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Abstract

The energy markets of today are markets with rather few active participants.

The participants are, with few exceptions, large producers and distributors. The

market mechanisms that are used are constructed with this kind of a market

situation in mind. With an automatic or semiautomatic approach, the mar-

ket mechanism would be able to incorporate a larger number of participants.

Smaller producers, and even consumers, could take an active part in the mar-

ket. The gain is in more e�cient markets, and � due to smaller �uctuations in

demand � better resource usage from an environmental perspective.

The energy markets of the Nordic countries (as well as many others) were

deregulated during the last few years. The change has been radical and the

situation is still rather new. We believe that the market can be made more

e�cient with the help of the dynamics of the small actors.

The idealised world of theory (of economics) often relies on assumptions such

as continuous demand and supply curves. These assumptions are useful, and

they do not introduce problems in the power market situation of today, with

relatively few, large, participants. When consumers and small producers are

introduced on the market, the situation is di�erent. Then it is a drawback if

the market mechanism cannot handle discontinuous supply and demand.

The growth in accessibility to computational power and data communica-

tions that we have experienced in the last years (and are experiencing) could be

utilised when constructing mechanisms for the energy markets of tomorrow.

In this thesis we suggest a new market mechanism, ConFAst, that utilises

the technological progress to make it possible to incorporate a large number

of active participants on the market. The mechanism does not rely on the

assumptions above. The gain is a more e�cient market with less �uctuations

in demand over the day.

To make this possible there is a need for e�cient algorithms, in particular

this mechanism relies on an e�cient aggregation algorithm. An algorithm for

aggregation of objective functions is part of this thesis. The algorithm handles

maximisation with non-concave, even noisy, objective functions. Experimental

results show that the approach, in practically relevant cases, is signi�cantly

faster than the standard algorithm.
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Chapter 1

Introduction

1.1 The Project

The thesis work started in a project, DiMALLOC1, that was �nanced by the

Swedish National Board for Industrial and Technical Development, NUTEK.

As this project ended, the work has been completed within the IT in Energy

Programme of the Swedish Research Institute for Information Technology, SITI.

This programme is one of four programmes of SITI. The focus of IT in Energy is

on (i) local communications over the power lines, (ii) vulnerability and security

in electronic commerce (with focus on power line communication), and (iii)
electronic energy markets (with focus on economical and computational aspects

of electronic power markets). The thesis presents some of the results in the last

area.

A Swedish research company, EnerSearch AB, plays a central part in the

programme together with Blekinge Institute of Technology, Lund University,

and Uppsala University.

The aim of EnerSearch AB � that is owned by interests in the energy

sector � is to initiate and coordinate research in areas that in di�erent ways

are related to the energy and business sectors. As in the case of the IT in

Energy Programme, the research is conducted in close relation with universities.

Current owners of EnerSearch AB are: ABB Automation Products, ECN -

Netherlands Energy Research Foundation, EDP - Electricidade de Portugal,

Iberdrola, IBM Utility Services, E.ON-Energie, and Sydkraft.

1.2 The Problem

Power markets around the world are deregulating. How to design e�cient power

markets is an issue that is discussed among authorities, energy utilities, and re-

searchers. It is an interdisciplinary problem, with main aspects in economics as

1Distributed Market algorithms and resource ALLOCation
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2 Introduction

well as technical �elds. The problem has interesting computational aspects too,

and � due to the growing access to computational power and data communica-

tion capabilities � the computer science approach is able to open new market

possibilities.

A way to enhance the e�ciency of power markets is to incorporate a larger

number of participants on the active market. Today the end consumer is not

present on the market (with few exceptions) and, as a consequence, the market

has to rely on more or less accurate predictions of consumption patterns and

volumes. The prices at e.g. the Nordic spot market, Nordpool2, varies signi�-

cantly from hour to hour, due to �uctuations in demand. On the other hand a

large share of the loads has such properties that the time pro�le of their demand

could be utilised to even out a signi�cant part of the �uctuations (if they are

incorporated into the active power market), and this can be done with no (or

minor) loss in comfort or e�ciency for the consumer.

The gains of introducing the small participants on the active market are

concerning most of the aspects that we can think of; when they are introduced

� supported by a proper market mechanism � the �uctuations in demand, and

hence in price, becomes smaller, the planning of production will be based on

more accurate numbers, there is less stress on the transmission and distribution

grid on high peak hours, we get a better resource usage from an environmental

perspective, and so on; a win win situation.

When consumers and small scale producers are introduced on the active mar-

ket, special care has to be taken concerning discontinuous supply and demand.

Market mechanisms of today, based on standard theory of economics, assume

that supply and demand is continuous. Due to this assumption it is hard and

risk prone to participate on the market for any actor with a non-continuous

curve. How to construct a mechanism that handles non-continuous supply and

demand is nontrivial.

The possibility of a large scale introduction of the consumption side on the

active market is a consequence of the development in computational power and

data communications that has taken place during the last years. The accessi-

bility to the Internet is growing and can be utilised, great e�orts are put on

development of inexpensive local area networks, and more and more equipment

is enhanced with (what is often referred as) intelligence. In our homes we have

(or soon we are having) computational capacity in washing machines and refrig-

erators as well as heating/cooling systems. If it is possible to communicate with

the equipment, there is a potential to introduce it on the market, represented

by small pieces of software. Consumers, other than large ones, will never partic-

ipate on the market if they have to calculate their demand by hand and express

it as mathematical functions. When incorporating consumers on the market we

think of them as represented by software agents, i.e. small pieces of computer

software, that give their input to the system.

2http://www.nordpool.no
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1.3 Contributions

This thesis consists of two papers and an implementation of the algorithm in-

troduced in one of them; the �rst paper introduces a novel market mechanism,

ConFAst, a (semi) automatic mechanism with properties that meet the de-

mands that we focused on in the previous section. The second paper is an

article which introduces an algorithm for aggregation of a very general class of

(separable) objective functions.

The character of the two papers di�ers signi�cantly. It is not only the topic,

but the perspective too. The �rst one, dealing with power control markets, is

on a rather high level, while the second one, focusing on the construction and

behaviour of an algorithm, is rather technical.

The third part of the thesis is an implementation of the aggregation algo-

rithm, an implementation that was produced for comparison between our algo-

rithm and the standard algorithm for the problem. The work on the market

mechanism included implementation too, but it is not in a form that is suited

for publication.

1.3.1 ConFAst, an Approach to E�cient and yet Fast

Power Control Markets

The ConFAst mechanism is designed with large computational markets in

mind. It is well suited not only for markets where the number of participants

counts in tens or hundreds, but it scales to hundreds of thousands or more, both

producers, distributors, and consumers. The market computation is distributed

over computers in the network, i.e. it is not necessary to gather all information

needed at a central spot. It handles non-continuous supply and demand, and

hence it reduces the risk of participating with such curves signi�cantly.

The paper has been presented at a seminar on Information and Communi-

cation Technology in the Energy Sector, held by the Nordic Energy Research

Scienti�c Program, in Trondheim, Norway, March 8 � 9, 2001. A conference

version of the paper is under submission.

The ConFAst mechanism depends on the aggregation of utility functions

� functions that express the relative value of consumptions bundles, i.e. a kind

of objective functions. Computationally this is the most demanding part of the

work and it is essential that the aggregation is performed in an e�cient way.

1.3.2 Resource Allocation with Noisy Functions

A lot of e�orts have been put on the aggregation of separable concave objective

functions3. The general case, when nothing can be said about the objectives, is

hard. A practically relevant class of functions is separable non-concave objective

functions. Standard algorithms for aggregation of this class of functions are

basically constructed on a pairwise aggregation of functions and a brute force

3Concave in the maximisation version of the problem, convex objectives in the minimisation

version.



4 Introduction

testing of all combinations of the two functions. More e�cient aggregation of

separable objective functions that might not be concave is nontrivial.

The article presents an algorithm that focuses on the fact that when aggre-

gating non-concave functions the resulting function very fast becomes almost

concave, but noisy. The algorithm utilises regularities in the aggregated func-

tions � when the function is almost concave or is close to another smooth curve

� so that the search space can be pruned when aggregating the functions.

The algorithm is generic, but developed with resource allocation and com-

putational markets in mind. The algorithm can be used as a subroutine of the

ConFAst market mechanism.

The article is rather technical. For the reader not interested in all technical

details it is probably su�cient to read the introduction through the experimental

results, and skip the technical description of the algorithm. Hopefully this

part gives enough to grasp the main ideas behind the algorithm, and gives an

impression of the performance.

The article is submitted for journal publication.

1.3.3 Implementation

Implementations and tests of both the market mechanism and the aggregation

algorithm is part of the thesis work.

The Java classes (and test data) needed to run some tests on the aggregation

algorithm are available on the Internet and on the CD-ROM included in the

thesis. The implementation is done to test and compare the performance of the

algorithm on di�erent input (the comparison is done on the standard algorithm

for aggregation of non-concave objective functions). The results, that are part

of the article, show that the algorithm indeed is competitive. This holds for

both adversary data and practically relevant data. It should be noted that the

standard algorithm that we use for comparison can be expected to be close to

optimal due to its simplicity. Much could probably be done to improve this �rst

test implementation of our algorithm, as it is rather complicated.

The three parts of the thesis are, in some ways, rather disparate. At the same

time they are held together by the aim to develop algorithms and mechanisms

for resource allocation and markets. As said earlier, the application area that

we have in mind is the power markets.
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Chapter 2

An Approach to E�cient and

yet Fast Power Control

Markets

Power markets around the world are deregulating. The issue of how to properly

design power markets is a delicate one, intensively discussed among authorities,

researchers, energy utilities, etc. In this paper we focus on two major aspects of

power market design: (i) management of discontinuous demand/supply curves,

and (ii) computational design of markets of huge size with relatively short time

frames.

We introduce a mechanism, ConFAst, for highly dynamic power markets

that allows for huge numbers of active participants (also consumers) in the mar-

ket, even if they have discontinuous demand/supply curves. The computational

e�ciency of the approach enables usage also in markets with short time frames.

We argue that ConFAst signi�cantly can improve the e�ciency of energy

systems.

2.1 Introduction

2.1.1 The Strains on Market Mechanisms in Extreme Sit-

uations

Around January 24, 2000, the weather in all of Sweden was so cold that the
demand for electricity was extremely high and the pressure on the whole power
system was equally hard. As a consequence the price on the spot market rose to
levels where energy utilities with no or small production capacity of their own
risked to lose all of their annual pro�t during one single day.

This was the hardest test of the new market system so far, since the recent

deregulation of the energy markets of Finland, Norway, and Sweden. However,

7



8 An Approach to E�cient and yet Fast Power Control Markets

in the times of deregulation the energy system is pushed closer to its limits

and we will see more of these types of situations in the future. Skeptics of the

deregulation see a new dawn in this phenomenon.

In an extreme situation like this one, new problems arise or come into focus.

One such problem is how to release the pressure on the system in a way that

a�ects the society and the economy as little as possible when the demand for

energy is too high.

Today, in Sweden, there is an ongoing discussion on how to better cope with

this type of situations. One of the main issues is how to properly utilise the

dynamics of the energy consumers. This question is an aspect of the issue of

how to construct more e�cient power markets. The �uctuations in demand and

prices on the markets of today are signi�cant even under normal conditions, see

Figure 2.1.

Figure 2.1: Since demand varies very much from hour to hour the market prices
of a deregulated market vary signi�cantly as well. These graphs show the market
price of the Nordic spot market (left, peak price 55 Euro/MWh) and the Swedish
regulating market (right, peak price close to 190 Euro/MWh) a week in January
2001.

2.1.2 The Dynamics of the Small Actors

Today the load side of the market, the consumer demand, is essentially taken

as exogenous and the suppliers and distributors have to rely on more or less

accurate predictions. This article exploits possibilities for the load side, as well

as small scale production, to take an active part in the market.

A large portion of the loads within the power grid are controllable (in a

control system sense). The term controllable load can be illustrated by examples

from everyday life: A light bulb or a TV set is not a controllable load � when

the user switches it on it is supposed to turn on instantly, and the other way

around when it is switched o�. On the other hand the heaters of an apartment,

or any equipment that supply a comfortable indoor temperature, are typical

controllable loads � the time pro�le of their demand could be changed quite
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a lot with no (or minor) loss in comfort for the consumer. An example of the

possibilities of changing the consumption pattern of a household is shown in

Figure 2.2. For illustration simplicity the examples are taken from the private

sphere; there are a lot of loads in industrial settings that have equal or similar

properties. The industrial loads are generally much larger and hereby of a much

higher economical interest. The larger the loads, the earlier they ought to be

incorporated in dynamic power markets. In the industrial sector this is done to

some extent today, but there is a large potential to develop the market. In a

longer perspective also smaller loads, such as households, are of interest.

Another potentially interesting issue in this respect is local production.

There are di�erent forms of local spare plants that could be used in critical

situations, but there are also examples of less predictable local production, e.g.

wind power, that complicates the dynamics of the energy system.

A small �eld test that shows interesting results on the possibility to move

the power consumption of residential houses that are electrically heated from

high demand hours has been performed, see Figure 2.2. The gain (for the

system) of doing so with a small number of houses is negligible since their

power consumption is low, but a large group of participants has a potential to

improve the demand pro�le of the market.
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Figure 2.2: The resource usage of an electrically heated household. The optimal
choice � with respect to the spot market � is compared with the use of ordinary
thermostats (that do not take price into account). For relevant time periods the
indoor temperature deviates less than 0:5ÆC, but there is a saving in heating
costs of approximately 28%.

In Sweden of today 49% of the electricity is used in the residential and

service sectors, and of this 43% is used for heating, 25% is used for household

purposes, and the rest for common purposes [11]. These �gures show that the

residential sector has a potential to in�uence the market performance in Sweden

and countries with similar consumption pro�les.
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2.1.3 The Technological Progress

During the last years we have experienced an enormous growth in accessibility

to computational power and (local area and wide area) data communications,

e.g. over the Internet. This is true both in industrial and residential settings,

c.f. Section 2.3.2.

One interesting idea that currently is investigated is the possibility to use

the power line as a communications medium at a local network level. This gives

that any equipment that is connected to the electricity network potentially can

be connected to the communication network (without extra wiring), and � if

interesting � it can participate on the market. Another interesting communi-

cation approach (with no need for wiring) is the Bluetooth industrial standard;

cheap, short range communication between equipment, that has potentials to

be useful e.g. in households and o�ce buildings. This is only a few examples

among many of the changes that we currently are experiencing and that a�ect

the market possibilities.

Another upcoming idea, in the residential setting, is the intelligent or smart

house, with quite a lot of possibilities. An interesting possibility is to integrate

the smart houses (together with industrial and o�ce settings) into the active

power control market.

Altogether, the technical and economical opportunities for providing equip-

ment with computational and communicational capacity can be utilised when

developing an electronic market mechanism for power load markets.

2.1.4 Discussion

There are extreme situations in which energy prices go dramatically high. At

the same time there is a lot of unused dynamics among the small actors. In

the perspective of the technical development, it makes perfect sense to increase

the integration and enable more e�cient markets. However, as will be discussed

below, to design a proper market mechanism is nontrivial.

2.2 Market Mechanisms � Theory and Practice

General equilibrium analysis and computation from economics has inspired the

design of a number of market mechanisms, e.g. Walras [14, 4, 15]. The basic

idea is to estimate a clearing price such that supply meets demand for every

commodity, and then reallocate according to the bids at the clearing price. How-

ever, general equilibrium theory of economics generally relies on three classical

assumptions:

(i) all producers have increasing marginal cost with increased production,

(ii) all consumers have decreasing marginal utility with increased consump-

tion, and
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(iii) all necessary information (i.e. the bids) can be inexpensively communi-

cated to a central point.

As discussed below, these assumptions are often unrealistic.

2.2.1 Increasing Cost and Decreasing Utility

One classical assumption in economics is that marginal cost is increasing with

increased production. A related assumption is that marginal utility is decreasing

with increasing consumption, see e.g. [10, 13] and Figure 2.3 (top row). These

assumptions are useful. First � from a system viewpoint � they are more or

less liable to be true. Second, market analysis becomes manageable.

In practice � from the viewpoint of the participant on the market � this

assumption is often unrealistic, some examples:

�����
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Figure 2.3: Top row: A classic assumption in economics is that the marginal
utility is decreasing with increasing resource. If this is the case, the utility looks
as in the left pane. As a consequence the demand looks as in the right pane,
a continuous curve. Bottom row: A realistic utility function, e.g. of a water
heater; marginal utility is not decreasing (left). The consequence is that the
demand is discontinuous (right).

It is reasonable that a single power generator has an increasing marginal cost,

as long as we limit ourselves to look at the interval where it is really e�cient.

If we, on the other hand, look at the full interval from zero to full capacity, it

is more complex. It might e.g. be very costly to run the generator at a low

production level (if at all possible). This gives a non-increasing marginal cost

in some subintervals. Another aspect is that a true description of a power plant

with more than one generator generally implies non-increasing subintervals due

to di�erent ways to combine the units.

The situation is similar for the consumers that might be interested in taking

part in the market. Many of them have a decreasing marginal utility over the
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interval from zero to max consumption, but some do not. A water heater could

be a simple example; it has a basic service level where it can provide water e.g.

for washing of hands and to do the dishes. When it is possible to take a shower

it is on another service level, and so on. In other words, the marginal utility is

not decreasing. Another example of loads with non-decreasing marginal utility

is any load that has an initial marginal utility of zero up to some breakpoint

where it turns positive and decreasing.

Most power markets, e.g. NordPool, ignore the fact that demands may de

facto be discontinuous, and require continuous demand curves. For power mar-

kets with only very large participants (as currently is the case for many markets)

this is rather unproblematic, but if smaller actors are to be incorporated, it is

clearly undesired. If someone � as a consequence of acting on the market �

gets an allocation that is undesired (c.f. Figure 2.4), it is obvious that this

participant would like to buy herself out of the situation as inexpensively as

possible. This may be manageable if the time frame of the main market is large

enough and if there is some after-market for this regulation. Otherwise she will

have to take the undesired allocation as part of the risk of acting on the mar-

ket. In either case it might not be individually rational for the participant with

a non-continuous demand to act on the market. Individual rationality can be

expressed as follows: the gain of participating on the market is nonnegative [10].

In earlier work [2, 15] the assumptions concerning increasing marginal cost

and decreasing marginal utility where not seriously challenged. Either we re-

stricted ourselves to markets where the net demand is continuous and mono-

tonically decreasing with price [2], or there was just a note that some extra care

has to be taken when it is not [15, p.34-35].

The shortcomings of current market approaches has motivated us to con-

struct a new, more general market mechanism that can manage more general

utility and cost functions.

2.2.2 Information

Assumption (iii) � all necessary information (i.e. the bids) can be inexpensively

communicated to a central point � is the last point of the list in the beginning

of Section 2.2. We claim that in practice this too is an unrealistic assumption.

To start with, the information is not centrally available from the beginning but

distributed over the market participants, and it may be impractical to collect

it to a central spot. As long as the market is kept small, when the participants

count in tens or hundreds, this is generally no major problem, the information

can be gathered when needed. On a market where the participants count in

hundreds of thousands or even more the situation is di�erent.

When the market grows large the communication soon becomes a bottleneck

for any market mechanism that rely on the property that all information is cen-

trally available. The narrower the time frame of the market is and/or the more

expensive the communication, the more essential not to rely on this assumption.

Our market mechanism is constructed with a distributed setting in mind,

i.e. it does not rely on this assumption.
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Figure 2.4: If a market participant has non-continuous demand (left pane) the
corresponding utility function is non-concave (right pane). If he, on the other
hand, has to give a continuous demand as input to the market the corresponding
utility would be a concave approximation of his true utility function (c.f. De�-
nition 2.3.1) � as the upper, dashed line in the right pane. The allocation that
he gets on the market might be undesired (e.g. the vertical, dotted line). The
participant wants to buy himself out of the situation as inexpensively as possible
(buy or sell to get a higher utility). Here he might even be prepared to give
resource away for free to get a higher utility.

2.2.3 The Market of Today and Tomorrow

Today the power market is a rather small marketplace in terms of number of

participants. The market mechanisms that are used today may be well suited for

this situation (with a small number of participants on the market). On the other

hand, with a market mechanism that is made automatic (or semiautomatic), it

is possible to let the number of participants grow. The market can be made

more e�cient and yet fast. A limitation of current market situations is that

in practice only the big actors on the production and distribution side take

an active part in the market. The consumption side is viewed as exogenous

(with maybe a few exceptions). With an approach where the mechanism is

made automatic this limitation can be broken and small producers and even

consumers might play a new, active part in the market.

The interesting parts of the energy market of today, as it is constructed e.g.

in Sweden, is divided into two parts:

� a spot market where the energy prices, supply and demand for the upcom-

ing day (24 hours) are �xed at noon every day, this market is common for

the Nordic countries Finland, Norway, (parts of) Denmark, and Sweden,

and

� a balancing service organised as a regulating market, an online (semi-)

market where the time frame is about 10 to 15 minutes.

In other countries with deregulated power markets the mechanisms are some-

times constructed di�erently but still face the challenges discussed in this paper.

The changes that are taking place within the sphere of computation and

communication capacity can be utilised to build fast and e�cient applications
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that can handle e.g. a large dynamic regulating market. The computational

and communicational capacity already is there in the distribution system and

in consumer side systems (and wherever it is not, there is a potential to introduce

it as soon as the cost is low relative the gain).

An extreme consequence of the limitations of the old view on the power

control market is the red button principle; there is no other means to protect

the system under high pressure than to shut of power supply to entire areas. The

new view is di�erent: The limitation that only production and distribution acts

on the market can be broken. In principle it is even possible to use small loads

such as di�erent kinds of heating or cooling systems, freezers etc. in residential

buildings to regulate demand, or the other way around, for such loads to act

on the market. Loads in industrial and o�ce setting are generally much larger

and of a greater economical interest, but in a longer perspective even smaller

loads are interesting. Another reason to set some focus on residential settings,

even though the loads are relatively small, is that the residential demand during

high cost hours probably is very �exible since people are at work. As a result

demand is moved from high cost hours to surrounding hours where the price is

lower � a win win situation [16].

The main e�ect of this is a more e�cient market, as a side e�ect the need

to use the red button is drastically reduced.

Altogether we set up the goal that a new market mechanism should:

� handle not only the production side, but the consumption side too,

� be suitable for a fast (electronic) market and yet e�cient and close to

optimal (as far as we are dealing with controllable loads or controllable

clusters of loads),

� handle non-continuous demand, i.e. utility functions that are non-concave,

and

� be suitable for distributed systems.

2.3 ConFAst, A New Market Mechanism

Our goal is a power control market that is more e�cient (economically and

computationally) than the markets of today. This is accomplished by a mech-

anism that allows for a huge number of active participants, consumers as well

as producers, while also allowing for participation with non-concave utility (i.e.

non-increasing marginal cost of producers and non-decreasing marginal utility

among consumers, c.f. Figure 2.3) and also being highly suitable for large and

distributed market settings.
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2.3.1 Concave and Non-Concave Utility

Concave

When all utility functions are concave it is straight-forward to �nd an equi-

librium price of the market based on the given functions. One way to do this

(c.f. [4]) is to

1. aggregate the demand or utility functions into one function that describes

the optimal utility of the system. For every resource level of the function

interval remember the allocations that gave the optimum, and

2. calculate the equilibrium price based on the aggregated function.

The computation can be made in ways more e�cient than what is sketched

above, e.g. in a binary search fashion, but it is unknown how this can be utilised

in a distributed environment.

Non-Concave

Things turn out to be considerably harder when some of the utility functions are

non-concave. Standard microeconomic theory on competitive equilibria relies on
properties that can be expressed in terms of concave utility functions. As stated

above, in Section 2.2.1, the restriction to concave utility introduces problems to

participants on the market, both consumers and producers.

Generalised Vickrey Auctions [9] is an interesting concept (as an alternative

to the one described in this paper) that is able to manage non-concave utility.

It has a number of advantages and disadvantages when considered for a power

control market. The concept of Generalised Vickrey Auctions

+ has favourable game theoretical properties,

+ produces a Pareto optimal allocation on reported utility, and

+ handles non-concave utility, but

- produces an outcome which is not budget balanced, i.e. the payment does

not sum to zero, and

- has major disadvantages when applied to a distributed setting. It is based

on a series of computations of the equilibrium; with n participants as many

as O(n) computations of the optimal allocations are needed to establish

an equilibrium.

We consider the drawbacks serious in the setting of a power control market and

suggest another approach.

Power markets are relatively large, both in terms of resource traded and in

number of participants (particularly when consumers and smaller producers are

introduced as actors on the market). We can utilise this property when dealing

with non-concave utility. As the market grows the aggregated utility very fast
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becomes almost concave. The aggregated utility function can be described as

a concave function with a low amplitude noise on top, and at any point the

function is very close to its convex hull. Another way to express the same is

that there is a �near equilibrium�, i.e. an allocation and price that is close to

satisfying an equilibrium [10, p. 629]. This can be utilised to establish a market

price and market allocations constituting this �near equilibrium�.

���

Figure 2.5: The power load market is a large enough market in the sense that
there is always a near equilibrium. This is a basic assumption that we rely on
when constructing our market mechanism. Even if aggregating such extreme
functions as random noise functions, we get an aggregated function that is very
close to concave, and hence � if interpreted as aggregated utility � close to an
equilibrium. Here: 100 random noise functions, c.f. [1].

2.3.2 Outline of the ConFAst Mechanism

Our mechanism, ConFAst1, calculates the equilibrium price based on the util-

ity functions of the participants. Logically the mechanism can be viewed as a

two step algorithm:

(i) assume that all utility functions of the system are concave. This is done

approximating the non-concave functions with their convex hull. Calcu-

1CONvex hull with Final AdjuSTment
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late the (near) equilibrium price and allocations based on the hull of the

aggregated utility functions (Section 2.3.2), and

(ii) decide the actual allocations to the participants, the decision is based on

the true utility (de�ned below), see Section 2.3.2. Set the �nal payments of

the participants; this decision is based on the true utility functions and the

di�erence between the allocation in step (i) and in this step (Section 2.3.2)

In this paper we use the expression true utility in the following sense:

De�nition. 2.3.1 We de�ne the true utility as the utility function that is given
by the participant in contrast to the convex hull of the function that is used in
step (i) of the algorithm.

This two step mechanism utilises that we have a near equilibrium in large

markets to establish the market price and allocations, and it is able to allocate

the resource using the true utility functions (even when they are non-concave).

As long as all participants act �price takers�, the allocation that ConFAst

produces is Pareto optimal, i.e. as it is impossible to make some participants

better o� without making some other participants worse of [10, p. 307]. This

assumption is reasonable from the �near equilibrium� property and e.g. [12]. Up

til now we have not put any further social or other demands on the economical

outcome.

Input Functions

In principle it is possible to use either utility functions or demand functions as

input to the mechanism. In the following we assume that the input functions

are utility functions2.

The utility functions of the participants3 re�ect how useful di�erent amounts

of energy are during the coming time period. A consumer gives the information,

with a proper resolution, for all resource levels between zero and the maximum

consumption. In a similar way a producer gives the corresponding information

on the utility of delivering energy in the proper interval. The cost of delivering

an amount of energy is simply expressed as the negative utility of a negative

allocation (i.e. produced resource). The utility functions do not need to be

concave.

Normally a utility function is just an ordinal function [13], that says that

a consumption bundle with a higher utility is preferred to one with a lower

utility. The function has no cardinal properties. There are certain exceptions

from this, e.g. quasi linear utility functions [10, 13] have cardinal properties.

2If demand functions are used as input somewhat less information is available, but a reduced

utility function could be constructed out of each demand function. The description below is

applicable to this case as well.
3The participants are represented by software agents that produce the utility functions.

The utility of a typical consumer is constructed out of data on customer preferences, load

state, market and disturbance predictions, and a load model [15].
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The utility functions that we rely on are quasi linear (non-linear in energy, linear

in �everything else� which is represented by money). An e�ect of this is that it

is possible to compare two utility functions and to aggregate them in a such a

way that, based on the aggregated function, one can allocate a resource between

the two in an optimal way (maximising the total utility). Since it is possible to

aggregate two, it is possible to aggregate any number of functions.

The Near Equilibrium Price and the Corresponding Allocations

The �rst step of the mechanism is to establish the (near) equilibrium price for

electricity on the market. The computation of the market equilibrium is based

on the convex hull of the participants' utility, as if we assume that everyone has

a concave utility. As said earlier, Section 2.3.1, we can assume that the majority

of the participants have concave utility functions (that equals their convex hull),

but it is realistic that some have not.

If the utility functions are concave the equilibrium price equals the �rst

order derivative of the aggregated utility where the excess demand/supply of

the system is zero4. With participants holding non-concave utility, we establish

a market price (a �near equilibrium� price, Section 2.3.1) based on the convex

hull of the aggregated utility.

There are two possible outcomes of this:

1. The aggregate true utility of the system equals the hull of the utility at

the equilibrium, i.e. the demand function of the system is continuous at

the equilibrium. Then we are done and all participants pay according

to the equilibrium price for their allocations. All that has to be done is

to distribute information on the equilibrium price and the corresponding

allocations to the participants.

Note: It is not enough to broadcast the equilibrium price since some of the

participants might have two or more interpretations of their corresponding

allocation, see Figure 2.6.

2. There is a di�erence between the true utility and the hull at the equi-

librium, i.e. the demand is not well de�ned at the equilibrium price, see

Figure 2.3. In this situation the mechanism proceeds to establishment

of the �nal allocations and prices of the participants, see Section 2.3.2

and 2.3.2 respectively.

The Final Allocations

The �nal allocation to the participants is the optimal allocation of the resource

given the reported utility functions.

4Any other allocation within the interval of the aggregated utility function could be de�ned

as the equilibrium, e.g. if the system is a subsystem of a larger system that decides that this

system should deliver a positive or negative excess demand.
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Figure 2.6: A broadcast of the equilibrium price is not enough to establish an
equilibrium allocation if participants have concave utility that is not strictly con-
cave � i.e. there are linear segments � (left), or if they have non-concave utility
(right). Some might have more than one interpretation of what resource level to
choose (left: any allocation in the grey segment between z1 and z2, right: one of
the two allocations).

When some participants have non-concave utility the outcome of the estab-

lishment of a �near equilibrium� price and allocation (as described above) often5

is an allocation that for some participant6 is undesired.

The participant with an undesired allocation is moved to a new allocation,

and as a consequence some other participants have to be moved from their

original allocations, and they have to be compensated in some way.

The Final Payment

If there was a feasible allocation (de�ned below, c.f. Figure 2.4) at the equilib-

rium, computed as described in Section 2.3.2, the payment of all participants

for their allocations is the equilibrium price times their allocation:

pezi (2.1)

where pe is the equilibrium price and zi is the (positive or negative) allocation

of participant i. The allocation of a producer is, as said before, a negative

allocation � the amount of energy she is to deliver according to the market

outcome.

In the following we use the expression (in)feasible allocation, that we de�ne
in this way:

De�nition. 2.3.2 We de�ne a feasible allocation as an allocation such that the
utility of every market participant equals the convex hull of her utility function.

An infeasible allocation is an allocation where some participant has a utility
less than the convex hull of her utility.

5The more actors that have non-concave utility, the more often this will be the case.
6By construction (of the aggregation algorithm, c.f. [3]) no more than one sole input func-

tion is non-concave at the �near equilibrium�, and hence it is only one participant that has to

be moved from an undesired allocation.
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The notation is chosen since such an allocation would be unde�ned if the mech-

anism was based on supply and demand functions (c.f. Figure 2.3).

If there was no feasible allocation the �nal allocations are computed accord-

ing to Section 2.3.2 and some participants are moved from their initial allocation

so that the result is a feasible and Pareto optimal allocation. The last operation

of the mechanism is to compensate for this and decide the �nal payments for

all participants taking the movements into account.

The idea is that:

1. The ones that are moved from initial allocations that were feasible are com-

pensated according to their own utility functions. That is, if for someone

of those participants, the utility of the �nal solution is less than the one

of the initial solution she is compensated for the loss of utility, on the

other hand, if the utility is higher the participant pays an equally higher

price. The payment that those participants pay for their �nal allocations

becomes:

pezi +�ui (2.2)

where pezi is as in Equation 2.1 and �ui the (positive or negative) change

in utility of participant i due to the movement from the infeasible equilib-

rium solution to a feasible one, and

2. to get a zero cost solution for the total system let the one participant that

created the unfeasibility (the jth participant) at the equilibrium get the

�nal payment:

pezj + pm�zj (2.3)

where

pm =

P
i6=j

�ui

�zj
(2.4)

i.e. this participant is not compensated according to her own utility func-

tion but has to compensate for the changes that she enforces the other

participants by having non-concave utility.

From an economical perspective, the solution is:

1. Pareto optimal on reported utility,

2. individually rational with concave functions, but

3. not individually rational with non-concave functions.

Note that when the market is large, the price that the interesting participant

has to pay for the movements is almost the same as the equilibrium price, c.f.

the tests in Section 2.4.

This compensation system has two interesting properties:

1. If we count the extra7 computation for free, the cost for the system for

providing the possibility of having participants with non-concave utility is

zero, and

7Extra relative a mechanism that does not handle non-concave utility.
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2. one still takes a small risk by entering the market with non-concave utility.

If the �near equilibrium� allocation is infeasible due to the non-concavity

of my utility, then I am the one that has to compensate for the changes

in utility that is imposed on others.

We �nd both these properties attractive. The �rst one is obviously positive,

whereas the second one might be subject to some discussion. Since the market

runs better the fewer participants have non-concave utility, and the smaller

the deviations from concavity are, it is reasonable that the one introducing a

non-concave utility takes some risk. At the same time, if the alternative is a

mechanism that enforces participants to present concave utility, the risk is much

larger for a participant who is unable to express the non-concavity of her utility.

Thus we argue that it can be justi�ed that one takes some risk when partic-

ipating with non-concave utility. On the other hand, if there is a risk of great

loss no one would do so. One of the risk factors is that the one load that created

the unfeasibility at the �near equilibrium� might be moved to a zero allocation

when the optimal allocation takes place � and still has to pay to compensate the

system for the movement of others. If this is fair or not could be argued. We

believe this to be a potential problem, but there is a way to solve the problem.

To avoid that someone e.g. has to pay for a zero allocation we separate the

distribution of allocations from the distribution of information on �nal payments

(both in phase 2). Then it is possible to decide the optimal allocations in a fast

manner and still have a pricing that is considered fair.

The separation of the two operations of phase 2 gives the possibility to take

a brokerage from the participants by separating the buying and selling prices

on the seldom occasions when someone has to pay all to much8, e.g. if someone

is moved to a zero allocation; When someone, according to Equation 2.2 or 2.3,

has to pay more than some factor f times the equilibrium price (or receives less

than 1=f of it) for its current allocation the buying and selling prices could be

separated so that the cost is distributed among the market participants.

We have tried to �nd out experimentally how large the risk is that one has

to separate the buying and selling prices. We have found, as far as our arti�cial

test material is concerned, that there is a small, but maybe not negligible, risk

that this will happen now and then. It is clear that the risk is larger the more

participants have utility functions with a non-concave character close to zero.

Future �eld tests will provide more knowledge on this.

A Distributed Setting

As said in the introduction, society has experienced an enormous growth in ac-

cessibility to computing power and data communication during the last years.

There is no longer any need for a centralised computational resource to gather

all information on the market and compute the market outcome all by itself.

Computers are there, or could be set up, in the network, and most of the com-

8If a brokerage is used to �nance the system it could be implemented like this too.
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putations needed can be done in the network when the information is gathered

and distributed, [2].

When a large automated market is constructed, almost all the computation

can, and should, take place in the network. Incorporating the consumption side

in the active power market we construct such a large market (in number of

participants) that the market mechanism has to be constructed with the com-

municational aspects of computation in mind. There are computational gains if

the computation can be done in parallel over the network. Even more essential,

there are communicational gains if the number of messages sent over the net-

work could be held low and bottleneck nodes that everyone has to communicate

with are avoided.

The basic algorithms of ConFAst are intended for use in a distributed

setting. Logically the underlying structure of our mechanism is a balanced tree

structure (Figure 2.7), a structure that is very e�cient in a distributed setting

(no communication chain is longer than O(log n) with n participants). For more

on the underlying communication sparse aggregation algorithm see our previous

work, [2, 3, 1].

���

Figure 2.7: The logical structure of our mechanism is a binary tree structure.
In a distributed setting this gives advantages in terms of short communication
paths. Moreover, when a system consists of a number of subsystems this is
re�ected in a natural way (with a subsystem represented by a sub tree).
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Sometimes constraints enforces that the market is divided into sub markets.

There are static bottlenecks in the transmission grid and runtime disturbances

can result in new bottlenecks. Where there is a bottleneck in the system it is

logical to view the two sides as di�erent sub systems9. Other logical subsystems

are constituted of lower voltage systems. All of this can be handled e�ciently

by ConFAst. It has a hierarchical tree structure and therefor it adapts very

well to partitioning of the power grid into subsystems. The gain is twofold.

First, it is possible to take e.g. restrictions in capacity within a subsystem into

account and to handle them e�ciently. Second, when changes in demand take

place in a subsystem � changes that are so small that they do not have to be

propagated to higher levels � the mechanism has possibilities to recalculate the

optimal allocation (and related prices) locally within the subsystem.

2.4 Implementation

Test implementations on di�erent parts of the mechanisms show that this market

algorithm is not only of theoretical interest, but it is a practically useful too.

It has potentials to be an e�cient alternative to existing market mechanisms,

from an economic viewpoint as well as from computational and communicational

perspectives.

Tests of the behaviour of ConFAst have been performed, so far in a small

scale and with input functions that where not re�ecting true preferences, but

constructed just to challenge the mechanism. These tests gave some interesting

results; one is that there might be a need for diversi�cation of the distribution of

information on �nal allocations on one hand from the distribution of information

on �nal payments on the other, c.f. Section 2.3.2 and Section 2.3.2.

A desirable market property is individual rationality. If an actor has non-

concave utility there is unfortunately no guarantee that it is individually rational

to participate in a market based on ConFAst. This is caused by the construc-

tion of the compensation system, c.f. Section 2.3.2 and Section 2.3.2. The �nal

payment for a participant that has to be bought out of an undesired allocation

is partly based on the utility of the other participants. An interesting question

is how bad the market outcome can be for an actor with non-concave utility.

We have performed some tests to investigate this, and we present the results in

two ways.

The test data was constructed in the same way in both the tests related to

individual rationality. The basis of the input functions was sine waves10.

In the �rst test we have measured how expensive it can be, with the worst

possible allocation to an actor with non-concave utility, see Figure 2.8. The

result for a number of market situations with small number of participants is

presented in Table 2.1. The main point is that as the market grows (in number

9As is done today e.g. in Scandinavia.
10Concave utility functions were based on the sine wave in the interval [0; �] (with random

scaling factors), non-concave utility on a combination of the sine curve and a linear factor in

the interval [0; 3�], see Figure 2.8.
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of participants) the price paid converges towards the �near equilibrium� price.

The price is not a direct measure on individual rationality, but � expressed in

an intuitive way � the closer to the �near equilibrium� price the price is that

the investigated participant pays, the more obvious it is that it is individually

rational to participate on the market.

Figure 2.8: One test related to individual rationality investigated how expensive
the most expensive allocation would become for a participant with non-concave
utility (in relation to the �near equilibrium price�), c.f. Table 2.1. The curves
represent the utility function and the hull function, the dashed lines the initial
allocation and the solid lines the �nal allocation.

Table 2.1: Investigation on �nal payments. The table shows how expensive it
can become to participate with non-concave utility on a market using ConFAst.
The main point is that as the market grows the risk diminishes. The prices are
compared to the �near equilibrium price�.

# Market Highest price paid by the participant

Participants with non-concave utility

when selling part of when buying more than

her initial allocation her initial allocation

2 208% 139%

3 190% 123%

4 157% 114%

8 134% 107%

25 113% 102%

50 106% 101%

100 102% 100%

200 101% 100%

Note that even with as few as 25 participants on the market the �nal payment

of the participant with non-concave utility is no more than 113% of a payment
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according to the �near equilibrium� price.

In the second test related to individual rationality we compare the outcome

of ConFAst with an idealised situation where it is possible for a consumer

to choose any allocation preferred at the �near equilibrium price�, e.g. the

maximum amount that she would prefer to consume at this price level. The

result of the investigations is presented for three di�erent sizes of markets (in

number of participants), see Figure 2.9. The investigated participant has the

same utility function in all three tests, it is only the number of participants on

the market that varies. The interesting part is how fast the risk diminishes as

the market grows.

The measure used, the relative utility, is the quotient

u(zj)� p
f

j
zj

u(z�
j
)� pez�

j

(2.5)

where zj is the �nal allocation of participant j, pe the �near equilibrium price�,

p
f

j
the �nal price per unit of participant j, and z�

j
an allocation that participant

j would have chosen if she had the opportunity to choose free given the �near

equilibrium price� (e.g. the largest one that she would consider). Note that

u(z�
j
) � pez�

j
is something of an upper bound on how well of a participant can

be on the market. This bound can not even always be theoretically supported.

The measure is hence a very pessimistic one.

If the relative utility is negative it is not individually rational to participate

on the market.

Nevertheless, the results of these small tests are promising. The mechanism

performs well and the problems concerning individual rationality are negligible

on a market already of moderate size. Even on a small market with 25 par-

ticipants the risk that the investigated participant took is small, see Table 2.1

and Figure 2.9. Figure 2.9 even shows that it was only when the number of

participants was less than a handful11 that the outcome was negative. In all

other market situations it was individually rational for this actor to participate

on the market.

2.5 Summary

We have shown how the dynamics of small actors could be utilised to develop

the power load market into a more e�cient market place. This is made possible

by the current development of computational and communicational resources in

society, two examples are so called smart equipment and the Internet.

The entire area of electronic commerce is developing; more and more prod-

ucts and services are traded electronically. We focus on the energy market �

one of the markets with a great potential � and suggest a mechanism, Con-

FAst, for this market that has a number of promising properties; it is able to

11The outcome was positive for the investigated participant on a market with three actors

(not shown in the �gure).
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Figure 2.9: Participating in a market based on ConFAst with non-concave util-
ity is not individually rational. There is a (rather small) risk that the outcome
for such a participant is worse than it would be if she would be able to buy what
she wants paying e.g. the �near equilibrium price�. A measure for this is the
relative utility above, de�ned in Equation 2.5. The �gure shows how fast the risk
of participating with a non-concave utility diminishes when the market grows.
It is only on an extremely small market, with no more than two participants
that it turns out that it is not individually rational for the investigated partici-
pant (with non-concave utility) to take part in the market. The relative utility
of the investigated participant is measured for every resource level that could be
produced and allocated to the consumers on some markets of di�erent size.
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handle both production and consumption side, it is suitable for fast electronic

markets, it handles non-continuous demand, and it is well suited for distributed

computing.

With this market mechanism we challenge the fundamental ine�ciencies of

today's energy systems; demand and prices vary signi�cantly � particularly in

shorter time frames � while at the same time many loads can be very �exible,

c.f. Figure 2.1 and Figure 2.2.

We believe that this is a win - win possibility for both producers and dis-

tributors on one hand and consumers on the other. On top of that there are

bene�ts from an environmental perspective too, due to smaller �uctuations in

demand.

When consumers and small producers are introduced as active market par-

ticipants non-concave utility functions is a reality. ConFAst o�ers possibilities

to participate on the market with such utility. Even though the mechanism does

not guarantee that it is individually rational for someone with non-concave util-

ity to participate on the market, the risk of doing so is far less than to participate

on a market not supporting the non-concave character of her utility function.

Our tests show that on any market of reasonable size, the problem is negligible.

In extreme situations, such as the one sketched in the introduction to the

paper, market mechanisms and energy systems are put on the test. We believe

that ConFAst � with its dynamic character � has great advantages in such

extreme situations as well as during normal conditions.
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Chapter 3

Resource Allocation with

Noisy Functions

We consider resource allocation with separable objective functions de�ned over

subranges of the integers. While it is well known that (the maximisation version

of) this problem can be solved e�ciently if the objective functions are concave,

the general problem of resource allocation with functions that are not necessarily

concave is di�cult.

In this article we show that for a large class of problem instances with noisy

objective functions the optimal solutions can be computed e�ciently. We sup-

port our claims by experimental evidence. Our experiments show that our

algorithm in hard and practically relevant cases runs up to 40 - 60 times faster

than the standard method.

3.1 Introduction

3.1.1 Resource Allocation

We consider resource allocation with separable objective functions de�ned over

sub-ranges of the integers, as given by

maxr1;r2;:::;rn
P

n

i=1
fi(ri)

s:t:
P

n

i=1
ri = R;

(3.1)

where each function fi(ri) is de�ned over a range of integers, Ii.

Resource allocation with separable objective functions is a fundamental topic

in optimisation. When presenting algorithms for this problem, it is typically

assumed that the objective functions are concave; very little is known about the

case of non-concave functions. In the general case, where there is no assumption

on the shape of the functions, the standard method is to use brute force and

� for any pair of functions that are aggregated into one � test all possible

solutions.

29
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In this article, we present a new algorithm tailored for the case when there

is no prior knowledge about the involved objective functions. The idea is to

take advantage of favourable properties of the functions whenever possible. In

e�ect, we obtain a new algorithm for e�cient handling of a very general class

of non-concave and noisy objective functions.

A typical function with such properties is illustrated in the lower left part

of Figure 3.4. The function is noisy, and even with the noise removed, it is

non-concave. The function has some regularity though: seen from a distance

it looks "smooth". The basic idea of our algorithm is to divide the objective

functions into a small number of intervals and to �lter out the noise, such that

each interval can be treated as either convex or concave. In this way we can use

previous techniques [3] for e�cient pair-wise aggregation of objective functions

in combination with a neighbourhood search. Altogether, we manage to obtain

a pruning of the search space; the number of allocations that needs to be tested

is signi�cantly reduced.

The robustness of our algorithm makes it very useful in practice. Further-

more, the overhead of the algorithm is small enough to allow for fast implemen-

tation. Indeed, it competes very well with the brute force algorithm, although

the brute force algorithm has the advantage of being simple and straightfor-

ward. This is demonstrated by experimental evidence. It is even the case that

we achieve surprisingly good results also for seemingly impossible cases. One

such case consists of a set of completely random objective functions. At a �rst

glance, it might seem that there is no hope to improve over the brute force

method for such a problem, but our new algorithm o�ers a signi�cant speedup

by taking advantage of smoothness whenever possible.

3.1.2 Aggregating Objective Functions

The brute force algorithm, as well as our algorithm, is based on pair-wise ag-

gregation of objective functions. In a typical implementation of the brute force

method, the global objective function is computed by incorporating the func-

tions one by one [8, pp. 47-50], but it is also possible to aggregate the functions

in a balanced binary tree fashion [2]. In our experiments, we have chosen the

second alternative mostly because this method is more suited for implementa-

tion in a distributed environment, which is the case in the application of power

load management which we have in mind. We have no reason to believe that

the experiments would show any major di�erence had the other method been

used.

In either case, the basic step is the aggregation of two objective functions into

one, see Figure 3.1. Given two functions f1 and f2 de�ned over subintervals of

length I1 and I2, compute the aggregated function ft, de�ned over a subinterval

of length (at most)1 I1 + I2:

ft(r) = max
r1+r2=r

f1(r1) + f2(r2); (3.2)

1If the total available resource to be allocated is smaller than I1 + I2, then the aggregated

function need not be computed over the entire interval I1 + I2.
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Figure 3.1: The basic step when aggregating objective functions is the aggregation
of two functions into one.

and for each r in the subinterval compute the corresponding r1 and r2.

The complexity of aggregating two objective functions depends on the prop-

erties of the functions. Two cases are typically distinguished, e.g. [8, 6]:

� The general case, when no assumptions can be made about the functions.

Then an aggregation requires �(I1I2) time.

� The special case of two concave functions. Then the aggregation can be

made much faster, in �(I1 + I2) time.

As the domain of the objective functions may be very large compared to the

number of functions, the di�erence between these two complexities will be sig-

ni�cant in many applications. Despite the fundamental nature of the problem

and its practical importance, we have found nothing applicable done by others

in recent literature, cf. [7], that tackles the problem with lower complexity than

what is presented in the textbook by Ibaraki and Katoh [8], i.e. �(I1I2).
In previous work [3], we have introduced a novel algorithm for pair-wise

aggregation of objective functions. The main point of that work is that the

complexity of the aggregation is adaptive to the shape of the two functions to

be aggregated; the simpler curves the lower complexity.

More precise: Let f1 and f2 be two objective functions de�ned over intervals

of length I1 and I2. If the two functions can be divided into s1 and s2 segments

respectively, such that each segment is either convex or concave, see Figure 3.2,

then the aggregated objective function and the corresponding optimal alloca-

tions can be computed in O(I1s2 + I2s1) time.
This article generalises the previous work to manage noisy cases. First, we

are able to handle functions that are close to concave but noisy (see Figure 3.3)

in an e�cient way. Furthermore, we handle noisy functions that basically are

non-concave but in some sense smooth (as the ones in Figure 3.4).

It is worth pointing out that noisy looking objective functions do not only

occur when the input functions are noisy themselves; even with nicely shaped
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Figure 3.2: Dividing a function into concave and convex segments.

input functions the functions occurring after a number of aggregations may

become irregular. One example is when the input functions are convex, see the

experimental results in Section 3.3 and Figure 3.10.

An important contribution that goes together with the article is our imple-

mentation work and the experiments showing the robustness of our algorithm.

3.1.3 A note on the complexity of the general problem

It is worth noting that in most formulations of the resource allocation problem,

the goal is not to compute a global objective function over the entire domain, but

to compute the optimal allocation (and maybe the total value of this allocation)

for a speci�c total resource. In that case, it may seem like a waste of time to

compute the entire function. Indeed, if the objective functions are concave, a

binary-search type algorithm solves the problem more e�cient. The complexity

is O(n log(I=n)), where each objective is assumed to be de�ned over an interval

of length I , and n is the number of objective functions.

However, for the general non-concave case, the situation is harder. In the

textbook by Ibaraki and Katoh [8] it is pointed out that the general problem

with non-separable objective functions is NP-hard. It is also stated that it

is unknown whether the problem with separable functions (i.e. the problem

described in Eq. (3.1)) is NP-hard or not. However, there is a simple proof

that this problem is also NP-hard. A sketch of a proof based on a reduction

from the knapsack problem is given in our previous article [3].

It should be noted that a trivial algorithm [8] runs in O(nR2) time, where n
is the number of functions and R is the maximal resource. The dependency

on R makes the complexity pseudo-polynomial; the NP-hard instances occur

when (i) R is exponential in n and (ii) the description of the objective functions

is polynomial in n. In e.g. the above referred reduction from the knapsack

problem, each objective function can be described with O(logR) bits. There-

fore, with polynomially sized input, the complexity of any resource allocation

algorithm based on aggregation of the objective functions is exponential in n.
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Figure 3.3: Top row: The allocation of r = r1 + r2 indicated by the two dots is
obviously not optimal and it is well known how to avoid testing it for optimality.
Bottom row: It is easy to see that the allocation is not optimal also when the
functions are slightly noisy and it is rather easy to avoid testing it for optimality.

Hence, by the referred reduction from the knapsack problem, we can not

hope for any exceptionally good algorithm for the general case, even when the

functions are separable if the input is generated by an evil adversary. Neverthe-

less, we believe that in practice it can be expected that the objective functions

will not be generated by an adversary, but rather show some �smoothness�, and

then the approach introduced in this article can be very e�cient as long as the

size of the problem instance does not explode. We believe that there are quite

a few settings, such as power load management, where the resource R will not

be exponential in the number of input functions n, i.e. the function description,

with a proper resolution, will not have an exponential size. It might even be

that the resolution is more �ne-grained in subsystems than in the overall system;

e.g. in a power load management setting it might be useful to have a resolution

of say 100 W within a building, but when dealing with a nuclear power plant

this is not an appropriate resolution. How to rescale an objective function that

might have a noisy character is not dealt with in this article.
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Figure 3.4: Top row: In previous work [3] we have shown how to e�ciently
compute the optimal allocation when the objective functions are not restricted
to concave functions. The basic idea is to divide the functions into segments.
Bottom row: In this article we turn to the practically relevant case when the
objective functions can be accurately approximated with fairly well shaped func-
tions. By �ltering out the noise the functions can be partitioned into segments
as the functions in the top row. Also in this �gure it is clear that the marked
allocations can not be optimal, though proving it for the bottom case is not triv-
ial.

3.2 Main Result

In this work we show that it is possible to aggregate two objective functions

e�ciently and optimally if the objective functions could be divided into a small

number of segments that essentially are concave and convex but have some

rather low amplitude noise (see Figure 3.3 and 3.4). We present an algorithm,

Algorithm 3.4.2, that is based on the algorithm presented in our previous work,

[3], but is generalised to manage low amplitude noise.

It is well known, [8], [2], that it is possible to aggregate two functions by

testing all combinations (referred to as the brute force method).

Statement 3.2.1 Let f1 and f2 be two objective function (not necessarily con-
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cave) de�ned over intervals of length I1 and I2. The aggregated function and
the corresponding allocations can be computed in O(I1 � I2) time by testing of all
combinations.

With n objective functions to aggregate this can be done in O(nR2) time, where
R is the resource to be allocated.

We have shown that when it is possible to divide the functions into a (prefer-

ably small) number of segments that are either concave or convex it is possible

to do better.

The algorithm is a two step algorithm. First the functions are divided into

segments (in linear time), then all segments of the �rst function are combined

with all segments of the second in a search for candidate allocations. We have

shown that, for each segment combination, this search can be done in time linear

in the size of the segments.

Statement 3.2.2 Let f1 and f2 be two objective functions de�ned over intervals
of length I1 and I2. Furthermore, assume that the two functions can be divided
into s1 and s2 segments respectively, such that each segment is either convex or
concave. Then the aggregated objective function and the corresponding optimal
allocations can be computed in O(I1s2 + I2s1) time [3].

In some situations the growth of the complexity as a function of the number of

segments turns out to be a problem since the number of segments often grows

large due to low amplitude noise. This noise arises when (some of) the functions

are non-concave, cf. Section 3.3. A consequence is that the overall complexity

grows and reaches the complexity of testing all combinations.

A way of solving this is to �lter out the noise by accepting a small hull

distance (de�ned in Section 3.4.2) when dividing the functions into (concave

and convex) segments. Then the neighbourhood of each candidate allocation

is searched until the (veri�ed) locally optimal solution has been found. The

algorithm combines all segments of the �rst function with all segments of the

second one. Since a globally optimal allocation has to be locally optimal for

some segment combination, all globally optimal allocations are found this way.

Statement 3.2.3 Let f1 and f2 be two objective function (not necessarily con-
cave), with relatively small amplitude noise. Furthermore, assume that after a
small adjustment of each function value, the functions could be divided into a
small number of segments, such that each segment is either convex or concave.

Then the aggregated objective function and the corresponding optimal allo-
cations can be computed in time considerably less than what is needed for a
complete search of all possible combinations.

The complexity is dependent on the number of segments the functions are
divided into and the amplitude of the noise.

However, with n objective functions to aggregate we still have not managed to

achieve an overall complexity lower than O(nR2) (see the following sections).
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Still, the algorithm o�ers a pruning of the search space (compared to a com-

plete search of all combinations) and running times that in practical cases are

considerably less than the running times of a the brute force algorithm (see the

following section).

3.3 Experimental Results

Before we present the detailed algorithms, we show some illuminating test re-

sults.

We have run a series of tests using the algorithm in a tree structured [2]

system for resource allocation. The system is implemented in Java and the

tests that are referred below were run on a Sun Ultra 10 (tests have been run

on other Java systems too and there are some small variations in the results).

3.3.1 Tree-structured Aggregation

As pointed out above, the basic step of solving the resource allocation problem

is the aggregation of two objective functions into a new objective function.

In our experiments, we have used this basic step within a tree structure. As

leaves of the tree, we have the original objective functions, the internal nodes are

aggregated functions, the global objective function being the root, cf. Figure 3.5.

One great advantage of this is that it is highly suitable for distributed resource

allocation. With this structure it is possible to distribute the computational

work in the network and to avoid communication bottlenecks, since all the

computation does not have to be done at one central point [2].
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Figure 3.5: We have presented an algorithm for resource allocation that is de-
signed with distributed resource allocation in mind. In this article we are focus-
ing the pair-wise aggregation that is an essential subroutine of e.g. this algo-
rithm.
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In distributed resource allocation there are a couple of communicational

aspects that must be dealt with when constructing the algorithms. First, com-

munication is relatively slow compared to computations, and second, there is an

overhead of information in every message sent over the network (e.g. address

and error correction information). Therefore, up to a certain size2 the cost of

sending a message is more or less independent of the message size. This gives a

trade-o� between the number of messages and the message size and it is often

preferable to send a few larger messages instead of many small.

For the above reasons, if the object functions of two subsystems are to be

aggregated at some node in a distributed resource allocation system, it is of-

ten the case that the most e�cient way is letting the subsystems compute and

communicate all of their respective objective functions as one aggregate func-

tion. As a consequence, computing the aggregated objective functions for a

subsystem is highly important. Furthermore, it is an advantage to have the

aggregated objective function at hand at the top level, as it gives a full picture

of how important the resource is within the system, and it gives possibilities to

react fast on changes.

3.3.2 The Experiments

In these tests3 our algorithm for pair-wise aggregation is used within an algo-

rithm that

(i) is tree structured (Figure 3.5),

(ii) in the bottom, where the functions are de�ned over small intervals, per-

forms a complete search of all combinations, like the brute force algorithm,

(iii) uses our previous algorithm until the number of segments is considered

too large, and

(iv) when the number of segments is considered too large turns to using the

algorithm introduced in this article.

The main point of this section is to show that our novel algorithm not only

prunes part of the search space compared to the more simple algorithm of testing

all combinations, but also is faster for practically relevant instances (despite its

larger overhead).

Timing Considerations

In our experiments we have measured the total running time as well as the time

and number of evaluations used at the top level. The aggregation at the lower

levels of the aggregation hierarchy is of minor interest (the functions are typically

de�ned over small intervals and a complete search is of low cost). Therefor we

focus on the top level measure in our evaluation (see the tables below).

2The actual size depends on the structure of the communication system.
3The Java classes needed for running the tests, and a couple of other small test programs,

can be downloaded from http://www.csd.uu.se/�perc/papers/noisy/.
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Experiment 1: Two Functions Based on a Set of Five Hundred Mixed

Functions

The �rst example is chosen to re�ect our application area of power load manage-

ment. It is realistic to assume that the objective functions of the vast majority

of the loads in an electricity grid are concave. However, some functions will be

non-concave, e.g. staircase shaped. A few levels up in the aggregation hierar-

chy the aggregated objective functions could be accurately approximated with a

concave function, but a low amplitude noise prevents our previous aggregation

algorithm from being highly e�cient, see Figure 3.6, (also, because of this noise,

standard algorithms for concave functions cannot be applied at all).

The functions that we aggregate in this test are �ve hundred functions that

are randomly generated and ordered. One third of them are concave, one third

are convex, and one third are staircase shaped. The length of the intervals

that the functions are de�ned over di�ers up to a factor �ve. All variations

are randomly distributed over the set of functions. The number of segments

accepted before trying to reduce it is chosen so that the algorithm for pair-wise

aggregation based on hull functions is used at higher levels of the aggregation

hierarchy. A series of tests were run with di�erent hull distances (the number

of segments and the neighbourhood searched depends on the hull distance), as

described in Table 3.1.
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Figure 3.6: The resulting function when one hundred mixed functions are aggre-
gated is almost concave. (A part of the aggregated function is enlarged so that
it is possible to see the noise.)

With this input and con�guration the aggregation at the top level was be-

tween three and 44 times faster with our new algorithm compared to the simple

algorithm of Statement 3.2.1. The variance is due to the choice of hull distance

when constructing the segments, see Section 3.4.3. Counting actual comparisons

the di�erence is even bigger.
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Table 3.1: Aggregating 500 mixed functions. Our algorithm for pair-wise ag-
gregation compared with a complete search of all possibilities. The � is the hull
distance (de�ned in Section 3.4.3). In this case the running time of the top
level aggregation becomes independent of the hull distance from � = 4 since the
algorithm is able to construct one concave hull function per function, cf. Sec-
tion 3.4.3.

Instance Total #Evaluations Time (s) Eval. Time

Time (s) (top level) (top level) Ratio Ratio

Complete Search 72.1 61,868,250 33.2 1 1

Our Alg., � = 0:01 33.3 8,692,049 11.5 7.1 2.9

Our Alg., � = 0:1 12.3 890,327 2.4 69.5 13.6

Our Alg., � = 0:25 10.4 602,657 1.4 102 23.8

Our Alg., � = 0:5 9.8 557,067 1.2 111 28.8

Our Alg., � = 1 9.6 666,945 1.4 93 24.4

Our Alg., � = 2 9.9 621,584 1.3 99 24.9

Our Alg., � = 4 9.3 482,156 0.7 128 44.7

Experiment 2: A Noisy Concave Function and a Smooth Function

Often the function that is noisy could be accurately approximated with a single

concave function, see Figure 3.3 and 3.6. Although this is the normal case, there

are situations, e.g. in power load management, where it is not.

Table 3.2: Aggregating a staircase shaped function, e.g. the objective function
of a power plant, and a noisy concave function. Our algorithm for pair-wise
aggregation compared with a complete search of all possibilities. The � is the
hull distance (de�ned in Section 3.4.3).

Instance #Evaluations Time (s) Evaluation Time

Ratio Ratio

Complete Search 8,865,000 4.83 1 1

Our Alg., � = 0:01 874,046 1.66 10.1 2.9

Our Alg., � = 0:1 307,232 0.56 28.8 8.6

Our Alg., � = 0:25 357,254 0.52 24.8 9.3

Our Alg., � = 0:5 479,622 0.92 18.5 5.3

Our Alg., � = 1 558,127 0.67 15.9 7.2

Our Alg., � = 2 794,694 0.95 11.2 5.1

A power plant often has an objective function that is staircase shaped (as

the one in Figure 3.7, bottom left). Due to its large impact on the system it

is introduced on a rather high level in the aggregation hierarchy (so that it is



40 Resource Allocation with Noisy Functions

OO

//

OO

//

8@

OO

//

Ya

Figure 3.7: If e.g. a power plant with a staircase shaped objective function
is aggregated with a noisy concave function the result is a non-concave noisy
function. (Parts of the noisy functions are enlarged so that it is possible to see
the noise.)

in balance with the other nodes on the same level). When a staircase shaped

function is aggregated with a noisy concave function the result often is non-

concave and noisy, cf. Figure 3.7.

The functions used in this test was a staircase shaped function (e.g. the

objective function of a power plant) and a noisy function that was close to

concave (a function that was the result of an aggregation of a set of mixed

functions, as the set in experiment one). The functions were de�ned over around

3,000 sample points each. As described in Table 3.2 our algorithm was between

three and ten times faster than the brute force algorithm.

Experiment 3: Two Sine Waves With Noise

The next test case appeared to be the hardest one in our series of tests. The

output of the preceding test is a non-concave and noisy function, see Figure 3.7.

Here we aggregate two such functions, constructed as long sine waves with a

low amplitude noise on top.

The construction of the functions was based on sine waves in the interval

[0 : : : 2�] stretched to the length of 2,500 sample points with some random noise

on top (the maximum amplitude of the noise is 1% of the amplitude of the

functions). Except for the noise (that is randomly generated) the two functions

are identical, this makes the task harder for our algorithm.

It is harder for the algorithm to solve this instance faster than a complete
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Figure 3.8: Aggregation of two noisy sine wave functions gives the function at
the top. The input in the bottom row. (A part of the left function is enlarged so
that it is possible to see the noise.)

search does. Still, even with the worst performance of the instance (when the

algorithm cannot reduce the number of segments and has to perform as many

evaluations as the brute force algorithm) the running time does not exceed the

running time of the brute force algorithm with more than a factor two. On the

other hand, with a good choice of � the algorithm is twice as fast as the brute

force algorithm.

The actual output of the preceding experiment could be used as input to a

similar test (i.e. two functions shaped as the top function of Figure 3.7). Such

a test showed that our algorithm managed to run up to thirteen times faster

than the brute force algorithm, and it was not as sensitive to the choice of � as

in the test shown in Table 3.3.

Experiment 4: Two Functions Based on a Set of Five Hundred Ran-

dom Functions

As an adversary test based on a larger set of input functions we have tried ran-

dom noise functions, see Figure 3.9. However, even here the algorithm behaves

surprisingly well.

With a set of �ve hundred functions constructed with random values in

[0 : : : 1] and a good choice of hull distance the algorithm runs the top level

aggregation up to 65 times faster than the complete search algorithm, Table 3.4.

Experiment 5: Two Functions Based on a Set of Five Hundred Convex

Functions

As another adversary test, we used a set of �ve hundred convex functions. With

this set of functions the result is slightly less favourable than with the random
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Table 3.3: Aggregating two sine wave functions. Our algorithm for pair-wise
aggregation compared with a complete search of all possibilities. The � is the
hull distance (de�ned in Section 3.4.3). Not until � = 0:5 the algorithm is able
to reduce the number of segments at all (compared to the number of segments
one gets with � = 0).

Instance #Evaluations Time (s) Evaluation Time

Ratio Ratio

Complete Search 6,250,000 2.2 1 1

Our Alg., � = 0:25 6,250,000 3.49 1 0.6

Our Alg., � = 0:5 744,861 1.00 8.4 2.2

Our Alg., � = 1 1,043,782 1.34 6.0 1.6

Our Alg., � = 2 1.438,994 1.77 4.3 1.2
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Figure 3.9: The resulting function when �ve hundred random functions are ag-
gregated is almost concave. Already at the second aggregation level the almost
concave shape of the aggregated function is obvious.

noise functions and the hull distance has to be larger to achieve running times

that are signi�cantly better than with the brute force approach, Table 3.5. This

is due to the shape of the functions that gives more jagged functions higher up

in the aggregation hierarchy, see Figure 3.10.
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Table 3.4: Aggregating 500 random functions. Our algorithm for pair-wise ag-
gregation compared with a complete search of all possibilities. The � is the hull
distance (de�ned in Section 3.4.3). The running time of the top level aggrega-
tion becomes independent of the hull distance from � = 0:1 since the algorithm
is able to construct one concave hull function per function, cf. Section 3.4.3.

Instance Total #Evaluations Time (s) Eval. Time

Time (s) (top level) (top level) Ratio Ratio

Complete Search 69.9 62,115,388 38.6 1 1

Our Alg., � = 0:01 28.4 893,310 2.45 69 15.7

Our Alg., � = 0:1 6.68 353,444 0.59 175 65.8
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Figure 3.10: With 500 convex functions as input the shape of the aggregated
functions is rather jagged. As the experiments show, the � has to be larger
(compared to an input of mixed or random functions) when we want to obtain
an aggregation that is as e�cient as possible (compare Table 3.5 with Table 3.1
and 3.4).

3.3.3 Summary of the Experiments

Our new algorithm not only theoretically prunes part of the search space, but

also runs faster than the more simple method of testing all combinations (despite
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Table 3.5: Aggregating 500 convex functions. Our algorithm for pair-wise ag-
gregation compared with a complete search of all possibilities. The � is the hull
distance (de�ned in Section 3.4.3). The running time of the top level aggrega-
tion becomes independent of the hull distance from � = 8 since the algorithm is
able to construct one concave hull function per function, cf. Section 3.4.3.

Instance Total #Evaluations Time (s) Eval. Time

Time (s) (top level) (top level) Ratio Ratio

Complete Search 56.0 57,388,068 28.1 1 1

Our Alg., � = 0:01 71.4 56,756,771 3.80 1.0 0.74

Our Alg., � = 0:1 70.0 56,417,480 37.1 1.0 0.76

Our Alg., � = 0:25 64.4 42,068,396 32.5 1.3 0.86

Our Alg., � = 0:5 48.0 18,394,745 19.6 3.1 1.4

Our Alg., � = 1 36.1 9,406,363 13.1 6.1 2.15

Our Alg., � = 2 26.0 5,629,681 8.2 10.1 3.4

Our Alg., � = 4 22.2 4,008,639 6.5 14.3 4.3

Our Alg., � = 8 13.7 1,187,319 1.5 48 19

its larger overhead). It should also be noted that whereas the implementation of

the brute force algorithm can be expected to be close to optimised (because of its

simplicity) much could probably be done to improve our �rst test implementa-

tion of the more complicated algorithm, particularly regarding the partitioning

of the aggregated functions into segments (which is not in focus in this article).

3.4 Technical Details

We solve the problem of noisy functions described above with an algorithm

whose basic idea can be described in the following high level way:

(i) Divide the functions to be aggregated into segments that with a given

hull distance (Section 3.4.3) could be viewed as convex and concave, and

accurately describes the functions, see Figure 3.11 and 3.12,

(ii) follow our previous algorithm (designed without the idea of a hull dis-

tance) [3] on the hull functions (that are either concave or convex) over

the segments but run a few extra steps in the search to guarantee that

the solution is optimal for the original functions. (Hull functions and hull

distances are de�ned in Section 3.4.2.)

3.4.1 Algorithm Without Noise Filtering

The basic idea of our previous algorithm [3] is to divide the functions into (con-

vex and concave) segments and then perform a linear search of each segment
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Figure 3.11: A noisy function is divided into segments with a hull function that
is either concave or convex.

combination for candidate allocations. All candidates of the segment combina-

tion are found during the search.

Our algorithm for noisy functions uses the previous algorithm for e�cient

resource allocation as an essential subroutine. For that reason we start the

technical section with a short description of the algorithm.

Recall the de�nitions of f1, f2, ft, I1 and I2 from Equation (3.2). The domain

intervals of the two functions f1 and f2 to be aggregated are [Rmin

1 : : : Rmax

1 ]
and [Rmin

2 : : : Rmax

2 ] respectively, i.e. Ii = Rmax

i
�Rmin

i
+1, i = 1; 2. Let ft be

represented by a vector ft, and let the optimal allocations of r1 and r2 for each

r be represented by the vectors r1and r2 respectively.4 As an example, ft(7)
corresponds to the highest value of f1 + f2 for r = Rmin

1 +Rmin

2 + 6, and r1(7)
and r2(7) represent the optimal allocation of this resource.

We use algorithm 3.4.1 to compute ft, r1, and r2.

Algorithm 3.4.1 Algorithm for aggregation of two functions.
For every element, i, of the ft vector

ft(i) �1
Divide f1 and f2 into concave and convex segments
For every combination of segments with one segment from f1 and one from f2

For every local candidate allocation (de�ned below), (r1; r2), of the segments
If ft(r1 + r2) < f1(r1) + f2(r2)
{

ft(r1 + r2) f1(r1) + f2(r2)
r1(r1 + r2) r1
r2(r1 + r2) r2

}

We use � to denote function di�erences.

4Again, if the total resource which can be allocated is smaller than I1 + I2, then smaller

vectors can be used.
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De�nition. 3.4.1 Let �f(r) = f(r + 1)� f(r).

Further, as Rmin and Rmax denotes the start and end points of the interval a

function is de�ned over, we de�ne the end points of a segment within a function.

De�nition. 3.4.2 Let rmin be the start point of the interval of a particular
segment and rmax the end point.

We de�ne [3] a global candidate as satisfying the following criterion (cf. the

Kuhn-Tucker criterion [8]):

De�nition. 3.4.3 An allocation (r1; r2) is a global candidate if

r1 = Rmin

1 or r2 = Rmax

2 or �f1(r1 � 1) � �f2(r2) (3.3)

and

r1 = Rmax

1 or r2 = Rmin

2 or �f1(r1) < �f2(r2 � 1): (3.4)

In the same way we de�ne a local candidate:

De�nition. 3.4.4 An allocation (r1; r2) is a local candidate if

r1 = rmin

1 or r2 = rmax

2 or �f1(r1 � 1) � �f2(r2) (3.5)

and

r1 = rmax

1 or r2 = rmin

2 or �f1(r1) < �f2(r2 � 1): (3.6)

Every local optimum is a local candidate. Every global optimum is a global

candidate and every global candidate is a local candidate of some segment com-

bination [3].

Lemma 3.4.1 Algorithm 3.4.1 correctly computes ft and the optimal alloca-
tions in O(I1s2 + I2s1) time[3].

3.4.2 Algorithm Based on Noise Filtering

A problem of using the algorithm above is that the number of segments might

grow to size O(I) with I sample points in the function representations. After

a few levels of aggregation the resulting objective function often is rather well

shaped, but has some relatively small amplitude noise, see Figure 3.3 and 3.4.

The noise originates from the non-concave input functions. Therefore, at some

stage the strategy has to be changed. When the number of segments of the

functions is considered too big, segments based on concave and convex hull

functions (de�ned in Section 3.4.3) are generated and used.
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In this case, if the segments are su�ciently small, one should consider doing

a simple complete search of all possibilities5 in O(k1k2) time (ki = the length of

the ith segment), due to the overhead of the search strategy below. With large

segments and/or small hull distances (de�ned below) the strategy introduced in

this article is appropriate.

The strategy is based on the concepts of hull functions and hull distances

that we de�ne as follows:

De�nition. 3.4.5 f̂ is the smallest concave function such that f̂i(r) � fi(r)
for all r; rmin

� r � rmax, within a speci�c segment.
In the same way �f is the largest function that is convex such that �f(r) � f(r)
for all r; rmin

� r � rmax.
These are illustrated in Figure 3.12.

We use f̂ and �f as functions guiding the search. In this way the number of

segments that the function is divided into is reduced.

De�nition. 3.4.6 The hull function of a segment is either f̂ or �f .

De�nition. 3.4.7 We de�ne the hull distance, �, as the maximum distance
between f and f̂ or �f (depending on which one is used as hull function of the
segment), see Figure 3.12.

Figure 3.12: From top down the following functions are shown:
f̂i(r) (dashed line); fi(r) (solid line); �fi(r) (dashed line). Either f̂ or �f
can be used as hull function on the segment if the hull distance, �, (vertical
dashed lines) does not exceed the given tolerance.

The hull functions, f̂ and �f , are constructed in such a way that the distance

between the hull function and the true function never exceeds � in any point,

for some small � � 0. This � is used in the following section to de�ne the

neighbourhoods that have to be searched. There is a trade-o� between the

number of segments and �; a larger � gives a smaller number of segments but a

larger neighbourhood to search in each step (and the other way around).

5This is done in the test implementation used in the experiments of Section 3.3.
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We now introduce an algorithm for �nding the optimal allocations which also

is applicable when the functions have some small amplitude noise, the algorithm

uses Algorithm 3.4.1 as a subroutine combined with a neighbourhood search.

Algorithm 3.4.2 Algorithm for aggregation of two functions.
For every element, i, of the ft vector

ft(i) �1
Divide f1 and f2 into segments with concave and convex hull functions
For every combination of segments with one segment from f1 and one from f2

For every local candidate allocation6, (r1; r2) of the hull functions
{

Search the neighbourhood7

If ft(r
0

1 + r02) < f1(r
0

1) + f2(r
0

2) for any (r01; r
0

2) of
the neighbourhood of (r1; r2)
{

ft(r
0

1 + r02) f1(r
0

1) + f2(r
0

2)
r1(r

0

1 + r02) r01
r2(r

0

1 + r02) r02
}

}

Theorem 3.4.1 Algorithm 3.4.2 correctly computes ft and the optimal alloca-
tions.

The proof is given i Section 3.4.5.

3.4.3 Constructing Segments Based on Hull Functions

The presentation in the previous section relied on the construction of a number of

segments with hull functions that are either convex or concave. The construction

of these segments is not in focus of this article, but we give a few reasonable

methods here for completeness.

To construct such a hull function the incremental algorithm for building the

convex hull of a point set, see e.g. [5], is applied on (a part of) the objective

function.

The convex hull is built in linear time since the points describing the function

are already sorted. This gives a lower path equal to �f and an upper path equal

to f̂ .

One basic problem is where to set the segment borders to get

(i) a small number of segments, and

(ii) a small hull distance.

6The candidates are found by Algorithm 3.4.1 applied to the hull functions of the segment

combination.
7Described in the lemmas of Section 3.4.4.
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Any one of these aims could be set on focus. One possibility is to control the

number of generated segments and loosen the ambitions to get a small hull

distance, the other to control the hull distance taking the risk that the number

of segments gets to high. But it is a lot harder to solve the problem using some

tradeo� between the two.

Focus on the Number of Segments

One linear time strategy is to �rst approximate the whole function with a single

concave hull function and then, if a maximum of s segments is acceptable, divide

the di�erence between the integrals of the hull function and the true function

by s. The result d could be used as a limit when the segments are constructed

in the following step.

The next step is to go over the function once more and construct the segments

that are to be used. The di�erence between the integrals of the hull function

and the true one is not allowed to exceed d in any segment. Every time the

di�erence reaches d the current segment is ended and a new one introduced.

The last step is to go over the resulting segments and check the maximum

of their respective hull distances and set � to that value.

The strength of this method is that we have full control of the maximum

number of segments in the output and that it runs in linear time. A disadvantage

is that the hull distance could become very large compared to the � of an optimal

segment division. This is a problem that shows up in practice as soon as the

function is not essentially concave or convex, e.g. a staircase shaped function as

in Figure 3.4 (bottom). The methods used in Section 3.4.4 to �nd all possible

optimal allocations are depending on this � not to be too large, so this may be

a major problem.

Focus on the Hull Distance

An alternative is to start with the tolerated hull distance.

First construct a hull on the entire function. If the hull distance is not bigger

than tolerated for either f̂ or �f we are done. Otherwise divide the segment into

two and repeat the process recursively. As long as the segments are divided in

a balanced way the total cost of the operation is O(I log I).
Dividing the segment could be done e.g. where the distance between the

true function and the hull function is largest (a strategy that is not guaranteed

to be O(I log I)). It could also be divided the more simple way, in two equal

halves. With this method we win control over the hull distance, on the other

hand the cost is higher, and there is no guarantee that the number of segments

is acceptable. The quality is hence dependent on a reasonable choice of the hull

distance.

The choice of accepted hull distance is somewhat crucial. If it is slightly too

small the number of segments could end up close to the original number (i.e.

with � = 0). Our tests have shown that a factor two could make the di�erence

between a minimum number of segments and far to many (see Table 3.3). An
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error that is a bit too large is not that serious, what happens is that some more

work is done searching optimal allocations since the breaking conditions are

related to this hull distance (when one or both of the segments are convex).

In many application areas, we believe that an initial choice could be based

on experience. If the result of the segmentation with a particular � is not

acceptable it has to be changed and the segments rebuilt. A reason that this

might be tolerable is that when this aggregation is done over and over again it

is plausible that an � that has worked well in the past will do so this time too.

Another possible strategy is to have a small initial � when starting to build

the segments and if the number of segments grows large let the � grow too. This

may give the di�erent segments of a function di�erent segmentation distances

but to a certain extent that is not a big problem (as long as the � does not grow

too big).

In our test implementation we have chosen to focus on the hull distance and

have a �xed �. Furthermore, we have applied the simple strategy of dividing the

segments in equal halves as long as the hull distance is to big. We have found

it to commonly generate high quality output.

3.4.4 Finding all Possible Candidates in Segments With

Convex and Concave Hull Functions

When a reduced number of segments with an accepted hull distance have been

constructed the search for optimal allocations takes place. This is done combin-

ing each segment of f1 with each segment of f2, see Algorithm 3.4.2.

There are three possible combinations of segments:

� two segments with concave hull functions,

� two segments with convex hull functions, and

� one segment with a concave hull function and one with a convex hull

function.

The main principle of the new algorithm is to apply the old algorithm [3] to

the hull function and use the candidates as starting points for a neighbourhood

search for the optimal solution on f1 and f2.

Any globally optimal allocation has to be locally optimal on some segment

combination, and we de�ne a locally optimal allocation as follows:

De�nition. 3.4.8 For a given resource r and pair of segments (s1; s2) we de-
�ne a local optimum of the segment combination as a resource combination
(r1; r2); r1+r2 = r; with f1(r1)+f2(r2) � f1(r

0

1)+f2(r
0

2) for all (r
0

1; r
0

2); r
0

1+r02 =
r; within s1 and s2 respectively.

De�nition. 3.4.9 We de�ne �Æ such that f1(r1 � �Æ) + f2(r2 + �Æ) � f1(r1 �
�) + f2(r2 + �) where 0 � �Æ � Æ; 0 � � � Æ.
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That is, starting at some (r1; r2) and searching downwards in r1 and upwards

in r2 within a segment combination f1(r1��Æ)+f2(r2+�Æ) is the most valuable
of all allocations of rt = r1 + r2 found moving Æ steps away from (r1; r2). The
de�nition is symmetric searching upwards in r1 and downwards in r2.

Aggregating Two Segments With Concave Hull Functions

The optimal allocation, (r1; r2), of the resource rt = r1+r2 on the hull functions

f̂1 and f̂2 is used as the starting point of a search for the optimal allocation (on

f1 and f2). If f1(r1) + f2(r2) = f̂1(r1) + f̂2(r2) there is no need for searching,

otherwise move one step a time down in r1 and up in r2 searching for the optimal

allocation until the condition in Lemma 3.4.2 is ful�lled or a segment border is

reached. In a symmetric way, test raising r1 and lowering r2.

Lemma 3.4.2 Assume that (r1; r2) is optimal for the concave hull functions on
the segments, where rmin

1 � r1 � rmax

1 ; rmin

2 � r2 � rmax

2 . If

f̂1(r1 � Æ) + f̂2(r2 + Æ) � f1(r1 � �Æ) + f2(r2 + �Æ) (3.7)

where 0 � Æ � min(r1 � rmin

1 ; rmax

2 � r2) then there is no (r01; r
0

2) with

f1(r
0

1) + f2(r
0

2) > f1(r1 � �Æ) + f2(r2 + �Æ) (3.8)

where rmin

1 � r01 < r1 � Æ; r2 + Æ < r02 � rmax

2 .

Proof. For any (r01; r
0

2); r
min

1 � r01 < r1 � Æ; r2 + Æ < r02 � rmax

2 we have thatP2

i=1
fi(r

0

i
) �

P2

i=1
f̂i(r

0

i
) � f̂1(r1 � Æ) + f̂2(r2 + Æ) � f1(r1 � �Æ) + f2(r2 + �Æ).

The �rst and second inequalities are to be proved, whereas the third one is a

precondition of the lemma. The �rst inequality is due to the construction of

the hull functions as the smallest concave functions over the segments such that

every f̂i(ri) � fi(ri); r
min

i
� ri � rmax

i
. The assumption that (r1; r2) is optimal

on the concave hull functions and the concavity of the hull functions give the

second inequality. 2

Lemma 3.4.3 If the neighbourhood de�ned by Lemma 3.4.2 is searched for all
r; (rmin

1 + rmin

2 ) � r � (rmax

1 + rmax

2 ), all locally optimal allocations within
the combination of two segments with concave hull functions is found. The
complexity equals

P
r
Ær, where for each r of the interval, Ær is the smallest

number where Equation (3.7) holds.

Proof. Follows when Lemma 3.4.2 is applied on every allocation that is opti-

mal on the hull functions f̂1 and f̂2. 2
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r1
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r2

Figure 3.13: Aggregating two segments with concave hull functions: With r1 =
r2 = 9, which is optimal with respect to the hull functions, �Æ = 0, and Æ = 2,
we have that f1(r1 � �Æ)� f̂1(r1 � Æ) � f̂2(r2 + Æ)� f2(r2 + �Æ) (Equation (3.7)
rearranged, the dashed lines with diamonds represent the inequality) and the
neighbourhood search of (r1; r2) is complete (in one direction).

Aggregating Two Segments With Convex Hull Functions

Aggregating two convex segments is easy [3] since, for each rt, there are only

two possibilities for a candidate:

1.

r1 =

�
rt � rmin

2 ; rt � rmax

1 + rmin

2

rmax

1 ; rt > rmax

1 + rmin

2

and r2 = rt � r1; (3.9)

and

2. vice versa, i.e.

r2 =

�
rt � rmin

1 ; rt � rmin

1 + rmax

2

rmax

2 ; rt > rmin

1 + rmax

2

and r1 = rt � r2: (3.10)

This follows from the fact that if none of the above is ful�lled we have that

for two convex segments, either �f1(r1) > �f2(r2�1) or �f2(r2) > �f1(r1�1)
or

�
�f1(r1) = �f2(r2 � 1) and �f2(r2) = �f1(r1 � 1)

�
holds. In none of these

cases the allocation is a candidate, cf. Figure 3.14 (left). If both segments

have a hull distance of zero, then the following linear time algorithm �nds all

candidates [3]:

Algorithm 3.4.3 For each rt, try the two possibilities above.

In the following we discuss the second possibility, Equation (3.10), but there

is full symmetry between r1 and r2. When r2 is given as much as possible, there

is one case when r2 = rmax

2 and one when r2 < rmax

2 . We treat the two cases

separately when we de�ne their neighbourhoods.
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r1

r2

r1

r2

Figure 3.14: Aggregating two segments with convex hull functions: With f1 =
�f1 and f2 = �f2 all candidates are found giving as much as possible to one and
the rest to the other. With r1 at the x-axis and r2 at the y-axis all candidates are
found at the border de�ned by their respective minimum and maximum values
(left). With a search based on hull functions (right) the neighbourhood de�ned
by Lemma 3.4.4 and 3.4.5 is searched for the optimal allocation.

As when working on two segments with concave hull functions, start with

�nding an optimum on the hull functions and then search the neighbourhood

for the optimal allocation, cf. Figure 3.14 (right).

There are occasions when it is enough to start a search at the resource given

by Equation (3.10) and no search starting at the resource given by Equation (3.9)

is needed (or the other way around). The condition for this is that

f1(r1) + f2(r2) � �f1(r
0

1) + �1 + �f2(r
0

2) + �2; (3.11)

with (r1; r2) the combination of Equation (3.10) and (r01; r
0

2) the combination

of Equation (3.9). If Equation (3.11) does not hold, both are used as starting

points.

As will be shown, the following algorithm �nds all candidates in two convex

segments:

Algorithm 3.4.4 Algorithm for aggregating two segments with convex hull func-
tions.
For every rt

Try the two possibilities given in Algorithm 3.4.3,8

Search the neighbourhood for a local optimum

The following lemmas give the pruning conditions for the neighbourhood

search (The �Æ is again as in De�nition 3.4.9). Loosely, with the �rst equation,

the two dashed lines with diamonds in Figure 3.15 are compared. As long as

the slope (a; b) of the left pane is greater than the slope (a; b) of the right one it
is possible (due to the hull distance) that a local optimum exists with a higher

8If none of them can be pruned by use of the condition of Equation (3.11).
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r1 and a lower r2. On the other hand we have the dashed lines with triangles.

If the slope (a; c) of the left pane is greater than the slope (c; d) of the right

one the �rst condition will be true all the way over to the other extreme, and

therefore the starting point of the search should be moved over.

Lemma 3.4.4 Given (r1; r2), from Equation (3.10), with r1 = rmin

1 ; rmin

2 �

r2 < rmax

2 , if

�
�f1(r

min

1 + Æ) + �1
�
� f1(r

min

1 + �Æ) > f2(r2 � �Æ)�
�
�f2(r2 � Æ) + �2

�
(3.12)

and
�f1(r

min

1 + Æ)� f1(r
min

1 ) �
�
�f2(r2) + �2

�
� �f2(r2 � Æ) (3.13)

where 0 � Æ � min(rmax

1 � rmin

1 ; r2 � rmin

2 ), 0 � �Æ � Æ, then (r1 + Æ; r2 � Æ)
might be a local optimum. The corresponding holds for (r1; r2) with rmin

1 � r1 <

rmax

1 ; r2 = rmin

2 .

Proof. We can write Equation (3.12) as

�
�f1(r

min

1 + Æ) + �1
�
+
�
�f2(r2 � Æ) + �2

�
> f1(r

min

1 + �Æ) + f2(r2 � �Æ);

hence, it is also possible that

f1(r
min

1 + Æ) + f2(r2 � Æ) > f1(r
min

1 + �Æ) + f2(r2 � �Æ):

This is true whether Equation (3.13) holds or not, but if not, then due to the

convexity of the hull functions the search starting at (rmin

1 ; r2) should be altered
to one starting with giving as much as possible to r1, cf. Figure 3.15. Symmetry

gives that the same holds for (r1; r2) with rmin

1 � r1 < rmax

1 ; r2 = rmin

2 . 2

The next lemma is equivalent to Lemma 3.4.4 except for the starting point

of the search, here r2 = rmax

2 , cf. Equation (3.10).

Lemma 3.4.5 Given (r1; r2), from Equation (3.10), with rmin

1 < r1 < rmax

1 ; r2 =
rmax

2 , if

�
�f1(r1 + Æ) + �1

�
� f1(r1 + �Æ) > f2(r

max

2 � �Æ)�
�
�f2(r

max

2 � Æ) + �2
�

(3.14)

and
�f1(r1 + Æ)�

�
�f1(r1) + �1

�
� f2(r

max

2 )� �f2(r
max

2 � Æ) (3.15)

where 0 � Æ � min(rmax

1 �r1; r
max

2 �rmin

2 ), 0 � �Æ � Æ, then (r1+Æ; r2�Æ) might
be a local optimum. The corresponding holds for (r1; r2) with r1 = rmax

1 ; rmin

2 <

r2 < rmax

2 .

Proof. We can write Equation (3.14) as

�
�f1(r1 + Æ) + �1

�
+
�
�f2(r

max

2 � Æ) + �2
�
> f1(r1 + �Æ) + f2(r2 � �Æ);
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Figure 3.15: Aggregating two segments with convex hull functions: Equation
(3.12) of Lemma 3.4.4 is indicated by the dashed lines with diamonds and Equa-
tion (3.13) is indicated with the ones with triangles. We have f1(r1) to the left,
f2(r2) to the right, r1 = 0 and r2 = 4; Æ = 2 and �Æ = 0, �f and ( �f + �) are
indicated as well. Since both equations hold f1(r

min

1 + Æ) + f2(r2 � Æ) might be
a local optimum. The corresponding holds for Lemma 3.4.5.

hence, it is also possible that

f1(r1 + Æ) + f2(r
max

2 � Æ) > f1(r1 + �Æ) + f2(r
max

2 � �Æ)

This is true whether Equation (3.15) holds or not, but if not, then due to the

convexity of the hull functions the search starting at (r1; r
max

2 ) should be altered
to one starting with giving as much as possible to r1. Symmetry gives that the

same holds for (r1; r2) with r1 = rmax

1 ; rmin

2 < r2 < rmax

2 . 2

Altogether this gives:

Lemma 3.4.6 If the neighbourhood de�ned by Lemma 3.4.4 and 3.4.5 is searched
Algorithm 3.4.4 �nds every locally optimal allocation within the range of�
(rmin

1 + rmin

2 ) : : : (rmax

1 + rmax

2 )
�
on two segments with convex hull functions.

The complexity equals
P

r
Ær, were for each r of the interval, Ær is the smallest

number such that the conditions of Lemma 3.4.4 and 3.4.5 does not hold.

Proof. The lemma follows when Lemma 3.4.4 and 3.4.5 are applied to de�ne

the neighbourhoods on all allocations within the range. 2

Aggregating One Segment With a Concave Hull Function and One

Segment With a Convex Hull Function

With one convex and one concave segment it is possible to �nd all candidates

on a path through the segment combination of length linear in the size of the
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resources [3]. We are using the method to search the hull functions. Therefor

we repeat some of the results from our previous article.

The algorithm for aggregation of a concave and a convex segment is based

on the following three lemmas:

Lemma 3.4.7 If rmin

1 � r1 < rmax

1 , rmin

2 < r2 � rmax

2 and

�f1(r1) � �f2(r2 � 1) (3.16)

there is no candidate (r01; r
0

2), r1 � r01 < rmax

1 , r2 � r02 � rmax

2 , [3].

Lemma 3.4.8 If (r1; r2); r
min

1 < r1 < rmax

1 ; rmin

2 < r2 � rmax

2 is a candidate
then (r01; r

0

2), r
min

1 < r01 � r1, r
min

2 < r02 < r2, is not, [3].

Lemma 3.4.9 If rmin

1 < r1 � rmax

1 ; rmin

2 � r2 < rmax

2 and

�f1(r1 � 1) < �f2(r2) (3.17)

there is no candidate (r01; r
0

2), r
min

1 < r01 � r1, r
min

2 � r02 � r2, [3].

One concave segment and one convex segment can be aggregated by the

following algorithm in O(I1 + I2) time.

Algorithm 3.4.5 Algorithm for aggregating one convex and one concave seg-
ment

1. (rmin

1 ; rmin

2 ) is a candidate. Set r1  rmin

1 , r2  rmin

2 .

2. Repeat r2  r2 + 1 until �f1(r
min

1 ) � �f2(r2 � 1) or r2 = rmax

2 + 1.

3. We can now conclude, either because r2 = rmax

2 + 1 or by Lemma 3.4.7,
that there is no candidate (r01; r

0

2), r
min

1 � r01 < rmax

1 , r2 � r02 � rmax

2 . In
other words: each remaining candidate (r01; r

0

2) satis�es either

rmin

1 < r01 < rmax

1 ; rmin

2 � r02 < r2 (3.18)

or
r1 = rmax

1 : (3.19)

4. In this phase, consider the remaining candidates ful�lling Equation (3.18).
Set r1 = rmin

1 +1 and r2 = r2�1. We will now maintain the following in-
variant: Each remaining (i.e. non-visited) candidate (r01; r

0

2) must satisfy

r1 � r01 < rmax

1 ; rmin

2 � r02 � r2

Initially, the invariant holds.

While r1 < rmax

1 and r2 � rmin

2 , perform one of the four cases:

(i) r2 = rmin

2 , then r1 can be increased by one; the invariant will still
hold,
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(ii) �f1(r1) � �f2(r2 � 1). Then, by Lemma 3.4.7, r2 can be decreased
by one; the invariant will still hold.

(iii) r2 < rmax

2 , �f1(r1� 1) < �f2(r2). Then, according to Lemma 3.4.9
r1 can be increased by one; the invariant will still hold.

(iv) If none of the cases above occur, (r1; r2) is a candidate (see below).
Then, Lemma 3.4.8 gives that r1 can increased by one; the invariant
will still hold.

5. When leaving the loop above, the remaining points to investigate are all ful-
�lling Equation (3.19). Start at (rmax

1 ; rmax

2 ) which is a candidate and de-
crease r2 (implying that �f2(r2) increases) until �f1(r

max

1 �1) < �f2(r2)
or r2 = rmin

2 . Now, according to Lemma 3.4.9 no further candidates exist.

We now turn to what is added when the search is based on hull functions,

phase by phase.

As in the cases of two concave or two convex segments start by �nding the

candidates on the hull functions. For each choice of a resource combination

(r1; r2) perform a local search of the neighbourhood to �nd all possible local

optima, see Figure 3.16. The lemmas below de�ne the neighbourhoods that

have to be searched (and what search areas could pruned).

r1

r2

r1

r2

s

e

Figure 3.16: Aggregating one convex and one concave segment: For some par-
ticular segment, all candidates are on the path of the left �gure. If these are
hull functions, then a neighbourhood search for local optima is performed as
illustrated in the right �gure.

Phase One

The �rst step is to evaluate (rmin

1 ; rmin

2 ). For both r1 and r2 the true function

value is the same as the value of the hull function (due to the way hull functions

are constructed), therefor no neighbourhood search is needed.
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Phase Two

In Phase 2, r2 is incremented until Equation (3.16) holds on the hull functions
�f1 and f̂2, or r2 = rmax

2 . At each step the neighbourhood has to be investigated

and this is done holding r2 constant. In Figure 3.16 (right) the horizontal arrows

pointing right at the left border show how a neighbourhood search is performed

in this phase. The conditions of Lemma 3.4.10 (that de�nes the neighbourhood)

are illustrated in Figure 3.17. Loosely, as long as the slope (a; b) of the left pane
is greater than the slope (a; b) of the right one it is possible that a local optimum
is found raising r2. On the other hand, if the slope (c; d) of the left pane is greater
than the slope (c; d) of the right one any local optimum further to the right will

be found in the other phases, and could be left out.

Using the lemma any local optimum at the left border of Figure 3.16 up to

the point where Equation (3.16) holds (s in the right pane on Figure 3.16) is

found. All other local optima are left to be found in the search of the following

phases.

Lemma 3.4.10 Given (r1; r2) chosen in Phase 2 of Algorithm 3.4.5 (applied
on the hull functions), with r1 = rmin

1 ; rmin

2 < r2 < rmax

2 , if

�
�f1(r

min

1 + Æ) + �1
�
� f1(r

min

1 ) >
�
f̂2(r2 + Æ)� �2

�
� f2(r2) (3.20)

and

�f1(r
min

1 + Æ)� �f1(r
min

1 + Æ � 1) < f̂2(r2 + Æ)� f̂2(r2 + Æ � 1) (3.21)

for some Æ; 0 < Æ � min(rmax

1 � rmin

1 ; rmax

2 � r2) then (rmin

1 + Æ; r2) might be
a local optimum.

Proof. We can write Equation (3.20) as

�
�f1(r

min

1 + Æ) + �1
�
+ f2(r2) > f1(r

min

1 ) +
�
f̂2(r2 + Æ)� �2

�
;

hence, it is possible that

f1(r
min

1 + Æ) + f2(r2) > f1(r
min

1 + f2(r2 + Æ):

This is true whether Equation (3.21) holds or not, but if not then Equation (3.16)

of Lemma 3.4.7 holds on (rmin

1 + Æ; r2) and any allocation (rmin

1 + Æ0; r2); Æ <

Æ0 � rmax

1 � rmin

1 is not part of this border. It might still be a local optimum,

but then it is left to be found during the neighbourhood search of Phase 4 or

Phase 5. 2

Phase Three

No new candidates are added in phase three.
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Figure 3.17: Aggregating one segment with a convex hull function and one with
a concave hull function, Phase 2: Equation (3.20) is indicated by the dashed
line with diamonds and Equation (3.21) with the ones with triangles. We have
f1(r1) to the left and f2(r2) to the right, r1 = rmin

1 = 0, r2 = 4 and Æ = 2,
�f1; ( �f1 + �); f̂2 and (f̂2 � �) are indicated as well. Since both equations hold,
(rmin

1 + Æ; r2) is part of the border to be investigated in phase two.

Phase Four

In Phase 4 the aim is to move from rmin

1 to rmax

1 and at each step the neigh-

bourhood is searched. The main path of this phase starts were Equation (3.16)

holds (s in Figure 3.16 (right)) and ends were rmax

1 is reached (e in Figure 3.16

(right)). In addition we have to search (rmin

1 ; r2 > s) and (rmax

1 ; r2 < e), cf.
Figure 3.16 (right). The same lemmas can be used for managing both these

borders and the main path.

The following lemmas de�ne the neighbourhood searched in Phase 4. First

the lemma giving conditions to end the simultaneous incrementing of r1 and r2,

cf. Figure 3.18, is introduced, then the corresponding for the simultaneous

decrementing, cf. Figure 3.19, is introduced.

Loosely, the �rst of the lemmas give the possibility to prune a more or less

triangular area above the diagonal in Figure 3.16 and the second one prunes

a similar area below the diagonal. The path is constructed with Phase 4 of

Algorithm 3.4.5 applied to the hull functions. At each step a neighbourhood

search is added. In the neighbourhood search both r1 and r2 are simultaneously

incremented until no more local optima exists
�
on the search path starting at

(r1; r2)
�
that are not part of the border searched in Phase 5. In a corresponding

way, r1 and r2 are simultaneously decremented until no more local optima exist�
on the search path starting at (r1; r2)

�
that are not part of the border already

searched in Phase 2.

Lemma 3.4.11 Given (r1; r2), which is a candidate in Phase 4 of Algorithm 3.4.5
(applied to the hull functions), with rmin

1 � r1 < rmax

1 ; rmin

2 < r2 � rmax

2 , if

�f1(r1 + Æ)�
�
�f1(r1) + �1

�
� f̂2(r2 + Æ)�

�
f̂2(r2)� �2

�
; (3.22)
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0 < Æ � min(rmax

1 �r1; r
max

2 �r2), then no (r01; r
0

2); r1+Æ � r01 < rmax

1 ; r2+Æ <

r02 � rmax

2 could be a local optimum if not at the border searched in phase �ve.

Proof. By convexity � �f1(r
0

1) � � �f1(r1 + Æ) and by concavity �f̂2(r
0

2) �

�f̂2(r2 + Æ). Hence �f1(r
0

1) �
�
�f1(r1) + �1)

�
� f̂2(r

0

2) �
�
f̂2(r2) � �2

�
and the

lemma follows. 2

0 5 10 15 20
r1

0 5 10 15 20
r2

Figure 3.18: Aggregating one segment with a convex hull function and one with
a concave hull function, Phase 4: Equation (3.22) is indicated by the dashed line
with diamonds. We have f1(r1) to the left, f2(r2) to the right, r1 = 10; r2 =

9 and Æ = 5, �f1; ( �f1 + �); f̂2 and (f̂2 � �) are indicated as well. Since the
equation holds, no (r01; r

0

2); r1+ Æ � r01 < rmax

1 ; r2+ Æ < r02 � rmax

2 can be a local
optimum if not being part of the border searched in phase �ve.

Lemma 3.4.12 Given (r1; r2), which is a candidate in Phase 4 of Algorithm 3.4.5
(applied to the hull functions), with rmin

1 � r1 < rmax

1 ; rmin

2 < r2 � rmax

2 , if�
�f1(r1) + �1

�
� �f1(r1 � Æ) �

�
f̂2(r2)� �2

�
� f̂2(r2 � Æ); (3.23)

0 < Æ � min(r1 � rmin

1 ; r2 � rmin

2 ), then no (r01; r
0

2); r
min

1 < r01 � r1 � Æ; rmin

2 <

r02 � r2� Æ could be a local optimum if not at the border searched in phase two.

Proof. By convexity � �f1(r
0

1) � � �f1(r1 + Æ) and by concavity �f̂2(r
0

2) �

�f̂2(r2 + Æ). Hence �f1(r
0

1) �
�
�f1(r1) + �1

�
� f̂2(r

0

2) �
�
f̂2(r2) � �2

�
and the

lemma follows. 2

With this the search space of the diagonal of Figure 3.16 is de�ned and all

that remains is the border at rmax

1 .

Phase Five

In Phase 5, r2 is decremented from (rmax

1 ; rmax

2 ) until Equation (3.17) of Lemma 3.4.9
holds on the hull functions, or r2 = rmin

2 . At each step, the neighbourhood has
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Figure 3.19: Aggregating one segment with a convex hull function and one with
a concave hull function, Phase 4: Equation (3.23) is indicated by the dashed line
with diamonds. We have f1(r1) to the left, f2(r2) to the right, r1 = 10; r2 =

9 and Æ = 5, �f1; ( �f1 + �); f̂2 and (f̂2 � �) are indicated as well. Since the
equation holds, no (r01; r

0

2); r
min

1 < r01 � r1 � Æ; rmin

2 < r02 � r2 � Æ can be a local
optimum if not being part of the border searched in phase two.

to be investigated and � as in Phase 2 � this is done holding r2 constant. We

can see in Figure 3.16 (right) how a neighbourhood search is performed in this

phase (the horizontal arrows pointing left at the right border). The conditions

of Lemma 3.4.13 (that de�nes the neighbourhood) are illustrated in Figure 3.20.

Loosely, as long as the slope (a; b) of the left pane is less than the slope (a; b)
of the right one it is possible that a local optimum is found lowering r2. On

the other hand, if the slope (c; d) of the left pane is less than the slope (c; d) of
the right one, any local optimum further to the left (in Figure 3.16 (right)) has

been found in the other phases, and does not need to be considered.

The following lemma de�nes the neighbourhood that has to be searched

during this phase.

Lemma 3.4.13 Given (r1; r2) chosen in Phase 5 of Algorithm 3.4.5 (applied
on the hull functions) with r1 = rmax

1 ; rmin

2 � r2 < rmax

2 , if

f1(r
max

1 )�
�
�f1(r

max

1 � Æ) + �1
�
< f2(r2)�

�
f̂2(r2 � Æ)� �2

�
(3.24)

and

�f1(r
max

1 � Æ + 1)� �f1(r
max

1 � Æ) > f̂2(r2 � Æ + 1)� f̂2(r2 � Æ); (3.25)

0 < Æ � min(rmax

1 � rmin

1 ; r2 � rmin

2 ) then (rmax

1 ; r2 � Æ) might be a local
optimum.

Proof. We can write Equation (3.24) as

f1(r
max

1 ) +
�
f̂2(r2 � Æ)� �2

�
< f2(r2) +

�
�f1(r

max

1 � Æ) + �1
�
;
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hence, it is possible that

f1(r
max

1 ) + f2(r2 � Æ) < f1(r
max

1 � Æ) + f2(r2):

This is true whether Equation (3.25) holds or not. But if it does not hold

then Equation (3.17) of Lemma 3.4.9 holds on (rmax

1 � Æ; r2) and any allocation

(rmax

1 � Æ0; r2); Æ < Æ0 � rmax

1 � rmin

1 is not part of this border. It might still be

a local optimum, but then it has already been found during the neighbourhood

search of phase 2 or phase 4. Cf. Figure 3.20. 2
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Figure 3.20: Aggregating one segment with a convex hull function and one with a
concave hull function, Phase 5: Equation (3.24) is indicated by the dashed lines
with diamonds and Equation (3.25) is indicated with the one with triangles. We
have f1(r1) to the left and f2(r2) to the right, r1 = rmax

1 = 9; r2 = 6 and Æ =

2, �f1; ( �f + �); f̂2 and (f̂2 � �) are indicated as well. Since both equations hold
f1(r

min

1 + Æ) + f2(r2 � Æ) is part of the border to be searched in Phase 5.

Conclusion on the Aggregation of One Segment With a Concave Hull

Function and One Segment With a Convex Hull Function

The aggregation of one concave and one convex segment is non-trivial even when

there is no noise to handle, but it is possible to do in time linear in the size

of the segments. In this section we have shown how it is possible to prune a

signi�cant part of the search space even when we have low amplitude noise on

top of segments that essentially are concave and convex respectively. By this it

is possible to avoid a complete search of all combinations within the segments.

Lemma 3.4.14 All locally optimal allocations on one segment with a convex
hull function and one segment with a concave hull function are found if

(i) Algorithm 3.4.5 is applied on �f1 and f̂2, and

(ii) a neighbourhood search is performed at each r; (rmin

1 +rmin

2 ) � r � (rmax

1 +
rmax

2 ), according to Lemma 3.4.10 . . . 3.4.13.
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The complexity equals
P

r
Æ. In the case of Lemma 3.4.10 and 3.4.13, Æ is

the smallest number such that the conditions do not hold. In Lemma 3.4.11
and 3.4.12, Æ is the smallest number such that Equation (3.22) and Equa-
tion (3.23) hold.

Proof. Follows from Lemma 3.4.10 . . . 3.4.13. 2

3.4.5 Proof of Theorem 3.4.1

By now we have what we need to prove Theorem 3.4.1.

The algorithm searches the neighbourhood of every local candidate of the

hull functions. This is done for every possible combination of segments.

There are three possible segment combinations (see the introduction to Sec-

tion 3.4.4). In all the combinations all local optima are found, Lemma 3.4.3,

3.4.5, and 3.4.14.

Since a globally optimal allocation has to be a local optimum for some seg-

ment combination the theorem follows.

3.5 Conclusions

In this article, we have presented a robust algorithm for resource allocation

with separable objective functions. It is particularly interesting to note that

we can handle seemingly impossible instances, such as random functions, more

e�cient than the obvious brute force algorithm. Simply said, whenever there is

some regularity in the input, either in the original objective functions or in the

intermediate aggregated functions, we take advantage of this.

Although our algorithm is more involved than the brute force algorithm, the

implementation overhead is a�ordable, as shown by our experiments. Therefore,

our new algorithm is a competitive candidate for practical applications.
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