
ASPLe – A Methodology to Develop
Self-Adaptive Software Systems with Reuse

Nadeem Abbas
nadeem.abbas@lnu.se

Jesper Andersson
jesper.andersson@lnu.se

Technical Report – LNU-CS-AdaptWise-TR-2017NA01

Abstract

Advances in computing technologies are pushing software systems and their
operating environments to become more dynamic and complex. The growing
complexity of software systems coupled with uncertainties induced by runtime
variations leads to challenges in software analysis and design. Self-Adaptive
Software Systems (SASS) have been proposed as a solution to address design
time complexity and uncertainty by adapting software systems at runtime. A
vast body of knowledge on engineering self-adaptive software systems has been
established. However, to the best of our knowledge, no or little work has con-
sidered systematic reuse of this knowledge. To that end, this study contributes
an Autonomic Software Product Lines engineering (ASPLe) methodology. The
ASPLe is based on a multi-product lines strategy which leverages systematic
reuse through separation of application and adaptation logic. It provides de-
velopers with repeatable process support to design and develop self-adaptive
software systems with reuse across several application domains. The method-
ology is composed of three core processes, and each process is organized for
requirements, design, implementation, and testing activities. To exemplify and
demonstrate the use of the ASPLe methodology, three application domains are
used as running examples throughout the report.

Contents

1 Autonomic Software Product Lines 6
1.1 Background . 6

1.1.1 Self-Adaptive Software Systems 6
1.1.2 Software Reuse . 7

1.2 The ASPL Strategy . 8
1.3 Uncertainty Analysis . 10

1.3.1 Uncertainties due to Runtime Variability 10
1.3.2 Uncertainties due to Development for Reuse 12

2 The ASPLe Methodology 15
2.1 ASPL Domain Engineering Process 16
2.2 Specialization Process . 17
2.3 Integration Process . 17
2.4 Running Examples . 18

2.4.1 Distributed Game Environment (DGE) 18
2.4.2 News Service Product Line 20
2.4.3 PhotoShare Product Line 21

3 ASPL Domain Engineering (ADE) 24
3.1 Introduction . 24
3.2 ASPL Requirements Engineering Process 25
3.3 ASPL Requirements Engineering – Demonstration 27

3.3.1 General dQAS for Self-Updgradability 28
3.3.2 General dQAS for Self-Optimization 30

3.4 ASPL Design Process . 33
3.5 ASPL Design – Demonstration 35

3.5.1 ASPL Design for Self-Upgradability 37
3.5.2 ASPL Design for Self-Optimization 40

4 Specialization Process 44
4.1 Introduction . 44
4.2 Requirements Specialization Process 46
4.3 Requirements Specialization – Demonstration 49

4.3.1 Requirements Specialization for DGE 49

1

4.3.2 Requirements Specialization for NSPL 53
4.3.3 Requirements Specialization for PSPL 60

4.4 Design Specialization Process . 65
4.5 Design Specialization – Demonstration 68

4.5.1 Design Specialization for the DGE 68
4.5.2 Design Specialization for the NSPL 71
4.5.3 Design Specialization for the PSPL 73

5 Integration Process 80
5.1 Introduction . 80
5.2 Requirements Integration Process 81
5.3 Requirements Integration – Demonstration 83
5.4 DGE – Requirements Integration 83

5.4.1 NSPL – Requirements Integration 85
5.4.2 PSPL – Requirements Integration 86

5.5 Design Integration Process . 90
5.6 Design Integration – Demonstration 93

5.6.1 Design Integration for the DGE 93
5.6.2 Design Integration for the NSPL 94
5.6.3 Design Integration for the PSPL 95

Appendices 98

A extended Architecture Reasoning Framework (eARF) 99
A.1 domain Quality Attribute Scenarios (dQAS) 101
A.2 domain Responsibility Structure 104
A.3 Architecture Patterns and Tactics 105

A.3.1 MAPE-K Feedback Loop Pattern 106
A.3.2 Monitoring Tactics . 108
A.3.3 Execution Tactics . 109

A.4 Analytical Framework . 111

2

List of Figures

1.1 Conceptual Architecture of a Self-Adaptive Software System . . . 7
1.2 Horizontal and Vertical Reuse . 8
1.3 The ASPL Strategy . 9
1.4 Uncertainties in the Development of Self-Adaptive Software Sys-

tems with and for Reuse . 11

2.1 Basic Structure of the ASPLe Methodology 15
2.2 The ASPLe Processes . 16
2.3 Example of a DGE Product . 18
2.4 The NSPL Feature Model . 19
2.5 The PSPL Feature Model . 21

3.1 ASPL Domain Engineering (ADE) Process 25
3.2 ASPL Requirements Engineering Process Package 26
3.3 ASPL Scope Definition - An Example 27
3.4 ASPL Design Process Package . 33
3.5 An eARF for Self-Upgradability and Self-Optimization 37
3.6 General dRS for Self-Upgradability 39
3.7 General dRS for Self-Optimization 42

4.1 Specialization Process . 45
4.2 Requirements Specialization Process Package 46
4.3 DGE Domain Scope . 49
4.4 NSPL Domain Scope . 53
4.5 Extended ASPL Scope . 58
4.6 PSPL Domain Scope . 61
4.7 Design Specialization Process Package 66
4.8 Self-Upgradability dRS Specialized for the DGE 69
4.9 Self-Optimization dRS Specialized for the NSPL 72
4.10 Self-Healing – General dRS . 74
4.11 Self-Healing dRS Specialized for the NSPL 75
4.12 Self-Upgradability dRS Specialized for the PSPL 77
4.13 Self-Healing dRS Specialized for the PSPL 78

5.1 Requirements Integration Process Package 81

3

5.2 Design Integration Process Package 90
5.3 An Integrated Reference Architecture for Self-Upgradability in

the DGE Domain . 92
5.4 DGE Managed System - Self-Upgradability Architectural View . 93
5.5 The NSPL Managed and Managing System Platforms – Design

Integration . 95
5.6 PSPL – Integrated dRS for Self-Healing 96
5.7 The PSPL Managed and Managing System Platforms – Design

Integration . 97

A.1 The extended Architectural Reasoning Framework 100
A.2 An example of a MAPE Pattern 107
A.3 Analytical framework to support rigorous reasoning in eARF . . 112

4

List of Tables

2.1 The NSPL Products - Optional Features 20
2.2 The PSPL Products – Optional Features 22

3.1 A General dQAS for Self-Upgradability 29
3.2 A General dQAS for Self-Optimization 31
3.3 Responsibilities extracted from the General dQAS for Self-Upgradability 36
3.4 Responsibilities extracted from the General dQAS for Self-Optimization 41

4.1 Self-Upgradability dQAS Specialized for the DGE 50
4.2 Self-Optimization dQAS Specialized for the NSPL 56
4.3 A General dQAS for Self-Healing 57
4.4 The Self-Healing dQAS Specialized for the NSPL 59
4.5 Self-Upgradability dQAS Specialized for the PSPL 63
4.6 Self-Healing dQAS Specialized for the PSPL 65

5.1 DGE – Self-Upgradability dQAS after Integration with the Man-
aged System Platform . 84

5.2 PSPL – Self-Upgradability dQAS after Integration with the Man-
aged System Platform . 87

5.3 PSPL – Self-Healing dQAS after Integration with the Managed
System Platform . 89

A.1 Quality Attribute Scenario (QAS) Template 102
A.2 domain Quality Attribute Scenario (dQAS) Template 103

5

Chapter 1

Autonomic Software Product
Lines

Autonomic Software Product Lines (ASPL) is a systematic strategy to design
and develop self-adaptive software systems [14] with systematic reuse. Devel-
oping software systems with self-adaptation properties enables software devel-
opers to mitigate uncertainties and complexities caused by runtime changes in
systems’ goals, environments, and systems themselves. A vast body of knowl-
edge on engineering self-adaptive software systems has been established. How-
ever, to the best of our knowledge, no or little work has considered system-
atic reuse of this knowledge. Systematic reuse enables software developers to
produce systems with improved quality at a reduced cost and shorter time-to-
market [22, 28]. The research gap and proven benefits of development with
reuse motivated us to envision the ASPL strategy to develop self-adaptive sys-
tems with systematic reuse [2]. Before describing the strategy, we first present
its background as follows.

1.1 Background
The background of the ASPL consists of self-adaptive software systems and
software reuse. Understanding the background is vital to understand the ASPL
strategy.

1.1.1 Self-Adaptive Software Systems
A Self-Adaptive Software Systems (SASS) is a software system that can adapt
its behavior and structure in response to its perception of the environment, the
system itself, and its goals [14]. Figure 1.1 depicts a conceptual architecture
of a self-adaptive system. The managed subsystem abstracts the subsystem
that provides core application functionality. The managing subsystem is an
abstraction of the system’s adaptation logic that identifies runtime changes and

6

Managing Systemmonitor

Self-adaptive software system

Managed System

Environment
Non-controllable software hardware,

network, physical context

monitor

monitor adapt

effect

Figure 1.1: Conceptual Architecture of a Self-Adaptive Software System

adapts the managed subsystem to maintain the system goals. Both the managed
and managing subsystems are situated in an environment that refers to external
world with which a self-adaptive system interacts.

The managing subsystem uses the monitor and adapt interfaces to observe
changes in the managed subsystem and perform adaptive actions, respectively.
The monitor interface between managing subsystem and the environment en-
ables context-awareness. The managing system cannot affect the environment
directly. However, it can perform adaptive actions on the managed subsystem
that may affect the environment. The disciplined split among managed, man-
aging and environment elements of a self-adaptive system offers an opportunity
to design and develop such systems with and for reuse.

1.1.2 Software Reuse
Software reuse is a process of creating software systems from existing software
components or artifacts rather than developing from scratch [28]. As shown in
Figure 1.2, development artifacts can be reused both horizontally and vertically.
The vertical reuse refers to the reuse of artifacts within a single application do-
main [34]. The set of such artifacts for vertical reuse is referred as a vertical
platform. The horizontal reuse refers to reuse across several application do-
mains, and a platform that provides artifacts reusable across several domains is
called a horizontal platform.

Software reuse offers improved quality and productivity combined with a re-
duction in time and cost. However, a systematic approach to reuse is required to
achieve the goals and claimed benefits. We consider systematic reuse approach
as one that follows a repeatable and controlled process, concerned with large-
scale reuse from requirements specifications to code, tests, and documentation,
and supported by purposefully designed tools and infrastructure [18, 2]. The
systematic reuse has a potential to improve the development process particu-
larly in case of large and complex software systems [28]. The proven potential

7

Horizontal Platform

(Application Domain Independent)

V
er

ti
ca

l
P

la
tf

o
rm

 1

 f
o

r
A

u
to

m
o

b
il

es

V
er

ti
ca

l
P

la
tf

o
rm

 2

 f
o

r
G

am
in

g

V
er

ti
ca

l
P

la
tf

o
rm

 n

 f
o

r
H

ea
lt

h
-c

ar
e

Horizontal Reuse

V
er

ti
ca

l
R

eu
se

.

App1 App2 App3 Appn
. . .

Applications

Figure 1.2: Horizontal and Vertical Reuse

of the systematic reuse motivated us to investigate its application for the design
and development of SASS.

Different software reuse methods have been proposed over the years, for in-
stance, software libraries, design patterns, and frameworks. However, the most
systematic, widely accepted and applied reuse method is Software Product Line
Engineering (SPLE) [33, 39]. The fundamental idea in SPLE is to establish a
reusable platform of core assets that meet common and variable requirements
of a family of similar software systems. The software systems instantiated from
traditional SPLs usually bind components statically at compile time or latest
at load time. Such systems with static binding perform well in settings where
changes to requirements, product environment, or other related concerns are
rare. However, this is not true for the emerging world of more dynamic, open
and inter-connected systems such as cyber-physical systems [35]. Such systems
are characterized with more frequent changes in requirements, operating envi-
ronments and systems themselves. The traditions SPLs approaches and derived
software systems lack in support for runtime reconfigurations and adaptations
in response to changes at runtime. The inability of traditional SPLs to deal with
runtime variations and the lack of systematic reuse method for the design and
development of SASS motivated us to envision an Autonomic Software Product
Lines (ASPL) strategy.

1.2 The ASPL Strategy
The ASPL is a multi-product lines strategy to design and develop self-adaptive
software systems with reuse [2]. It exploits discipline split between managed
and managing subsystems of a self-adaptive system, and as shown in Figure 1.3
defines a three steps strategy. Each of the three steps is described below.

8

Reuse Reuse Reuse. . .

Requirements Design Model Components Test Model

ASPL Platform for Managing Systems

. . .

Step 1

Step 2

Managing System

Platform2

Managing System

Platformn

Step 3

Managing System

Platform1

Managed System

Platform2

Managed System

Platform1

Managed System

Platformn

Integrate IntegrateIntegrate

Product Line1 Product Line2 Product Linen

Figure 1.3: The ASPL Strategy

Step 1: Establish a horizontal ASPL Platform The first step of the ASPL
strategy is to establish a horizontal ASPL platform. The ASPL platform
provides application domain independent artifacts for managing subsys-
tems, i.e., adaptation logic. The artifacts span the range from require-
ments engineering, design, implementation, and testing. To support reuse
across several application domains, the ASPL platform artifacts have ab-
stract interfaces and hooks that need to be specialized and glued to meet
requirements of a specific application domain.

Step 2: Derive a vertical Managing System Platform The second step
transforms the horizontal ASPL platform into a vertical managing sys-
tem platform. As shown in Figure 1.3, n number of application domain
specific managing system platforms can be derived with reuse from a sin-
gle ASPL platform. Each managing system platform targets adaptation
logic in a particular application domain and is defined through a special-
ization process. The specialization process selects (reuse) artifacts from
the ASPL platform and customizes them according to requirements of a
specific application domain.

Step 3: Integrate Managing System and Managed System Platforms
The third step integrates each managing system platform, derived in the
second step, with a managed system platform for a corresponding appli-
cation domain. A managed system platform provides application domain
specific artifacts for managed subsystems, i.e., application logic. The de-
velopment of managed system platforms is not a focus of the ASPL strat-
egy. The managed system platforms are developed independently of the
managing system platforms by following some domain engineering method
such as the software product line engineering framework [33]. The ASPL

9

strategy takes an independently developed managed system platform and
integrates it with a corresponding managing system platform. The inte-
gration is needed to make the two platforms compatible and complete a
product line of self-adaptive systems.

The ASPL strategy holds potential benefits of development with reuse; how-
ever, it requires systematic process support to realize the ASPL strategy. For
instance, how a horizontal ASPL platform is defined, specialized and integrated
with a vertical managed system platform? What challenges are involved and
how these challenges can be addressed? In our work to develop process support
for the ASPL, we found that the development for and with reuse introduces
additional uncertainties. To understand the factors and root causes of the un-
certainty, we performed an uncertainty analysis described below.

1.3 Uncertainty Analysis
Uncertainty is an inherent property in complex systems with effects on all system
development activities. Walker et al. [38] define uncertainty as “any deviation
from the unachievable ideal of complete determinism”, that is, it refers to things
which are not or imprecisely known at a specific point in time [29]. Many factors
cause uncertainty, for instance, lack of knowledge, changes in user needs, market
shifts, humans in the loop [29].

Garlan [21], and Esfahani and Malek [17] argued that uncertainty had been
treated as a second-order concern in software engineering. However, complex-
ity and challenges raised by uncertainty require that it should be addressed as
a first-order concern. A software system developed without considering and
taking care of uncertainty is more likely to suffer from risks such as technical
failures, degradations, cost and schedule deviations, market and need shifts. To
avoid such risks in our work to define process support for the ASPL, we ana-
lyzed uncertainty in the context of self-adaptive software systems development
with reuse. We used Ishikawa fishbone diagram [25] for the analysis and iden-
tified runtime variability and development for reuse as two principal sources of
uncertainty. Each of the two sources is described below.

1.3.1 Uncertainties due to Runtime Variability
Runtime variability refers to changes that occur in a system’s requirements, en-
vironment, interconnected systems and the system itself. Traditional software
engineering is based on the assumption that all requirements and environmental
conditions are fixed, and all changes are managed off-line in software mainte-
nance activities [21]. However, this assumption does not hold for today’s sys-
tems that are mobile, more dynamic, interconnected and highly-customizable.
The emergence of mobile computing, the internet of things, and cyber-physical
systems leads to more frequent runtime variations in systems’ requirements,
environments, market forces and systems themselves [14].

10

Environment

Requirements

Functional

Market Forces

Interconnected

Systems

Runtime Variations

Horizontal

Reuse

Non-Functional

Unknown

Application

Domains

Uncertainties in the

Development of

Self-Adaptive Systems

with and for Reuse

Vertical

Reuse

Loose Coupling between

Managed and Managing

Subsystems

Domain

Variability

Development for Reuse

Figure 1.4: Uncertainties in the Development of Self-Adaptive Software Systems
with and for Reuse

Runtime variability is a principal factor behind uncertainties in the devel-
opment of self-adaptive systems. We analyzed the sources of uncertainty in
self-adaptive systems enumerated by Esfahani and Malek [17], and found that
the principal factor behind almost all the sources is runtime variability. The first
source, for instance, refers to uncertainties caused by inaccuracy of the mod-
els representing managed systems. However, the cause for such inaccuracies is
runtime variability which invalidates assumptions underlying the models.

The runtime variability has its roots in several areas of concern, including
1) functional and non-functional requirements 2) operating environments or
context, 3) interconnected cyber-physical systems, and 4) market forces. All
these areas of concerns are shown as sub-branches of the runtime variability in
Figure 1.4. The knowledge about runtime variations in these areas of concern is
either not available or available only partially at design time. Due to this lack
of knowledge, system developers are less able to specify requirements and model
design decisions [29]. For instance, runtime variations in a system’s operating
environment cannot be predicted or known entirely and precisely at design time.
Even if predicted, there are no guarantees whether the predicted variations will
come true at runtime or not? For instance, in a znn.com exemplar [13], one
may predict and specify that the load-balancer and server pool components
may fail at runtime. But, in practice, none of the predicted components may
fail; instead some other element, for instance, a communication link between
load-balancer and clients may suffer from failure. Moreover, even for predicted
variations there remain uncertainties about when a variant will come true and
how may it impact the system. Such uncertainties caused by runtime variations
challenge developers in each phase of development. In this study, we focus on
uncertainties in requirements and design phases only.

Software development usually begins with requirements engineering in which
software engineers are required to identify and specify functional and non-
functional requirements. Identifying and specifying requirements completely

11

and precisely is a known research problem [12]. Requirements engineering is
traditionally a design time activity. The knowledge about runtime variations is
often not available at design time. The lack of knowledge about runtime varia-
tions complicates the requirements identification and specification even more.

Requirements engineering is usually followed by software design. Software
design maps requirements to architectural elements. Mapping requirements to
architectural elements is a decision making process. Requirements, either func-
tional or non-functional, can be realized through different design alternatives.
For instance, performance quality attribute can be satisfied by making design
decisions based on increasing computational efficiency, removing computational
overheads, adding new resources, introducing concurrency architectural tactics
for performance [6]. To make best design decisions, designers are required to
analyze and reason about several design alternatives [5].

Uncertainties induced by the runtime variability complicate the design space
analyzed by designers to make design decisions. For systems with runtime vari-
ations, designers are required to identify variants for each design alternative.
Moreover, due to no or incomplete knowledge of runtime variations, designers
are less able to perceive design choices, reason about the options, make deci-
sions and model the decisions in the form of software architecture. Designing
an architecture for the znn.com exemplar [13], for instance, presents designers
with an intricate design space due to runtime variations in news requests, server
pool, and news content elements.

Uncertainties caused by runtime variations can be mitigated by delaying de-
sign decisions until runtime [37]. The self-adaptive system architecture is based
on the delay design decisions strategy. Based on the delay design decisions strat-
egy, we would like to investigate delaying requirement specifications strategy.
The basic idea of delaying requirements specifications is to push the specifica-
tions to the point, for instance, deployment or runtime, where complete or more
information about a system’s requirements is available. The requirements spec-
ification can be delayed, for example, by defining variation points with several
variants, which may get bonded or unbounded according to runtime variations.
The variation points and variants can be embedded inside requirement speci-
fications or defined as a separate orthogonal variability model [33] linked with
traditional software requirements specifications.

1.3.2 Uncertainties due to Development for Reuse
To support development with reuse, software developers are required to plan and
design artifacts, such as requirements and design artifacts, for reuse. While de-
signing artifacts for reuse in several applications or application domains, knowl-
edge about target applications or application domains is either not available or
available only partially. This lack of knowledge leads to uncertainties in the
design and development of reusable artifacts. To analyze uncertainties in the
development of the self-adaptive systems, we distinguish reuse at two levels: 1)
horizontal reuse, and 2) vertical reuse.

12

Uncertainties due to Horizontal Reuse

Horizontal reuse refers to reuse across several application domains [34]. It is
supported by establishing a horizontal platform. The horizontal platform serves
as a collection of generic, i.e., domain-independent, artifacts that can be spe-
cialized for reuse in more than one application domains. While developing a
horizontal platform, knowledge about target application domains is not avail-
able completely and precisely. The lack of knowledge about target application
domains, their requirements, environments, stakeholders, and related concerns
leads to uncertainties.

The separation of managing and managed systems, as shown in Figure 1.1,
implies that a horizontal platform for managing subsystems can be established
and reused to derive several vertical, i.e., application domain specific, managing
system platforms. The ASPL strategy, described in Section 1.2, directs to create
a horizontal managing system platform, and reuse the horizontal platform to
derive several vertical managing system platforms. The objective of the hori-
zontal managing system platform is to support reuse across several application
domains of self-adaptive systems.

To support reuse across several domains, developers of the horizontal plat-
form are provided with generic, application domain independent requirements.
At this level, knowledge about applications and application domains that are
derived from the horizontal platform is either not available or available only
partially. The developers are often uncertain about what will be target appli-
cations, who will be the applications’ end-users, where the applications will be
deployed and executed, what will be the interactions with other systems, what
variations, both traditional and runtime, will be there, and how will the appli-
cations respond to the variations. All these unknown factors about the target
application domains lead to uncertainties in the development of the horizontal
platform.

Uncertainties due to Vertical Reuse

Vertical reuse refers to reuse within a single application domain [34]. At this
level, reusable artifacts are designed and developed for a single known appli-
cation domain. The conceptual architecture depicted in Figure 1.1 splits a
self-adaptive software system into a managed and a managing subsystem. From
reuse perspective, the separation of concerns implies that the managed and
managing systems coexist and to a large degree are independent of each other.
The ASPL strategy exploits this separation of managed and managing subsys-
tems and recommends to develop the two subsystems by establishing separate
platforms.

The separate development of managed and managing system platforms presents
developers with uncertainties in areas that cross boundaries between the two
platforms. These uncertainties are mainly due to lack of knowledge about the
monitor and adapt interfaces between managed and managing systems, and
the monitor interface between managing systems and environment. While de-

13

veloping a vertical platform for a managing system domain, knowledge about
the corresponding managed system platform artifacts and their monitor adapt
interfaces may not be available or available only partially. This lack of knowl-
edge troubles designers ability to analyze and reason about design alternatives
and make informed decisions. Moreover, self-adaptive systems in an applica-
tion domain may differ in their requirements for self-adaptation. For instance,
one system may require “introduce concurrency” tactic while another system,
in the same domain, may require “reduce computational overhead” tactic for
self-optimization. Such variations among systems within an application domain
are referred as domain variability [33]. Variability, being a known factor to
trigger uncertainty, challenges architects and designers’ ability to collect com-
plete knowledge about all the variants and make well-informed decisions. Thus,
developing managed and managing systems as two separate domains challenge
developers ability to reason about managed and managing subsystems domain
variability and interfaces between the managed and managing subsystems.

The above-described analysis helped us to understand uncertainties involved
in the ASPL strategy. To address these uncertainties and provide developers
with step-wise process support to implement the ASPL strategy, we defined
an Autonomic Software Product Lines engineering (ASPLe) methodology. The
ASPLe methodology is introduced in chapter 2 along with three example ap-
plication domains. The application domains are used as running examples to
demonstrate the ASPLe processes. The ASPLe is composed of three processes:
1) ASPL Domain Engineering, 2) Specialization, and 3) Integration. Each of
the three processes is described and demonstrated in chapters 3, 4, and 5, re-
spectively.

14

Chapter 2

The ASPLe Methodology

The ASPLe is a domain engineering based methodology to design and develop
self-adaptive software systems with reuse across several application domains.
It complements the ASPL strategy by providing documented and repeatable
process support. Figure 2.1 depicts basic structure of the ASPLe. In line with
the ASPL strategy, the ASPLe is composed of three principal processes:

1. ASPL Domain Engineering Process

2. Specialization Process

3. Integration Process

The three process correspond to three steps of the ASPL strategy. The
ASPL Domain Engineering process maps to the first step and defines activi-
ties, work-products, and roles to establish a horizontal ASPL platform. The
Specialization process maps to the second step and provides process support
to transform the horizontal ASPL platform into a vertical managing system
platform. The integration process maps to the third step and integrates manag-

<<
 in

st
an

ce
of

 >
>

ASPL platform

Managed System
Platformn

Managing System
Platformn

Managed System
Platform2

Managing System
Platform2

Managed System
Platform1

Managing System
Platform1

Distributed Game Robotics Automotive

Specialization

Integration

ASPL Domain
Engineering

Feature ModelProduct Line Architecture Variants

Figure 2.1: Basic Structure of the ASPLe Methodology

15

ing system platform(s) with a corresponding managed system platform(s). An
overview of the ASPLe processes is given below.

2.1 ASPL Domain Engineering Process
The ASPL Domain Engineering (ADE) process defines roles, activities, and
work-products to establish a horizontal ASPL platform. The ASPL platform
provides reusable artifacts for the development of managing systems. As shown
in Figure 2.2, the ADE process structure is derived from domain engineering
process of the Software Product Line Engineering framework [33]. The ADE is
composed of four subprocesses. It begins with ASPL requirements engineering.
The ASPL requirements engineering scopes the ASPL platform and specifies
application domain independent requirements for self-adaptation. The require-
ments are then mapped to a reference architecture by the ASPL design sub-
process. The reference architecture models a high-level architecture that can
be specialized for reuse in a number of application domains. To support reuse
across multiple domains, the reference architecture specifies variation points
and a set of variants. The ASPL implementation subprocess realizes these vari-
ation points and variants by writing reusable code components such as libraries,
classes, etc. The ASPL domain engineering ends with ASPL testing subpro-
cess. The ASPL testing defines activities to validate and verify the reusable
code components produced by the ASPL implementation.

It is important to note that the ADE is a continuous process and works
incrementally. The scope of the ADE may initially be limited to one or two self-
adaptation properties, for instance, self-healing, self-optimization. However, the
scope can be extended to support a wide range of self-adaptation properties. See
chapter 3 for further details about the ADE process.

ASPL
Requirements

Engineering

ASPL
Design

ASPL
Implementation

ASPL
Testing

ASPL Domain Engineering

Requirements
Specialization

Design
Specialization

Implementation
Specialization

Tests
Specialization

Specialization

Product
Requirements

Product
Design

Product
Implementation

Product
Testing

 Integration

Application
Domain Scope

ASPL Scope

Feedback

Figure 2.2: The ASPLe Processes

16

2.2 Specialization Process
The specialization process defines roles, activities, and work-products to trans-
form a horizontal ASPL platform into an application domain specific managing
system platform. In line with the ADE, the specialization process is composed
of requirements, design, implementation, and tests specialization subprocesses.
Each subprocess searches the ASPL platform for reusable artifacts, and if found,
customizes found artifacts according to needs of a given application domain.
For instance, requirements specialization subprocess searches the ASPL plat-
form to find requirement engineering artifacts that match to requirements of
a given application domain. The found requirement specification artifacts are
then customized, if needed, according to requirements of the given application
domain. New requirements specifications are defined from scratch if a special-
ization process fails to find reusable requirement specification artifacts from the
ASPL platform. The newly created artifacts are sent as feedback to the ASPL
platform to support reuse in other application domains. See chapter 4 for fur-
ther details about the specialization process, its subprocesses, and underlying
activities.

2.3 Integration Process
The integration process defines activities, work-products and roles to align and
integrate two separately developed managing and managed system platforms
for a product line of self-adaptive systems. The managed and managing system
platforms are developed separately to preserve the separation of concerns as
envisioned by the ASPL strategy. The managing system platform is defined
by following the ASPLe specialization process. The managed system platform
can be developed using any traditional product line engineering framework such
as a framework described in [33]. As the two platforms are defined separately,
there may exist mismatches between their artifacts. The mismatches are more
likely to be in artifacts and areas that cross boundaries between the managed
and managing system platforms, such as the monitor and adapt interfaces. The
integration process provides developers with process level support to analyze
the two platforms, identify and address information and operation abstraction
mismatches in requirements, design, implementation and testing artifacts.

The integration process follows the same structure as the other two ASPLe
processes. It begins with requirements integration followed by design, imple-
mentation and tests integration subprocesses. Each subprocess aims to ensure
that the development artifacts in managed and managing system platform are
well aligned with each other, and there are no mismatches between the two
platforms. See chapter 5 for details about the integration process, subprocesses,
and underlying activities.

17

2.4 Running Examples
We use three application domains as running examples to demonstrate the AS-
PLe processes. All the three application domains require self-adaptation prop-
erties. Each of the three example domains is described below.

2.4.1 Distributed Game Environment (DGE)
The Distributed Game Environments (DGE) is an educational product line of
distributed board games. The products or applications of the DGE are game
environments for multi-player board games deployed in a distributed setting.
Figure 2.3 depicts high-level view of a DGE product. Each product consists of
two subsystems: 1) Operator Center (OC), and 2) Player Environment (PE).
The PE represents a client-side used by a human player to play games. A new
player can install and start a PE to register with the OC. The OC represents a
server-side operated by a human operator to perform administrative tasks such
as add, remove, or update games; register or unregister players, etc. Players can
find each other and launch a game offered by the OC via the PE. Alternatively,
a player can select a soft-bot, a software module, as an opponent to play a game.

Figure 2.3: Example of a DGE Product

In the initial release of the DGE, updates of the player environments are
triggered and controlled by a human operator who uses the OC to push updates
towards player environments. Alternatively, a player environment can request
OC for an update. All update requests from player environments need to be
approved by the human operator, which may take longer than expected time
to approve and reply the update requests. To improve upgradability property
of the DGE products, management of the DGE has decided to introduce a self-
upgradability property for the DGE products. Self-upgradability is an ability

18

of a software system to update itself at run-time by itself without requiring the
system to restart. The DGE requirements for self-upgradability are as follows:

1. The updates to the PE will be introduced by dropping them to an updates
repository, a directory or folder in a file system to store the updates.

2. The OC should get a notification as soon as a new update appears in an
update repository.

3. The OC should be capable of analyzing the new updates and pushing them
to target PEs. Such updates are called “push” type of updates.

4. When a new update appears, a PE gets an update notification from the
OC within 5 to 60 seconds.

5. The PE may accept or ignore push type updates. However, there are some
critical updates which cannot be ignored by a PE; such updates are called
“critical push” updates. Critical push type updates must be performed
within 120 seconds.

6. The PE can view the available updates and request OC for a particular
update. Such updates that are requested by a PE are called “pull” type
of updates.

7. The OC responds an update request by looking into the update repository,
and providing it with the requested update if found. The response time
for update requests may take 5 to 60 seconds.

The DGE domain is currently composed of four products, P1, P2, P3, and
P4. The products differ in their requirements for the push, critical push, and
pull type updates. The product P1 requires only push type updates, which can
be either accepted or postponed by PEs. The product P2 needs both push and
critical push type updates; the critical push type updates must be performed
immediately, i.e., PEs can not postpone such updates. The product P4 requires
only pull type update; the pull type updates are those which are requested by a
PE. The product P3 wants support for all three (push, critical push, and pull)
types of updates.

News Service

Mandatory Feature Optional Feature
Key

Language

English Chinese Spanish

Format

Text Multimedia

Server-Pool
Topic

Politics Sports Entertainment

Figure 2.4: The NSPL Feature Model

19

2.4.2 News Service Product Line
The News Service Product Line (NSPL) is a product line of software applications
designed for news organizations. A news organization collects, writes and sells
news to those who have subscribed for news. The subscribers or end-users are
newspapers, magazines, radio, and television broadcasters, government agencies
and other users who are interested in news. Figure 2.4 depicts a high-level
feature model of the NSPL. The mandatory features are part of all the NSPL
products, whereas the optional features are part of few but not all products.
The mandatory format feature refers to text and multimedia formats for the
news. The mandatory language feature refers to language in which news are
delivered to subscribers. It has three variants: English, Chinese and Spanish.
The mandatory server-pool feature represents a collection of servers required to
process and deliver the news. The mandatory topic feature refers to the news
theme or subject area. It has three variants: politics, sports, and entertainment.

Products Optional Features
P1 Chinese, Sports
P2 Spanish, Entertainment
P3 Chinese, Spanish, Sports, Entertainment and Server-Pool

Table 2.1: The NSPL Products - Optional Features

At present, the NSPL consist of three products P1, P2, and P3. The manda-
tory features are part of all the three products. The optional features for the
NSPL products are listed in Table 2.1. In addition to these features, the NSPL
management requires two self-adaption properties, 1) self-healing and 2) self-
optimization [27]. Self-healing is an ability of a software system to detect and
recover from failures by itself. Self-optimization is an ability of a software sys-
tem to monitor and optimize its performance by itself. Performance of the
NSPL products is measured in terms of processing time taken by a product’s
server-pool to collect and distribute a news item to the subscribed clients. The
NSPL product-specific requirements for self-optimization and self-healing are
listed below:

Self-Optimization Requirements All the three products require to monitor
server-pool’s processing time, and if the time exceeds a certain threshold, the
products should self-optimize themselves as specified below.

1. Processing time threshold for product P1 is 90 seconds. If the time exceeds
the threshold, the product requires to self-optimizing its performance, i.e.,
processing time, by adding servers to its server pool. A constraint for
adding new servers is that the operating cost of the product should not
exceed 2 million US dollars.

2. Processing time threshold for P2 is 180 seconds. If the time exceeds the

20

PhotoShare

Uploading

From File

System

Import

Editing

Remove Edit

Sharing

Private Public Friends

Mandatory Feature Optional Feature
Key

Figure 2.5: The PSPL Feature Model

threshold, the P2 requires to self-optimizing its performance, i.e., process-
ing time, by excluding multimedia contents, i.e., restricting news to text
format only.

3. Processing time threshold for P3 is 60 seconds. If the time exceeds the
threshold, the P3 requires to self-optimizing its performance, i.e., process-
ing time, by first adding servers to its server pool. If the cost of adding
serves exceeds 1 million US dollars, the P3 resorts to optimize its perfor-
mance by excluding multimedia content and delivering news in text format
only.

Self-Healing Requirements

1. Product P1 requires self-healing for its language feature. It should be able
to detect and recover from failures in the language service; for instance,
failure in changing current language to another. The product should not
take more than 90 seconds to detect and recover from failures. Moreover,
the product requires checkpoint/rollback tactic [6] for failure recovery.

2. Product P2 requires self-healing property for servers in the server-pool. If
any of the servers fails, the product should be able to detect and recover
from the failures. Heartbeat tactic [6] to monitor server-failures, and fail-
ures detection and recovery should not take more than 180 seconds. The
failed servers should be replaced with their standby spare replicas.

3. Product P3 requires self-healing property for its language feature and
servers in the server-pool. It should not take more than 240 seconds
to detect and recover from any of the failures. The failure in language
feature should be recovered using the checkpoint/rollback tactic, while
server failures should be addressed by replacing failed servers with their
standby spare replicas.

2.4.3 PhotoShare Product Line
The PhotoShare Software Product Line (PSPL) is composed of web applications
that allow end-users to upload, edit and share their pictures with friends and

21

Products Optional Features (Services)
P1 Import
P2 Share with Friends, Editing

Table 2.2: The PSPL Products – Optional Features

family through web-browsers such as firefox, safari, chrome, etc. Figure 2.5
depicts a high-level feature model of the PSPL. The mandatory features are
part of all the PSPL products, whereas the optional features are part of only
selected products. The mandatory “uploading” feature allows products to either
upload pictures from a file system or import pictures from a partner application
such as Facebook, Instagram. By default all pictures are in private mode, no
one other than the owner (user) can view the pictures. The mandatory “sharing”
feature enables users to public their pictures or to share with friends only. The
optional “editing” feature enables users to remove or edit their pictures. At now,
the PSPL consist of only two products, P1 and P2. The mandatory features
are part of both products, while the optional features are listed in Table 2.2.
In addition to these features, the PSPL management requires two self-adaption
properties, 1) self-healing and 2) self- upgradability. The PSPL requirements
for self-healing and self-upgradability are as follows:

Self-Healing Requirements

1. Product P1 requires self-healing property for its “upload” feature. The
product should be able to detect failure of the upload feature within 40
seconds. The ping/echo tactic [6] should be used for fault detection. The
failure recovery should not take more than 100 seconds, and the product
should use checkpoint/rollback tactic [6] to recover from the failures.

2. Product P2 requires self-healing property for its “share” feature. The
product should be able to detect failure of the share feature within 60
seconds. The heartbeat tactic [6] should be used for fault detection. The
failure recovery should not take more than 120 seconds, and the product
should use standby spare tactic [6] to recover from the failures.

Self-Upgradability Requirements

1. New updates for the PSPL products should be introduced through a di-
rectory or folder in a file system, which serves as a repository to store the
updates.

2. All updates should be managed and controlled through a central updates
management component.

3. Product P1 requires new updates to be detected and notified to it within
60 seconds. The P1 can either ignore or download and execute the notified
updates.

22

4. Product P2 requires no notifications for new updates. Instead, it requires
a feature that allows end-users to view available updates and request one
or more updates. The updates management component is required to
process update requests and respond within 120 seconds.

23

Chapter 3

ASPL Domain Engineering
(ADE)

The ASPL Domain Engineering process provides the basis for horizontal reuse
across several application domains of self-adaptive systems. An overview of
the ADE process has been presented already in Section 2.1. This chapter
provides a detailed description of the process and its subprocesses. To de-
scribe and document the ADE and all other ASPLe processes, we follow pro-
cess modeling concepts and notations from the Software Process Engineering
Metamodel (SPEM) [31]. The SPEM is process engineering metamodel that
provides necessary concepts for modeling, documenting, presenting, managing,
interchanging, and enacting development methods and processes.

3.1 Introduction
The ADE deals with adaptation logic, i.e., managing system part of a self-
adaptive system. It provides developers with process level support, i.e., roles,
work-products, and activities, to establish a horizontal ASPL platform. The
ASPL platform does not target any specific application domain. Instead, it
defines high-level development artifacts that can be configured or specialized
for reuse in several application domains of self-adaptive systems.

As shown in Figure 3.1, ASPL domain engineering is composed of four sub-
processes. It begins with ASPL requirements engineering that defines in-scope
self-adaptation properties and application domain independent requirements
for these properties. We use the term in-scope properties to refer to the self-
adaptation properties supported by the ASPL platform. The requirements engi-
neering is followed by the ASPL design that defines a reference architecture. The
reference architecture models a common, high-level structure to realize require-
ments specified by the ASPL requirements engineering. Next, the ASPL im-
plementation process implements a set of reusable code components or libraries
to accomplish adaptation logic for the in-scope self-adaptation properties.The

24

ASPL Domain Engineering

ASPL

Requirements

Engineering

ASPL

Design

ASPL

Implementation

ASPL

Testing

General dQASs

(Requirements)

General dRSs

(Architecture)

ASPL Platform

General

Components

General

Tests

Figure 3.1: ASPL Domain Engineering (ADE) Process

ASPL implementation does not aim at developing a running application. In-
stead, it results in a set of loosely coupled, configurable code components, where
each component is planned, designed, and realized for reuse in several managing
systems of different application domains. The ASPL testing defines a set of test
artifacts to validate and verify the domain components produced by the ASPL
implementation.

As highlighted in Figure 2.2, the ADE and other ASPLe processes, at present,
focus on the requirements and design subprocesses. To illustrate the require-
ments and design subprocess, we use Distributed Game Environment as a run-
ning example application domain. The implementation and testing subprocesses
are essential parts of the ASPLe and are planned as future work.

3.2 ASPL Requirements Engineering Process
The ASPL requirements engineering is responsible for identifying and specifying
application domain independent requirements for managing systems. Its main
objective is to contribute the horizontal ASPL platform with artifacts that can
be reused to specify requirements of managing systems in several product lines
of self-adaptive systems.

The domain for the ASPL requirements engineering consists of self-adaptation
properties determined through ASPL scope definition. To define application do-
main independent requirements for in-scope self-adaptation properties, the AS-
PLe methodology recommends the use of architectural tactics. The tactics en-
capsulate application domain independent and commonly used design solutions
to realize quality attributes [6], and behind each solution, there is a problem
(requirement). Self-adaptation properties are self-oriented forms of quality at-
tributes. Hence, tactics can be used to identify application domain independent
requirements.

Figure 3.2 depicts the ASPL requirements engineering process package dia-
gram. The process package diagram specifies three key elements: roles, work-
products, and process workflow. Each of these elements is described below.

25

ASPL

Requirements

Engineering

+ Identify in-scope self-

management properties

+ Define a general dQAS for

each in-scope self-

management property

Domain Analyst

ASPL

Scope

General

dQASs

Scoping
Define

General dQASs
General

dQASs

1

2̀

ASPL

Scope

Work-products Workflow

eARF

Analyze

Refine

Integrate

<<uses>> <<uses>>

Figure 3.2: ASPL Requirements Engineering Process Package

Roles Only one role, a Domain Analyst, is required to perform the ASPL re-
quirements engineering process. A main responsibility of the domain ana-
lyst is to define application domain independent requirement specification
artifacts that can be specialized for reuse in a number of product lines of
self-adaptive systems. The domain analyst fulfills this responsibility by
defining a general dQAS [4], a requirements specification work-product,
for each in-scope self-adaptation property. For instance, if there are three
in-scope self-adaptation properties, the domain analyst defines three gen-
eral dQASs, one for each property.

Work-products The following two work-products are consumed in or pro-
duced out as a result of the ASPL requirements engineering.

1. ASPL Scope: The ASPL scope defines boundaries for the ADE and
resulting ASPL platform. It specifies in-scope self-adaptation properties
and tactics the ASPL platform should support.

2. General dQAS: The general dQAS is an application domain independent
form of a dQAS [4]. It functions as a template to specify domain inde-
pendent requirements for self-adaptation properties. See section A.1 in
appendix A for details about the dQAS and general dQAS.

Process Workflow The ASPL requirements engineering process workflow con-
sists of two activities: j1 “Scoping”, and j2 “Define General dQASs”.
Activity-wise description of the workflow is as follows:

Activity 1 - Scoping The workflow begins with a scoping activity where
a domain analyst defines the ASPL scope. As stated above, the ASPL
scope definition specifies self-adaptation properties and tactics supported
by the ASPL platform. Defining boundaries is critical to the success of
any project. For the scope definition, the domain analyst consults an
extended Architectural Reasoning framework (eARF), described in ap-
pendix A. The eARF encapsulates proven best architectural practices
and knowledge in the form of tactics and patterns. The tactics are used
to foresee and specify application domain independent requirements for
the in-scope self-adaptation properties.

26

Self-Upgradability

Delivery

Push
Push

Critical
Pull

Detection

Periodic

Polling

Publish-

Subscribe

Introduction

Preparation Update
Return to

Operation

On-Demand

TranquilityQuiescence

Self-Optimization

Optimization

Resource

Management

Resource

Demand

Increase

Computational

Efficency

Introduce

Concurrency

Reduce

Computational

Overhead

Increase

Resources

Detection

Periodic

Polling
Event-

Based

Mandatory

Or

AlterativeKey

Self-Property

Feature

Variant

Figure 3.3: ASPL Scope Definition - An Example

Activity 2 - Define General dQASs This activity defines a general
dQAS for each in-scope self-adaptation property. The general dQAS is
a variant of a domain Quality Attribute Scenario (dQAS) [4]. Table A.2
in appendix A lists and describes the dQAS elements. The definition of
a general dQAS starts from the “source” element and continues until the
“variants” element. The “valid QAS configurations” and “fragment con-
straints” dQAS elements are left undefined. This is because definition
of both these elements depends on a specific application domain which
is not known until the ASPLe Specialization process. The domain ana-
lyst uses tactics (from the ASPL scope definition) to identify fragments
(parts) of a general dQAS elements.

3.3 ASPL Requirements Engineering – Demon-
stration

We develop an example ASPL platform to demonstrate the ASPL requirement
engineering and the ASPL design processes. The example ASPL platform ini-
tially supports only two self-adaptation properties, self-upgradability and self-
optimization.

27

The first activity in the ASPL RE is to define a scope of the ASPL platform.
We used feature modeling to scope the example ASPL platform. The feature
modeling [26] is a widely used approach in product line community to scope
a product line. Figure 3.3 depicts the ASPL scope definition in the form of
two feature trees, one for self-upgradability and the other for self-optimization.
The feature trees model mandatory and optional (“alternative” and “or”) fea-
tures supported by the example ASPL platform. The features represent distinct
characteristics of a property and are derived based on tactics [6]. For instance,
update detection and update delivery features group a set of distinguished sys-
tem characteristics to detect and deliver updates. These features are derived
based on various tactics for self-upgradability [1]. Similarly, resource demand
and resource management features for the self-optimization property are derived
based on commonly used tactics to satisfy software systems’ requirements for
performance quality attribute.

After scoping the ASPL platform, we continued with activity j2 of the
ASPL requirements engineering. In this activity, we defined a general dQAS
for each in-scope self-adaptation property. The lack of knowledge about tar-
get applications and application domains raised uncertainties while defining the
general dQAS elements, for instance, what stimuli conditions may trigger self-
upgradability or self-optimization, what may be the sources of the stimuli con-
ditions, and how a system may respond to the stimuli. We mitigated these
uncertainties using the architectural knowledge provided by eARF part of the
ASPLe. We produced a general dQAS for self-upgradability and a general dQAS
for self-optimization as a result of the activity j2 . Below is a detailed description
of how we defined the general dQASs for the in-scope self-adaptation properties,
self-upgradability, and self-optimization.

3.3.1 General dQAS for Self-Updgradability
Using the general dQAS template, we started defining the general dQAS for
self-upgradability with the source element. The source element specifies sources
of stimuli, and to identify the source element; it is vital to identify stimuli con-
ditions first. To identify stimuli conditions that may trigger self-upgradability,
we analyzed the in-scope self-upgradability tactics. The analysis helped us to
identify two stimuli fragments [ST1] and [ST2]. The fragment [ST1] was identi-
fied from “polling” and “on-demand” update detection tactics, whereas fragment
[ST2] was identified from “pull” type update delivery tactic. We could not find
any stimulus fragment from the update introductions tactics.

Once stimulus fragments were identified, we analyzed these fragments to
determine the source fragments. By examining the stimulus fragments [ST1],
we found the first source fragment, update provider which can be a repository,
such as a database or a directory in a file system, a software system, system ad-
ministrator or a developer who provides updates. The second source fragment,
update consumer specified as fragment [SO2], was identified by analyzing the
stimuli fragment [ST2].

After defining the source and stimulus, we defined the artifact element. The

28

“update introduction” tactics helped us to identify abstract artifacts that get
stimulated as a result of the stimuli conditions. We identified two artifact frag-
ments [A1] and [A2]. The fragment [A1] abstracts an artifact that gets simulated
with the detection of an update and plans actions in response. We abstracted
this artifact as an update manager that works as a managing system or system
administrator to prepare and perform updates. The fragment [A2] abstracts a
target (managed) system on which adaptive actions (updates) are performed by
artifact fragment [A1].

Source (SO)

[SO1] Update Provider - a repository, software system, system ad-
ministrator or a developer that provides updates
[SO2] Update Consumer - a software system or subsystem, or an end
user who requests updates

Stimulus (ST) [ST1] Update provider introduces a new update
[ST2] Update consumer requests for an update

Artifacts (A)

[A1] Update Manager - a managing system, system administrator
who gets stimulated by detection of an update and triggers response
[A2] Target System - (managed) software system or subsystem on
which updates are applied

Environment (E) [E1] Runtime under normal operating conditions

Response (R)

[R1] Update Manager detects an update
[R2] Update Manager notifies an update to a target system
[R3] Update Manager responds update requests
[R4] Update is applied to a target system

Response Measure
(RM)

[RM1] New update is detected within W seconds
[RM2] New update is detected and notified within X seconds
[RM3] Update manager responds update requests within Y seconds
[RM4] Update is applied to a target system within Z minutes

Variants (V)
[V1] push
[V2] push critical
[V3] pull

Valid QAS Configura-
tions (VC)

Valid QAS configurations depend on a specific domain. Thus, we
leave them undefined until the general dQAS is specialized for a spe-
cific domain.

Fragment Constraints
(FC)

The fragment constraints can’t be defined without knowing valid
QAS configurations, so we leave these until this general dQAS is
specialized for a specific domain.

Table 3.1: A General dQAS for Self-Upgradability

There was no information in the ASPL scope about operating environment
under which support for the self-upgradability property is required. Hence, we
assumed that the example ASPL platform supports self-upgradability under
normal operating environment, and specified this as an environment fragment
[E1]. The normal operating environment is when a system is not overloaded
with tasks.

In the response element, we characterized actions taken by the stimulated
artifacts, [A1] and [A2], in response to the stimuli fragments. The actions were
characterized as fragments, and to identify these fragments, we analyzed the

29

self-upgradability tactics. Based on this analysis, we identified four response
fragments [R1], [R2], [R3], and [R4]. The fragment [R1] was identified from
“update detection” tactics. It specifies behavioral requirement in response to
update detection. The fragment [R2] was identified from push type “update
delivery” tactics. It specifies a general response requirement where an “update
manager” artifact specified as fragment [A1] responds to the stimuli fragments
[ST1] and [ST2] by sending an update notification to the target managed system
artifact specified as fragment [A2]. The response fragment [R3] was identified
from the “pull” update delivery tactic in association with stimulus fragment
[ST2]. It specifies a general response requirement where an “update manager”
responds requests for updates from target systems or clients that need an up-
date. The fragments [R4] was identified to specify response action for applying
an update to target systems.

To measure realization of the desired self-upgradability property, four re-
sponse measure fragments, [RM1], [RM2], [RM3] and [RM4], were identified
in association with the response fragments. Being an application domain in-
dependent process, we had no specific requirements for the response measure
fragments. Moreover, requirements for response measure fragments may vary
from product to product and an application domain to another. Thus we used
parameters to specify variability for the response measure fragments. The re-
sponse measure fragment [RM1], for instance, [RM1] specified that a new up-
date should be detected within W seconds, here W is a parameter used to define
variability.

For the variants element, we identified three variants for self-upgradability:
1) Push, 2) Push Critical, and 3) Pull. These variants were identified from the
“update delivery” tactics. The push type self-upgradability variant abstracts a
scenario where an update is pushed from an update provider, artifact fragment
[A1], such as update repository, update manager or any other source, towards
update consumer, artifact fragment [A2]. The update consumer may accept or
postpone the pushed update. The push critical variant extends the push variants
such that the pushed update must be performed, i.e., the update consumer may
not delay or postpone it. The pull type variant specifies a scenario where an
update is requested (pulled) by an update consumer or managed system itself.
The three self-upgradability variants were specified as fragments [V1], [V2] and
[V3], respectively, in the variants element.

The definition of “valid QAS configurations” and “fragment constraints”
dQAS elements depends on specific application domain requirements. Thus,
we left these elements undefined. This brought us to completion of the ASPL
requirements engineering process which comes to an end with the definition of
a general dQAS for each in-scope self-adaptation property.

3.3.2 General dQAS for Self-Optimization
Table 3.2 displays a general dQAS template for a self-optimization property.
The template was defined by applying the ASPL requirement engineering pro-
cess. A general (independent of any application domain) requirement for self-

30

Source (SO) [SO1] Managed System’s response time
[SO2] Managed System’s workload, i.e., number of events or requests to respond

Stimulus (ST)

[ST1] Response Monitor detects increase in response time, i.e., response time
exceeds specified threshold of X time units
[ST2] Workload Monitor detects increase in the workload, i.e., number of re-
quests, events or tasks exceeds specified threshold of Y workload units

Artifacts (A)

[A1] Response Monitor - part of Managing System which monitors response time
and notify Response Manager for increase in the response time
[A2] Workload Monitor - part of Managing System which monitors workload
and notify Response Manager for increase in the workload
[A3] Performance Manager - a managing system which monitors and optimizes
performance of a managed system
[A4] Target System - a managed software system or resource which is adapted
for performance optimization

Environment (E) [E1] Runtime under normal operating conditions
[E2] Runtime under overloaded operating conditions

Response (R)

Managing system optimizes performance by:
[R1] Increasing computation efficiency of the managed system
[R2] Reducing computational overhead of the managed system
[R3] Introduce concurrency to the managed system
[R4] Add more resources to the managed system

Response Measure
(RM)

[RM1] Managed system’s response time is less than X time units
[RM2] The cost for adaptive actions is under the allowed budget of Z monetary
units

Variants (V)

[V1] Optimize computation efficiency
[V2] Reduce computational overhead
[V3] Concurrent processing
[V4] Add more resources

Valid QAS Configura-
tions (VC)

Valid QAS configurations depend on a specific domain. Thus, we leave them
undefined until the general dQAS is specialized for a specific domain

Fragment Constraints
(FC)

The fragment constraints can’t be defined without knowing valid QAS configu-
rations, so we leave these until the QAS configurations are defined

Table 3.2: A General dQAS for Self-Optimization

31

optimization is to monitor the performance of a managed system and optimize
the performance if it does not meet required criterion or threshold. Perfor-
mance is a measure of responding system requests or events within specified
time threshold [6]. The self-optimization property gets triggered when a man-
aging system detects increase (or delay) in response time or workload (number
of requests or events to process) of a managed system. Thus managed system’s
response time and workload were identified as two source fragments, [SO1] and
[SO2], and the conditions or stimulus generated by these two sources were spec-
ified as stimulus fragments [ST1] and [ST2], respectively.

For the artifact element, we identified two fragments, [A1] and [A2]. The
fragment [A1] abstracts a managing subsystem that gets stimulated by the two
stimuli fragments, and trigger adaptive actions in response to optimize the per-
formance of a managed system. The fragment [A2] abstracts a managed system
on which the managing system performs the triggered adaptive actions.

For the environment element, we identified two environment variants, frag-
ments [E1] and [E2], under which the example ASPLe framework supports self-
optimization. The fragment [E1] specifies run-time operating environment with
a normal workload, whereas the fragment [E2] specifies run-time working envi-
ronment with a high workload. The definition of normal and high workload may
vary among different domains or domain products and is defined more precisely
while specializing a general scenario to a domain or product specific scenario.

The performance tactics [6] outline number of actions that can be taken by
a (managing) system for performance optimization. We use these tactics to
identify fragments, i.e., variants, of the response element. The response frag-
ment [R1] is derived from “increase computational efficiency” tactic. It specifies
a requirement where a system is required to optimize its performance by op-
timizing its computational efficiency, for instance by improving the algorithms
and other computational resources that are used in performance critical ar-
eas. The fragment [R2] is derived from “reduce computational overhead” tactic,
and specifies a requirement variant of performance optimization by removing
computational overheads, for instance by removing computations that can be
avoided, or switching to best fit data structures. The fragment [R3] is derived
from “introduce concurrency” tactic, and specifies a requirement where a system
is required to optimize its performance through parallel processing, for instance
using multiple threads. The last fragment [R4] is derived from the “increase
available resources” tactic. It specifies a variant of performance optimization
by adding faster additional processors, memories, communication channels and
other resources.

To measure realization of the self-optimization property, we identified two
response measure fragments. The fragment [RM1] requires that as a result of
the adaptive actions performed by the stimulated managing system artifact, the
managed system’s response time should become less than x time units, here x is
a parameter used to define domain or product specific threshold for the response
time. The fragment [RM2] specifies that the cost of the adaptive actions (those
specified as response variants) taken for performance optimization should be less
than y currency units, here y is a parameter used to define domain or product

32

ASPL Design

General

dQAS

General

dRS

eARF

Reason about and

verify design options

Work-products

Extract

responsibilities

with variability

Responsibilties

1 2

Identify

design options

3

General

dRSs

Map design decisions to

responsibility components

4

Workflow

Analyze

Refine

Integrate

General

dQASs

eARF

<<uses>>

<<uses>>
<<uses>>

+ Extract the ASPL domain

responsibilities with

variability from general

dQASs

+ Analyze and reason about

extracted responsibilities

and design options

+ Map responsibilities to

verified design options

Domain Designer

<<uses>>

Figure 3.4: ASPL Design Process Package

specific threshold for operating budget.
Based on the fragments of the response element, we identified four fragments,

[V1], [V2], [V3], and [V4] for the variant element. These fragments specify basic
units of self-optimization property that can be combined as “valid QAS config-
urations” to derive product specific self-optimization scenarios. For instance,
fragments [V1] and [V3] can be combined as a “valid QAS configuration” to
derive a scenario for a domain whose products demand performance optimiza-
tion by following ‘increase computation efficiency” and ‘introduce concurrency”
tactics. The definition of “valid QAS configurations” and “fragment constraints”
dQAS elements, however, depends on specific application domain requirements.
Thus, we left these elements undefined.

3.4 ASPL Design Process
The ASPL design (sub)process defines a general reference architecture to realize
self-adaptation properties. Our definition of the general reference architecture
is an application domain-independent architecture that can be specialized to
derive several application domains specific reference architectures. Thus, the
main objective of the ASPL design process is to define architectural artifacts
that can be specialized for reuse in several domains of self-adaptive systems. It
uses general dQASs defined by the ASPL requirements engineering to identify
requirements, analyze and reason about design alternatives, and model design
decisions to realize the requirements. The design decisions are modeled as ar-
chitectural elements with abstract responsibilities and interface definitions so
that these elements can be specialized (through ASPL design specialization) to
meet requirements of a number of application domains.

Figure 3.4 depicts a process package diagram of the ASPL design process.
The package diagram depicts roles, work-products, and workflow of the ASPL
design process. An overview of the roles, work-products is given below, followed
by a description of the process workflow.

33

Roles Only one role, a Domain Designer, is needed to perform the ASPL design
process. The domain designer is required to identify design options, reason
about them and map the evaluated or verified design options to architec-
tural elements. The ASPLe methodology provides domain designers with
proven best design practices and knowledge encapsulated in the form of
extended Architectural Reasoning Framework (eARF). Details about the
eARF, its elements, and usage in the design process are given in appendix
A.

Work-products Three work-products, described below, are used in the pro-
cess.

1. General dQAS: The domain designer uses general dQASs, defined by the
ASPL requirements engineering, as an input work-product to identify
required self-adaptation properties and their variants. See section A.1
in appendix A for details about the dQAS and general dQAS.

2. eARF: The eARF is used to provide domain designers with proven best
design practices and knowledge to support architectural analysis and
reasoning for self-adaptation properties. It is a purpose fully established
reasoning framework [15] to support architectural analysis and reasoning
required for realization of self-adaptation properties. It helps designers
to identify design alternatives, analyze and evaluate the identified alter-
natives, reason about the outcomes, and model design decisions.

3. General dRS: For each required self-adaptation property, a General dRS
is defined as an output work-product of the ASPL design process. The
General dRS is an application domain independent type of a dRS. The
dRS is an architectural representation of design decisions made to real-
ize a self-adaptation property. A general dRS models a reference archi-
tecture to realize a self-adaptation property. Monitor, Analyze, Plan,
Execute, and Knowledge (MAPE-K) feedback loop [27, 40] is used as a
principal architectural pattern to structure the architectural element in
a General dRS. See appendix A for details about the dRS and General
dRS.

Process Workflow Figure 3.4 depicts workflow of the ASPL design process.
The workflow comprises four activities that are performed for each in-
scope self-adaptation property required by the ASPL domain. Activity by
activity description of the process is as follows:

Activity 1 - Extract responsibilities with variability Beginning with
a first self-adaptation property, the domain designer analyzes a general
dQAS, and extracts a set of application domain independent responsibil-
ities and their variants. The responsibilities are identified by following
responsibility driven design approach [41]. Moreover, the domain de-
signer should follow conceptual split between managing and managed
subsystems of a self-adaptive software system to identify responsibili-
ties.

34

Activity 2 - Identify design options The responsibilities and their
variants, extracted as a result of activity 1 can be achieved in several
ways. For instance, responsibilities identified for a "self-protection" can
be satisfied by following different security tactics, such as user authen-
tication, authorization, maintaining data confidentiality and integrity.
Thus, as next step in the ASPL design process, the activity 2 identi-
fies available and foreseeable design choices to model or realize the ex-
tracted responsibilities. The domain designers should use self-adaptation
property driven architectural tactics (from the eARF) to identify design
choices.

Activity 3 - Reason about and verify design options The identi-
fied design options are then analyzed and reasoned about their outcomes
to ensure the realization of the desired self-adaptation properties. The
analysis and reasoning can be achieved using any architectural analy-
sis method which provides means to assure that the identified set of
design options would comply with requirements specified in a general
dQAS. The extended Architectural Reasoning Framework (eARF), de-
scribed in appendix A encapsulates knowledge needed by domain de-
signers to understand and reason about self-adaptation properties. To
provide more rigorous support for architectural analysis, reasoning, and
to verify the analyzed design options, we enhanced the eARF with an an-
alytical framework [3]. The analytical framework support architects with
transforming requirements to rigorous architecture models that comply
with required self-adaptation properties. The models are defined using
timed automata, and the properties are specified using temporal logic.
The resulting models and properties allow verifying model compliance
with the properties. The analytical framework uses Uppaal [9], a state-
of-the-art toolbox for verification.

Activity 4 - Map design decisions to responsibility components
In this activity, the design decisions are mapped to responsibility compo-
nents to define a reference architecture in the form of a General dRS. The
mapping to architectural elements once again requires domain designers
to reason about architectural structure and interfaces among the respon-
sibility components. The self-adaptation property driven architectural
patterns from the eARF can be used once again to reason about and or-
ganize responsibility components, their structure and provide/required
interfaces.

3.5 ASPL Design – Demonstration
This section demonstrates how we performed the ASPL design process for
an example ASPL platform. The example ASPL platform supports two self-
adaptation properties, self-upgradability and self-optimization, see Section 3.3

35

dQAS
Elements Responsibilities and Design Choices

Source

1. Updates Provider: serves as a source for the updates; may have following
variants:

i) software (sub)system
ii) system administrators
iii) software developers

2. Update Consumer: requests for updates with following variants:
i) software (sub)system
ii) end user

Stimulus 1. Update Provider: (same as in the source element)
2. Update Consumer: (same as in the source element)

Artifact

1. Following responsibilities were identified for the Updates Manager Artifact:
a) Monitor Updates: monitor updates provider for new updates

i) Periodic polling
ii) Event-based
iii) On-demand

b) Analyze: analyze new updates
c) Plan: plan delivery and execution of the new updates

i) Push
ii) Push-Critical

d) Execute: execute the updates
i) Quiescence
ii) Rewriting Binary Code
iii) Use of Proxies
iv) Intrusion and Cooperation

2. The Update Manager cab be realized in two different ways:
i) Centralized Control: a central component is responsible for all respon-

sibilities
ii) Distributed Control: responsibilities are distributed among several

components
3. Target System: uses updates i.e., a software system on which updates are
performed.

Environment Run-time operating environment with normal work-load

Response

1. Updates Monitor: monitors the source variants for new updates; may have
following variants:

i) Periodic polling
ii) Event-based
iii) On-demand

2. Analyzer: analyzes new updates: Update Manager: notifies an update to the
Target System. A notification may trigger two response variants:

i) Target System may accepts and performs the update
ii) Target System may postpone the updates

2. Target System: requests Update Manager for an update
3. Target System: downloads an update from the Update Manager and executes
it.

Response
Measure No new responsibility identified in this element.

Variants No responsibilities but three variants for how an update is planned and performed
are identified in this element: 1) Push, 2) Critical Push, and 3) Pull

Table 3.3: Responsibilities extracted from the General dQAS for Self-
Upgradability

36

General

QAS

domain QAS
domain Responsibility

Structure

associated with some of
1..*extracted

from

<<determines>>

MAPE Pattern

Architecture

Tactics
Architecture Patterns

<<uses>>

packages

Self-

Upgradability

Tactics

<<determines>>

Self-

Upgradability

Tactics

Self-

Optimization

Tactics

Figure 3.5: An eARF for Self-Upgradability and Self-Optimization

for details about the example ASPL platform. Following is a one by one descrip-
tion of how we performed the ASPL design process to model application domain
independent design artifacts for the two in-scope self-adaptation properties.

3.5.1 ASPL Design for Self-Upgradability
Following the ASPL design process workflow, described in Section 3.4, we started
with activity 1. In this activity, we analyzed the general dQAS for self-upgradability,
shown in Table 3.1, and extracted a set of responsibilities by following the re-
sponsibility driven design approach [41]. We analyzed each element of the gen-
eral dQAS and extracted responsibilities with their variants. For instance, from
the source element, we extracted two responsibilities: 1) updates provider, and
2) updates consumer. The updates provider responsibility abstracts a compo-
nent or subsystem that serves as a source of the updates. Three variants, as
follows, were identified for the updates provider responsibility from the source
element: i) software (sub)system, ii) system administrator and iii) software
developers. All the responsibilities extracted from the general dQAS for self-
upgradability are listed in Table 3.3. We

Next activity in the ASPL design process is to identify design options to re-
alize the extracted responsibilities. We used self-upgradability tactics from the
eARF instance shown in Figure 3.5 to identify and reason about the design op-
tions. The eARF recommends use of MAPE pattern [40] and the self-adaptation
property specific tactics to identify design choices. The appendix A describes
the MAPE pattern and commonly used monitor and execute tactics to model
design decisions for self-adaptation. We used the monitor, analyze, plan and
execute elements from the MAPE pattern, and upgradability tactics described
in [1, 30] to identify design options for the self-upgradability property. It is
important to note that the ASPLe methodology uses tactics to scope the sup-
ported self-adaptation properties, and also to assist architects in identifying

37

and reasoning about design alternatives. The Table 3.3 presents design options
(listed in italics) identified for each responsibility as a result of this activity.
From variability modeling perspective, the extracted responsibilities represent
variation points, and the design options represent variants.

Continuing the ASPL design process, in activity 3, we evaluated and veri-
fied the design options with the help of an analytical framework provided by the
eARF. The design choices were reconsidered and adapted based on results of the
verification. We completed the ASPL design process by performing the activity
4. In this activity, we mapped the verified design options to architectural com-
ponents of in the form of a General dRS for self-upgradability. Figure 3.6 shows
the General dRS for self-upgradability produced as a result of the ASPL design
process. The responsibility components depict abstract responsibilities whereas
the orthogonal variability model, i.e., variation points and variants, represent
design choices and alternatives to realize the modeled responsibilities. The an-
notation «managed» specifies that a component, e.g., updates consumer, is a
part of the managed subsystem, whereas the annotation «managing » specifies
that a component, e.g., updates monitor, is a part of the managing subsystem.

The “update provider” and “update consumer” responsibility components
were modeled to realize responsibilities identified in the source element of the
general dQAS for self-upgradability. The update provider responsibility com-
ponent abstracts a source entity through which updates are introduced. Three
variants of this component were identified as a result of activity 1 of the ASPL
design process. We did not have specific requirements for an application domain
or application itself. Thus, we modeled the variants as optional variants under
the variation point “updates provider”. The “software (sub)system” variant ab-
stracts any software system or subsystem which serves as a pool or a database of
updates. In some application domains, the updates might be introduced by sys-
tem administrators or system developers. This is modeled by defining “system
administrator” and “system developer” update provider variants, respectively.

The update consumer responsibility component abstracts an entity, which
requests for updates. Depending on application domain requirements, the up-
date consumer can be an end-user or a software system itself. This is modeled
as a variation point “updates consumer” with two variants, software system, and
end-user.

The “target system” responsibility component represents a (managed) soft-
ware system or subsystem on which updates are performed. The target system
can be same as the update consumer component if the target system requests
for an update itself.

The “updates monitor” component is identified from the artifact element
variant [A1]. It models a responsibility to detect new updates and notify updates
to the updaters manager. Three design choices (variants) were identified and
verified for the updates monitor. These design choices were identified using
“update detection” tactics from the self-upgradability tactics described in [1].
The verified design choices are modeled as variants of the “repo. monitor”
variation point in the OVM.

The “updates manager” component identified from the artifact element, has

38

U
p

d
a
te

s
M

o
n

it
o
r

<
<

m
an

ag
in

g
>

>

M
o
n
it

o
rs

 a
n
d
 r

ep
o
rt

s

u
p
d
at

es

U
p

d
a
te

s
M

a
n

a
g
er

<
<

m
an

ag
in

g
>

>

1
C

o
o
rd

in
at

es
 u

p
d
at

es

(i
)

d
et

ec
ts

 a
n
d
 n

o
ti

fy

u
p
d
at

es

(i
i)

 h
an

d
le

s
u
p
d
at

e
re

q
u
es

ts

A
n

a
ly

ze
r

<
<

m
an

ag
in

g
>

>

A
n
al

y
ze

s
u
p
d
at

es

an
d
 u

se
r

re
q
u
es

ts

fo
r

u
p
d
at

es

N
o
ti

fi
ca

ti
o
n

A
n
al

y
si

s

R
es

u
lt

s

P
la

n
n

er

<
<

m
an

ag
in

g
>

>

P
la

n
s

a
re

sp
o
n
se

b
as

ed
 o

n
 t

y
p
e

o
f

th
e

u
p
d
at

e
an

d
 r

eq
u
es

t

fr
o
m

 t
h
e

U
p
d
at

e

C
o
n
su

m
er

 c
o
m

p
o
n
en

t

A
n
al

y
si

s

R
es

u
lt

s
P

la
n

P
la

n

O
V

M
G

en
er

a
l

d
R

S
 f

o
r

S
el

f-
U

p
g
ra

d
a
b

il
it

y
O

V
M

U
p
d
at

e

U
p
d
at

e

R
ep

o
.

M
o
n
it

o
r

V
P

P
er

io
d
ic

P
o
ll

in
g

V
O

n
-

D
em

an
d

V
E

v
en

t

B
as

ed

V

A
n
al

y
ze

r

V
P

U
p
d
at

es

A
n
al

y
ze

r

V

R
eq

u
es

ts

A
n
al

y
ze

r

V

re
q
u
ir

es
 v

p
_
v
p

U
p
d
at

es

M
an

ag
er

V
P

C
en

tr
al

iz
ed

V

D
is

tr
ib

u
te

d

V

U
p

d
a
te

s
P

ro
v
id

er

S
to

re
s

an
d

P
ro

v
id

es
 u

p
d
at

es

U
p

d
a
te

s
C

o
n

su
m

er

<
<

m
an

ag
ed

>
>

R
eq

u
es

ts
 a

n
d

C
o
n
su

m
es

 u
p
d
at

es

U
p
d
at

es

C
o
n
su

m
er

V
P

S
o
ft

w
ar

e

S
y
st

em

V

E
n
d

U
se

r

V

K
ey

[n
am

e]

[r
es

p
o
n
si

b
il

it
y

]
[n

am
e]

V
P

R
es

p
o
n
si

b
il

it
y

C
o
m

p
o
n
en

t

[n
am

e]

V

V
ar

ia
n
t

V
ar

ia
ti

o
n
 P

o
in

t

A
rt

if
ac

t
D

ep
en

d
en

cy
O

p
ti

o
n
al

 V
ar

ia
n
t

V
ar

ia
ti

o
n
 P

o
in

t

C
o
n
st

ra
in

t
D

ep
en

d
en

cy

re
q
u
ir

es
 v

p
_
v
p

p
ro

v
id

es

re
q
u
ir

es

E
x
ec

u
to

r

<
<

m
an

ag
in

g
>

>

E
x
ec

u
te

s
th

e
P

la
n

P
la

n

T
a
rg

et
 S

y
st

em

<
<

m
an

ag
ed

>
>

S
o
ft

w
ar

e
S

y
st

em
 o

n

w
h
ic

h
 u

p
d
at

es
 a

re

ap
p
li

ed
.

E
x
ec

u
to

r

V
P

Q
u
ie

sc
en

ce

V

P
ro

x
ie

s

V
R

ew
ri

te

B
in

ar
y
 c

o
d
e

V
In

tr
u
si

o
n
 &

C
o
o
p
er

at
io

n

V

U
p
d
at

es

P
ro

v
id

er

V
P

S
o
ft

w
ar

e

S
y
st

em

V
S

y
st

em

D
ev

el
o
p
er

V
S

y
st

em

A
d
m

in
is

tr
at

o
r

V

P
la

n
n
er

V
P

P
u
sh

V

P
u
ll

V
C

ri
ti

ca
l

P
u
sh

V

F
ig
ur
e
3.
6:

G
en
er
al

dR
S
fo
r
Se

lf-
U
pg

ra
da

bi
lit
y

39

a responsibility of managing system to control and perform updates in a self-
adaptive manner. It uses the “update monitor” component to monitor source of
the updates, i.e., “update provider” component. The update manager also has a
responsibility for handling update requests from update consumers. On getting
a new update notification or request, the updates manager coordinates with the
“analyzer” and “planner” components to analyze and plan adaptive actions.

The analyzer, planner, and executor components are identified and struc-
tured based on the MAPE pattern. The analyzer has two variants (design
choices), updates analyzer, and requests analyzer. The requests analyzer is
used to analyze requests from update consumers, for instance, whether the re-
quested update is available or not. The update analyzer variant is there to
analyze types of the requested or newly detected updates, for instance, whether
it is a simple push type or critical push type update. Determining an update
type, helps the planner and update manager components to plan appropriate
adaptive actions. For instance, critical push type updates can’t be delayed,
and the managing system is required to ensure that it has been successfully
applied or executed on the target system. The “push” and “critical push” plan
variants represent adaptive actions that are required for push and critical push
type updates, respectively. The planned actions for self-upgradability are for-
warded to the “executor” component which has a responsibility to perform the
planned actions (updates) on the target managed system. The four variants for
the executor are modeled based on execute tactics for self-upgradability. Details
about the execute tactics can be found in Appendix A, Section A.3.3.

3.5.2 ASPL Design for Self-Optimization
A General dRS for self-optimization was defined by applying the ASPL de-
sign process. Starting with activity 1 of the ASPL design, we analyzed the
general dQAS for self-optimization, shown in Table 3.2, and extracted a set
of responsibilities. The responsibilities were extracted using the responsibility
driven design approach [41]. Each element of the general dQAS was analyzed,
and responsibilities were extracted with their variants. For instance, response
monitor and workload monitor were identified as responsibilities from the stim-
ulus element. All the responsibilities extracted from the general dQAS for self-
optimization are listed in Table 3.4.

Next, in activity 2, we identified design options to realize the extracted re-
sponsibilities. We used self-optimization tactics from the eARF instance shown
in Figure 3.5 to identify and reason about the design options. The eARF recom-
mends use of MAPE pattern [40] and self-adaptation property specific tactics
to identify design options. The appendix A describes the MAPE pattern and
commonly used monitor and execute tactics to model design decisions for self-
adaptation properties. We used the monitor, analyze, plan and execute elements
from the MAPE pattern, and performance tactics described by Bass et al. [6] to
identify design options for the self-optimization property. The Table 3.4 records
design options (listed in italics) identified for each responsibility as a result of
this activity.

40

dQAS
Elements Responsibilities and Design Choices

Source
A managed system is required with following two properties:

i) response time
ii) workload

Stimulus 1. A response monitor is required to detect increase in response time.
2. A workload monitor is required to detect an increase in workload

Artifact

1. A response monitor is required to monitor response time and notify performance
manager for increase in the response time
2. A workload monitor is required to monitor workload and to notify performance
manager for an increase in the workload
3. A performance manager (managing system) is required to optimize the perfor-
mance of a managed system
4. The managed system is required to cooperate with managing system for moni-
toring and optimization

Environment No responsibility identified

Response

1. Performance manager analyzes managed system to find out factors causing an
increase in the managed system’s response time or workload properties.
2. Performance manager plans adaptive actions to optimize the managed systems’s
performance. The actions can be based on following performance optimization tac-
tics [6]:

i) Increase computation efficiency
ii) Reduce computational overhead
iii) Introduce concurrency
iv) Increase available resources

3. Performance manager executes the planned adaptive actions on the managed
system. The planned actions can be executed using one of the following tactics:

i) Quiescence
ii) Rewriting Binary Code
iii) Use of Proxies
iv) Intrusion and Cooperation

Response
Measure No new responsibility identified in this element.

Variants No new responsibility identified in this element

Table 3.4: Responsibilities extracted from the General dQAS for Self-
Optimization

Continuing the ASPL design process, in activity 3, we evaluated and verified
the design options with the help of an analytical framework provided by the
eARF. The design choices were reconsidered and adapted based on results of
the verification. We completed the ASPL design process by performing the
activity 4. In this activity, we mapped the verified design options to architectural
components of in the form of a General dRS for self-optimization. Figure 3.7
depicts the General dRS for self-optimization produced as a result of the ASPL
design process. The responsibility components model abstract responsibilities
whereas the orthogonal variability model, i.e., variation points and variants,
represent design choices and alternatives to realize the modeled responsibilities.

The “managed system” responsibility components models a basic application
software system or a subsystem that requires optimizing its performance. It was
identified from the source element of the general dQAS for self-optimization.
The workload monitor component models a responsibility to monitor the man-
aged system’s workload and to notify the workload to the performance manager.
Similarly, the response monitor component models a responsibility to monitor

41

P
er

fo
rm

a
n

ce
 M

a
n

a
g

er

<
<

m
an

ag
in

g
>

>

M
o

n
it

o
rs

 a
n

d
 o

p
ti

m
iz

es

p
er

fo
rm

an
ce

 o
f

a

m
an

ag
ed

 s
y

st
em

A
n

a
ly

ze
r

<
<

m
an

ag
in

g
>

>

A
n

al
y

ze
s

ro
o

t
ca

u
se

fa
ct

o
rs

,
w

h
ic

h
 a

ff
ec

t

m
an

ag
ed

 s
y

st
em

’s

p
er

fo
rm

an
ce

Notification

A
n

al
y

si
s

R
es

u
lt

s

P
la

n
n

er

<
<

m
an

ag
in

g
>

>

P
la

n
s

ad
ap

ti
v

e
ac

ti
o

n
s

to
 o

p
ti

m
iz

e
m

an
ag

ed

sy
st

em
’s

 p
er

fo
rm

an
ce

A
n

al
y

si
s

R
es

u
lt

s

P
la

n

P
la

n

O
V

M

G
en

er
a

l
d

R
S

 f
o

r
S

el
f-

O
p

ti
m

iz
a

ti
o

n

O
V

M

A
n

al
y

ze

A
n

al
y

ze
r

V
P

W
o

rk
lo

ad

A
n

al
y

ze
r

V

D
ep

en
d

cy

A
n

al
y

ze
r

V

re
q

u
ir

es
 v

p
_

v
p

K
ey

[n
am

e]

[r
es

p
o

n
si

b
il

it
y

]
[n

am
e]

V
P

R
es

p
o

n
si

b
il

it
y

C
o

m
p

o
n

en
t

[n
am

e]

V

V
ar

ia
n

t
V

ar
ia

ti
o

n
 P

o
in

t

A
rt

if
ac

t
D

ep
en

d
en

cy
O

p
ti

o
n

al
 V

ar
ia

n
t

V
ar

ia
ti

o
n

 P
o

in
t

C
o

n
st

ra
in

t
D

ep
en

d
en

cy

re
q

u
ir

es
 v

p
_

v
p

p
ro

v
id

es

re
q

u
ir

es

P
la

n
n

er

V
P

In
cr

ea
se

E
ff

ic
en

cy

V
R

ed
u

ce

O
v

er
h

ea
d

V
A

d
d

T
h

re
ad

s

V
In

cr
ea

se

R
es

o
u

rc
es

V

M
a

n
a

g
ed

 S
y

st
em

<
<

m
an

ag
ed

>
>

A
b

st
ra

ct
s

a
b

as
e

le
v

el

sy
st

em
 r

es
p

o
n

si
b

le

fo
r

ap
p

li
ca

ti
o

n
 l

o
g

ic

E
x

ec
u

to
r

V
P

Q
u

ie
sc

en
ce

V

P
ro

x
ie

s

V
R

ew
ri

te

B
in

ar
y

 c
o

d
e

V
In

tr
u

si
o

n
 &

C
o

o
p

er
at

io
n

V

N
o

ti
fi

ca
ti

o
n

R
es

p
.

M
o

n
it

o
r

V
P

P
er

io
d

ic

P
o

ll
in

g

V
O

n
-

D
em

an
d

V
E

v
en

t

B
as

ed

V

L
o

ad

M
o

n
it

o
r

V
P

P
er

io
d

ic

P
o

ll
in

g

V
O

n
-

D
em

an
d

V
E

v
en

t

B
as

ed

V

R
es

p
o

n
se

 M
o

n
it

o
r

<
<

m
an

ag
in

g
>

>

M
o

n
it

o
rs

 m
an

ag
ed

sy
st

em
’s

 r
es

p
o

n
se

 t
im

e

an
d

 n
o

ti
fi

es
 t

h
e

p
er

fo
rm

an
ce

 m
an

ag
er

M
o

n
it

o
r

M
a

n
a

g
ed

 S
y

st
em

<
<

m
an

ag
ed

>
>

A
b

st
ra

ct
s

a
b

as
e

le
v

el

sy
st

em
 r

es
p

o
n

si
b

le

fo
r

ap
p

li
ca

ti
o

n
 l

o
g

ic

E
x

ec
u

to
r

<
<

m
an

ag
in

g
>

>

E
x

ec
u

te
s

th
e

P
la

n

P
la

n

M
a

n
a

g
ed

 S
y

st
em

<
<

m
an

ag
ed

>
>

A
b

st
ra

ct
s

a
b

as
e

le
v

el

sy
st

em
 r

es
p

o
n

si
b

le

fo
r

ap
p

li
ca

ti
o

n
 l

o
g

ic

W
o

rk
lo

a
d

 M
o

n
it

o
r

<
<

m
an

ag
in

g
>

>

M
o

n
it

o
rs

 w
o

rk
lo

ad
 a

n
d

n
o

ti
fi

es
 t

h
e

p
er

fo
rm

an
ce

m
an

ag
er

.

M
o

n
it

o
r F
ig
ur
e
3.
7:

G
en
er
al

dR
S
fo
r
Se

lf-
O
pt
im

iz
at
io
n

42

the managed system’s response time and to notify the time to the performance
manager. Responsibilities for both the monitor components were extracted from
the stimulus element of the general dQAS. The performance manager component
models a managing system which is responsible for monitoring and optimizing
the performance of a managed system. It is identified from the artifact element
of the general dQAS.

The analyzer, planner and executor responsibility components are modeled
based on the MAPE pattern and responsibilities identified against the response
element of the general dQAS for self-optimization. The analyzer component an-
alyzes root cause factors which affect performance and trigger self-optimization.
The performance can be affected by a number of factors such as workload, avail-
able resources, bottlenecks, etc. The variability of these factors is modeled in
the form of analyzer variation point associated with the analyzer component.

The planner component models responsibilities to plan adaptive actions for
performance optimization. The response element of the general dQAS specifies
four moves in response to stimuli conditions which may trigger self-optimization.
The four moves are modeled as variants of a planner variation point associated
with the planner component.

The performance manager executes the planned actions for self-optimization
with the help of executor component. The four variants for the executor are
modeled based on tactics for execution described in Appendix A, Section A.3.3.

43

Chapter 4

Specialization Process

The specialization process is used to transforms the horizontal ASPL platform
into several vertical platforms to support the development of managing systems
across several domains of self-adaptive systems. An overview of the specializa-
tion process has been presented in Chapter 2. This chapter provides a detailed
description of the process including all the subprocesses, activities and involved
entities.

4.1 Introduction
The ASPL platform produced by the ASPL domain engineering process pro-
vides generic reusable artifacts. The ASPL platform artifacts are purposefully
designed to realize self-adaptation properties across several application domains
of self-adaptive systems. These artifacts are defined independent of any ap-
plication domain and are likely to have gaps between what is needed by an
application domain, and what is offered by the ASPL platform. For instance,
an application domain may require the use of “introduce concurrency” tactic for
self-optimization, but the ASPL platform provides “increase computation effi-
ciency” tactic based artifacts for self-optimization. The ASPLe provides with
the specialization process to address gaps between the ASPL platform and re-
quirements of underlying application domains.

The specialization process defines roles, activities, and work-products re-
quired to find (reuse) artifacts from a horizontal ASPL platform and specialize
them to establish multiple vertical platforms. Each of the resulting vertical
platforms provides application domain specific artifacts for managing subsys-
tems of a self-adaptive system domain. Thus, such platforms are called Manag-
ing System Platforms. The derivation of multiple managing system platforms
from a horizontal ASPL platform is a perfect example of development with and
for reuse. Because, instead of developing from scratch, each managing system
platform is defined with reuse from the horizontal ASPL platform, and each
managing system platform provides artifacts for reuse in several products of an

44

application domain. ASPL Domain Engineering

ASPL

Requirements

Engineering

ASPL

Design

ASPL

Implementation

ASPL

Testing

Requirements Architecture
ASPL Platform

Components Tests

ASPL Specialization

Requirements

Specialization

Design

Specialization

Implementation

Specialization

Tests

Specialization

Specialized

Requirements

Specialized

Architecture

Managing System Platform

Specialized

Components

Specialized

Tests

R
eu

se
 C

an
d

id
at

es

Figure 4.1: Specialization Process

Figure 4.1 depicts the specialization process with its input and output work-
products. The process consists of four sub-processes: requirements specializa-
tion, design specialization, implementation specialization, and tests specializa-
tion. In this report, we focus on requirements and design subprocesses which
are highlighted in the figure. Before going into details, following is a general
workflow for the specialization subprocesses:

1. Search the ASPL platform to find artifacts for reuse in an application
domain.

2. Analyze the artifacts found as a result of the search activity. The analysis
is performed to identify gaps between what is required by an application
domain and what is provided by the ASPL platform.

3. Specialize the found artifacts if there exist gaps between these artifacts
and requirements of a given application domain.

4. If no reusable artifact is found from the ASPL platform, at step 1, define a
new artifact and consider it for addition to the ASPL platform as feedback
to support reuse in other application domains.

The ASPL and application domain scopes are used as starting-points for the
specialization process. The application domain scope is used to know what self-
adaptation properties are required by an application domain, whereas the ASPL
scope definition is used to find whether required self-adaptation properties are

45

Requirements

Specialization

+ Scope the Managed

System application

domain

+ Search the ASPL

Platform for reusable

requirement artifacts

+ Analyze and Specialize

the reusable requirement

artifacts found from the

ASPL platform, OR

define new application

domain specific artifacts

Domain Analyst

General

dQASs

Managed

Domain Scope

ASPL

Scope

Specialized

dQASs

Work-products

W
o
rk

fl
o
w

Scoping

1

ASPL

Scope

Analyze

Refine

Integrate

Application

Domain Scope

Analyze

General dQASs

3a

General dQASs

2

Identify

candidates

Application Domain

Specific dQASs

Specialize

General dQASs

4

Define Domain

Specific dQASs

Specialized

dQASs

Newly Defined

dQASs

3b

Feedback

5

Figure 4.2: Requirements Specialization Process Package

supported by the ASPL platform or not. The specialization process comes to
an end with a feedback activity. In the feedback activity, artifacts produced as
a result of the specialization process are considered for inclusion in the ASPL
platform. For instance, let’s assume that an application domain requires “push
critical” variant of self-upgradability which is currently not supported by the
ASPL platform. In this case, specialization process is needed to develop artifacts
for the push critical variant from scratch, and the resulting artifacts are sent as
feedback to the ASPL platform for potential reuse in other domains. Below is
a detailed description of the requirements and design specialization processes.

4.2 Requirements Specialization Process
The requirements specialization process provides guidelines to produce applica-
tion domain specific requirements engineering artifacts with reuse. Instead of
defining the requirement specification artifacts from scratch, the requirements
specialization process guides requirement engineers to find reusable requirement
specification artifacts from the ASPL platform, and specialize the found artifacts
for reuse in a specific application domain.

Figure 4.2 depicts a process package diagram of the requirements specializa-
tion process. It highlights all the work-products, activities and roles involved in
the process. A brief description of the roles, work-products and process workflow
is given below.

Roles Only one role, a Domain Analyst, is required to perform the require-
ments specialization process. For the requirements specialization, the do-
main analyst is required to have a good understanding of the application
domain for which the requirements specialization process is being per-
formed. Moreover, the domain analyst should have good knowledge and
understanding of reusable requirements specification artifacts offered by
the ASPL platform. All the responsibilities for the domain analyst role

46

are listed in Figure 4.2, in a box under the role “domain analyst”. These
responsibilities map to the activities of the requirements specialization
process.

Work-products Four work-products, summarized below, are used in the re-
quirements specialization.

1. Managed (Application) Domain Scope: This work-product is used to
identify what self-adaptation properties are required by an application
domain for which the requirements specialization process is being per-
formed.

2. ASPL Scope: In this process, the ASPL scope definition is used to de-
termine whether the self-adaptation properties required by the managed
application domain (for which the specialization process is being per-
formed) are supported by the ASPL platform or not.

3. General dQAS: The General dQAS is an application domain indepen-
dent, generic and reusable requirement specification artifact provided by
the ASPL platform. The General dQAS is purposefully defined by the
ASPL requirements engineering process for reuse in several product lines
of self-adaptive systems.

4. Specialized dQAS: The Specialized dQAS is an application domain spe-
cific requirement specification artifact produced as a result of the require-
ments specialization process. It is defined by selecting a general dQAS
from an ASPL platform and customizing it according to the needs of a
specific application domain. See section A.1 in appendix A for details
about the General and Specialized dQASs.

Process Workflow Figure 4.2 depicts workflow for the requirements special-
ization process. Activity-wise description of the process workflow is as
follows:

Activity 1 - Scoping The requirements specialization process begins
with a scoping activity that defines a scope of the managed application
domain. The activity is analog to scoping activity in the ASPL require-
ments engineering. It reuses the ASPL scope and either modifies the
feature model, for example removing or adding features, variants, and
constraints for an in-scope property, or creates new feature models for
unsupported properties.

Activity 2 - Identify Candidates After defining the application do-
main scope, the domain analyst searches for reusable requirement spec-
ification artifacts from the ASPL platform. The search is performed for
each self-adaptation property required by a given application domain.
If a self-adaptation property is supported by the ASPL platform, the
search activity will return a general dQAS that can be specialized for
reuse in the given application domain. Currently, the search activity is
performed manually by looking at all requirements engineering artifacts

47

in the ASPL platform; however, in future, more advanced search tech-
niques can be added to the ASPLe methodology. If the ASPL platform
does not support a self-adaptation property, the domain analysts have
to define requirements specification artifacts from scratch. The newly
defined artifacts with potential for reuse in other domains are considered
for inclusion in the ASPL platform as feedback.

Activity 3a - Analyze General dQASs The general dQASs found as
a result of the activity 1 are analyzed to investigate what requirements
are already specified, what are missing and what needs to be modified
or adapted. The general dQASs in the ASPL platform are defined with-
out knowing specific application domain requirements. Thus, it is more
likely that there exist gaps between what is required by a specific ap-
plication domain and what is specified in a general dQAS. For instance,
an application domain may require the use of “introduce concurrency”
tactic for performance optimization which may not be specified in the
general dQAS provided by the ASPL platform. Similarly, a general sce-
nario may have fragments (parts of a dQAS) that are not needed by
an application domain. Such gaps are identified in this activity and are
addressed in the next activity.

Activity 3b - Specialize the General dQASs This activity special-
izes general dQASs to application domain specific dQASs called Special-
ized dQASs. The specialization is performed to address gaps identified
as a result of activity 2 and to define the dQAS elements that were
left undefined in the general dQASs. The “valid QAS configurations”
and “fragment constraints” dQAS elements are left undefined in general
dQASs. The definition of these elements requires knowledge of a target
application domain which is unknown in the ASPL domain engineer-
ing process. This knowledge is, however, available in the specialization
process, and the requirements specialization process uses this knowledge
to complete the definition of “valid QAS configurations” and “fragment
constraints” elements as a part of this activity.

Activity 4 - Define New dQASs If the ASPL platform does not sup-
port a self-adaptation property, the domain analysts have to define new
domain-specific dQASs from scratch. The process workflow for defining
a new application domain specific dQAS is same as the activity 2 in the
ASPL requirements engineering process workflow.

Activity 5 - Feedback The newly defined dQASs artifacts, with po-
tential for reuse in other domains, are considered for inclusion in the
ASPL platform as feedback.

The requirements specialization process comes to an end by adding the spe-
cialized dQASs to an application domain specific Managing System Platform.

48

Self-Upgradability

Delivery

Push
Push

Critical
Pull

Detection

Periodic

Polling

Publish-

Subscribe

Introduction

Preparation Update
Return to

Operation

On-Demand

TranquilityQuiescence

Self-Optimization

Optimization

Resource

Management

Resource

Demand

Increase

Computational

Efficency

Introduce

Concurrency

Reduce

Computational

Overhead

Increase

Resources

Detection

Periodic

Polling
Event-

Based

Mandatory

Or

AlterativeKey

Self-Property

Feature

Variant

Figure 4.3: DGE Domain Scope

4.3 Requirements Specialization – Demonstration
This section demonstrates how a requirements specialization process is per-
formed in practice. We use three application domains described in section 2.4
as running examples to demonstrate the specialization and integration processes.
The three example application domains are: 1) Distributed Game Environment
(DGE), 2) PhotoShare Software Product Line (PSPL) and NewsService Soft-
ware Product Line (NSPL). Details about how we performed the requirements
specialization process for the example domains are given below.

4.3.1 Requirements Specialization for DGE
We used the requirements specialization process to specify the DGE domain
requirements for self-adaptation. Following the requirements specialization pro-
cess workflow, we (in a role of domain analyst) began with activity j1 . In this
activity, we reused the ASPL scope definition from example ASPL platform,
see Section 3.3, to define the DGE domain scope. Figure 4.3 depicts the DGE
domain scope definition. The DGE domain does not require self-optimization;
thus, we excluded feature tree for the self-optimization in the DGE scope def-
inition. The DGE requires self-upgradability property, so feature tree for the

49

Source (SO) [SO1] Update Repository is used to introduce new updates
[SO2] Players who requests updates for their Player Environments (PEs)

Stimulus (ST) [ST1] A new update appears in an updates repository
[ST2] Player requests an update

Artifacts (A)

[A1] Operator Center (OC) - an update manager that handles new updates, update
requests, and triggers actions to deliver and perform updates
[A2] Player Environment (PE) - target managed system on which updates are
performed

Environment (E) [E1] Runtime under normal operating conditions

Response (R)

[R1] New update is detected and notified to the OC
[R2] OC notifies an update to player environments
[R3] OC responds update requests
[R4] Update is applied to player environments

Response Mea-
sure (RM)

[RM1] New update is detected and notified to the OC with no delay after it has
been placed in the Updates Repository
[RM2] OC notifies new updates to target PEs within X seconds, with range(X) =
[5..60]
[RM3] OC responds an update request within Y seconds, with range(Y) = [5..60]
[RM4] Update is applied to target PEs within Z minutes, with range(Z) = [1..10]

Variants (V)
[V1] push
[V2] push critical
[V3] pull

Valid QAS Config-
urations (VC)

[VC1] V1
[VC2] V1 ∧ V2
[VC3] V1 ∧ V2 ∧ V3
[VC4] V3

Fragment Con-
straints (FC)

[FC1] Mandatory Fragments: { A1, A2 } ∧ { E1 } ∧ { R4 } ∧ { RM4 }
[FC2] Configuration Specific Fragments:
[Variants VC1] { SO1 } ∧ { ST1 } ∧ { R1, R2 } ∧ { RM1, RM2 }
[Variants VC2] { SO1 } ∧ { ST1 } ∧ { R1, R2 } ∧ { RM1, RM2 }
[Variants VC3] { SO1, SO2 } ∧ { ST1, ST2 } ∧ { R1, R2, R3 } ∧ { RM1, RM2,
RM3 }
[Variants VC4] { SO2 } ∧ { ST2 } ∧ { R3 } ∧ { RM3 }
[FC3] Bindings:
[Bindings VC1] V1.(RM2.bind(X) + RM4.bind(Z)) | X+Z ≤ 10 minutes
[Bindings VC2] (V1.(RM2.bind(X) + RM4.bind(Z)) | X+Z ≤ 10 minutes)

∧ (V2.(RM2.bind(X) + RM4.bind(Z)) | X+Z ≤ 120 seconds)
[Bindings VC3] (V1.(RM2.bind(X) + RM4.bind(Z)) | X+Z ≤ 10 minutes)

∧ (V2.(RM2.bind(X) + RM4.bind(Z)) | X+Z ≤ 120 seconds)
∧ (V3.(RM3.bind(Y) + RM4.bind(Z))) | Y+Z ≤ 10 minutes)

[Bindings VC4] V3.(RM3.bind(Y) + RM4.bind(Z)) | Y+Z ≤ 10 minutes

Table 4.1: Self-Upgradability dQAS Specialized for the DGE

50

self-upgradability was retained and specialized according to needs of the DGE
domain. The red “X” marks in the scope definition specify out of scope proper-
ties and features.

Next, for activity j2 , we searched the ASPL platform and found a general
dQAS for self-upgradability. The general dQAS was defined without knowing
the DGE domain requirements, so we analyzed it in activity j3a. The analysis
was performed to identify gaps between what is required by the DGE and what
is specified in the general dQAS. The gaps in the general dQAS were addressed
in activity j3b, and a specialized dQAS for self-upgradability property required
by the DGE was produced. The DGE does not require a property, which is not
supported by the example ASPL platform. Thus, there was no need to perform
the activities j4 and j5 .

The specialized dQAS produced as a result of the requirements specialization
for the DGE is shown in Table 4.1. An element by element description of how
the specialized dQAS was produced by specializing a general dQAS is as follows.

Beginning with source element of the general dQAS for self-upgradability, we
observed that the source fragments, [SO1] and [SO2], satisfy the DGE require-
ments in general. However, both fragments required specialization to specify the
DGE requirements precisely. In the DGE domain, an update repository and a
player are the source entities which may trigger self-upgradability. The update
repository serves as an update provider, so we specified it as source fragment
[SO1]. The player may request operator center for updates, so we considered a
player as an update consumer and specified this requirement by specializing the
source fragment [SO2].

In the DGE domain, self-upgradability is triggered either when a new update
appears in an update repository or when a player requests for an update. We
specified these requirements as stimulus fragments [ST1] and [ST2].

For the artifact element, Operator Center (OC) and Player Environment
(PE) are the two DGE artifacts that get stimulated for the self-upgradability
property. Thus, we specialized the artifact fragments [A1] and [A2] to specify
OC and PE as stimulated fragments, respectively.

No changes were made in the environment element. This is because of the
requirements specified in the environment element of the general dQAS matched
with the DGE requirements for the environment.

The response fragment [R1] was specialized to specify the DGE requirement
that the OC should get a notification as soon as a new update appears in the
updates repository. For all other response fragments, there were no significant
changes other than renaming the artifacts that respond to the stimulus con-
ditions. For response fragments [R2], for instance, the “Update Manager” was
renamed to “OC”. This specialization was made because, in the DGE application
domain, it is the operator center which works as an update manager.

In the general dQAS for self-upgradability, abstract parameters were used to
specify variability in Response Measure fragments. We specialized the response
measure fragments by defining the parameter values according to the DGE do-
main requirements. For instance, we specialized the response measure fragment
[RM2] by defining a function range(X) = [5..40]. This function specifies lower

51

and upper bound values for the parameter X.
The DGE domain requires three variants of self-upgradability: (1) push,

(2) critical push, and (3) pull. These three variants were already specified as
application domain independent variants of self-upgradability in the general
dQAS. Thus, no changes were made in the variant element.

The last step in the specialization of a general dQAS is the definition of
“valid QAS configurations” and “fragment constraints” elements.

The DGE domain is composed of four products that vary in their require-
ments for the self-upgradability variants. We used the self-upgradability variants
required by the DGE domain to determine the valid QAS configurations. Four
valid QAS configurations, [VC1], [VC2], [VC3], and [VC4], one for each DGE
product, were defined as fragments of the ‘valid QAS configuration” element.
The fragment [VC2], for instance, was defined to specify a product configuration
that requires the push and push critical variants of self-upgradability.

The “fragment constraints” element was defined to specify constraints for
each valid QAS configuration. We distinguished three types of fragment con-
straints: 1) mandatory fragments, 2) configuration specific fragments and 3)
bindings. The mandatory fragments type was defined to specify fragments that
are needed by all valid QAS configurations. For instance, the OC and PE ar-
tifacts get stimulated for self-upgradability needs of all the DGE products, i.e.,
valid QAS configuration. Hence, the artifact fragments [A1] and [A2] for the
OC and PE, respectively, were specified as mandatory fragments along with
fragments [E1], [R4], and [RM4].

The configuration specific fragments type was defined to specify fragments
required by only a particular configuration and not by all. As there were four
valid QAS configurations for the DGE, so four valid QAS configuration specific
constraints were defined. The constraint Variants VC2, for instance, was set
to specify that the fragments [SO1], [ST1], [R1] and [RM1] need to be selected
together with mandatory fragments to derive a valid configuration VC2 specific
QAS from the specialized dQAS for self-upgradability.

The bindings constraint type was defined for each valid QAS configuration
to constrain values of the parameters set for the response measure fragments.
The DGE domain products with push type of self-upgradability were specified
as a valid QAS configuration fragment [VC1]. The bindings constraints for the
[VC1], for instance, were defined as Bindings VC1. This binding constraint
requires that the sum of the parameter X (for update notification) and the
parameter Z (for update execution) should be less than or equal to 10 minutes.
The binding constraints for all other valid QAS configurations were defined
according to the DGE products’ requirements. The specialization of a general
dQAS was completed with the definition of the fragment constraint element.
And this brought us to the end of the requirements specialization process for
the DGE domain.

52

Self-Upgradability

Delivery

Push
Push

Critical
Pull

Detection

Periodic

Polling

Publish-

Subscribe

Introduction

Preparation Update
Return to

Operation

On-Demand

TranquilityQuiescence

Mandatory

Or

AlterativeKey

Self-Property

Feature

Variant

Self-Optimization

Optimization

Resource

Management

Resource

Demand

Increase

Computational

Efficency

Introduce

Concurrency

Reduce

Computational

Overhead

Increase

Resources

Detection

Periodic

Polling
Event-

Based

Self-Healing

Fault Recovery

Recovery

Reintroduction

Recovery

Preparation

Standby Spare
Rollback

Checkpoint
Restore

Fault Detection

Ping/

echo
ExceptionHeartbeat

Figure 4.4: NSPL Domain Scope

4.3.2 Requirements Specialization for NSPL
Following the requirements specialization process, we began with activity j1 .
As instructed in the activity j1 , we reused ASPL scope definition from the
example ASPL platform, described in Section 3.3, to define the NSPL domain
scope. Figure 4.4 depicts the NSPL domain scope definition. The NSPL domain
does not require self-upgradability; thus, we excluded the self-upgradability in
the NSPL scope definition. Further, we added a feature tree for self-healing as
it was missing in the ASPL scope definition, and specialized self-optimization
feature tree according to needs of the NSPL domain. The red “X” marks in the
scope definition specify out of scope properties and features.

Next, in activity j2 , we searched the example ASPL platform to find reusable
requirements specification artifacts for self-optimization and self-healing. A gen-

53

eral dQAS for self-optimization was found, so we specialized it according to
needs of the NSPL domain, see section 4.2 for details. The self-healing property
was not supported by the example ASPL platform, so we could not find a gen-
eral dQAS for self-healing. Thus, we defined self-healing dQAS from scratch,
see section 4.3.2 for details.

NSPL – dQAS for Self-Optimization

The general dQAS for self-optimization, found in activity j2 , was defined with-
out knowing the NSPL domain requirements. Thus, we analyzed it in activity k3a
to identify gaps between what is required by the NSPL and what is defined in
the general dQAS. The gaps in the general dQAS were addressed in activity k3b,
and a specialized dQAS for self-optimization was produced. The specialized
dQAS produced is shown in Table 4.2. An element by element description of
how the specialized dQAS was produced is given below.

Beginning with the source element, we analyzed source fragments [SO1] and
[SO2]. The NSPL requires its products to self-optimize time to collect and
distribute news. Thus, we specialized the source fragment [SO1] to specify this
requirement. We removed the source fragment [SO2] and stimulus fragment
[ST2] because the NSPL does not require monitoring of system workload to
trigger self-optimization. Further, we specialized the stimulus fragment [ST1]
to specify the NSPL domain specific condition to trigger self-optimization.

For the artifact element, we removed the fragment [A2] (workload moni-
tor) as it was not needed in the NSPL. For fragments [A1], [A3] and [A4],
we renamed and rephrased them according to requirements of the NSPL. The
environment element was adopted without any changes, as it satisfies the envi-
ronment requirements under which self-optimization property is needed in the
NSPL domain.

The response element was specialized by removing fragments [R1] and [R3]
because the NSPL does not require these actions. Instead, the NSPL domain
requires following two adaptive actions for performance optimization:

1. Add more servers to the server-pool

2. Exclude news in multimedia format

We specified the above actions as fragments [R1] and [R2] in the specialized
dQAS. Here, the fragment [R1] is a specialized form of the “add more resources”
fragment [R4] of the general scenario; and the fragment [R2] is a specialized form
of the “reduce computational overhead” response fragment [R2] of the general
scenario.

There were no major changes in the response measure element, except chang-
ing names of the involved entities. The NSPL requires two main variants of
self-optimization: (1) optimization by adding servers, and (2) optimization by
excluding multimedia contents. The variant element was specialized to specify
these two variants as fragments [V1] and [V2]. These variants lead to valid
products and QAS configurations.

54

The NSPL domain consists of three products that vary in their require-
ments for self-optimization variants specified in the variant element. The self-
optimization variants required by these products were specified in the form of
valid QAS configuration fragments [VC1], [VC2] and [VC3]. The three frag-
ments correspond to the NSPL products P1, P2, and P3, respectively.

The “fragment constraints” element was added to specify constraints on how
the first six QAS elements and their fragments can be combined to derive prod-
uct specific QASs from the specialized dQAS. The mandatory constraint type
specifies fragments that are required for all the valid QAS configurations. In
other words, this constraint specifies fragments that need to be included in all
product specific QASs derived from the specialized dQAS. For instance, the
source fragment [SO1] is required for all three valid QAS configurations. Thus,
it is specified as a mandatory fragment. The fragments that need to be included
only for a specific valid QAS (product) configuration were specified individually
for each valid QAS configuration. For instance, the constraint Variants VC1
specifies that fragments R1, RM1, and RM2 must be selected, together with
the mandatory fragments. Moreover, for each valid QAS configuration, binding
constraints were defined to constrain values of the parameters X and Y defined
for the response measure fragments.

NSPL – dQAS for Self-Healing

To specify self-healing requirements of the NSPL, we could not find a general
dQAS for self-healing in the requirement specialization activity j2 . Thus, we
started specifying the requirements using a dQAS template from scratch. While
specifying the requirements, we decided to first define a general dQAS for self-
healing and then specialize it according to requirements of the NSPL domain.
The decision was made to support horizontal reuse. The general dQAS was de-
fined using the ASPL requirements engineering process described and demon-
strated in Chapter 3. The resulting General dQAS for self-healing is shown
in Table 4.3. Following the requirement specialization activity j5 , the general
dQAS was added to the example ASPL platform as feedback. With the addi-
tion of the general dQAS for self-healing, the example ASPL platforms’ scope
definition was extended, as shown in Figure 4.5, to include self-healing as an
in-scope property.

The general dQAS for self-healing was defined independently of the NSPL
requirements for self-healing. To specialize the general dQAS according to re-
quirements of the NSPL, we performed requirements specialization activities j3a
and j3b. During these activities gaps between what is specified in the general
dQAS and what is required by the NSPL were identified and addressed. A spe-
cialized dQAS for self-healing produced as a result of these activities is shown in
Table 4.4. Following is an element by element description of how the specialized
dQAS was defined by specializing the general dQAS for self-healing.

The sources of failures in the NSPL domain are two components, language
feature, and server-pool. Thus, we specialized the source element by adding
two fragments [SO1] and [SO2], one for each source of failures. In the stimulus

55

Source (SO) [SO1] Processing time taken by the NSPL products’ server-pool to
collect and distribute a news item

Stimulus (ST) [ST1] Processing time exceeds certain threshold

Artifacts (A)

[A1] ProcessingTime-Monitor - part of managing system, which mon-
itors and notifies processing time to performance manager
[A2] Performance Manager - part of managing system, which adapts
a target system for performance optimization
[A3] Target System - a managed system, which abstracts an NSPL
product and a server-pool

Environment (E) [E1] Runtime under normal operating conditions
[E2] Runtime under overload operating conditions

Response (R)

[R1] Add servers to the server-pool (Add more resources to the man-
aged system)
[R2] Exclude news in multimedia format (reduce computational over-
head)

Response Measure
(RM)

[RM1] The NSPL products’ processing time is ≤ X seconds
[RM2] The server-pool cost is ≤ Y $

Variants (V) [V1] Add servers to the server-pool
[V2] Exclude news in multimedia format

Valid QAS Config-
urations (VC)

[VC1] V1
[VC2] V2
[VC3] V1 ∧ V2

Fragment
Constraints (FC)

[Mandatory] {SO1} ∧ {ST1} ∧ {A1, A2, A3} ∧ {E1, E2}
[Variants VC1] {R1} ∧ {RM1, RM2}
[Variants VC2] {R2} ∧ {RM1}
[Variants VC3] {R1, R2} ∧ {RM1, RM2}
[Bindings VC1] (RM1.bind(X) | X ≤ 90 seconds) ∧ (RM2.bind(Y)
| Y ≤ 2 million US dollars)
[Bindings VC2] RM1.bind(X) | X ≤ 180 seconds
[Bindings VC3] (RM1.bind(X) | X ≤ 60 seconds) ∧ (RM2.bind(Y)
| Y ≤ 1 million US dollars)

Table 4.2: Self-Optimization dQAS Specialized for the NSPL

element, we excluded fragments [ST1] and [ST3] as the stimuli condition spec-
ified in these fragments did not match with the NSPL requirements to trigger
self-healing. The fragment [ST2] was rephrased to specify that the self-healing
property is triggered when one or more servers in the server-pool fail to send
heartbeats. We also added a new fragment [ST1] to specify a stimulus for a
failure of the language feature.

For the artifact element, we removed fragments [A2] and [A3] as they do not
specify artifacts which get stimulated in the NSPL. The fragments [A1] and [A4]
were rephrased according to requirements of the NSPL. A failure may occur both
under normal or overloaded operating conditions. Thus, a new fragment [E2]
was added, along with the existing fragment [E1] in the environment element.

In the response element, we specialized the response fragment [R1] to specify
the action by a fault monitor on detecting failure of the language feature. We
removed the fragment [R2] from the general dQAS as the NSPL does not require
exception detector to report a fault by throwing an exception. The NSPL uses

56

Source (SO) [SO1] Failed System - a Managed System or subsystem with failure

Stimulus (ST)
[ST1] Managed system or subsystem fails to reply ping messages
[ST2] Managed system or subsystem fails to send heartbeat messages
[ST3] Managed system throws an exception

Artifacts (A)

[A1] Fault Monitor - part of Managing System - detects and report faults in a
managed system to a system manager
[A2] Exception Detector - part of Managing System - detects and throws excep-
tions
[A3] Exception Handler - part of Managing System - a variant of the system
manager. It handles exceptions thrown by the managed system
[A4] System Manager – Managing System - performs adaptive actions to recover
and restore the failed system

Environment (E) [E1] Runtime under normal operating conditions

Response (R)

[R1] Fault Monitor detects a failure and notify it to the system manager
[R2] Exception Detector throws an exception
[R3] System manager replaces failed system with its standby replica or backup
[R4] System manager rollbacks failed system to a previous checkpoint with con-
sistent state and desired behavior
[R5] Exception handler addresses exceptions thrown by the exception detector

Response Measure
(RM) [RM1] Failed system is recovered and restored in ≤ X time units

Variants (V)

Variants for Fault Detection:
[V1] Ping/echo tactic [6] based fault detection
[V2] Heartbeat tactic based fault detection
[V3] Exceptions tactic based fault detection
Variants for Recovery:
[V4] Standby tactic based fault recovery
[V5] Checkpoint/rollback tactic based fault recovery

Valid QAS Configura-
tions (VC)

Valid QAS configurations depend on a specific domain. Thus, we leave them
undefined until the general dQAS is specialized for a specific domain

Fragment Constraints
(FC)

The fragment constraints can’t be defined without knowing valid QAS configu-
rations, so we leave these until the QAS configurations are defined

Table 4.3: A General dQAS for Self-Healing

57

Self-Upgradability

Delivery

Push
Push

Critical
Pull

Detection

Periodic

Polling

Publish-

Subscribe

Introduction

Preparation Update
Return to

Operation

On-Demand

TranquilityQuiescence

Mandatory

Or

AlterativeKey

Self-Property

Feature

Variant

Self-Optimization

Optimization

Resource

Management

Resource

Demand

Increase

Computational

Efficency

Introduce

Concurrency

Reduce

Computational

Overhead

Increase

Resources

Detection

Periodic

Polling
Event-

Based

Self-Healing

Fault Recovery

Recovery

Reintroduction

Recovery

Preparation

Standby Spare
Rollback

Checkpoint
Restore

Fault Detection

Ping/

echo
ExceptionHeartbeat

Figure 4.5: Extended ASPL Scope

heartbeat tactic [6] to detect and report failures in the server-pool component.
This was specified by adding a new response fragment [R2]. The fragments
[R3] and [R4] were specialized by changing names of the components which are
restored or recovered. The fragment [R5] was excluded as it was not required
for failure recovery in the NSPL.

No gap was identified in the response measure element, so the element was
kept unchanged. Next, in the variant element, we rephrased fragments [V1],
[V2], [V4] and [V5] according to fault detection and recovery requirements of
the NSPL products. The fragment [V3] was dropped as it did not match with
the NSPL requirements.

The NSPL domain consists of three products that vary in their requirements
for self-healing fragments (variants) specified in the variant element. The self-

58

Source (SO) [SO1] Language Feature - a mandatory feature of all NSPL products
[SO2] Server-Pool - a collection of servers to process and deliver news

Stimulus (ST) [ST1] The language feature fails to change current language to another
[ST2] One or more servers in the server-pool fail to send heartbeats

Artifacts (A)

[A1] Fault Monitor - part of Managing System - detects failure of the language
and servers components and report to the recovery manager
[A2] System Manager – Managing System - performs adaptive actions to recover
and restore language feature and servers in the server-pool

Environment (E) [E1] Runtime under normal operating conditions
[E2] Runtime under overloaded operating conditions

Response (R)

[R1] Fault monitor detects failure of the language feature. The failures are
reported to the system manager
[R2] Fault monitor uses heartbeat tactic to detect failed servers in the server-
pool
[R3] System manager rollbacks the failed language feature to a checkpoint with
consistent state and behavior
[R4] System manager replaces failed servers their standby spare replicas

Response Measure
(RM)

[RM1] A failed system, language feature or server, is detected and restored in
≤ X seconds

Variants (V)

Variants for Fault Detection:
[V1] Detection of failures in the language feature
[V2] Heartbeat tactic based detection of failed servers in the server-pool
Variants for Recovery:
[V3] Checkpoint/rollback tactic based recovery of the failed language feature
[V4] Standby spare tactic based recovery of failed servers

Valid QAS Configura-
tions (VC)

[VC1] V1 ∧ V3
[VC2] V2 ∧ V4
[VC3] V1 ∧ V2 ∧ V3 ∧ V4

Fragment Constraints
(FC)

[FC1] Mandatory Fragments: { A1, A2 } ∧ { E1, E2 } ∧ { RM1 }
[FC2] Configuration Specific Fragments:

[Variants VC1] { SO1 } ∧ { ST1 } ∧ { R1, R3 }
[Variants VC2] { SO2 } ∧ { ST2 } ∧ { R2, R4 }
[Variants VC3]{ SO1, SO2 } ∧ { ST1, ST2 } ∧ { A1, A2 } ∧ { R1, R2,

R3, R4 }
[FC3] Bindings:

[Bindings VC1] RM1.bind(X) | X ≤ 90 seconds
[Bindings VC2] RM1.bind(X) | X ≤ 180 seconds
[Bindings VC3] RM1.bind(X) | X ≤ 240 seconds

Table 4.4: The Self-Healing dQAS Specialized for the NSPL

healing variants required by these products were specified in the form of valid
QAS configuration fragments [VC1], [VC2] and [VC3]. The three fragments
correspond to self-healing requirements of the NSPL products P1, P2, and P3,
respectively.

The “fragment constraints” element was added to specify constraints on how
the first six QAS elements and their fragments can be combined to derive prod-
uct specific QASs from the specialized dQAS. The mandatory constraint type
was defined to specify fragments that are required by all valid QAS configura-
tions. For instance, the artifact fragments [A1] and [A2] are required for all three
valid QAS configurations. Thus, these fragments are specified as mandatory
fragments. The fragments that are needed only for a specific valid QAS (prod-

59

uct) configuration were specified individually for each valid QAS configuration.
Moreover, binding constraints were defined, for each valid QAS configuration,
to constrain values of the parameter X used in the response measure fragment
[RM1].

4.3.3 Requirements Specialization for PSPL
We used the requirements specialization process to specify requirements of the
PSPL domain. Following the requirements specialization process workflow, we
began with activity j1 . In this activity, we reused the extended ASPL scope
definition from the example ASPL platform to define the PSPL domain scope.
Figure 4.6 depicts the PSPL scope definition. The PSPL did not require Self-
optimization, so feature tree for the self-optimization was excluded from the
PSPL scope definition. The PSPL requires self-upgradability and self-healing,
so feature trees for these properties were reused and specialized according to
needs of the PSPL domain. The red “X” marks in the scope definition specify
out of scope properties and features.

Next, in activity j2 , we searched the extended ASPL platform to find reusable
requirements specification artifacts (general dQASs) for self-upgradability and
self-healing properties. For both the properties, we found a general dQAS and
specialized it according to needs of the PSPL domain. Below are the details
about specialization of the general dQASs for both the required properties.

PSPL – dQAS for Self-Upgradability

The general dQAS for self-upgradability, found in activity j2 , was defined with-
out knowing the PSPL domain requirements. Thus, we analyzed it in activity k3a
to identify gaps between what is required by the PSPL and what is specified in
the general dQAS. The gaps in the general dQAS were addressed in activity k3b,
and a specialized dQAS for self-upgradability was produced. The specialized
dQAS produced is shown in Table 4.5. Below is an element by element descrip-
tion of how the specialized dQAS was produced.

Beginning with source element of the general dQAS for self-upgradability, we
observed that the source fragments, [SO1] and [SO2], satisfy the PSPL require-
ments in general. However, both fragments required specialization to specify the
PSPL requirements precisely. In the PSPL domain, an update repository and
end-user of the PSPL products are the two source entities which may trigger
self-upgradability. Thus, we rephrased the source fragments [SO1] and [SO2]
to specify update repository and end-user as entities which may trigger self-
upgradability in the PSPL domain.

The self-upgradability is triggered either when a new update appears in an
update repository or when an end-user requests an update. The two condition to
trigger self-upgradability were specified as stimulus fragments [ST1] and [ST2].

For the artifact element, fragment [A1] matched with the PSPL require-
ments, so no changes were made in this fragment. In fragment [A2], we re-
placed the target managed system with “photoshare application” to specify the

60

Self-Upgradability

Delivery

Push
Push

Critical
Pull

Detection

Periodic

Polling

Publish-

Subscribe

Introduction

Preparation Update
Return to

Operation

On-Demand

TranquilityQuiescence

Mandatory

Or

AlterativeKey

Self-Property

Feature

Variant

Self-Optimization

Optimization

Resource

Management

Resource

Demand

Increase

Computational

Efficency

Introduce

Concurrency

Reduce

Computational

Overhead

Increase

Resources

Detection

Periodic

Polling
Event-

Based

Self-Healing

Fault Recovery

Recovery

Reintroduction

Recovery

Preparation

Standby Spare
Rollback

Checkpoint
Restore

Fault Detection

Ping/

echo
ExceptionHeartbeat

Figure 4.6: PSPL Domain Scope

61

managed system which requires self-upgradability.
No changes were made in the environment element; because, the require-

ments specified in the environment element of the general dQAS matched with
the PSPL requirements for the environment.

The response fragments [R1] and [R2] were merged into a single [R1] frag-
ment. The merge decision was made as the response actions specified in the two
fragments were required to be performed simultaneously. The PSPL products
require both push and pull type updates. The adaptive actions needed to sup-
port push and pull type updates were specified as fragments [R2] and [R3]. The
fragment [R4] was removed because the PSPL does not require push critical
updates.

The response measure fragments were specialized according to changes made
in the response fragment. For instance, the fragments [RM1] and [RM2] were
merged to reflect the merger of response fragment [R1] and [R2]. Further, the
parameters defined in the response measure fragments were specialized accord-
ing to the PSPL domain requirements.

The PSP domain is composed of three products P1, P2, and P3. However,
the three products require only two type of self-upgradability: 1) push and 2)
pull. The required types were specified as fragments [V1] and [V2] in the variant
element. The self-upgradability variants required by the PSPL products were
specified in the form of valid QAS configuration fragments [VC1], [VC2] and
[VC3]. The three fragments correspond to self-upgradability requirements of
the PSPL products P1, P2, and P3, respectively.

The “fragment constraints” element was added to specify constraints on how
the first six QAS elements and their fragments can be combined to derive prod-
uct specific QASs from the specialized dQAS. The mandatory constraint type
was defined to specify fragments that are required by all valid QAS configura-
tions. For instance, the artifact fragments [A1] and [A2] are required for all three
valid QAS configurations. Thus these fragments were specified as mandatory
fragments. The fragments that are needed only for a specific valid QAS (prod-
uct) configuration were specified individually for each valid QAS configuration.
Moreover, binding constraints were defined, for each valid QAS configuration,
to constrain values of the parameters X, Y , and Z. These parameters are used
in the response measure element to constrain actions specified in the response
element.

PSPL – dQAS for Self-Healing

The general dQAS for self-healing, found in activity j2 was defined independent
of the PSPL requirements for self-healing. To specialize the general dQAS ac-
cording to requirements of the PSPL, we performed requirements specialization
activities j3a and j3b. During these activities gaps between what is specified in the
general dQAS and what is required by the PSPL were identified and addressed.
A specialized dQAS for self-healing produced as a result of these activities is
shown in Table 4.6. Following is an element by element description of how the
specialized dQAS was defined by reusing the general dQAS for self-healing.

62

Source (SO)
[SO1] Updates Repository - a directory in a file system used to introduce new
updates
[SO2] End-user who requests updates

Stimulus (ST) [ST1] A new update appears in the updates repository
[ST2] An end-user requests an update

Artifacts (A)
[A1] Updates Manager - a managing system that handles new updates, update
requests, and triggers actions to deliver and perform updates
[A2] PhotoShare Application - a managed system on which updates are applied

Environment (E) [E1] Runtime under normal operating conditions

Response (R)

[R1] New update is detected and is notified to the Updates Manager
[R2] The Updates Manager pushes an update to end-users of the PhotoShare ap-
plication
[R3] The Updates Manager responds an update request

Response Mea-
sure (RM)

[RM1] New update is detected and notified to the Updates Manager within X
seconds, with X ≤ 30
[RM2] The Updates Manager pushes an update to end-users of the PhotoShare
application within Y seconds, with Y ≤ 60
[RM3] The Updates Manager responds an update request within Z seconds, with
Z ≤ 120

Variants (V) [V1] push
[V2] pull

Valid QAS Config-
urations (VC)

[VC1] V1
[VC2] V2
[VC3] V1 ∧ V2

Fragment Con-
straints (FC)

[FC1] Mandatory Fragments: { A1, A2 } ∧ { E1 }
[FC2] Configuration Specific Fragments:

[Variants VC1] { SO1 } ∧ { ST1 } ∧ { R1, R2 } ∧ { RM1, RM2 }
[Variants VC2] { SO2 } ∧ { ST2 } ∧ { R3 } ∧ { RM3 }
[Variants VC3] { SO1, SO2 } ∧ { ST1, ST2 } ∧ { R1, R2, R3 }
∧ { RM1, RM2, RM3 }

[FC3] Bindings:
[Bindings VC1] RM1.bind(X) + RM2.bind(Y) | X+Y ≤ 90 seconds
[Bindings VC2] RM3.bind(Z) | Z ≤ 120 seconds
[Bindings VC3] RM1.bind(X) + RM2.bind(Y) | X+Y ≤ 90 seconds,
RM3.bind(Z) | Z ≤ 120 seconds

Table 4.5: Self-Upgradability dQAS Specialized for the PSPL

63

Beginning with source element, we found that the general dQAS specifies
a generic failed system as a source of failures. We identified this as a gap and
addressed it by adding two fragments [SO1] and [SO2]. Both the fragments
specify PSPL domain specific sources of failure.

Next, in the stimulus element, no significant changes were made except re-
naming the source artifacts which trigger self-healing. The fragment [ST3] was
excluded as the condition specified there did not match to requirements of the
PSPL.

The PSPL domain requires having some artifacts to detect and recover from
failures. Requirements for these artifacts were specified by specializing artifact
fragments [A1] and [A4]. The fragments [A2] and [A3] were excluded as they
did not specify the PSPL domain artifacts that may get stimulated and trigger
actions to recover from the failure.

In the PSPL domain, a failure may occur both under normal or overloaded
operating conditions. Thus, a new fragment [E2] was added, along with the
existing environment fragment [E1].

In the response element, we specialized the response fragment [R1] into two
new fragments, [R1] and [R2]. The specialization was made to specify that the
PSPL requires the use of ping/echo and heartbeat tactics to detect failures in
upload and share services, respectively. We removed the fragment [R2] from the
general dQAS because the PSPL does not require exception detector to report a
failure. The fragments [R3] and [R4] were specialized by renaming the restored
or recovered components. We excluded fragment [R5] as it was not needed for
failure recovery in the PSPL.

The PSPL products distinguish between the time required to detect and the
time needed to recover from a failure. In the general dQAS, the response mea-
sure element does not differentiate between the time for detection and the time
for recovery. Moreover, the products vary in the time requirements for failure
detection and failure recovery. Thus, we specialized the response measure frag-
ment [RM1] into four new fragments, two to specify failure detection threshold
and two to define failure recovery threshold.

Next, in the variant element, fragments [V1], [V2], [V4] and [V5] matched
to the PSPL requirements and were adopted with no changes. We removed the
fragment [V3] as it did not match with the PSPL requirements.

The PSPL domain consists of two products, which vary in their requirements
for fragments specified in the variant element. We defined variant fragments for
the products P1 and P2 in the form of valid QAS configuration fragments [VC1]
and [VC2], respectively.

The “fragment constraints” element was defined to constrain how the first six
QAS elements and their fragments can be combined to derive product specific
QASs from the specialized dQAS. The mandatory constraint type was defined
to specify fragments that are required by all valid QAS configurations. For
instance, the artifact fragments [A1] and [A2] are required for both [VC1] and
[VC2]; thus, these fragments were defined as mandatory fragments. The frag-
ments that are needed only for an individual valid QAS (product) configurations
(and not for all) were specified individually for each valid QAS configuration.

64

Moreover, binding constraints were defined, for each valid QAS configuration,
to constrain values of the parameter X and Y defined for the response measure
fragments.

Source (SO) [SO1] Upload Service - part of a Managed System
[SO2] Share Service - part of a Managed System

Stimulus (ST) [ST1] Upload service fails to reply ping messages
[ST2] Share service fails to send heartbeat messages

Artifacts (A)

[A1] Fault Monitor - part of Managing System - detects failure of upload and
share services, and report failures to system manager
[A2] System Manager – Managing System - performs adaptive actions to recover
and restore upload and share services

Environment (E) [E1] Runtime under normal operating conditions
[E2] Runtime under overloaded operating conditions

Response (R)

[R1] Fault Monitor uses ping/echo tactic [6] to detect failure of upload service.
The fault monitor notifies failures to the recovery manager
[R2] Fault Monitor uses heartbeat tactic [6] to detect failure of share service.
The fault monitor notifies failures to the recovery manager
[R3] The system manager rollbacks the upload service to a checkpoint with
consistent system state and behavior
[R4] The system manager replaces the component providing share service with
its standby replica or backup

Response Measure
(RM)

[RM1] Fault Monitor detects a failed upload service and notifies to the recovery
manager within X seconds
[R2] Fault Monitor detects a failed share service and notifies the failure to the
recovery manager within X seconds
[R3] The system manager rollbacks the upload service to a checkpoint with
consistent system state and behavior within Y seconds
[R4] The system manager replaces the component providing share service with
its standby replica within Y seconds

Variants (V)

Variants for Fault Detection:
[V1] Ping/echo tactic [6] based fault detection
[V2] Heartbeat tactic based fault detection
Variants for Recovery:
[V3] Checkpoint/rollback tactic based fault recovery
[V4] Standby spare tactic based fault recovery

Valid QAS Configura-
tions (VC)

[VC1] V1 ∧ V3
[VC2] V2 ∧ V4

Fragment Constraints
(FC)

[FC1] Mandatory Fragments: { A1, A2 } ∧ { E1, E2 }
[FC2] Configuration Specific Fragments:

[Variants VC1] { SO1 } ∧ { ST1 } ∧ { R1, R3 } ∧ { RM1, RM3 }
[Variants VC2] { SO2 } ∧ { ST2 } ∧ { R2, R4 } ∧ { RM2, RM4 }

[FC3] Bindings:
[Bindings VC1] RM1.bind(X) + RM3.bind(Y) | X+Y ≤ 140 seconds
[Bindings VC2] RM2.bind(X) + RM4.bind(Y) | X+Y ≤ 180 seconds

Table 4.6: Self-Healing dQAS Specialized for the PSPL

4.4 Design Specialization Process
The design specialization process defines a workflow for architectural analysis
and design activities to realize self-adaptation properties with reuse. Instead of

65

W
o
rk

fl
o
w

Design

Specialization

+ Analyze Specialized

dQASs to find design

candidates, i.e., General

dRSs for reuse

+ If found, analyze the

General dRSs and

specialize them for reuse

in a specific application

domain.

+ If not found, define new

application domain

specific dRSs.

+ Verify the Specialized or

newly defined dRSs

Domain Designer

Specialized

dQASs

General

dRSs

eARF

Specialized

dRSs

Work-products

Define Application

Domain Specific dRSs

2a

3

1

<<uses>>

Newly

Defined dRSs

Analyze dQASs General

dRSs

Analyze

General dRSs

eARF

<
<

u
se

s>
>

Specialized

dQASs

Analyze

Refine

Integrate

<<uses>>

2b Specialize the

General dRSs

4

Verify the domain

specific dRSs
Application Domain

Specific dRSs

5

Feedback

Specialized

dRSs

Figure 4.7: Design Specialization Process Package

designing architecture from scratch, the design specialization process adopts a
high-level reference architecture from the ASPL platform and specializes it for
an application domain.

Figure 4.7 depicts the design specialization process package. Following is an
overview of the process roles, work-products, and workflow.

Roles The design specialization process is performed by a role called Domain
Designer. The domain designer is required to analyze an application do-
main’s requirements for self-adaptation, and model design decisions to
realize these requirements. The design specialization process helps do-
main designer to fulfill this responsibility by reusing design artifacts from
the ASPL platform, and proven best design practices and knowledge from
the eARF reasoning framework described in appendix A.

Work-product Four work-products, described below, are used in the process.

1. Specialized dQASs: A Specialized dQAS is an application domain spe-
cific requirement specification artifact produced as a result of the re-
quirements specialization process. In this process, specialized dQASs
are used an input work-product to identify self-adaptation requirements
of a given application domain. See section A.1 in appendix A for details
about the specialized dQASs.

2. General dRSs: A General dRS is an application domain independent
type of a dRS. It models a reference architecture to realize a self-adaptation
property. Monitor, Analyze, Plan, Execute, and Knowledge (MAPE-
K) feedback loop [27, 40] is used as a primary architectural pattern to
structure the architectural element in a General dRS. See appendix A
for details about the dRS and General dRS.

3. Specialized dRS: A Specialized dRS is an application domain specific
type of a dRS produced as a result of the design specialization process.

66

It is defined by finding a general dRS from the ASPL platform and
customizing it according to the needs of a specific application domain.

4. eARF: The eARF is a purposefully established reasoning framework [15]
to support architectural analysis and reasoning required for realization
of self-adaptation properties. It helps designers to identify design alter-
natives, analyze and evaluate the identified alternatives, reason about
the outcomes, and model design decisions.

Process Workflow The design specialization process workflow comprises five
activities performed for each self-adaptation property required by an ap-
plication domain. Activity-wise description of the process workflow is as
follows:

Activity 1 - Analyze dQASs The design specialization process begins
with an analysis activity where domain designer analyzes a set of spe-
cialized dQASs, and finds corresponding general dRSs for reuse from
the ASPL platform. For each self-adaptation property needed by
an application domain, a specialized dQAS for corresponding self-
adaptation property is used as an input work-product. The analysis
helps to determine domain requirements and to find a corresponding
general dRS from the ASPL platform.

Activity 2a - Analyze General dRSs The general dRSs got as a re-
sult of activity 1 are defined without knowing a specific application
domain and its requirements. Thus, it is more likely that there exist
gaps between what is required by a particular application domain
and the design decisions modeled in the general dRSs. For instance,
an application domain may demand use of “event based” monitoring
tactic to monitor its performance, but the found general dRS does
not model any architecture element (design decision) to realize event-
based performance monitoring. Moreover, being a reference architec-
ture, a general dRS, may have some architectural elements, such as
responsibility components, variation points, and variants, which are
not needed by the application domain for which design specializa-
tion process is being performed. Such gaps between what is required
and what is offered by a reference architecture are identified in this
activity and are addressed in activity 2b.

Activity 2b - Specialize the General dRSs This activity transforms
a General dRS into an application domain specific dRS called Spe-
cialized dRS. The specialization is performed to address the gaps
identified as a result of the activity 2a. As shown in Figure 4.7,
the analysis and specialization activities are performed with the help
of self-adaptation property specific architectural tactics and patterns
provided by the eARF. The architecture patterns are used to identify
and reason about structural organization and relationships among
architectural elements. And the architectural tactics are used to an-
alyze and argue about design alternatives modeled as variation points

67

and variants in the orthogonal variability model. For instance, mon-
itoring and execution tactics, described in appendix A.3, are used to
reason about different options for monitoring of a managed system,
and execution of adaptive actions, respectively. Tactics for other
quality attributes such as performance, availability, and security, can
be used for self-adaptation properties associated with these quality
attributes.

Activity 3 - Define Application Domain Specific dRSs If a gen-
eral dRS is not found as a result of the activity 1, the activity j3
defines a new application domain specific dRS. The process workflow
for creating the new dRS is same as the workflow for the general dRS
described in Section 3.4

Activity 4 - Verify the Domain Specific dRSs This activity is per-
formed to assure that domain-specific dRSs produced as a result of
activities 2b and 3 comply with requirements of a given application
domain. The eARF provides domain designers with formal methods
based properties specification and verification mechanism to verify
the design decisions modeled in a specialized dRS . For details about
verification and reasoning support using the eARF, please see [3].
Based on domain designer’s preferences and application domain re-
quirements, any other evaluation method or theory that provides
analytical means to verify the design decisions can be used to verify
the specialized dRS.

Activity 5 - Feedback This activity considers new dRSs defined in ac-
tivity 3 for inclusion in the ASPL platform as feedback. The feedback
helps to expand the ASPL platform, which in turn improves the de-
velopment of self-adaptive systems with reuse.

4.5 Design Specialization – Demonstration
This section demonstrates how a design specialization process is performed in
practice. Continuing with running examples application domains, following is a
description of how we performed design specialization for each of the example
domains.

4.5.1 Design Specialization for the DGE
The DGE requires only one self-adaptation property, self-upgradability. Thus,
beginning with the design specialization activity j1 , we analyzed a self-upgradability
specialized dQAS for the DGE, shown in Table 4.1. The self-upgradability prop-
erty is supported by the example ASPL platform; thus, we found a general dRS
for self-upgradability as a result of the activity 1. Following the process work-
flow, in activity k2a, we analyzed the found general dRS to identify gaps between
what has been modeled in the general dRS and what is needed by the DGE.

68

R
ep

o
si

to
ry

 M
o
n

it
o
r

<
<

m
an

ag
in

g
>

>

M
o
n
it

o
rs

 a
n
d
 r

ep
o
rt

s

u
p
d
at

es

O
p

er
a
to

r
C

en
te

r

<
<

m
an

ag
in

g
>

>

1
C

o
o
rd

in
at

es
 u

p
d
at

es

(i
)

d
et

ec
ts

 a
n
d
 n

o
ti

fy

u
p
d
at

es

(i
i)

 h
an

d
le

s
u
p
d
at

e
re

q
u
es

ts

N
o
ti

fi
ca

ti
o
n

A
n
al

y
si

s

R
es

u
lt

s

P
la

n
n

er

<
<

m
an

ag
in

g
>

>

P
la

n
s

a
re

sp
o
n
se

b
as

ed
 o

n
 u

p
d
at

e
ty

p
es

,

an
d
 u

p
d
at

e
re

q
u
es

ts

fr
o
m

 P
la

y
er

E
n
v
ir

o
n
m

en
t

A
n
al

y
si

s

R
es

u
lt

s
P

la
n

P
la

n

O
V

M
O

V
M

U
p
d
at

e

U
p
d
at

e

R
ep

o
.

M
o
n
it

o
r

V
P

P
er

io
d
ic

P
o
ll

in
g

V
O

n
-

D
em

an
d

V
E

v
en

t

B
as

ed

V

A
n
al

y
ze

r

V
P

U
p
d
at

es

A
n
al

y
ze

r

V

R
eq

u
es

ts

A
n
al

y
ze

r

V

re
q
u
ir

es
 v

p
_
v
p

U
p
d
at

es

M
an

ag
er

V
P

C
en

tr
al

iz
ed

V

D
is

tr
ib

u
te

d

V

U
p

d
a
te

s
R

ep
o
si

to
ry

S
to

re
s

an
d

P
ro

v
id

es
 u

p
d
at

es

U
p
d
at

es

P
ro

v
id

er

V
P

S
o
ft

w
ar

e

S
y
st

em

V
S

y
st

em

D
ev

el
o
p
er

V
S

y
st

em

A
d
m

in
is

tr
at

o
r

V

P
la

y
er

 E
n

v
ir

o
n

m
en

t

<
<

m
an

ag
ed

>
>

P
la

y
er

 u
se

s
P

E
 t

o

re
q
u
es

t
an

 u
p
d
at

e

U
p
d
at

es

C
o
n
su

m
er

V
P

P
la

y
er

V
S

o
ft

w
ar

e

S
y
st

em

V

E
x
ec

u
to

r

<
<

m
an

ag
in

g
>

>

E
x
ec

u
te

s
th

e
P

la
n

P
la

n

P
la

y
er

 E
n

v
ir

o
n

m
en

t

<
<

m
an

ag
ed

>
>

S
o
ft

w
ar

e
S

y
st

em
 o

n

w
h
ic

h
 u

p
d
at

es
 a

re

ap
p
li

ed
.

E
x
ec

u
to

r

V
P

Q
u
ie

sc
en

ce

V

P
ro

x
ie

s

V
R

ew
ri

te

B
in

ar
y
 c

o
d
e

V
In

tr
u
si

o
n
 &

C
o
o
p
er

at
io

n

V

A
n

a
ly

ze
r

<
<

m
an

ag
in

g
>

>

A
n
al

y
ze

s
th

e

d
et

ec
te

d
 u

p
d
at

es

an
d
 u

se
r

re
q
u
es

ts

fo
r

u
p
d
at

es

[1
..
1
]

[1
..
2
]

[1
..
2
]

[1
..
2
]

K
ey

[n
am

e]

[r
es

p
o
n
si

b
il

it
y

]
[n

am
e]

V
P

R
es

p
o
n
si

b
il

it
y

C
o
m

p
o
n
en

t

[n
am

e]

V

V
ar

ia
n
t

V
ar

ia
ti

o
n
 P

o
in

t

[m
in

..
m

ax
]

A
lt

er
n
at

iv
e

C
h
o
ic

e

A
rt

if
ac

t
D

ep
en

d
en

cy
M

an
d
at

o
ry

 V
ar

ia
n
t

O
p
ti

o
n
al

 V
ar

ia
n
t

V
ar

ia
ti

o
n
 P

o
in

t

C
o
n
st

ra
in

t
D

ep
en

d
en

cy

re
q
u
ir

es
 v

p
_
v
p

p
ro

v
id

es

re
q
u
ir

es

P
la

n
n
er

V
P

P
u
sh

V
C

ri
ti

ca
l

P
u
sh

V

F
ig
ur
e
4.
8:

Se
lf-
U
pg

ra
da

bi
lit
y
dR

S
Sp

ec
ia
liz
ed

fo
r
th
e
D
G
E

69

Few gaps were identified, mainly in the orthogonal variability model part of the
General dRS.

The analysis was followed by a specialization activity k2b in which we ad-
dressed the identified gaps by specializing the General dRS elements accord-
ing to the DGE domain requirements. For instance, there were three optional
variants defined for the “updates provider” variation point in the general dRS.
However, the DGE required only one of these variants. This gap was addressed
by keeping only one variant and removing the other two variants. Figure 4.8
depicts the Specialized dRS produced as a result of the activity 2b. The red “X”
mark denotes the removed variants. Following is a summary of the specialization
activities, and resulting elements of the specialized dRS.

The “updates manager” responsibility component from the reused General
dRS was specialized by renaming it to an “operator center” component. This
specialization was made because, in the DGE domain, it is the operator center
which has a responsibility of managing and coordinating updates. The “updates
manager” variation point associated with the updates manager component was
specialized by excluding the optional variant “distributed” and changing “cen-
tralized" variant from optional to mandatory. This specialization was made
because the DGE requires a central operator center (updates manager) to man-
age and coordinate updates.

In the DGE, updates are introduced through an updates repository (a folder
or directory in a file system). Thus, we specialized the “Updates Provider”
responsibility component by renaming it to “Updates Repository”. The variation
point associated with the updates provider component was also specialized by
excluding the unwanted “system administrator” and “system developer” variants.

The “Updates Monitor” and “Updates Consumer” components were special-
ized by adapting their names according to the DGE domain requirements. The
“Updates Monitor” was renamed to “Repository Monitor”, and “Updates Con-
sumer” was renamed to “Player Environment”. The “Repo. Monitor” variation
point associated with updates monitor component was specialized by exclud-
ing the “periodic polling” variant. This specialization was made because all the
three update types (push, push critical, and pull) can be detected using “event
based” and “on-demand” monitoring tactics. To limit the number of repository
monitor variants selected for a valid product configuration, we added an alterna-
tive choice variability constraint, [1..2] to the “Repo. Monitor” variation point.
The constraint specifies at least one monitoring variant must be selected, but
no more than two variants can be selected for any design artifact derived from
the specialized dRS.

The specialized dRS has two instances of “Player Environment” component.
The instance associated with “updates consumer” variation point models pull
type updates that enable a player environment to request updates from the
operator center. The “updates consumer” variation point was also specialized
by excluding “software system” variant and renaming the “end user” variant to
“player”. This specialization was made because, in the DGE, the players request
OC for updates. The “player environment" instance associated with “executor”
component models a target managed system on which updates are performed

70

by the OC with the help of executor component. There were no requirements
found for how updates are performed or executed. Thus, any one of the executor
variants defined under the executor variation point can be selected. We added
an alternative choice variability constraint [1..1] to the “executor” variation point
to limit the number of executor variants that can be selected for a valid product
configuration. The analyzer and planner component matched with requirements
of the DGE domain; thus, no changes were made to these components.

For activity 4, we have not yet verified the specialized dRS, as we plan it
as future work. The steps for verification are described and illustrated in [3].
Moreover, the specialized dRS is derived from a verified general dRS. Thus, it
is more likely that an architecture derived from a validated architecture will
comply with the specific application domain requirements.

4.5.2 Design Specialization for the NSPL
The NSPL requires two self-adaptation properties, self-optimization, and self-
healing. Thus, beginning with the design specialization activity j1 , we analyzed
self-optimization and self-healing dQASs specialized for the NSPL domain. The
analysis helped us to understand the NSPL requirement for self-optimization
and self-healing. We searched the example ASPL for reusable design artifacts
and found a general dRS for self-optimization. The general dRS was special-
ized for the NSPL domain. Details about the specialization and resulting self-
optimization dRS are given below in Section 4.5.2.

The example ASPL platform did not initially support self-healing property.
Thus, we could not find a general dRS for self-healing. Following the design
specialization process activity j3 , we defined a self-healing dRS from scratch.
Details about how the self-healing dRS was defined are given below in Section
4.5.2.

NSPL – Self-Optimization dRS

We specialized the general dRS for self-optimization to produce a self-optimization
dRS for the NSPL. The specialization was done by following the design special-
ization process activities k2a and k2b. In activity k2a, we analyzed the general dRS
and identified several gaps. The gaps were addressed in activity k2b, according
to requirements of the NSPL. Some of the gaps and how we addressed them,
for example, are described below.

The NSPL requires triggering self-optimization when processing time ex-
ceeds a certain threshold. It does not require to monitor its workload to trigger
self-optimization. Thus, we excluded the workload monitor component and
associated variation point, variants and interfaces. Moreover, there is no re-
quirement specified for analyzer component, so we removed it too together with
associated variation point, variants and interfaces. We also eliminated the “in-
crease efficiency” and “add threads” variants of planner variation point. The
elimination was made because the NSPL does not require tactics behind these
variants to plan and execute adaptive actions for performance optimization.

71

P
er

fo
rm

a
n

ce
 M

a
n

a
g

er

<
<

m
an

ag
in

g
>

>

M
o

n
it

o
rs

 a
n

d
 o

p
ti

m
iz

es

se
rv

er
s

p
ro

ce
ss

in
g

 t
im

e

A
n

a
ly

ze
r

<
<

m
an

ag
in

g
>

>

A
n

al
y

ze
s

ro
o

t
ca

u
se

fa
ct

o
rs

,
w

h
ic

h
 a

ff
ec

t

m
an

ag
ed

 s
y

st
em

’s

p
er

fo
rm

an
ce

Notification

A
n

al
y

si
s

R
es

u
lt

s

P
la

n
n

er

<
<

m
an

ag
in

g
>

>

P
la

n
s

ad
ap

ti
v

e
ac

ti
o

n
s

to
 o

p
ti

m
iz

e

p
er

fo
rm

an
ce

 o
f

a

N
ew

s
S

er
v

ic
e

M
o

n
it

o
re

d

D
at

a

P
la

n

P
la

n

O
V

M
S

el
f-

O
p

ti
m

iz
a
ti

o
n

 d
R

S
 f

o
r

N
S

P
L

O
V

M

A
n

al
y

ze

A
n

al
y

ze
r

V
P

W
o

rk
lo

ad

A
n

al
y

ze
r

V

D
ep

en
d

cy

A
n

al
y

ze
r

V

re
q

u
ir

es
 v

p
_

v
p

P
la

n
n

er

V
P

In
cr

ea
se

E
ff

ic
en

cy

V
R

ed
u

ce

O
v

er
h

ea
d

V
A

d
d

T
h

re
ad

s

V
In

cr
ea

se

R
es

o
u

rc
es

V

M
a

n
a

g
ed

 S
y

st
em

<
<

m
an

ag
ed

>
>

A
b

st
ra

ct
s

a
b

as
e

le
v

el

sy
st

em
 r

es
p

o
n

si
b

le

fo
r

ap
p

li
ca

ti
o

n
 l

o
g

ic

E
x

ec
u

to
r

V
P

Q
u

ie
sc

en
ce

V

P
ro

x
ie

s

V
R

ew
ri

te

B
in

ar
y

 c
o

d
e

V
In

tr
u

si
o

n
 &

C
o

o
p

er
at

io
n

V

N
o

ti
fi

ca
ti

o
n

T
im

e

M
o

n
it

o
r

V
P

P
er

io
d

ic

P
o

ll
in

g

V
O

n
-

D
em

an
d

V
E

v
en

t

B
as

ed

V

L
o

ad

M
o

n
it

o
r

V
P

P
er

io
d

ic

P
o

ll
in

g

V
O

n
-

D
em

an
d

V
E

v
en

t

B
as

ed

V

T
im

e
M

o
n

it
o

r

<
<

m
an

ag
in

g
>

>

M
o

n
it

o
rs

 s
er

v
er

s

p
ro

ce
ss

in
g

 t
im

e
an

d

n
o

ti
fi

es
 P

er
fo

rm
an

ce

M
an

ag
er

 i
f

th
e

ti
m

e

ex
ce

ed
s

a
th

re
sh

o
ld

M
o

n
it

o
r

S
er

v
er

-P
o

o
l

<
<

m
an

ag
ed

>
>

A
 c

o
ll

ec
ti

o
n

 o
f

se
rv

er
s

w
h

ic
h

 t
o

g
et

h
er

 p
ro

ce
ss

an
d

 d
el

iv
er

 n
ew

s

E
x

ec
u

to
r

<
<

m
an

ag
in

g
>

>

E
x

ec
u

te
s

th
e

P
la

n

P
la

n

S
er

v
er

-P
o

o
l

<
<

m
an

ag
ed

>
>

A
 c

o
ll

ec
ti

o
n

 o
f

se
rv

er
s

th
at

 s
er

v
e

n
ew

s
co

n
te

n
t

W
o

rk
lo

a
d

 M
o

n
it

o
r

<
<

m
an

ag
in

g
>

>

M
o

n
it

o
rs

 w
o

rk
lo

ad
 a

n
d

n
o

ti
fi

es
 t

h
e

p
er

fo
rm

an
ce

m
an

ag
er

.

M
o

n
it

o
r

P
la

n

K
ey

[n
am

e]

[r
es

p
o

n
si

b
il

it
y

]
[n

am
e]

V
P

R
es

p
o

n
si

b
il

it
y

C
o

m
p

o
n

en
t

[n
am

e]

V

V
ar

ia
n

t
V

ar
ia

ti
o

n
 P

o
in

t

[m
in

..
m

ax
]

A
lt

er
n

at
iv

e

C
h

o
ic

e

A
rt

if
ac

t
D

ep
en

d
en

cy
M

an
d

at
o

ry
 V

ar
ia

n
t

O
p

ti
o

n
al

 V
ar

ia
n

t
V

ar
ia

ti
o

n
 P

o
in

t

C
o

n
st

ra
in

t
D

ep
en

d
en

cy

re
q

u
ir

es
 v

p
_

v
p

p
ro

v
id

es

re
q

u
ir

es

[1
..

2
]

[1
..

1
]

[1
..

3
]

F
ig
ur
e
4.
9:

Se
lf-
O
pt
im

iz
at
io
n
dR

S
Sp

ec
ia
liz
ed

fo
r
th
e
N
SP

L

72

Moreover, we specialized the resp. monitor and executor variation points to
constrain variants. We constrained the variants by specifying the minimum and
the maximum number of allowed variants in the form of [min..max] constraint.
Figure 4.9 depicts self-optimization dRS produced as a result of the specializa-
tion activity k2b. The red “X” mark, in the figure, specify the removed elements
such as components, variation points, and variants.

NSPL – Self-Healing dRS

While defining requirements for the NSPL, we extended the scope of the exam-
ple ASPL platform to support self-healing property. However, we did not add
the general dRS for self-healing to the platform. Thus, we decided first to define
the general dRS and then specialize it for the NSPL. The general dRS was de-
fined using the ASPL design process described and demonstrated in Chapter 3.
Figure 4.10 depicts a resulting general dRS for self-healing. Following the design
specialization activity j5 , we added the self-healing general dRS as feedback to
the ASPL platform.

The self-healing general dRS was defined independently of the NSPL do-
main. To specialize the general dRS for the NSPL domain, we performed de-
sign specialization activities k2a and k2b. In activity k2a, we analyzed the general
dRS and identified gaps between the dRS and self-healing requirements of the
NSPL. The gaps were identified mainly in the orthogonal variability model.
For instance, there were three variants for the fault monitor variation point
in the general dRS. However, the NSPL requirements for self-healing can be
satisfied using only two of the variants. This and other such gaps were ad-
dressed in activity k2b, for instance, by removing the third variant of the fault
monitor variation point. Furthermore, the NSPL requires standby spare and
checkpoint/rollback tactics [6] based adaptations to recover from failure. Thus,
we kept these variants for the planner and execute components and removed
the “exception handler” variant. Further, as a specialization activity k2b, we
constrained variants by specifying minimum and maximum bounds in the form
of [min..max] variability constraint.

The self-optimization dRS for the NSPL produced as a result of the design
specialization process is shown in Figure 4.11. The red “X” mark, in the figure,
specify the elements, such as components, variation points and variants, which
were removed as a result of the design specialization activity k2b.

The design specialization process ends with verification activity j4 . We did
not verify the specialized dRSs for the NSPL, and plan the verification as future
work. The verification activities are described and demonstrated in [3].

4.5.3 Design Specialization for the PSPL
The PSPL requires two self-adaptation properties, self-upgradability, and self-
healing. Thus, beginning with the design specialization activity j1 , we analyzed
self-upgradability and self-healing dQASs specialized for the PSPL domain. The
analysis helped us to understand the PSPL requirement for self-upgradability

73

F
a
u

lt
 M

o
n

it
o
r

<
<

m
an

ag
in

g
>

>

M
o
n
it

o
rs

 a
n
d
 r

ep
o
rt

s

fa
il

ed
 s

y
st

em
s

o
r

co
m

p
o
n
en

ts
S

y
st

em
 M

a
n

a
g
er

<
<

m
an

ag
in

g
>

>

T
ak

es
 a

ct
io

n
s

to
 r

ec
o
v
er

fr
o
m

 f
ai

lu
re

 a
n
d
 r

es
to

re

th
e

fa
il

ed
 s

y
st

em

A
n

a
ly

ze
r

<
<

m
an

ag
in

g
>

>

A
n
al

y
ze

s
a

fa
il

u
re

N
o
ti

fi
ca

ti
o
n

A
n
al

y
si

s

R
es

u
lt

s

P
la

n
n

er

<
<

m
an

ag
in

g
>

>

P
la

n
s

ad
ap

ti
v
e

ac
ti

o
n
s

to
 r

ec
o
v
er

an
d
 r

es
to

re
 t

h
e

fa
il

ed

sy
st

em

A
n
al

y
si

s

R
es

u
lt

s
P

la
n

P
la

n

O
V

M
G

en
er

a
l

d
R

S
 f

o
r

S
el

f-
H

ea
li

n
g

O
V

M

M
o
n
it

o
re

d
 D

at
a

M
o
n
it

o
r

F
au

lt

M
o
n
it

o
r

V
P

A
n
al

y
ze

r

V
P

re
q
u
ir

es
 v

p
_
v
p

S
y
st

em

M
an

ag
er

V
P

C
en

tr
al

iz
ed

V

D
is

tr
ib

u
te

d

V

S
o
ft

w
a
re

 S
y
st

em

<
<

m
an

ag
ed

>
>

B
as

e-
le

v
el

ap
p
li

ca
ti

o
n
 s

o
ft

w
ar

e

sy
st

em
 t

h
at

 r
eq

u
ir

es

se
lf

-h
ea

li
n
g

E
x
ec

u
to

r

<
<

m
an

ag
in

g
>

>

E
x
ec

u
te

s
th

e
P

la
n

P
la

n

E
x
ec

u
to

r

V
P

F
ai

le
d

S
y
st

em

V
P

S
o
ft

w
ar

e

S
y
st

em

V

C
o
m

p
o
n
en

t

V

S
u
b
sy

st
em

V

P
la

n
n
er

V
P

S
o
ft

w
a
re

 S
y
st

em

<
<

m
an

ag
ed

>
>

B
as

e-
le

v
el

ap
p
li

ca
ti

o
n
 s

o
ft

w
ar

e

sy
st

em
 t

h
at

 r
eq

u
ir

es

se
lf

-h
ea

li
n
g

P
in

g
/e

ch
o

V

E
x
ce

p
ti

o
n
s

V

H
ea

rb
ea

t

V

S
ta

n
d
b
y

S
p
ar

e

V
E

x
ce

p
ti

o
n

H
an

d
le

r

V
C

h
ec

k
p
o
in

t/

R
o
ll

b
ac

k

V

S
ta

n
d
b
y

S
p
ar

e

V
E

x
ce

p
ti

o
n

H
an

d
le

r

V
C

h
ec

k
p
o
in

t/

R
o
ll

b
ac

k

V

K
ey

[n
am

e]

[r
es

p
o
n
si

b
il

it
y

]
[n

am
e]

V
P

R
es

p
o
n
si

b
il

it
y

C
o
m

p
o
n
en

t

[n
am

e]

V

V
ar

ia
n
t

V
ar

ia
ti

o
n
 P

o
in

t

[m
in

..
m

ax
]

A
lt

er
n
at

iv
e

C
h
o
ic

e

A
rt

if
ac

t
D

ep
en

d
en

cy
M

an
d
at

o
ry

 V
ar

ia
n
t

O
p
ti

o
n
al

 V
ar

ia
n
t

V
ar

ia
ti

o
n
 P

o
in

t

C
o
n
st

ra
in

t
D

ep
en

d
en

cy

re
q
u
ir

es
 v

p
_
v
p

p
ro

v
id

es

re
q
u
ir

es

D
ep

en
d
en

cy

A
n
al

y
ze

r

V

F
ig
ur
e
4.
10
:
Se
lf-
H
ea
lin

g
–
G
en
er
al

dR
S

74

F
a

u
lt

 M
o

n
it

o
r

<
<

m
an

ag
in

g
>

>

M
o

n
it

o
rs

 a
n

d
 r

ep
o

rt
s

fa
u

lt
s

S
y

st
em

 M
a

n
a

g
er

<
<

m
an

ag
in

g
>

>

T
ak

es
 a

ct
io

n
s

to
 r

ec
o

v
er

fr
o

m
 f

ai
lu

re
 a

n
d

 r
es

to
re

th
e

fa
il

ed
 s

y
st

em

A
n

a
ly

ze
r

<
<

m
an

ag
in

g
>

>

A
n

al
y

ze
s

a
fa

il
u

re

N
o

ti
fi

ca
ti

o
n

A
n

al
y

si
s

R
es

u
lt

s

P
la

n
n

er

<
<

m
an

ag
in

g
>

>

P
la

n
s

ad
ap

ti
v

e

ac
ti

o
n

s
to

 r
ec

o
v

er

an
d

 r
es

to
re

 t
h

e
fa

il
ed

sy
st

em

A
n

al
y

si
s

R
es

u
lt

s
P

la
n

P
la

n

O
V

M
S

el
f-

H
ea

li
n

g
 d

R
S

 f
o

r
N

S
P

L
O

V
M

M
o

n
it

o
re

d
 D

at
a

M
o

n
it

o
r

F
au

lt

M
o

n
it

o
r

V
P

re
q

u
ir

es
 v

p
_

v
p

S
y

st
em

M
an

ag
er

V
P

C
en

tr
al

iz
ed

V

D
is

tr
ib

u
te

d

V

S
o

ft
w

a
re

 S
y

st
em

<
<

m
an

ag
ed

>
>

A
b

st
ra

ct
s

la
n

g
u

ag
e

fe
at

u
re

 a
n

d
 s

er
v

er
-

p
o

o
l

su
b

sy
st

em
s

th
at

re
q

u
ir

e
se

lf
-h

ea
li

n
g

E
x

ec
u

to
r

<
<

m
an

ag
in

g
>

>

E
x

ec
u

te
s

th
e

P
la

n

P
la

n

E
x

ec
u

to
r

V
P

F
ai

le
d

S
y

st
em

V
P

L
an

g
u

ag
e

V

C
o

m
p

o
n

en
t

V

S
er

v
er

-p
o

o
l

V

P
la

n
n

er

V
P

S
o

ft
w

a
re

 S
y

st
em

<
<

m
an

ag
ed

>
>

B
as

e-
le

v
el

ap
p

li
ca

ti
o

n
 s

o
ft

w
ar

e

sy
st

em
 t

h
at

 r
eq

u
ir

es

se
lf

-h
ea

li
n

g

P
in

g
/e

ch
o

V

E
x

ce
p

ti
o

n
s

V

H
ea

rb
ea

t

V

S
ta

n
d

b
y

S
p

ar
e

V
E

x
ce

p
ti

o
n

H
an

d
le

r

V
C

h
ec

k
p

o
in

t/

R
o

ll
b

ac
k

V

S
ta

n
d

b
y

S
p

ar
e

V
E

x
ce

p
ti

o
n

H
an

d
le

r

V
C

h
ec

k
p

o
in

t/

R
o

ll
b

ac
k

V

K
ey

[n
am

e]

[r
es

p
o

n
si

b
il

it
y

]
[n

am
e]

V
P

R
es

p
o

n
si

b
il

it
y

C
o

m
p

o
n

en
t

[n
am

e]

V

V
ar

ia
n

t
V

ar
ia

ti
o

n
 P

o
in

t

[m
in

..
m

ax
]

A
lt

er
n

at
iv

e

C
h

o
ic

e

A
rt

if
ac

t
D

ep
en

d
en

cy
M

an
d

at
o

ry
 V

ar
ia

n
t

O
p

ti
o

n
al

 V
ar

ia
n

t
V

ar
ia

ti
o

n
 P

o
in

t

C
o

n
st

ra
in

t
D

ep
en

d
en

cy

re
q

u
ir

es
 v

p
_

v
p

p
ro

v
id

es

re
q

u
ir

es

A
n

al
y

ze
r

V
P

D
ep

en
d

en
cy

A
n

al
y

ze
r

V

[1
..
2
]

[1
..
1
]

[1
..
2
]

[1
..
2
]

[1
..
2
]

F
ig
ur
e
4.
11
:
Se
lf-
H
ea
lin

g
dR

S
Sp

ec
ia
liz
ed

fo
r
th
e
N
SP

L

75

and self-healing. As a part of the activity j1 , we searched the example ASPL
to find reusable design artifacts for the self-healing and self-upgradability. We
found a general dRS for each of the two properties and specialized it according
to needs of the PSPL domain. Following is a one by one description of how we
specialized general dRSs for self-upgradability and self-healing.

Self-Upgradability dRS Specialized for the PSPL

The general dRS for self-upgradability, found in activity j1 , was defined without
knowing the PSPL domain requirements. Thus, following the design specializa-
tion process activity k2a, we analyzed the general dRS to identify gaps between
what is required by the PSPL and what was modeled in the general dRS. Few
gaps were identified and addressed in activity k2b. Some of the gaps and how we
addressed them, for example, are described below.

The general dRS models three variants of “updates provider” variation point.
However, in the PSPL domain, all the updates are provided through a direc-
tory in a file system. That is, in the PSPL domain there are no variants of the
updates provider other than a directory. We addressed this gap by renaming
the “software system” variant to “directory” and removing the other two up-
dates provider variants. Similarly, the general dRS models three variants for
the planner variation point. These variants were derived based on three vari-
ants of self-upgradability, push, pull and push critical [1]. The PSPL, however,
requires only push and pull type variants. Thus, we specialized the planner
variation point by removing the push critical variant. Further, as a specializa-
tion activity j2b, we constrained variants by specifying minimum and maximum
bounds in the form of [min..max] variability constraint.

Figure 4.12 displays a self-upgradability dRS for the PSPL produced as a
result of the design specialization process. The red “X” marks, in the figure,
specify elements, such as components, variation points and variants, which got
removed as a part of the design specialization activity k2b.
Self-Healing dRS Specialized for the PSPL

The general dRS for self-healing, found in activity j1 , was defined without know-
ing the PSPL domain requirements. Thus, following the design specialization
process activity k2a, we analyzed the general dRS to identify gaps between what
is required by the PSPL and what was modeled in the general dRS. We iden-
tified few gaps and addressed them in activity k2b based on self-upgradability
requirements of the PSPL. Some of the gaps and how we addressed them, for
example, are described below.

The general dRS models three variants for the fault monitor variation point.
These variants were modeled based on ping/echo, heartbeat and exception tac-
tics [6] for failure detection. The PSPL domain, however, requires only the
ping/echo and heartbeat tactics to detect failures in the upload and share ser-
vices. We addressed this gap by removing the “exception” variant. Moreover, the
PSPL requires standby spare and checkpoint/rollback tactics [6] based adapta-

76

R
ep

o
si

to
ry

 M
o
n

it
o
r

<
<

m
an

ag
in

g
>

>

M
o
n
it

o
rs

 u
p
d
at

e

re
p
o
si

to
ry

 a
n
d
 r

ep
o
rt

s

n
ew

 u
p
d
at

es
U

p
d

a
te

s
M

a
n

a
g
er

<
<

m
an

ag
in

g
>

>

1
C

o
o
rd

in
at

es
 u

p
d
at

es

(i
)

d
et

ec
ts

 a
n
d
 n

o
ti

fy

u
p
d
at

es

(i
i)

 h
an

d
le

s
u
p
d
at

e
re

q
u
es

ts

N
o
ti

fi
ca

ti
o
n

A
n

al
y
si

s

R
es

u
lt

s

P
la

n
n

er

<
<

m
an

ag
in

g
>

>

P
la

n
s

ad
ap

ti
v
e

ac
ti

o
n
s

to
 p

er
fo

rm

an
 u

p
d
at

e

A
n

al
y

si
s

R
es

u
lt

s
P

la
n

P
la

n

O
V

M
O

V
M

U
p
d

at
e

U
p
d

at
e

R
ep

o
.

M
o

n
it

o
r

V
P

P
er

io
d
ic

P
o

ll
in

g

V
O

n
-

D
em

an
d

V
E

v
en

t

B
as

ed

V

A
n
al

y
ze

r

V
P

U
p
d

at
es

A
n
al

y
ze

r

V

R
eq

u
es

ts

A
n

al
y

ze
r

V

re
q

u
ir

es
 v

p
_

v
p

U
p

d
at

es

M
an

ag
er

V
P

C
en

tr
al

iz
ed

V

D
is

tr
ib

u
te

d

V

U
p

d
a
te

s
R

ep
o
si

to
ry

A
 d

ir
ec

to
ry

 i
n
 f

il
e

sy
st

em
 u

se
d
 t

o
 s

to
re

u
p
d
at

es

U
p
d

at
es

P
ro

v
id

er

V
P

D
ir

ec
to

ry

V
S

y
st

em

D
ev

el
o
p

er

V
S

y
st

em

A
d
m

in
is

tr
at

o
r

V

P
h

o
to

S
h

a
re

<
<

m
an

ag
ed

>
>

A
n
 a

p
p
li

ca
ti

o
n

so
ft

w
ar

e
u
se

d
 b

y
 t

h
e

en
d

-u
se

r
to

 r
eq

u
es

t

u
p
d
at

es

U
p
d

at
es

C
o
n

su
m

er

V
P

E
n

d
-u

se
r

V
S

o
ft

w
ar

e

S
y

st
em

V

E
x
ec

u
to

r

<
<

m
an

ag
in

g
>

>

E
x
ec

u
te

s
th

e
P

la
n

P
la

n

P
h

o
to

S
h

a
re

<
<

m
an

ag
ed

>
>

A
n
 a

p
p
li

ca
ti

o
n
 s

o
ft

w
ar

e

w
h
ic

h
 r

eq
u
es

ts
 a

n
d

co
n
su

m
es

 u
p
d
at

es

E
x
ec

u
to

r

V
P

Q
u

ie
sc

en
ce

V

P
ro

x
ie

s

V
R

ew
ri

te

B
in

ar
y

 c
o

d
e

V
In

tr
u

si
o

n
 &

C
o

o
p

er
at

io
n

V

A
n

a
ly

ze
r

<
<

m
an

ag
in

g
>

>

A
n
al

y
ze

s
th

e

d
et

ec
te

d
 u

p
d
at

es

an
d
 u

se
r

re
q
u
es

ts

fo
r

u
p
d
at

es

[1
..
1
]

[1
..
2
]

[1
..
2
]

[1
..
2
]

K
ey

[n
am

e]

[r
es

p
o
n

si
b
il

it
y

]
[n

am
e]

V
P

R
es

p
o
n

si
b
il

it
y

C
o
m

p
o
n

en
t

[n
am

e]

V

V
ar

ia
n

t
V

ar
ia

ti
o
n

 P
o
in

t

[m
in

..
m

ax
]

A
lt

er
n

at
iv

e

C
h

o
ic

e

A
rt

if
ac

t
D

ep
en

d
en

cy
M

an
d

at
o

ry
 V

ar
ia

n
t

O
p

ti
o

n
al

 V
ar

ia
n

t
V

ar
ia

ti
o

n
 P

o
in

t

C
o

n
st

ra
in

t
D

ep
en

d
en

cy

re
q

u
ir

es
 v

p
_
v

p

p
ro

v
id

es

re
q

u
ir

es

P
la

n
n
er

V
P

P
u

sh

V

P
u
ll

V
C

ri
ti

ca
l

P
u
sh

V

S
el

f-
U

p
g

ra
d

a
b

il
it

y
 d

R
S

 f
o

r
P

S
P

L

F
ig
ur
e
4.
12
:
Se
lf-
U
pg

ra
da

bi
lit
y
dR

S
Sp

ec
ia
liz
ed

fo
r
th
e
P
SP

L

77

F
a

u
lt

 M
o

n
it

o
r

<
<

m
an

ag
in

g
>

>

M
o

n
it

o
rs

 a
n

d
 r

ep
o

rt
s

F
ai

le
d

 s
er

v
ic

es

S
y

st
em

 M
a

n
a

g
er

<
<

m
an

ag
in

g
>

>

T
ak

es
 a

ct
io

n
s

to
 r

ec
o

v
er

fr
o

m
 f

ai
lu

re
 a

n
d

 r
es

to
re

th
e

fa
il

ed
 s

y
st

em

A
n

a
ly

ze
r

<
<

m
an

ag
in

g
>

>

A
n

al
y

ze
s

a
fa

il
u

re

N
o
ti

fi
ca

ti
o
n

A
n
al

y
si

s

R
es

u
lt

s

P
la

n
n

er

<
<

m
an

ag
in

g
>

>

P
la

n
s

ad
ap

ti
v

e

ac
ti

o
n

s
to

 r
ec

o
v

er

an
d

 r
es

to
re

 t
h

e
fa

il
ed

sy
st

em

A
n
al

y
si

s

R
es

u
lt

s
P

la
n

P
la

n

O
V

M
S

el
f-

H
ea

li
n

g
 d

R
S

 f
o

r
P

S
P

L
O

V
M

M
o
n
it

o
re

d
 D

at
a

M
o
n
it

o
r

F
au

lt

M
o
n
it

o
r

V
P

A
n
al

y
ze

r

V
P

re
q
u
ir

es
 v

p
_
v
p

S
y
st

em

M
an

ag
er

V
P

C
en

tr
al

iz
ed

V

D
is

tr
ib

u
te

d

V

S
o

ft
w

a
re

 S
y

st
em

<
<

m
an

ag
ed

>
>

A
b

st
ra

ct
s

U
p

lo
ad

an
d

 S
h

ar
e

S
er

v
ic

es

o
f

th
e

P
h

o
to

S
h

ar
e

A
p

p
li

ca
ti

o
n

E
x

ec
u

to
r

<
<

m
an

ag
in

g
>

>

E
x

ec
u

te
s

th
e

P
la

n

P
la

n

E
x
ec

u
to

r

V
P

F
ai

le
d

S
y
st

em

V
P

S
o
ft

w
ar

e

S
y
st

em

V

S
h
ar

e

V

U
p
lo

ad

V

P
la

n
n
er

V
P

S
o

ft
w

a
re

 S
y

st
em

<
<

m
an

ag
ed

>
>

A
b

st
ra

ct
s

U
p

lo
ad

an
d

 S
h

ar
e

S
er

v
ic

es

o
f

th
e

P
h

o
to

S
h

ar
e

A
p

p
li

ca
ti

o
n

P
in

g
/e

ch
o

V

E
x
ce

p
ti

o
n
s

V

H
ea

rb
ea

t

V

S
ta

n
d
b
y

S
p
ar

e

V
E

x
ce

p
ti

o
n

H
an

d
le

r

V
C

h
ec

k
p
o
in

t/

R
o
ll

b
ac

k

V

S
ta

n
d
b
y

S
p
ar

e

V
E

x
ce

p
ti

o
n

H
an

d
le

r

V
C

h
ec

k
p
o
in

t/

R
o
ll

b
ac

k

V

K
ey

[n
am

e]

[r
es

p
o
n
si

b
il

it
y

]
[n

am
e]

V
P

R
es

p
o
n
si

b
il

it
y

C
o
m

p
o
n
en

t

[n
am

e]

V

V
ar

ia
n
t

V
ar

ia
ti

o
n
 P

o
in

t

[m
in

..
m

ax
]

A
lt

er
n
at

iv
e

C
h
o
ic

e

A
rt

if
ac

t
D

ep
en

d
en

cy
M

an
d
at

o
ry

 V
ar

ia
n
t

O
p
ti

o
n
al

 V
ar

ia
n
t

V
ar

ia
ti

o
n
 P

o
in

t

C
o
n
st

ra
in

t
D

ep
en

d
en

cy

re
q
u
ir

es
 v

p
_
v
p

p
ro

v
id

es

re
q
u
ir

es

D
ep

en
d
en

cy

A
n
al

y
ze

r

V

[1
..
2
]

[1
..
2
]

[1
..
2
]

[1
..
2
]

F
ig
ur
e
4.
13
:
Se
lf-
H
ea
lin

g
dR

S
Sp

ec
ia
liz
ed

fo
r
th
e
P
SP

L

78

tions to recover from failure. Hence, we kept these variants for the planner and
execute components and removed the “exception handler” variant. Further, as a
specialization activity k2b, we constrained variants by specifying minimum and
maximum bounds in the form of [min..max] variability constraint. Figure 4.13
depicts the self-healing dRS produced as a result of the design specialization
process.

The design specialization process ends with verification activity j4 . We
have not yet verified the specialized dRSs for the PSPL. However, we plan the
verification as future work.

79

Chapter 5

Integration Process

The integration process defines activities, work-products and roles to align and
integrate the separately developed managing and managed system platforms.
The process aims to make managing and managed system platforms compatible
and ready for use in application engineering projects [33]. This chapter provides
a detailed description of the process including all the subprocesses, activities and
related entities.

5.1 Introduction
Based on the ASPL strategy, the ASPLe methodology supports the development
of self-adaptive systems with reuse by splitting the development of managing
and the managed subsystems into separate processes. The development of man-
aging subsystem is supported by establishing a horizontal, application domain
independent ASPL platform, and reusing it to derive several application do-
mains specific Managing System Platforms. Whereas, the development of the
managed subsystem is supported by establishing a separate Managed System
Platform.

As the two platforms, Managing System Platform and Managed System
Platform, are defined separately, there may exist mismatches between the two
platforms. To derive a product line of self-adaptive systems from two indepen-
dently developed managing and managed system platforms, we need to address
the mismatches between the two platforms. The mismatches are more likely
to be in artifacts and areas that cross boundaries between the managed and
managing system platforms, such as the monitor and adapt interfaces.

The managed system platform artifacts are required to provide “probe” and
“adapt” interfaces to support communication and operations between manag-
ing and managed subsystems. The probe interfaces allow the managing system
artifacts to monitor states and relevant properties of the underlying managed
system artifacts and their environment. The adapt interfaces allow the manag-
ing system artifacts (execute component) to perform adaptive actions required

80

Requirements

Integration

+ Analyze Requirement

Engineering (RE)

artifacts in the Managing

and Managed System

Platforms

+ Identify mismatches

among the RE artifacts

+ Address the mismatches;
analyze and refine the

RE artifacts until the

artifacts are well aligned

and integrated

Domain Analyst

Managed System

Integrated RE Artifacts

Managing System

Integrated RE Artifacts

Managed System

RE Artifacts

Managing System

RE Artifacts

Work-products

RE artifacts from Managing

and Managed System Platforms

Integrated

RE artifacts

Workflow

Analyze RE Artifacts in the

Managing and Managed

System Platforms

1 2

Address the

mismatches

Identified

mismatches

Analyze

Refine

Integrate

Figure 5.1: Requirements Integration Process Package

to adjust behavior and structure of the underlying managed system. If there are
no probe and adapt interfaces and supporting components defined in the man-
aged system platform, or the interface definitions does not match with their
counterparts, i.e., monitor and execute interfaces and components in the man-
aging system platform, one can’t reuse the artifacts from the two platforms to
develop self-adaptive systems. To that end, the ASPLe methodology provides
the integration process which ensures that the artifacts from managing and man-
aged system platforms can be used together to derive a complete self-adaptive
system. Comparing the ASPLe methodology to the Rainbow framework [20],
the integration process corresponds to the translation infrastructure layer which
helps to mediate different levels of information and operation abstractions be-
tween system layer (managed system platform) and architecture layer (managing
system platform).

The integration process follows the structure of the other two processes in
the ASPLe methodology. It starts with requirements integration followed by
design, implementation and tests integration processes.

5.2 Requirements Integration Process
The requirements integration process provides guidelines for integration of the
requirements specification artifacts in managed and managing system platforms.
It ensures that requirement artifacts in the two platforms are well aligned and
there are no mismatches between requirement specifications.

Figure 3.2 depicts the ASPL requirements engineering process package dia-
gram. The package diagram specifies roles, work-products and workflow element
of the requirements integration process. Each of these elements is described be-
low.

Roles The requirements integration process is performed by a role called Do-
main Analyst. The domain analyst is required to have good knowledge of
requirement specification artifacts in both managed and managing system
platforms. The domain analyst’s responsibilities are listed, in Figure 5.1,

81

under the domain analyst role. These responsibilities map to activities of
the requirements integration process workflow.

Work-products Four work-products, described below, are used in the process.

1. Managing System Requirements Engineering (RE) Artifacts: This work-
product represents specialized dQASs in the managing system platform
defined for a specific application domain. The Specialized dQASs spec-
ify managing system requirements and are defined as a result of the
requirements specialization process.

2. Managed System Requirements Engineering (RE) Artifacts: This work-
product represents requirement specifications in the managed system
platform defined for a specific application domain. The requirement
specifications in the managed system platform specify managed system
requirements and are defined by following traditional requirement engi-
neering methods such as software requirement specifications, use cases.

3. Managing System Integrated RE Artifacts: This work-product repre-
sents the RE artifacts in a managing system platform, i.e., specialized
dQASs, which are aligned and integrated with a managed system plat-
form as a result of the requirements integration process.

4. Managed System Integrated RE Artifacts: This work-product represents
the RE artifacts in a managed system platform which are aligned and
integrated with a managing system platform as a result of the require-
ments integration process.

Process Workflow As depicted in Figure 5.1, the requirements integration
process workflow consists of two activities. The activities are performed
for each self-adaptation property required by a given application domain.
Activity-wise description of the workflow is as follows:

Activity 1 - Analyze RE Artifacts in the Managing and Man-
aged System Platforms: The requirements integration process begin
by analyzing requirement engineering (RE) artifacts in the managed and
managing system platforms. The analysis is performed to make sure that
requirements for all interfaces and components that cross boundaries or
have provide/required dependencies between the two platforms are well
aligned with no mismatches. These requirements are typically concerned
with probe and adapt component interfaces in a managed system plat-
form and their respective monitor and execute component interfaces in a
managing system platform.

The requirements specification artifacts in a managed system platform
are mainly defined for the base-level application logic. These artifacts
may lack in requirements for the probe and adapt interfaces needed by
the monitor and execute components in a managing system platform. For
instance, requirement specification artifacts in a managed system platform

82

may lack in specifying requirements for the probe and adapt interfaces
needed to detect and perform updates for the self-upgradability property.

The analysis activity also analyzes requirement specification artifacts in
a managing system platform. Following the requirements specialization
process, these artifacts are already specialized for a specific application
domain. Thus, the managing system platform artifacts are more likely to
be in-line with their counterparts in a managed system platform. However,
the integration process double checks the requirements specifications in
a managing system platform to ensure that there are no mismatches or
inconsistencies.

Activity 2 - Address the Mismatches: This activity addresses mis-
matches identified as a result of the activity 1. The mismatches are ad-
dressed, for instance, by adding missing interface or component require-
ments, modifying requirements or parts of the requirements as needed, and
in some cases by removing requirements or parts of requirements which
are not needed for a specific application domain. The activities 1 and 2
are iterated with several subsequent steps where all requirement artifacts
are analyzed for inconsistencies, refined and integrated. The integration
results in a set of integrated requirement artifacts ready to derive require-
ment specifications for a product line of self-adaptive systems.

The results from the analysis activity of requirements integration are use-
ful and should be considered for the subsequent design, implementation, and
tests integration processes. This is because all these subsequent processes are
defined according to what is required and specified by requirements engineering
(sub)process. So if there are mismatches or inconsistencies identified in require-
ments specification artifacts, it is more likely that there will be mismatches in
the artifacts produced by subsequent design, implementation and testing pro-
cesses.

5.3 Requirements Integration – Demonstration
This section demonstrates requirements integration process in practice. We use
the three running example application domains, DGE, PSPL, and NSPL, for
the demonstration. Following is a one by one description of how we performed
the requirements integration process for each of the example domains.

5.4 DGE – Requirements Integration
Beginning with the requirements integration process activity j1 , we analyzed RE
artifacts in the managed and managing system platforms for the DGE. The RE
artifacts in the managing system platform were developed using requirements
specialization process, see Section 4.3.1 for details. The RE artifacts in the

83

Source (SO) [SO1] Update Repository is used to introduce new updates
[SO2] Players who requests updates for their Player Environments (PEs)

Stimulus (ST) [ST1] A new update appears in an updates repository
[ST2] Player requests an update

Artifacts (A)

[A1] Operator Center (OC) - an update manager that handles new updates, update
requests, and triggers actions to deliver and perform updates
[A2] Player Environment (PE) - target managed system on which updates are
performed
[A3] Update Repository - used by the OC and its operator to introduce
and store updates

Environment (E) [E1] Runtime under normal operating conditions

Response (R)

[R1] New update is detected and notified to the OC
[R2] OC notifies an update to player environments
[R3] OC responds update requests
[R4] Update is applied to a target system

Response Mea-
sure (RM)

[RM1] New update is detected and notified to the OC with no delay after it has
been placed in the Updates Repository
[RM2] OC notifies new updates to target PEs within X seconds, with range(X) =
[5..60]
[RM3] OC responds an update request within Y seconds, with range(Y) = [5..60]
[RM4] Update is applied to target PEs within Z minutes, with range(Z) = [1..10]

Variants (V)
[V1] push
[V2] push critical
[V3] pull

Valid QAS Config-
urations (VC)

[VC1] V1
[VC2] V1 ∧ V2
[VC3] V1 ∧ V2 ∧ V3
[VC4] V3

Fragment Con-
straints (FC)

[FC1] Mandatory Fragments: { A1, A2, A3 } ∧ { E1 } ∧ { R4 } ∧ { RM4 }
[FC2] Configuration Specific Fragments:
[Variants VC1] { SO1 } ∧ { ST1 } ∧ { R1, R2 } ∧ { RM1, RM2 }
[Variants VC2] { SO1 } ∧ { ST1 } ∧ { R1, R2 } ∧ { RM1, RM2 }
[Variants VC3] { SO1, SO2 } ∧ { ST1, ST2 } ∧ { R1, R2, R3 } ∧ { RM1, RM2,
RM3 }
[Variants VC4] { SO2 } ∧ { ST2 } ∧ { R3 } ∧ { RM3 }
[FC3] Bindings:
[Bindings VC1] V1.(RM2.bind(X) + RM4.bind(Z)) | X+Z ≤ 10 minutes
[Bindings VC2] (V1.(RM2.bind(X) + RM4.bind(Z)) | X+Z ≤ 10 minutes)

∧ (V2.(RM2.bind(X) + RM4.bind(Z)) | X+Z ≤ 120 seconds)
[Bindings VC3] (V1.(RM2.bind(X) + RM4.bind(Z)) | X+Z ≤ 10 minutes)

∧ (V2.(RM2.bind(X) + RM4.bind(Z)) | X+Z ≤ 120 seconds)
∧ (V3.(RM3.bind(Y) + RM4.bind(Z))) | Y+Z ≤ 10 minutes)

[Bindings VC4] V3.(RM3.bind(Y) + RM4.bind(Z)) | Y+Z ≤ 10 minutes

Table 5.1: DGE – Self-Upgradability dQAS after Integration with the Managed
System Platform

84

DGE managed system platform was established independently using traditional
requirements engineering methods. The managed system platform for the DGE
and the other two example domains, NSPL and PSPL, can be downloaded at
http://homepage.lnu.se/staff/janmsi/ms-platforms/.

Beginning with the requirements integration process activity j1 , we analyzed
RE artifacts in the managed and managing system platforms. In the managing
system platform, we analyzed a specialized dQAS for self-upgradability defined
in in Section 4.3. The analysis showed that the specialized dQAS was mostly
aligned with requirement specification document in the managed system plat-
form. The only mismatch identified was a missing artifact fragment to specify
an update repository component used in the DGE to store updates. The mis-
match was addressed, as an activity 2, by adding a new fragment [A3] to the
artifact element and declaring [A3] as a mandatory fragment in the fragment
constraints element. Table 5.1 depicts an integrated dQAS, an updated version
of a specialized dQAS, for self-upgradability.

In the managed system platform, we analyzed a requirement specification
document. In the requirement specification document, the DGE domain re-
quirements for self-upgradability were defined along with other functional and
non-functional requirements. The self-upgradability was specified as a func-
tional requirement by defining several views. The views described step by step
requirements, similar to a use case, to specify the push and pull type updates,
and how these updates are triggered and performed by an operator center com-
ponent. However, considering the architectural split between managing and
managed subsystems, the requirements for probe and adapt interfaces between
the two subsystems were missing. This lack of requirements for the probe and
adapt interfaces was addressed, as an activity 2 of the integration process, by
adding following requirements to the requirement specification document.

1. Updates repository component should provide an interface for the operator
center to monitor or probe updates.

2. The player environment should provide an interface to get update notifi-
cations and updates.

3. The operator center should provide an interface for player environments
to probe and pull updates.

4. The player environment should also provide an interface for the operator
center to probe and retrieve runtime information about current status of
the player environment and its operating environment.

5. The player environment should also provide an interface for the operator
center to push and perform updates.

5.4.1 NSPL – Requirements Integration
Beginning with the requirements integration process activity j1 , we analyzed RE
artifacts in the managed and managing system platforms for the NSPL. The RE

85

http://homepage.lnu.se/staff/janmsi/ms-platforms/

artifacts in the managing system platform were developed using requirements
specialization process, see Section 4.3.2 for details. The RE artifacts in the
NSPL managed system platform was established independently using traditional
requirements specification methods.

In the managing system platform, we analyzed specialized dQASs for self-
optimization and self-healing properties needed by the NSPL. The analysis
showed that specialized dQASs for both self-optimization and self-healing were
well aligned with requirement specification document in the managed system
platform. No mismatch was identified, so no changes were made to the special-
ized dQASs for both the properties.

In the managed system platform, we analyzed a requirements specification
document. The requirements document specifies functional requirements using
use case scenarios. For self-optimization, the requirements document lacked in
requirements for probe and adapt interfaces needed by managing system com-
ponents to monitor and optimize managed system’s performance. We addressed
this, as an activity j2 of the integration process, by adding following require-
ments to the managed system’s requirements specification document.

1. The NSPL products should provide an interface for the managing system
to monitor processing time to collect and distribute a news item.

2. The server-pool should provide an interface for adding servers at runtime.

For the self-healing property, the failures of the upload and share services
were specified as alternative flows in use case scenarios. The scenarios, however,
lacked in requirements for probe and adapt interfaces needed by the managing
system components to retrieve runtime information and perform adaptive ac-
tions to recover from failures. Thus, we added following requirements to the
requirements specification document.

1. The component providing “language” feature should provide a monitor
interface to detect failures. It should also provide interfaces for the man-
aging system to record checkpoints and rollback the component, in case
of failure, to a checkpoint with consistent state and behavior.

2. The managed system should provide an interface to replace a failed server,
in the server-pool, with a standby spare replica of the failed server.

3. Each server in the server-pool is required to send heartbeat messages to
fault monitor component of the managing system.

5.4.2 PSPL – Requirements Integration
Beginning with the requirements integration process activity j1 , we analyzed RE
artifacts in the managed and managing system platforms for the PSPL. The RE
artifacts in the managing system platform were developed using requirements
specialization process, see Section 4.3.3 for details. The RE artifacts in the

86

Source (SO)
[SO1] Updates Repository - a directory in a file system used to introduce new
updates
[SO2] End-user who requests updates

Stimulus (ST) [ST1] A new update appears in the updates repository
[ST2] An end-user requests an update

Artifacts (A)

[A1] Updates Manager - a managing system that handles new updates, update
requests, and triggers actions to deliver and perform updates
[A2] PhotoShare Application Product - a managed system on which updates are
applied
[A3] Update Repository - used by the Updates Manager to introduce and
store updates

Environment (E) [E1] Runtime under normal operating conditions

Response (R)

[R1] New update is detected and is notified to the Updates Manager
[R2] The Updates Manager pushes an update to end-users of the PhotoShare
application product
[R3] The Updates Manager responds an update request

Response Mea-
sure (RM)

[RM1] New update is detected and notified to the Updates Manager within X
seconds, with X ≤ 30
[RM2] The Updates Manager pushes an update to end-users of the PhotoShare
application product within Y seconds, with Y ≤ 60
[RM3] The Updates Manager responds an update request within Z seconds, with
Z ≤ 120

Variants (V) [V1] push
[V2] pull

Valid QAS Config-
urations (VC)

[VC1] V1
[VC2] V2
[VC3] V1 ∧ V2

Fragment Con-
straints (FC)

[FC1] Mandatory Fragments: { A1, A2, A3 } ∧ { E1 }
[FC2] Configuration Specific Fragments:

[Variants VC1] { SO1 } ∧ { ST1 } ∧ { R1, R2 } ∧ { RM1, RM2 }
[Variants VC2] { SO2 } ∧ { ST2 } ∧ { R3 } ∧ { RM3 }
[Variants VC3] { SO1, SO2 } ∧ { ST1, ST2 } ∧ { R1, R2, R3 }
∧ { RM1, RM2, RM3 }

[FC3] Bindings:
[Bindings VC1] RM1.bind(X) + RM2.bind(Y) | X+Y ≤ 90 seconds
[Bindings VC2] RM3.bind(Z) | Z ≤ 120 seconds
[Bindings VC3] RM1.bind(X) + RM2.bind(Y) | X+Y ≤ 90 seconds,
RM3.bind(Z) | Z ≤ 120 seconds

Table 5.2: PSPL – Self-Upgradability dQAS after Integration with the Managed
System Platform

PSPL managed system platform was established independently using traditional
requirements specification methods.

In the managing system platform, we analyzed specialized dQASs for self-
upgradability and self-healing. The analysis showed that the specialized dQAS
for self-upgradability was mostly aligned with requirement specification doc-
ument in the managed system platform. Only a couple of mismatches were
identified. Both the mismatches were addressed as activity j2 of the require-
ments integration process. The first mismatch identified was a use of the term
“application” and “product” in the two platforms. We addressed this mismatch
by replacing “application” with “product” in the specialized dQAS. The second

87

mismatch was the missing updates repository fragment in the artifacts element.
The PSPL requires an updates repository, directory in a file system, to intro-
duce and store updates. We addressed this mismatch by adding a new artifact
fragment [A3] and specifying it as a mandatory fragment in the fragment con-
straints element. Table 5.2 depicts an integrated dQAS, an updated version of
the specialized dQAS, for self-upgradability. The mismatches are highlighted
using bold text.

The analysis of the specialized dQAS for self-healing showed several mis-
matches between the managing and the managed system platforms. The mis-
matches were mainly caused due to a misunderstanding of how failures are
detected and handled by managing system. The managed system platform con-
siders and treats feature failures as exceptions. Whereas, the managing system
considers the failures as node failures and specifies the use of ping/echo and
heartbeat tactics [6] to detect and recover from failures. We addressed this
mismatch by rephrasing the stimulus, artifacts, response, response measure and
variants fragments. For instance, while integrating requirements with managed
system platform, we found that failures of the upload and share feature can be
detected using exception tactic [6]. Thus, we removed the variant fragment [V2]
(Heartbeat) and changed the variant fragment [V1] from Ping/Echo to Excep-
tion. The changes in the variants and other elements led to changes in the valid
QAS configurations and fragment constraint elements. Table 5.3 highlights all
the changes made to address the gaps and to make the self-healing dQAS con-
sistent with the PSPL domain requirements specified in the managed system
platform.

In the managed system platform, we analyzed a requirements specification
document. The requirements document specifies functional requirements using
use case scenarios. For the self-upgradability, the requirements document lacked
in specifications of the probe and adapt interfaces needed to push and pull
updates between managed and managing system components. We addressed
this lack of requirements, as activity j2 of the integration process, by adding
following to the managed system’s requirements specification document.

1. The PSPL products should provide an interface to get update notifications
and updates from the Updates Manager, which is a managing system
component.

2. The Update Manager should provide an interface for the PSPL products
to view and request updates.

For the self-healing property, the failures of the upload and share services
were specified as alternate scenarios. The requirements document, however,
lacked in requirements for probe and adapt interfaces needed by the managing
system components to retrieve runtime information and perform adaptive ac-
tions to recover from failures. Thus, we added following requirements to the
requirements specification document.

1. The PSPL products should support failure detection and recovery using
exception tactic [6], i.e., by throwing and managing exceptions.

88

Source (SO) [SO1] Upload Service feature - part of a Managed System
[SO2] Share Service feature - part of a Managed System

Stimulus (ST)

[ST1] Failure Monitor detects that the upload service is not responding
Upload feature fails to display “Select Pictures” dialogue box
[ST2] Failure Monitor detects that the share service is not responding
Share feature fails to share pictures with friends or to make the pictures
available for general public
[ST3] Upload feature fails to upload the selected pictures

Artifacts (A)

[A1] Failure Monitor Exception Detector - part of Managing System -
detects and report service failures to a system manager
[A2]System Manager Exception Handler – Managing System - performs
adaptive actions to handle exceptions, i.e., recover and restore the failed services

Environment (E) [E1] Runtime under normal operating conditions

Response (R)

[R1] Failure Monitor detects a “not responding” upload service and
notifies the failure to the recovery manager Exception handler dis-
plays error message “Upload feature is temporarily out of order, wait
please!", and notifies system manager
[R2] Failure Monitor detects a “not responding” share service and
notifies the failure to the recovery manager Exception handler displays
error message “Share feature is temporarily out of order, wait please!",
and notifies system manager
[R3] The system manager rollbacks the upload service feature to a checkpoint
with consistent system state and behavior
[R4] The system manager replaces the component providing share service feature
with its standby replica or backup

Response Measure
(RM)

[RM1] Failure Monitor detects a “not responding” upload service Ex-
ception handler displays error message and notifies the system manager
within X seconds
[RM2] Failure Monitor detects a “not responding” share service and
notifies the failure to the recovery manager within X seconds
[RM3] [RM2] The system manager rollbacks the upload service feature to a
checkpoint with consistent system state and behavior within Y seconds
[RM4] [RM3] The system manager replaces the component providing share
service feature with its standby replica or backup within Y seconds

Variants (V)

Variants for Fault Detection:
[V1] Ping/echo Exception tactic [6] based fault detection
[V2] Heartbeat tactic based fault detection
Variants for Recovery:
[V3] [V2] Checkpoint/rollback tactic based fault recovery
[V4] [V3] Standby tactic based fault recovery

Valid QAS Configura-
tions (VC)

[VC1] V1 ∧ V3 V1 ∧ V2
[VC2] V2 ∧ V4 V1 ∧ V3

Fragment Constraints
(FC)

[FC1] Mandatory Fragments: { A1, A2 } ∧ { E1 }
[FC2] Configuration Specific Fragments:

[Variants VC1] { SO1 } ∧ { ST1, ST3 } ∧ { R1, R3 }
∧ { RM1, RM3, RM2 }

[Variants VC2] { SO2 } ∧ { ST2 } ∧ { R2, R4 }
∧ { RM2, RM4 RM1, RM3 }

[FC3] Bindings:
[Bindings VC1] RM1.bind(X) + RM3.bind(Y) RM2.bind(Y) |

X+Y ≤ 140 seconds
[Bindings VC2] RM2.bind(X) + RM4.bind(Y) RM1.bind(X) +

RM3.bind(Y)| X+Y ≤ 180 seconds

Table 5.3: PSPL – Self-Healing dQAS after Integration with the Managed Sys-
tem Platform

89

Design

Integration

+ Analyze Design

Artifacts in the

Managing and Managed

System Platforms

+ Identify mismatches

among the design

artifacts

+ Address the mismatches;
analyze and refine the

Design artifacts until the

artifacts are well aligned

and integrated

Domain Designer

Managing System

Requirements and

Design Artifacts

Managing System

Integrated Design

Artifacts

Managed System

Integrated Design

Artifacts

Work-products

Managed System

Requirements and

Design Artifacts

Workflow

Requirements and Design Artifacts

from Managing and Managed

System Platforms

Analyze

Refine

Integrate

Analyze

design artifacts

1

Address the

mismatches

Identified

mismatches

2

Integrated

design artifacts

Figure 5.2: Design Integration Process Package

2. The component providing “upload” feature should provide interfaces for
the managing system to record checkpoints and rollback the failed com-
ponent to a checkpoint with consistent state and behavior.

3. The PSPL products should provide an interface for managing system to
replace a failed “feature” component with its standby replica.

5.5 Design Integration Process
The design integration process is concerned with the synthesis of design arti-
facts in the separately established managed and managing system platforms.
The design artifacts are modeled to achieve what is specified in requirement
specification artifacts. The mismatches or inconsistencies among the require-
ment artifacts, if any, may lead to similar mismatches in design artifacts. For
instance, a domain architecture for a managed or managing subsystem will not
define a component or component interface, if it is not specified in a requirement
specification artifact. Moreover, as the two platforms are defined by separate
roles and processes, the design artifacts may differ in their levels of abstraction
for the design components and provide/required interfaces. If not identified
and addressed, such differences among design artifacts may lead to problems in
subsequent development with reuse activities. The design integration process
makes sure that design artifact in the two platforms are well aligned with each
other, and there are no architectural mismatches [19].

Figure 5.2 depicts roles, work-products and workflow elements of the design
integration process. Each of the process elements is described below.

Roles The design integration process is performed by a role called Domain
Designer. The domain designer is required to have good knowledge and
understanding of design artifacts in the managed and managing system
platforms. Further responsibilities of the domain designer are listed in
Figure ??. These responsibilities map to activities of the design integration
process.

90

Work-products Four work-products, described below, are used in the process.

1. Managing System Requirements and Design Artifacts: This work-product
represents specialized dQASs and dRSs in a managing system platform
defined for a specific application domain. The Specialized dRSs map
requirements specified in specialized dQASs to design decisions.

2. Managed System Requirements and Design Artifacts: This work-product
represents requirement specifications and design artifacts in a managed
system platform defined for a specific application domain.

3. Managing System Integrated Design Artifacts: This work-product rep-
resents design artifacts in a managing system platform, i.e., specialized
dRSs, which are aligned and integrated with a managed system platform
as a result of the design integration process.

4. Managed System Integrated Design Artifacts: This work-product repre-
sents design artifacts in a managed system platform which are aligned
and integrated with a managing system platform as a result of the design
integration process.

Process Workflow As depicted in Figure 5.2, the design integration process
workflow consists of two activities, which are performed for each self-
adaptation property required by a given application domain. Activity-wise
description of the workflow is as follows:

Activity 1 - Analyze Requirements and Design Artifacts: The
design integration process begins by analyzing requirements artifacts to
more easily pinpoint gaps in design artifacts. The analysis activity at-
tempts to identify architectural mismatches, for instance, mismatches in
provide/required interfaces. The analysis focuses on architectural compo-
nents and interfaces that cross boundaries between managed and manag-
ing subsystem. These components and interfaces are mainly concerned
with monitor and execute responsibilities in a managing system and their
respective probe and adapt responsibilities in a managed system. As the
design artifacts in the two platforms are defined separately, it is more likely
to have mismatches or gaps among design artifacts. A list of mismatches
is produced as a result of the analysis.

Activity 2 - Address the Mismatches: The architectural mismatches
between managed and managing platforms are addressed iteratively in this
activity, which integrates, analyzes, and refines design artifacts. Refine-
ment examples include reconsideration of design decisions, for example,
adding, removing, and changing design components, their interfaces, vari-
ation points and variants. The resulting set of design artifacts represents
an integrated design for a product line of self-adaptive systems.

91

R
ep

o
si

to
ry

 M
o

n
it

o
r

<
<

m
an

ag
in

g
>

>

M
o

n
it

o
rs

 a
n

d
 r

ep
o

rt
s

u
p

d
at

es

O
p

er
at

o
r

C
en

te
r

<
<

m
an

ag
in

g
>

>

1
C

o
o

rd
in

at
es

 u
p

d
at

es

(i
)

d
et

ec
ts

 a
n

d
 n

o
ti

fy

u
p

d
at

es

(i
i)

 h
an

d
le

s
u

p
d

at
e

re
q

u
es

ts

N
o
ti

fi
ca

ti
o
n

A
n
al

y
si

s

R
es

u
lt

s

P
la

n
n

er

<
<

m
an

ag
in

g
>

>

P
la

n
s

a
re

sp
o

n
se

b
as

ed
 o

n
 u

p
d

at
e

ty
p

es
,

an
d

 u
p

d
at

e
re

q
u

es
ts

fr
o

m
 P

la
y

er

E
n

v
ir

o
n

m
en

t

A
n
al

y
si

s

R
es

u
lt

s
P

la
n

P
la

n

O
V

M
O

V
M

U
p
d
at

e

U
p
d
at

e

R
ep

o
.

M
o
n
it

o
r

V
P

O
n

-

D
em

an
d

V
E

v
en

t

B
as

ed

V

A
n
al

y
ze

r

V
P

U
p
d
at

es

A
n
al

y
ze

r

V

R
eq

u
es

ts

A
n
al

y
ze

r

V

re
q
u
ir

es
 v

p
_
v
p

U
p
d
at

es

M
an

ag
er

V
P

C
en

tr
al

iz
ed

V

P
la

n
n
er

V
P

P
u
sh

V

P
u
sh

C
ri

ti
ca

l

V

U
p

d
at

es
 R

ep
o

si
to

ry

<
<

m
an

ag
in

g
>

>

S
to

re
s

an
d

P
ro

v
id

es
 u

p
d

at
es

U
p
d
at

es

P
ro

v
id

er

V
P

S
o
ft

w
ar

e

S
y
st

em

V

P
la

y
er

 E
n

v
ir

o
n

m
en

t

<
<

m
an

ag
ed

>
>

P
la

y
er

 u
se

s
P

E
 t

o

R
eq

u
es

t
u

p
d

at
es

U
p
d
at

es

C
o
n
su

m
er

V
P

P
la

y
er

V

E
x

ec
u

to
r

<
<

m
an

ag
in

g
>

>

E
x

ec
u

te
s

th
e

P
la

n

P
la

y
er

 E
n

v
ir

o
n

m
en

t

<
<

m
an

ag
ed

>
>

S
o

ft
w

ar
e

S
y

st
em

 o
n

w
h

ic
h

 u
p

d
at

es
 a

re

ap
p

li
ed

.

E
x
ec

u
to

r

V
P

Q
u
ie

sc
en

ce

V

P
ro

x
ie

s

V
R

ew
ri

te

B
in

ar
y
 c

o
d
e

V
In

tr
u
si

o
n
 &

C
o
o
p
er

at
io

n

V

A
n

al
y

ze
r

<
<

m
an

ag
in

g
>

>

A
n

al
y

ze
s

th
e

d
et

ec
te

d
 u

p
d

at
es

an
d

 u
se

r
re

q
u

es
ts

fo
r

u
p

d
at

es

[1
..
1
]

[1
..
2
]

[1
..
2
]

K
ey

[n
am

e]

[r
es

p
o
n
si

b
il

it
y

]
[n

am
e]

V
P

R
es

p
o
n
si

b
il

it
y

C
o
m

p
o
n
en

t

[n
am

e]

V

V
ar

ia
n
t

V
ar

ia
ti

o
n
 P

o
in

t

[m
in

..
m

ax
]

A
lt

er
n
at

iv
e

C
h
o
ic

e

A
rt

if
ac

t
D

ep
en

d
en

cy
M

an
d
at

o
ry

 V
ar

ia
n
t

O
p
ti

o
n
al

 V
ar

ia
n
t

V
ar

ia
ti

o
n
 P

o
in

t

C
o
n
st

ra
in

t
D

ep
en

d
en

cy

re
q
u
ir

es
 v

p
_
v
p

p
ro

v
id

es

re
q
u
ir

es

R
u

n
-t

im
e

In
fo

ra
m

ti
o
n

P
la

n

(N
o
ti

fy
 a

n
d

 D
el

iv
er

 U
p

d
a
te

s)

[1
..
2
]

F
ig
ur
e
5.
3:

A
n
In
te
gr
at
ed

R
ef
er
en
ce

A
rc
hi
te
ct
ur
e
fo
r
Se
lf-
U
pg

ra
da

bi
lit
y
in

th
e
D
G
E

D
om

ai
n

92

	

Update	Management
se.lnu.dfm.dge.oc.ui.update

Bundle	Storage

Operator	Center

Update	Handler
se.lnu.dfm.dge.pe.ui

Bundle	Storage

Player	Environment

Fileinstall
org.apache.felix.fileinstall

Key

Subsystem

Local	storage	folder

Write	to	storage

Component

Read	from	storage

Storage	read	&	write

Update

(a) Before Integration

Update

Management
se.lnu.dfm.dge.oc.ui.update

Operator Center
<<managing>>

Notify and

Deliver Updates

Request Updates

Run-time

Information

Monitor

Update Handler
se.lnu.dfm.dge.pe.ui

Fileinstall
org.apache.felix.fileinstall

Player Environment

<<managed>>

Bundle Storage

<<data store>>

Write

Read

Package

Provide Interface

Required Interface

Key

Component

<<annotation>>

Updates

Repository

<<data store>>

(b) After Integration

Figure 5.4: DGE Managed System - Self-Upgradability Architectural View

5.6 Design Integration – Demonstration
Continuing with running examples for demonstration, this section exemplifies
how we performed the design integration process for the three product lines that
we use as example application domains.

5.6.1 Design Integration for the DGE
The first activity in the design integration process is to analyze design artifacts
in managed and managing system platforms. The design artifacts in the man-
aging system platform were developed using design specialization process, see
Section 4.5.1 for details. The design artifacts in the managed system platform
were defined in the form of architectural views.

Beginning with the design integration process activity j1 , we analyzed inte-
grated requirements and design artifacts in the managed and managing system
platforms. In the managing system platform, we analyzed the specialized dRS
for self-upgradability produced as a result of design specialization process in
Section 4.5. The only main gap identified in the dRS was a missing inter-
face between the “Operator Center” and the “Player Environment” components.
The interface was required by the OC to probe and retrieve runtime information
about the PEs. We addressed the gap in activity 2 by adding provide/required
interfaces between the OC and PE components. Moreover, the interface be-
tween “execute” and “player environment” components was redefined to make
it clear that this interface is used both to notify and deliver updates to player
environments. Figure 5.3 highlights the changes made to the Specialized dRS
after integration with the managed system platform.

In the managed system platform, we analyzed a “player environment update”

93

architectural view. The “player environment update” view models how updates
are performed in the DGE. We found that the view did not distinguish between
managed and managing subsystems. The OC and PE components were con-
nected through “data flows”, no provide/required interfaces were defined for the
OC, PE and other design components. We accounted this lack of interface defini-
tion and no distinction between managed and managing subsystem as an archi-
tectural mismatch. The mismatch was addressed by defining provide/required
interfaces between the OC, PE and other design components. Moreover, we
annotated the OC as managing, the PE as managed subsystem components,
and “Bundle Storage” as data store component. The “bundle storage” compo-
nent in the OC was renamed to “Updates Repository”, and a monitor interface
was defined between the update repository and OC components. The “bundle
storage” artifact in the PE was modeled as a component with read and write in-
terfaces. All these changes were made to follow standard design notations, UML
in this case, and to better align the design artifacts with their counterparts in
the managing system platform. Figure 5.4 depicts the managed system’s self-
upgradability architectural views before and after integration. The integration
resulted in well aligned architectural artifacts in the managed and managing
system platforms to design the DGE products with the self-upgradability prop-
erty.

5.6.2 Design Integration for the NSPL
Beginning with the design integration process activity j1 , we analyzed design
artifacts in the managed and managing system platforms for the NSPL. The
design artifacts in the managing system platform were developed using design
specialization process, see Section 4.5.2 for details. The design artifacts, in the
NSPL managed system platform, were defined in the form of architectural views.

In the managing system platform, we analyzed specialized dRSs for self-
optimization and self-healing. The analysis showed that the design decisions in
the specialized dRSs were modeled with respect to managed system artifacts.
We did not find any mismatch, so no changes were made to the specialized dRSs
for both the properties.

In the managed system platform, we analyzed the architectural views which
model design decisions concerned with the NSPL application logic. Similar to
the requirement artifacts, we found that for both self-optimization and self-
healing, no design decisions were modeled for monitor and adapt operations
that cross boundaries between managed and managing system artifacts. The
design artifacts, i.e., dRSs, in the managing system platform, however, require
the managed system artifacts to provide with the probe and execute interfaces
that can be used by the managing system artifacts to monitor and adapt the
managed system. To address this mismatch between managed and managing
system design artifacts, we added self-optimization and self-healing architectural
views to the managed system platform. Both the architectural views model
explicit interfaces for monitor and adapt operations between the managed and
managing systems. The self-optimization and self-healing views are shown in

94

Provide Interface

Required Interface

Key

Subsystem

<<annotation>>

Performance Manager
<<managing>>

Response Time Monitor

Add Server

Adapt News Format

News Service

<<managed>>

(a) Self-Optimization Architectural View

Provide Interface

Required Interface

Key Subsystem

<<annotation>>

System Manager
<<managing>>

Fault Monitor

Replace Server

Rollback

News Service

<<managed>>

(b) Self-Healing Architectural View

Figure 5.5: The NSPL Managed and Managing System Platforms – Design
Integration

figures 5.5(a) and 5.5(b), respectively.

5.6.3 Design Integration for the PSPL
Following the design integration process workflow we started with activity j1 .
In this activity, we analyzed design artifacts in the managed and managing
system platforms for the PSPL. The design artifacts in the managing system
platform were developed using design specialization process, see Section 4.5.3
for details. The design artifacts, in the PSPL managed system platform, were
defined in the form of architectural views.

In the managing system platform, we analyzed specialized dRSs for self-
upgradability and self-healing. The design decisions in the dRS for self-upgradability
were modeled with respect to managed system artifacts. No mismatch was iden-
tified, so no changes were made in the specialized dRS for self-upgradability.
The analysis of the specialized dRS for self-healing revealed several mismatches
between the managing and the managed system platforms. These mismatches
map to mismatches identified during requirements integration. The primary
cause of the mismatches was inconsistency in the use of tactics to detect and
address failures. The managed system design required the use of exception tac-
tic [6] to identify and restore failed components. Thus, we remodeled the fault
monitor, planner and executor variation points to make the dRS consistent with
the managed system artifacts. The updated dRS for self-healing produced as a
result of the design integration process is shown in Figure 5.6.

95

F
a

u
lt

 M
o

n
it

o
r

<
<

m
an

ag
in

g
>

>

M
o

n
it

o
rs

 a
n

d
 r

ep
o

rt
s

F
ai

le
d

 s
er

v
ic

es

S
y

st
em

 M
a

n
a

g
er

<
<

m
an

ag
in

g
>

>

T
ak

es
 a

ct
io

n
s

to
 r

ec
o

v
er

fr
o

m
 f

ai
lu

re
 a

n
d

 r
es

to
re

th
e

fa
il

ed
 s

y
st

em

A
n

a
ly

ze
r

<
<

m
an

ag
in

g
>

>

A
n

al
y

ze
s

a
fa

il
u

re

N
o

ti
fi

ca
ti

o
n

A
n

al
y

si
s

R
es

u
lt

s

P
la

n
n

er

<
<

m
an

ag
in

g
>

>

P
la

n
s

ad
ap

ti
v

e

ac
ti

o
n

s
to

 r
ec

o
v

er

an
d

 r
es

to
re

 t
h

e
fa

il
ed

sy
st

em

A
n

al
y

si
s

R
es

u
lt

s
P

la
n

P
la

n

O
V

M
S

el
f-

H
ea

li
n

g
 d

R
S

 f
o
r

P
S

P
L

O
V

M

M
o

n
it

o
re

d
 D

at
a

M
o

n
it

o
r

F
au

lt

M
o

n
it

o
r

V
P

A
n

al
y

ze
r

V
P

re
q

u
ir

es
 v

p
_

v
p

S
y

st
em

M
an

ag
er

V
P

C
en

tr
al

iz
ed

V

S
o

ft
w

a
re

 S
y

st
em

<
<

m
an

ag
ed

>
>

A
b

st
ra

ct
s

U
p

lo
ad

an
d

 S
h

ar
e

S
er

v
ic

es

o
f

th
e

P
h

o
to

S
h

ar
e

A
p

p
li

ca
ti

o
n

E
x

ec
u

to
r

<
<

m
an

ag
in

g
>

>

E
x

ec
u

te
s

th
e

P
la

n

P
la

n

E
x

ec
u

to
r

V
P

F
ai

le
d

S
y

st
em

V
P

S
h

ar
e

V

U
p

lo
ad

V

P
la

n
n

er

V
P

S
o

ft
w

a
re

 S
y

st
em

<
<

m
an

ag
ed

>
>

A
b

st
ra

ct
s

U
p

lo
ad

an
d

 S
h

ar
e

S
er

v
ic

es

o
f

th
e

P
h

o
to

S
h

ar
e

A
p

p
li

ca
ti

o
n

E
x

ce
p

ti
o

n

V

S
ta

n
d

b
y

S
p

ar
e

V
E

x
ce

p
ti

o
n

H
an

d
le

r

V
C

h
ec

k
p

o
in

t/

R
o

ll
b

ac
k

V

S
ta

n
d

b
y

S
p

ar
e

V
E

x
ce

p
ti

o
n

H
an

d
le

r

V
C

h
ec

k
p

o
in

t/

R
o

ll
b

ac
k

V

K
ey

[n
am

e]

[r
es

p
o

n
si

b
il

it
y

]
[n

am
e]

V
P

R
es

p
o

n
si

b
il

it
y

C
o

m
p

o
n

en
t

[n
am

e]

V

V
ar

ia
n

t
V

ar
ia

ti
o

n
 P

o
in

t

[m
in

..
m

ax
]

A
lt

er
n

at
iv

e

C
h

o
ic

e

A
rt

if
ac

t
D

ep
en

d
en

cy
M

an
d

at
o

ry
 V

ar
ia

n
t

O
p

ti
o

n
al

 V
ar

ia
n

t
V

ar
ia

ti
o

n
 P

o
in

t

C
o

n
st

ra
in

t
D

ep
en

d
en

cy

re
q

u
ir

es
 v

p
_

v
p

p
ro

v
id

es

re
q

u
ir

es

D
ep

en
d

en
cy

A
n

al
y

ze
r

V

[1
..

2
]

[2
..

3
]

[2
..

3
]

F
ig
ur
e
5.
6:

P
SP

L
–
In
te
gr
at
ed

dR
S
fo
r
Se
lf-
H
ea
lin

g

96

System Manager
<<managing>>

Exception

Exception Handler

(Standby Spare, Roolback)

PhotoShare

Application

<<managed>>

Provide Interface

Required Interface

Key

Subsystem

<<annotation>>

(a) Self-Healing Architectural View

Updates Manager
<<managing>>

Notify and

Deliver Updates

Request Updates

PhotoShare

Application

<<managed>>

Monitor

Updates

Repository

<<data store>>

Provide Interface

Required Interface

Key
Subsystem

<<annotation>>
Component

<<annotation>>

(b) Self-Upgradability Architectural View

Figure 5.7: The PSPL Managed and Managing System Platforms – Design
Integration

In the managed system platform, we analyzed software architecture doc-
ument that models and describes design decisions concerned with the PSPL
application logic. The architecture document uses architectural views to model
and document the PSPL managed system components. There were no archi-
tectural views defined, for both self-upgradability and self-healing, to model de-
sign decisions for monitor and adapt operations that cross boundaries between
managed and managing system artifacts. The integrated dRSs for both self-
upgradability and self-healing require the managed system’s design artifacts to
provide the probe and execute interfaces. These artifacts are used by the man-
aging system artifacts to monitor and adapt the managed system components.
To address the lack of interfaces for probe (monitor) and adapt (execute) oper-
ations, we defined self-healing and self-upgradability architectural views shown
in figures 5.7(a) and 5.7(b), respectively. Both the views were added to design
artifacts in the managed system platform. As depicted in the figures, both the
architectural views model explicit interfaces for monitor and adapt operations
between managed and managing systems.

97

Appendices

98

Appendix A

extended Architecture
Reasoning Framework
(eARF)

A reasoning framework (RF) is an abstraction to encapsulate architectural
knowledge and methods. It helps software architects to identify design alter-
natives, analyze and evaluate the identified alternatives, reason about the out-
comes, and model design decisions. Diaz-Pace and Bass et al. [15, 7] proposed
use of reasoning framework to realize quality attributes. In original formulation,
a reasoning framework is composed of of six elements [7]:

1. Problem description specifies a quality attribute for which the reason-
ing framework is defined and is useful.

2. Analytic theory is an established discipline, such as queuing theory, rate
monotonic scheduling theory, temporal logic, etc., that provides basis for
reasoning.

3. Analytic constraints are imposed by the analytic theory to make sure
that all the assumptions for use of the analytic theory are satisfied.

4. Model representation is a model of system aspects that are relevant to
the analytic theory.

5. Interpretation is a mapping from architecture to the model representa-
tion.

6. Evaluation procedure consists of algorithms or formulae used to evalu-
ate the model representation by computing specific measures of the quality
attribute.

99

The ASPL strategy requires architects to define reference architecture ar-
tifacts that can be specialized for reuse in a number of product lines of self-
adaptive systems. To define such reference architectures, the architects are
required to identify number of design options, reason about them and then
map them to design decisions with abstract interfaces that can be specialized
for reuse in a number of application domains and contexts. While develop-
ing design support as part of the ASPLe methodology, we found the concept
of reasoning framework useful to address challenges faced by domain design-
ers. However, existing reasoning frameworks lacked in analysis and reasoning
support required for defining reference architectures to realize self-adaptation
properties with and for reuse. To that end, we extended a reasoning frame-
work presented by Diaz-Pace et al. [15] to develop an extended Architectural
Reasoning Framework (eARF) [1, 5].

The eARF encapsulates proven best architectural practices and knowledge
to support architectural analysis and reasoning in context of the ASPL design
process. Figure A.1 depicts roles, work-products, and workflow to use the eARF.
The eARF is used by domain analysts and designers to analyze requirements
and map them to design decisions. The eARF’s workflow involves four work-
products: i) dQAS, ii) dRS, iii) Architectural Tactics and iv) Patterns. An
overview of the work-products is given below followed by detailed description.

The identification and characterization of domain requirements and their
variability is a prerequisite to architectural reasoning and design. The eARF
recommends use of domain Quality Attribute Scenarios (dQAS) to specify re-
quirements for the in-scope self-adaptation properties. A dQAS is an extended
form of quality attribute scenario template [6]. It provides purposefully defined
constructs and elements to specify variability at domain level, see section A.1 for
details about the dQAS. Specifying self-adaptation requirements using dQASs
is equivalent to the “problem description” element of the reasoning framework
structure proposed by Bass et al. [7].

To design an architecture, the architects need to map requirements to ar-
chitectural elements. Being quality attributes, self-adaptation properties are

extended Architectural

Reasoning Framework

(eARF)

+ Identify in-scope self-management

properties

+ Define a general or specialized dQAS

for each in-scope self-management

property

+ Extract responsibilities, with

variability, for each dQAS

+ Map responsibilities to design

alternatives

+ Use architectural tactics and patterns

to reason about the design alternatives

+ Model best-fit design alternatives as

design decisions in the form of a

general or a specialized dRS

· Domain Analyst

· Domain Designer

Work-products Workflow

Architectural

Tactics

Architectural

Patterns

dQASs

dRSs

Scoping Define dQASs

1 2̀

Reason about

Design Alternatives

Model Best-fit

Design Decisions

ASPL Scope

56̀

Extract Responsibilities

with Variability

3

dQASs

Map Responsibilities to

Design Alternatives

4

Responsibilities

dRSs

Architectural

Tactics

Architectural

Patterns

Figure A.1: The extended Architectural Reasoning Framework

100

difficult to localize, interpret and model as architectural elements. To that end,
the eARF recommends to follow responsibility-driven design [41] to extract a set
of responsibilities from a dQAS (domain requirements) and map the extracted
responsibilities to architectural elements in the form of a domain Responsibility
Structure (dRS). The dRS is a modular representation of analyzed, reasoned
about and verified domain requirements for a self-adaptation property. It is
equivalent to the model representation element in the original reasoning frame-
work formulation. Details about the domain responsibility structure are given
in Section A.2.

The process of defining a dRS presents architects with identifying and reason-
ing about number of design alternatives. To identify various design alternatives,
reason about them and come up with best design decisions, the eARF provides
architects with proven best architectural practices and knowledge in the form of
architectural patterns and tactics. Tactics and patterns encapsulate proven de-
sign decisions that are being used for years to satisfy quality attributes. Details
about tactics and patterns and their role in defining responsibility structures
are given in Section A.3.

The eARF initially lacked in analytic theory and analytic constraint elements
that enable architects to evaluate and verify the modeled design components.
To fill the gap, an analytical framework was added to the eARF. The analytical
framework provides domain designers with formal means to model responsi-
bilities and associated design options as a network of timed automata, specify
desired self-adaptation properties in a timed computation-tree-logic based query
language, and a model checking tool to verify specified properties. A brief de-
scription of the analytical framework is given in Section A.4. More information
about the analytical framework and how it can be used for architectural analysis
and reasoning is given in [3].

A.1 domain Quality Attribute Scenarios (dQAS)
A quality attribute scenario (QAS) is a requirements specification template
purposefully designed to characterize quality attributes [6] of a software system.
A standard QAS consists of six elements: stimulus, source of stimulus, envi-
ronment, stimulated artifact, response, and response measure. These elements
together characterize a quality attribute in the form of a scenario. Table A.1
provides an overview of the QAS elements. Details about these elements and
example quality attribute scenarios can be found in [6]

Pohl et al. [33] suggested three questions to identify an application domain
requirements with variability:

1. What does vary? - e.g., an algorithm or a configuration parameter value.

2. Why does it vary? - e.g., to support a new execution environment or
requirement.

3. How does it vary? - e.g., by dynamic linking or by setting a parameter at
compile time.

101

Elements Description

Source (SO) This is some entity (a human, a computer system, or any
other actuator) that triggers a stimulus

Stimulus (ST)
The stimulus is a condition or an event, for instance, a user
request, a message, that must be considered on arrival at
a system.

Artifacts (A) Artifacts are parts of a system which get stimulated by a
stimulus and trigger an activity or action in response.

Environment
(E)

The environment represent operating conditions under
which a stimulus occurs. The stimulus may occur when a
system is operating in an ‘over-load’ or in a ’normal’ mode.

Response (R) The response abstract one or more activities taken by a
system to respond the stimulus.

Response Mea-
sure (RM)

The response measure specifies measurable constraints on
the response so that the quality attribute can be tested.

Table A.1: Quality Attribute Scenario (QAS) Template

Abbas et al.[4] argued that these questions can be answered by defining a
quality attribute scenario. The first question, “what does vary?”, can be an-
swered by defining artifact and environment elements of the QAS. The second
question, “why does it vary?” can be answered using the stimulus and the source
elements. And the third question, “how does it vary” can be answered using the
response and response measure elements. Thus, the QAS provides basic struc-
ture to characterize quality attribute including self-adaptation properties with
variability. However, the QAS elements lack in explicit support for variability
specification, i.e., there are no specific constructs to specify variation points and
variants. To address this lack of support for variability specification, Abbas et
al.[4] extended the QAS template with additional elements to specify variability
at domain level. This extension effort resulted in a new template named domain
Quality Attribute Scenarios (dQAS).

As shown in Table A.2, the dQAS is an extended form of quality attribute
scenario. The first six elements of the dQAS are same as originally defined
in a standard QAS. However, contents of these elements are extended with
fragments and parameters to specify domain variability. The fragments are
variants of scenario elements that are used to specify variations in the dQAS
elements. For example, different products in an application domain may differ
in their requirements for the source, stimulus and other dQAS elements. Such
variations in a domain requirements are specified as fragments of the dQAS
elements. The parameters are used to express more fine-grained variations inside
fragments. The parameters have to be bound to specific values for a product
specific scenario, and constraints for the parameter values are specified in the
newly added fragment constraints element.

Three new elements were introduced in a dQAS: Variants, Valid QAS Con-

102

Elements Description
Source

The first six elements are same as originally defined in the
QAS, see Table A.1 and [6] for details. The dQAS
extends these elements with fragments and parameters to
specify variability.

Stimulus
Artifacts
Environment
Response
Response
Measure

Variants (V)
This element specifies variants to realize a quality attribute or
a self-adaptation property.

Valid QAS
Configurations
(VC)

Valid QAS Configurations define allowed combinations of the
variants to derive an application domain or product specific
scenarios from a general dQAS.

Fragment
Constraints
(FC)

Fragment constraints express constraints on fragments of a
standard QAS elements (i.e., Source, Stimulus, Artifact, Envi-
ronment, Response, and Response Measure). These constraints
are organized in three types:
1) Mandatory constraints define fragments that need to be in-
cluded in all domain or product specific scenarios derived from
a general dQAS.
2) Variants Specific constraints define additional fragments
that need to be included for only for a domain or product
specific scenarios derived from a general dQAS.
3) Binding constraints define restricts or constrains values of
parameters defined to support variability in the first six (stan-
dard QAS) elements.

Table A.2: domain Quality Attribute Scenario (dQAS) Template

figurations, and Fragment Constraints. These elements together define domain
variants of a self-adaptation property, and specify constraints on how the sce-
nario elements, their fragments and parameters can be combined to derive prod-
uct or domain specific scenarios. The “variants” element specifies domain vari-
ants for a specified self-adaptation property. For example, the DGE application
domain, see appendix 2.4.1, requires three variants for self-upgradability: push,
pull, and critical push. So the variants element of a self-upgradability dQAS for
the DGE domain should specify three fragments: [v1] push, [v2] pull, and [v3]
critical push. The “Valid QAS configurations” element specifies how the variants
can be combined to derive product specific scenarios from a dQAS. For instance,
variant v1 can be combined with variant v2 to derive a self-upgradability sce-
nario for DGE product P2. The “fragment constraints" element specifies con-
straints on fragments and parameters defined in the first six (standard QAS)
elements.

103

To support reuse across several domains, a dQAS can be defined independent
of any application domain. A dQAS which has been defined independent of any
application domain is called a General dQAS. The domain analysts may use
self-adaptation property specific tactics to identify general (application domain
independent) variants and specify these as fragments of the variants element.
However, definition of “valid QAS configurations” and “fragment constraints”
depends on a specific application domain requirements, so these two elements
cannot be defined without knowing the target application domain. Thus, the
valid QAS configurations and fragment constraints elements are left undefined
in a general dQAS.

A general dQAS can be used to derive several application domain specific
scenarios called specialized dQAS. Deriving a specialized dQAS from a gen-
eral dQAS requires to customize the general dQAS according to the needs of
the application domain targeted by a specialized dQAS. The ASPLe methodol-
ogy provides a requirements specialization process, described in Section 4.2, to
transform a general dQAS into a specialized dQAS.

A.2 domain Responsibility Structure
The domain Responsibility Structure (dRS) is a modular representation of design
decisions made to realize a self-adaptation property. It is defined by following
responsibility-driven design [41] method. Basic idea of the responsibility-driven
design is to interpret requirements as responsibilities and model them as archi-
tectural elements called “responsibility components”. Both responsibility and re-
sponsibility components are abstract concepts. A responsibility is an abstraction
of activities and/or operations that a software system or subsystem is required
to perform for desired functionalities and/or quality attributes. A responsibility
component abstracts a system unit, such as subsystem, component, package, or
a class, with abstract responsibility definition. In other words, a responsibility
component is a basic unit of a system architecture with well defined responsi-
bilities. Each responsibility component has two parts; the upper part specifies
a unique identifier for the component, whereas the bottom part specifies one
or more responsibilities assigned to the component. The responsibility compo-
nents coordinate together through “provide” and “required” interfaces to realize
a self-adaptation property or a quality attribute.

To support different dimensions of variability and associated uncertainty,
the dRS uses an Orthogonal Variability Model (OVM) [33]. Instead of defining
variability internal to the responsibility structure, the dRS defines a separate
variability model, the OVM. Defining a separate external variability model pro-
vides separation of concerns and helps in mitigating complexity of the respon-
sibility components and their provide/required interfaces. The OVM defines
domain and cross-domain variability for the modeled responsibility components
by defining variation points and variants. A variation point represents a de-
sign decision which may vary from domain to domain or product to product
either at design time or run-time. The supported variations of each variation

104

point are modeled as a set of variants. For instance, “caching” and “introduce
concurrency” can be two variants of a variation point defined for a component
responsible for planing and performing performance optimization. The bindings
between variation points and variants may change at run-time to support run-
time variability. For instance, a product initially launched with “caching” variant
for performance optimization may switch to “introduce concurrency” variant at
run-time. The run-time rebinding of variants and variation points are supported
by defining abstract monitor and adapt interfaces between the managing and
managed subsystems and their operating environment. The monitor and adapt
interfaces are defined based on the MAPE-K feedback loop [27, 40] pattern.

To support domain design with and for reuse, the dRS has two sub-types:
1) General dRS, and 2) Specialized dRS. The general dRS is independent of any
application domain, and is defined by following ASPL Design process described
in Section 3.4. The specialized dRS is defined for a specific application domain
by following Design Specialization process described in Section 4.4. Both types
of the dRS model reference architectures to realize a self-adaptation property.
Difference between the two is that the general dRS models an application do-
main independent reference architecture, and the specialized dRS models an
application domain specific reference architecture. The general responsibility
structure is defined as a result of the ASPL Design process described in Section
3.4. The ASPL design maps requirements from a general dQAS to responsi-
bility components in the form of a general dRS. The resulting general dRS is
reused by the Design Specialization process, see Section 4.4 to derive a number
of specialized domain responsibility structures. Each specialized dRS a domain
specific reference architecture that maps requirements from a specialized dQAS
to the components of a specialized reference architecture. The resulting spe-
cialized dRS is reused by application engineering process, which is out of scope
here, to derive application or product specific architectures.

A.3 Architecture Patterns and Tactics
The eARF provides design assistance in the form of architectural patterns and
tactics. Architectural patterns and tactics encapsulate best design practices and
knowledge that architects have been using for years to improve and simplify the
design process [6]. An architecture pattern expresses a fundamental structural
organization schema for software systems. It provides a set of predefined sub-
systems, specifies their responsibilities, and includes rules and guidelines for
organizing the relationships between them [11]. A large number of architec-
tural patterns have been proposed over the time. These include client-server,
piper and filter, layers, and blackboard among few others. Architecture patterns
encapsulate high-level structure and design options to realize multiple system
requirements, whereas tactics encapsulate more fine grained design options for
individual quality attribute concerns [23].

Tactics are quality attribute specific design options that architects have been
using for years to realize a quality attribute. For instance, “heartbeat” is a widely

105

used tactic to detect failed components, which is a primary concern for realiza-
tion of the self-healing attribute. Bass et al. [6] described a collection of tactics
for prominent quality attributes, such as availability, performance, modifiability
and security. The eARF uses these tactics to identify, analyze, reason about and
realize design decisions for self-adaptation properties. In addition to identify de-
sign options, the ASPLe methodology also uses tactics to identify application
domain independent requirements for in-scope self-adaptation properties in the
ASPL requirements engineering process.

Patterns and tactics are closely related to each other as both assist archi-
tects in architectural reasoning and decision making. A pattern may use a set
of quality attribute specific tactics to realize different quality attributes. For in-
stance, the layered architecture pattern provides for performance, modifiability,
and reusability quality attributes. This implies that a pattern can be used to
realize multiple quality attributes, while a tactic is typically used to realize one
quality attribute at a time.

The domain for the ADE and other ASPLe design processes consists of self-
adaptation properties which in general require monitoring, analysis, planning,
and adapt functions [27]. Thus, responsibilities extracted from a dQAS for a
self-adaptation property are more likely to fall in monitoring, analysis, planing,
and effect or adapt categories. Monitor, Analyze, Plan, Execute, and Knowledge
(MAPE-K) feedback loop [27, 40] is one of the widely used architectural patterns
to realize responsibilities for self-managing properties. Hence, the eARF recom-
mends use of the MAPE-K feedback loop as a primary architectural pattern to
structure architectural elements in a dRS.

A.3.1 MAPE-K Feedback Loop Pattern
Monitor, Analyze, Plan, Execute, and Knowledge (MAPE-K) feedback loop [27]
was proposed by IBM to realize self-managing systems. The MAPE-K feedback
loop has established itself as a widely used approach to realize self-adaptation
properties. The realization of self-adaptation properties typically involves feed-
back loop with five responsibilities: monitor (collect or detect), analyze (deter-
mine), plan (decide), execute (act), and knowledge (share or coordinate) [10].
These responsibilities correspond to the five elements of a MAPE-K feedback
loop. A brief introduction of the MAPE-K loop elements is given below; more
details can be found in [27].

Monitor: element is responsible for collecting and reporting data from a man-
aged subsystem to the analyze element. Monitoring is usually done through
probe interfaces provided by the managed system or some middleware in
between the managed and managing systems.

Analyze: element analyzes data reported by the monitor element. The analysis
is performed to detect whether the managed system under monitoring is
in a desired state or not, and is there a need for adaptive actions or not?
The planner element is invoked to plan adaptive actions if the managed
system is not in a desired state.

106

M P EA

M E
*

1 1

*

Key
Intra-component communication
Inter-component communication
Abstract group of MAPE components

E MAPE component

Managed subsystem

Managed-Managing subsystem interaction

Figure A.2: An example of a MAPE Pattern

Plan: element decides adaptation actions on the basis of the results or findings
reported by the monitor and analyze elements. The adaption actions are
generally an ordered set of measures planned to transform the managed
system from its current state to a desired state.

Execute: element receives an adaptation plan and performs it on the managed
system with the help of effector or adapt interfaces provided by some
middleware or the managed system itself.

Knowledge: element serves as a knowledge base. The MAPE elements use the
knowledge base to exchange knowledge including monitored data, analysis
results, and planed adaptive actions. To support different functions of
MAPE elements, the knowledge base may include additional knowledge
such as architectural models, goal models, policies, and change plans or
strategies based on proven architectural tactics and patterns.

Weyns et al. [40] argued that a single MAPE-K loop may not be suffice to
manage all adaptation concerns in systems that are large, distributed, complex,
and heterogeneous. For such systems, multiple MAPE-K loops should be applied
to manage different parts of these systems. For some systems, realization of a
single self-adaptation property may require multiple monitor, analyze or some
other MAPE element. However, using multiple MAPE-K loops raises a question
of how the elements from multiple MAPE loops coordinate and work together?

107

do they coordinate in a centralized, decentralized or hierarchical manner. To
that end, Weyns et al. [40] presented a set of MAPE patterns that demonstrate
how multiple interacting MAPE loops with different degrees of decentralization
can be organized to achieve self-adaptation properties. These patterns don’t
include the “knowledge” element in the feedback loop, that’s why the patterns
are simply called MAPE patterns. The authors consider knowledge exchange
as an important part of the loop, but they intentionally exclude the knowledge
element to simplify complexity of the design space, and to avoid dependencies
of the knowledge element on system domains and underlying infrastructure.
Figure A.2 depicts an example of a MAPE pattern derived from [40]. According
to this MAPE pattern, there can be only one occurrence of the MAPE loop
with four elements (the one shown at the top), however, there can be multiple
occurrences of the feedback loop (at the bottom) having the M (monitor) and
E (execute) elements only. Details about the MAPE patterns and examples are
out of scope here and can be found in [40].

A lesson learned from multiple interacting MAPE loops [40] is that the
architects are not bound to use all the five elements of a MAPE-K control loop.
Instead, based on domain or system requirements, any number of MAPE-K
elements can be used individually or in combinations, for instance, analyze and
plan element can be combined to a single element, as well as responsibilities of
a plan element can be split across several plan elements.

As shown in the example MAPE pattern, Figure A.2, the MAPE feedback
loop requires interactions between managed and managing subsystems. These
interactions are made through monitor and execute elements which are respon-
sible to collect details about the managed subsystem and perform adaptation
actions, respectively. The eARF framework encapsulates monitoring and exe-
cute tactics. As described below, these tactics assist architects to model design
decisions concerned with such interactions between managed and the managing
subsystems.

A.3.2 Monitoring Tactics
The monitoring tactics encapsulate state-of-the-art design options and measures
to monitor software systems, their states and properties of interest. Following is
a non-exhaustive list of such tactics which can be extended to incorporate new
tactics.

(i) Data Logging A component, known as data logger, records, filters, and
processes data to mine or retrieve useful information, for instance, when
there is a change in a system state or property. The IBM’s “Log and Trace
Analyzer (LTA)"1 tool uses the data logging tactic to analyze log files and
troubleshoot the reported errors and exceptions.

(ii) Profiling Software profiling is a type of dynamic program analysis which
is generally used for program analysis and optimization. It can be followed

1http://www.ibm.com/support/knowledgecenter/#!/SSTFXA_6.2.1/com.ibm.itm.doc_6.
2.1/pdg_itm6245.htm%23logtrace

108

http://www.ibm.com/support/knowledgecenter/#!/SSTFXA_6.2.1/com.ibm.itm.doc_6.2.1/pdg_itm6245.htm%23logtrace
http://www.ibm.com/support/knowledgecenter/#!/SSTFXA_6.2.1/com.ibm.itm.doc_6.2.1/pdg_itm6245.htm%23logtrace

as a program monitoring tactic to collect details about program behavior,
such as resource utilization, processing time, etc. [36]. There are two com-
mon profiling strategies: 1) sampling and 2) instrumentation. A sampling
based profiler interrupts program execution at specified intervals, and logs
state of the program’s call stack. A problem with sampling based profiler
is that some function calls may fall down through ‘holes’ of a sampling
grid, and may not be seen in a profile. Instrumentation is often consid-
ered as a more ‘precise’ approach to profiling. This approach works by
inserting a special code that performs analysis specific tasks, for example,
monitor program state or relevant properties.

(iii) Fault Detection Ping/echo and heartbeat tactics are used to monitor
whether a system or a system component is alive (operating) or not [6].
The ping/echo tactic works by sending a ping signal to the monitored
system, and expecting an echo signal in return within a predefined time.
If no echo signal is received within the predefined time, it is assumed that
the monitored component has failed or not available at the moment. The
heartbeat tactic works by requiring the monitored component to regularly
emit heartbeat signals. The monitoring system keeps on listening to the
heartbeats, and if there is no heartbeat within a specified time threshold,
the component emitting heartbeats is assumed to be no more operational.

(iv) Periodic Polling: One component periodically, for instance, every 10
seconds, minutes, or hours, inspects or probes the underlying managed
system for a property of interest, for instance if there is any change in the
managed system’s state or behavior.

(v) Event Monitoring: An event monitor registers itself with the part of
a managed system that serves as a source for changes or other events of
interest. The event monitor is notified for the registered event when it
happens, for instance, appearance of new update in an update repository.

A.3.3 Execution Tactics
The execution tactics encapsulate design decisions and measures that support
realization of the execute element in a MAPE-K feedback loop. The execute
element performs adaptive actions that results in updating or changing parts
or states of a managed subsystem. Thus, the execution tactics selected in the
eARF are based on the concept of dynamic software updating [30]. Dynamic
software updating technique enables a software system to update itself at run-
time without halting and requiring a system to restart.

(i) Quiescence tactic suggests that before executing adaptive actions on a
managed system, the managing system (execute element) should ensure
that the managed system is in a stable state and the managing system
mechanism does not interrupt an ongoing or running process in the man-
aged system. Different mechanisms can be used to check if a system or

109

a part of a system is in a stable state or not. For instance, execution
stack of a system can be inspected to know if it the target function or
subsystem for adaptation is currently in execution or in stable state. If
the execution stack does not have any reference to the target function,
it is safe (stable) to perform adaptive actions. Further details about the
tactic and techniques to check if a program or a component is in stable
state or not can be found in [30].

(ii) Rewriting Binary Code tactic suggests that adaptive actions can be ex-
ecuted by rewriting binary code of a managed system. One such technique
that allows rewriting of binary code is binary redirection. Binary redirec-
tion is performed by dynamically modifying binary code in a way that
the code instructions that point to a function or procedure are changed to
point to an updated version of that function or procedure [30].

(iii) Use of Proxies, Intermediaries and Indirection Levels tactic is
based on the concept of proxies and suggests to introduce a proxy between
a managed system and its clients. Instead of calling and using the managed
system directly, the clients call an intermediary (proxy, middleware, etc.)
that can dynamically direct or redirect the client requests to an adapted
(updated) implementation of the managed system.

(iv) Intrusion and Cooperation tactic is based on the concept of intrusion
by execute element of a managing system, and cooperation by a managed
subsystem which is being updated or adapted. It means the managed
system is aware of the execute element and provides support for it in the
form of purposefully designed constructs, such as getter, setter methods
or interfaces. Miedes et al. [30] specified three types of intrusion and coop-
eration. The first type defines special functions or procedures in both the
managing, and the managed subsystems. The special functions defined
in the managed system allows the managing system to get information
about current state of the managed system, and modify it if needed. The
managing system also defines functions which the managed system may
invoke, for instance, to notify a change in its state or request an up-
date. An example of this kind of intrusion and cooperation is the use
of getter, setter methods. In the second type of intrusion and coopera-
tion, the managing system requires the managed system to follow specific
architecture, design principles, programming language, development in-
frastructure, and/or other constraints that force the managed system to
be developed or behave in a specific manner. Requiring an application to
follow Open Service Gateway initiative (OSGi) [32] framework to support
dynamic updates is an example of this type of intrusion and cooperation.
The third type of intrusion and cooperation is based on meta-information.
It requires the managed system to provide information about itself, its en-
vironment, goals, and related properties, which the managing system may
use to plan and perform the adaptive actions.

110

(v) Dynamic Linking or late binding suggests an adaptation mechanism
that works by binding and rebinding system components or modules dy-
namically while a system’s source code is being linked and loaded. Modern
programming languages support dynamic linking at run-time while a sys-
tem is executing. Unlike static linking or binding that links all the trans-
lation units or object files of a program into a single executable file, the
dynamic linking defers much of the linking process until a program starts
executing. The modules or libraries are linked to the main executable file
using a linking program known as dynamic linker. The dynamic linker is
often a part of underlying operating system, otherwise a software system
may define its own dynamic linker. A large number of object-oriented
languages, most notably Java, and C++ support dynamic linking. C++
supports dynamic linking in the form of Dynamic Link Libraries (DLLs)
based on the shared library concept. In Java, the dynamic linking process
is implicit [16]. The java development environment does not require all
the program elements (classes and interfaces) to be loaded and linked at
compile and deployment time; new program elements can be loaded and
linked on demand at run-time. The reflection API for the java language
provides more advanced support for dynamic linking.

A.4 Analytical Framework
Figure A.3 gives a schematic overview of the analytical framework that enhances
the eARF with support for rigorous reasoning. The framework defines artifacts
and activities, some tool supported, that provide guidelines for architects to
transform domain requirements to verified architecture models. The analytical
framework models a system as a network of timed automata (NTA), which can
be verified for a set of desired properties such as self-healing, self-optimization.
The properties are expressed as queries in a temporal logic and verified using
a model checker such as UPPAAL [8]. A timed automaton is a finite-state
machine extended with clock variables that allow modeling timing aspects. A
network of timed automata is a set of automata that can communicate through
channels.

To model and verify design decisions, the analytical framework describes four
core activities: 1) Identification, 2) Modeling, 3) Verification, and 4) Interpre-
tation. The identification and modeling activities are supported by MAPE-K
templates [24]. These activities derive a model which is a specification of archi-
tecturally significant requirements and quality attribute model properties. The
MAPE-K templates encode design knowledge derived from modeling feedback
loops of different self-adaptive systems in the form of a set of reusable tem-
plates that are composed as NTAs. The reuse of templates reduces the effort of
transforming dQAS specifications to verifiable timed automata models.

The third activity, verification, simulates models and verifies if a model sat-
isfies QA Model properties or not. Interpretation, as shown in Figure A.3,
refers to post processing of the verification results. During interpretation, ar-

111

dQAS Architecture
Model

identification
&

modeling
QA Model
Properties

verification

interpretation

Analytical Reasoning Framework

MAPE-K
templates

Legend

artifact

activity

Verified
Architecture Model

feedback

Figure A.3: Analytical framework to support rigorous reasoning in eARF

chitects identify design flaws in the model under verification, or compare results
of candidate models. The interpretation activity feeds back to identification
and modeling activities to refine the models. The modeling, verification and
interpretation feedback loop continues until a verified architecture model is pro-
duced. A verified architecture model is one that satisfies all desired properties
(requirements). Details about the above outlined four activities can be found
in [3] with an example demonstration.

112

Bibliography

[1] Nadeem Abbas and Jesper Andersson. Architectural reasoning for dynamic
software product lines. In Proceedings of the 17th International Software
Product Line Conference Co-located Workshops, York, NY, USA, 2013.
ACM.

[2] Nadeem Abbas and Jesper Andersson. Harnessing variability in product-
lines of self-adaptive software systems. In Proceedings of the 19th
International Conference on Software Product Line (SPLC), SPLC ’15,
pages 191–200, New York, NY, USA, 2015. ACM.

[3] Nadeem Abbas, Jesper Andersson, Muhammad Usman Ifikhar, and Danny
Weyns. Rigorous architectural reasoning for self-adaptive software systems.
In 1st Workshop on Qualitative Reasoning about Software Architectures,
pages 1–8. IEEE, 2016.

[4] Nadeem Abbas, Jesper Andersson, and Danny Weyns. Modeling variability
in product lines using domain quality attribute scenarios. In Proceedings
of the WICSA/ECSA 2012 Companion Volume, WICSA/ECSA ’12, pages
135–142, New York, NY, USA, 2012. ACM.

[5] Nadeem Abbas and Andersson Jesper. Architectural reasoning support for
product-lines of self-adaptive software systems - a case study. In Danny
Weyns, Raffaela Mirandola, and Ivica Crnkovic, editors, Proceedings of
the 9th European Conference on Software Architecture (ECSA), volume
9278 of LNCS, pages 20–36. Springer, 2015.

[6] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.
Addison-Wesley Professional, 2nd edition, (2003).

[7] Len Bass, James Ivers, Mark H Klein, and Paulo F Merson. Reasoning
frameworks. Technical report, (2005).

[8] G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P. Petterson, Wang
Yi, and M. Hendriks. Uppaal 4.0. In Third International Conference on
the Quantitative Evaluation of Systems - (QEST’06), pages 125–126, Sept
2006.

113

[9] Gerd Behrmann and others. A tutorial on UPPAAL. In Formal Methods for
the Design of Real-Time Systems, volume 3185 of LNCS. Springer Berlin
Heidelberg, 2004.

[10] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese,
Holger Kienle, Marin Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw.
Engineering Self-Adaptive Systems Through Feedback Loops. Software
Engineering for Self-Adaptive Systems, 5525:48–70, (2009).

[11] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
and Michael Stal. Pattern Oriented Software Architecture: A System of
Patterns. New York: John Wiley & Sons Ltd, 1996.

[12] Betty H. C. Cheng and Joanne M. Atlee. Research directions in require-
ments engineering. In 2007 Future of Software Engineering, FOSE ’07,
pages 285–303, Washington, DC, USA, 2007. IEEE Computer Society.

[13] Shang-Wen. Cheng and Bradley Schmerl. Model problem: Znn.com.

[14] Rogério De Lemos, Holger Giese, Hausi A Müller, Mary Shaw, Jesper An-
dersson, Marin Litoiu, Bradley Schmerl, Gabriel Tamura, Norha M Ville-
gas, Thomas Vogel, et al. Software engineering for self-adaptive systems:
A second research roadmap. In Software Engineering for Self-Adaptive
Systems II, pages 1–32. Springer, (2013).

[15] Andres Diaz-Pace, Hyunwoo Kim, Len Bass, Phil Bianco, and Felix Bach-
mann. Integrating quality-attribute reasoning frameworks in the arche de-
sign assistant. In Steffen Becker, Frantisek Plasil, and Ralf Reussner, edi-
tors, Quality of Software Architectures. Models and Architectures, volume
5281 of Lecture Notes in Computer Science, pages 171–188. Springer Berlin
Heidelberg, 2008.

[16] Sophia Drossopoulou and Susan Eisenbach. Manifestations of java dynamic
linking-an approximate understanding at source language level. In The
First Workshop on Unanticipated Software Evolution USE, 2002.

[17] Naeem Esfahani and Sam Malek. Uncertainty in Self-Adaptive Software
Systems, pages 214–238. Springer Berlin Heidelberg, Berlin, Heidelberg,
2013.

[18] William B Frakes and Christopher J Fox. Modeling reuse across the soft-
ware life cycle. Journal of Systems and Software, 30(3):295–301, 1995.

[19] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch: why
reuse is so hard. IEEE Software, 12(6):17–26, Nov 1995.

[20] D. Garlan, S.W. Cheng, A.C. Huang, and Others. Rainbow: Architecture-
based self-adaptation with reusable infrastructure. Computer, 37(10):46–
54, (2004).

114

[21] David Garlan. Software engineering in an uncertain world. In Proceedings
of the FSE/SDP Workshop on Future of Software Engineering Research,
FoSER ’10, pages 125–128, New York, NY, USA, 2010. ACM.

[22] M. L. Griss. Software reuse: From library to factory. IBM Systems Journal,
32(4):548 –566, 1993.

[23] Neil B. Harrison and Paris Avgeriou. How do architecture patterns and
tactics interact? a model and annotation. Journal of Systems and Software,
83(10):1735 – 1758, 2010.

[24] Didac Gil De La Iglesia and Danny Weyns. MAPE-K formal templates to
rigorously design behaviors for self-adaptive systems. ACM Trans. Auton.
Adapt. Syst., 10(3):15:1–15:31, September 2015.

[25] Kaoru Ishikawa. Guide to quality control, asian productivity organization,
unipub. Technical report, ISBN 92-833-1036-5, 1976.

[26] K.C. Kang. Feature-oriented domain analysis (foda) feasibility study. Tech-
nical report, DTIC Document, (1990).

[27] J.O. Kephart and D.M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, (2003).

[28] Charles W Krueger. Software reuse. ACM Computing Surveys (CSUR),
24(2):131–183, 1992.

[29] Hugh McManus and Daniel Hastings. A framework for understanding un-
certainty and its mitigation and exploitation in complex systems. INCOSE
International Symposium, 15(1):484–503, 2005.

[30] E. Miedes and F. D. Munoz-Escoi. Dynamic software update. Techni-
cal Report ITI-SIDI-2012/004, Instituto Universitario Mixto Tecnologico
de Informatica, Universitat Politecnica de Valencia, Campus de Vera s/n,
46022 Valencia (Spain), 2012.

[31] OMG. Software & Systems Process Engineering Metamodel Specification
(SPEM). Technical report, OMG, April 2008.

[32] OSGi Alliance. OSGi Service Platform Release 4. [Online]. Available:
http://www.osgi.org/Main/HomePage. [Accessed: Jun. 17, 2009], 2007.

[33] K. Pohl, G. Böckle, and F. Van Der Linden. Software product line
engineering: foundations, principles, and techniques. Springer-Verlag New
York, Inc., (2005).

[34] R. Prieto-Diaz. Status report: software reusability. Software, IEEE,
10(3):61–66, May 1993.

115

[35] Ragunathan (Raj) Rajkumar, Insup Lee, Lui Sha, and John Stankovic.
Cyber-physical systems: The next computing revolution. In Proceedings
of the 47th Design Automation Conference, DAC ’10, pages 731–736, New
York, NY, USA, 2010. ACM.

[36] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and
research challenges. ACM Transactions on Autonomous and Adaptive
Systems (TAAS), 4(2):14, 2009.

[37] J. Van Gurp, J. Bosch, and M. Svahnberg. On the notion of variabil-
ity in software product lines. In Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA’2001), pages 45–54. IEEE,
(2001).

[38] W.E. Walker, P. Harremoës, J. Rotmans, J.P. van der Sluijs, M.B.A. van
Asselt, P. Janssen, and M.P. Krayer von Krauss. Defining uncertainty:
A conceptual basis for uncertainty management in model-based decision
support. Integrated Assessment, 4(1):5–17, 2003.

[39] David M. Weiss and Chi Tau Robert Lai. Software Product-line
Engineering: A Family-based Software Development Process. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[40] Danny Weyns, Bradley Schmerl, Vincenzo Grassi, Sam Malek, Raffaela
Mirandola, Christian Prehofer, Jochen Wuttke, Jesper Andersson, Holger
Giese, and Karl M Göschka. On patterns for decentralized control in self-
adaptive systems. In Software Engineering for Self-Adaptive Systems II,
pages 76–107. Springer, 2013.

[41] Rebecca Wirfs-Brock and Alan McKean. Object design: roles,
responsibilities, and collaborations. Addison-Wesley Professional, 2003.

116

	Autonomic Software Product Lines
	Background
	Self-Adaptive Software Systems
	Software Reuse

	The ASPL Strategy
	Uncertainty Analysis
	Uncertainties due to Runtime Variability
	Uncertainties due to Development for Reuse

	The ASPLe Methodology
	ASPL Domain Engineering Process
	Specialization Process
	Integration Process
	Running Examples
	Distributed Game Environment (DGE)
	News Service Product Line
	PhotoShare Product Line

	ASPL Domain Engineering (ADE)
	Introduction
	ASPL Requirements Engineering Process
	ASPL Requirements Engineering – Demonstration
	General dQAS for Self-Updgradability
	General dQAS for Self-Optimization

	ASPL Design Process
	ASPL Design – Demonstration
	ASPL Design for Self-Upgradability
	ASPL Design for Self-Optimization

	Specialization Process
	Introduction
	Requirements Specialization Process
	Requirements Specialization – Demonstration
	Requirements Specialization for DGE
	Requirements Specialization for NSPL
	Requirements Specialization for PSPL

	Design Specialization Process
	Design Specialization – Demonstration
	Design Specialization for the DGE
	Design Specialization for the NSPL
	Design Specialization for the PSPL

	Integration Process
	Introduction
	Requirements Integration Process
	Requirements Integration – Demonstration
	DGE – Requirements Integration
	NSPL – Requirements Integration
	PSPL – Requirements Integration

	Design Integration Process
	Design Integration – Demonstration
	Design Integration for the DGE
	Design Integration for the NSPL
	Design Integration for the PSPL

	Appendices
	extended Architecture Reasoning Framework (eARF)
	domain Quality Attribute Scenarios (dQAS)
	domain Responsibility Structure
	Architecture Patterns and Tactics
	MAPE-K Feedback Loop Pattern
	Monitoring Tactics
	Execution Tactics

	Analytical Framework

