparing the

measured modularity to the estimated modularity attained through the model, the
effect of increasing the number of time slices could essentially be factored out from
the measured modularity. For the two networks Hypertext and MIT, the expected
modularity grows faster than the measured modularity (see figure 24 for the Hyper-
text network). The fraction between the measured modularity and the expected,
thereby removes the effect of increasing the number of time slices.

When the fraction between them hit a peak, an optimal number of time slices
had been attained. The results were not conclusive for the networks Infectious and
Cambridge/Haggle though. A possible explanation can be that the network struc-
ture itself affected the results. Another possible explanation is that the time line of
the two networks affect the partitioning. In that case it could be favorable to in-
troduce other types of partitioning methods. However, there still exist a possibility
that an optimal number of time slices can be found at a higher number of time slices
for those networks, but it is computationally heavy to iterate to a higher number.

7 Conclusion
The model created in this thesis is based on two assumptions. Both of the assump-
tions are quite strong in character, i.e. they might simplify the quality function
used in the Generalized Louvain too much. However, it is a good start for creating
a comparable measure and in extension, finding an optimal partition of potentially
any temporal network.
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When it comes to two out of the four temporal networks used in this thesis, the
created approach fails to find an optimal number of time slices. As mentioned in
the discussion it can depend on a few things. A possibility is that it is a consequence
of the number of the structure of the network. Another possibility is that the two
partitioning methods does not work for all networks. Community detection is no an
exact science, and it is often difficult saying that a certain communities are correct
where others are not. Commonly, newly created community detection algorithms
are tested on social "ground truth"-networks, i.e. networks where the community
structure is said to be known. However, those types of social networks have been
recorded by people of people. There is not necessarily a "correct" community exist-
ing in those networks, but rather what people believe should exist. This can serve as
an indication that community detection is not an exact science. Many community
detection approaches find different results in the same networks.

For the two networks MIT and Hypertext, an optimal number of time slices were at-
tained. This gives an indication that is is possible to use a measure of the community
structure comparing different partitions of temporal networks among themselves. It
is not necessarily the measure used that is important, but rather adapting it for com-
parisons. There are a lot of unknown factors when dealing with networks, especially
when they have a temporal dimension. Most of the algorithms used in temporal
network science today have been adapted from static networks and thus need added
functionality to handle time. Much like the algorithm created here.

7.1 Future work
Since the developed approach is a naive, i.e. the optimal number of time slices are
attained through iterating over a large amount of them, there is a lot of potential
work to be done. If an extension of the approach could be created that could "guess"
a potentially good number of time slices, then it could potentially reduce the com-
putational complexity of the problem. Furthermore, it would enable for study of
larger networks, including networks with a more extensive time line.

Another interesting approach would be to study why the created algorithm works on
some temporal networks, and not others. Potentially, a solution could lie in studying
the characteristics of each network. They are numerous and various standardized
measures are commonly used. The next step is then to understand what makes the
algorithm succeed or fail.

Lastly, it would be interesting try a similar approach using another algorithm as
base, e.g. stochastic block modeling. Even though such an approach might yield
different results (for the optimal number of time slice), it could give hints as to which
network characteristics affect time slicing.
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