

IT Licentiate thesis
2001-008

UPPSALA UNIVERSITY
Department of Information Technology

Personal Service Environments –
Openness and User Control in
User-Service Interaction

MARKUS BYLUND

Personal Service Environments –
Openness and User Control in User-Service Interaction

BY
MARKUS BYLUND

June 2001

COMPUTING SCIENCE DEPARTMENT
INFORMATION TECHNOLOGY

UPPSALA UNIVERSITY
UPPSALA
SWEDEN

Dissertation for the degree of Licentiate of Philosophy in Computing Science
at Uppsala University 2001

Personal Service Environments –
Openness and User Control in User-Service Interaction

Markus Bylund

markus.bylund@sics.se

Computing Science Department

Information Technology
Uppsala University

Box 337
SE-751 05 Uppsala

Sweden

http://www.it.uu.se/

 Markus Bylund 2001
ISSN 1404-5117

Printed by Uppsala University, Tryck & Medier, Uppsala 2001

i

Abstract

This thesis describes my work with making the whole experience of using electronic
services more pleasant and practical. More and more people use electronic services in
their daily life – be it services for communicating with colleagues or family members,
web-based bookstores, or network-based games for entertainment. However,
electronic services in general are more difficult to use than they would have to be.
They are limited in how and when users can access them. Services do not collaborate
despite obvious advantages to their users, and they put the integrity and privacy of
their users at risk.

In this thesis, I argue that there are structural reasons for these problems rather than
problems with content or the technology per se. The focus when designing electronic
services tends to be on the service providers or on the artifacts that are used for
accessing the services. I present an approach that focus on the user instead, which is
based on the concept of personal service environments. These provide a mobile locale
for storing and running electronic services of individual users. This gives the user
increased control over which services to use, from where they can be accessed, and
what personal information that services gather. The concept allows, and encourages,
service collaboration, but not without letting the user maintain the control over the
process. Finally, personal service environments allow continuous usage of services
while switching between interaction devices and moving between places.

The sView system, which is also described, implements personal service
environments and serves as an example of how the concept can be realized. The
system consists of two parts. The first part is a specification of how both services for
sView and infrastructure for handling services should be developed. The second part
is a reference implementation of the specification, which includes sample services
that adds to and demonstrates the functionality of sView.

Keywords. Electronic services, personal service environments, user control,
ubiquitous computing, user interfaces, mobility, personalization, service
collaboration, component-based software engineering.

ii

iii

Acknowledgements

The work behind this thesis has been conducted during a period of more than three
years and many people have played important roles in helping to shape the results. It
would be impossible for me to mention all the people that have contributed and unfair
to the ones that I would forget. I have therefore taken the liberty of selecting a few
that I believe have played a particularly import role in the process.

Annika Waern has been my supervisor and mentor in both the work that led to the
ideas behind this thesis, and the work with the thesis itself. Thank you for all help,
patience, and belief in my work.

I would also like to thank my supervisor Arne Andersson at Uppsala University for
valuable and encouraging comments on my work.

Fredrik Espinoza has played an important role throughout the work described
herein, in particular during the early work with laying the groundwork of the design
of sView – thank you for inspiration and many creative discussions.

Many thanks to the members of the HUMLE laboratory at SICS for providing a
stimulating environment and numerous creative formal and informal meetings.
Especially Kristina Höök who has commented upon and encouraged my work from
an outside perspective ever since I started at SICS. I am also particularly grateful to
Mikael Boman (a HUMLE alumni) and Anna Sandin for help with developing parts
of the sView system, and Stina Nylander for proof reading and commenting upon my
manuscripts.

My colleagues at the SICS Uppsala office have also helped to create an inspiring
work environment, especially Per Mildner with his ever optimistic and encouraging
comments.

Finally, I would like to thank my family: my father Torgny and my two brothers
Andreas and Hannes, and in particular, my wonderful son Victor for making me
realize what really matters in life and my beautiful wife Pia for sharing it with me.

iv

v

Table of Contents

Abstract...i

Acknowledgements...iii

Table of Contents ...v

Preface...1

Overview ...2
Background..3
The Papers ...4
References ...5

Paper A

M. Bylund and A. Waern, “Service Contracts: Coordination of User-Adaptation in
Open Service Architectures,” Personal Technologies, vol. 2, pp. 188-199, 1998.
Reproduced with permission.

Paper B

M. Bylund and A. Waern, “Personal Service Environments – Openness and User
Control in User-Service Interaction,” SICS Technical Report T2001:07, Swedish
Institute of Computer Science, Kista, Sweden, May, 2001.

Paper C

M. Bylund, “sView - Architecture Overview and System Description,” SICS
Technical Report T2001:06, Swedish Institute of Computer Science, Kista, Sweden,
May, 2001.

Appendix I

Selected parts of the API documentation of the core sView specification.

1

Preface

Electronic services are gaining an increasingly broader acceptance, not only for
professional use, but also for school and family activities as well as recreation and
pleasure. Any functionality that can be mediated electronically can be seen as an
electronic service. Examples include the watch on the desktop of your personal
computer, but also the autonomous software agent [1] for automatically placing bids
in electronic auctions, a family calendar on the screen fridge in your household
kitchen, or your voice mail service in a cellular phone network.

However, service providers seldom focus on the complete situation of their users
when designing and deploying electronic services. A calendar service on a PDA
(Personal Digital Assistant) for example, is not the user’s calendar in the first place,
but rather the user’s calendar on that particular device. The fact that the user probably
needs to coordinate his or her activities with people without access to the calendar,
possibly using other calendar services, is seldom catered for. For reasons like this, I
see a need to work towards maximizing the user’s control over the whole experience
of using electronic services.

One of the most important factors in achieving user control is how users can access
their services. Services must be available to their users whenever they wish to access
them and on an interaction device at hand at that time. Sometimes that is when using a
particular personal computer (which is stationary) or PDA (which is mobile). Some
other time a service is best used from any computer, provided that it is equipped with
a Web browser and an Internet connection. In any case, we better provide services
that can be reached from many different types of devices and with varying network
connectedness, or else the users’ possibilities to be in control of their usage will be
limited.

Ubiquitous access to services is however of little use if the services must be
restarted each time the user switches to another device. For example, a user might
issue a search for cheap airline tickets on a stationary personal computer. It takes a
while for the results of the search to appear and the user needs to catch a bus. It would
be useful if the user could access the search results via a cellular phone from the bus
instead of waiting by the personal computer. This example illustrates a need to
support continuous usage of services even when switching between interaction
devices and moving between places.

Another requirement on user control is that the user can choose which services to
use. The World Wide Web is exemplary in this respect since any user can connect to
any Web page on the Web [2]. At the same time anyone can publish his or her own
Web page for everyone else to browse. In the context of electronic services, this issue
is really about openness – in order to provide the user with a free choice of which
services to use, the infrastructure for electronic services (as well as the devices that
mediate services) must be open to any service provider.

A fourth issue concerns personalization of services. Electronic services typically
gather and store large amounts of information about their users. Sometimes this
information is vital for the service in question. An online bookstore for example,

2

needs to know the addresses of its users in order to deliver the purchased goods. In
some cases however, this information is not collected for the benefit of the
functionality of the service, but only for the purpose of making money (e.g. by
gathering and selling demographic information). Two user control issues are related
to these kinds of information gathering. Firstly, to maintain user privacy and integrity
the service should allow the user to decide and control whether or not it is allowed to
collect personal information or share information with other services [3]. Secondly,
when the set of services grows, it becomes unmanageable to inspect and modify
information about oneself for each and every service. One way to approach a solution
to both of these problems is to provide a central access point (i.e. central with respect
to the user) for personal information. This would allow the user to control which
services that have access to what information. It would also allow the user to inspect
and modify personal information in one place for all services.

A central access point for personal information is one example of how services can
collaborate and share information to provide richer user support. Many other
examples of where two or more services can benefit from collaborating can be found.
For example: a calendar service can collaborate with a meeting booking service, a
map service can collaborate with a phone registry service, a payment service can
collaborate with any service that requires payment, etc. But which service should be
allowed to collaborate and about what? This is yet another issue that the user should
be allowed to control.

Overview

This thesis describes a novel approach to give users of electronic services more
control. The approach is based on the concept of personal service environments,
which are storage and execution environments for electronic services that are private
to individual users. The personal service environment is open in the sense that any
service provider can develop service components, which any user can put in his or her
environment. Within the service environment, service components can collaborate
about content and functionality provision. By collecting all services of an individual
user in one place, the approach opens for solutions to manage personal information
(the personal service environment becomes a natural place for storing personal
information) and to control how services collaborate.

The service environment is in itself mobile, and it can follow the user as he or she
moves between computers and devices. As the environment migrates, the services
stored in it follow. This reduces the dependency on network connectivity for usage. In
many cases, the service environment can execute locally on the interaction device,
completely removing the need for a network connection. Local execution also allows
the use of more powerful user interfaces such as Graphical User Interfaces (GUI).
Remote user interfaces, such as HTML and WML browsers, are typically less
expressive and powerful. However, the personal service environment allows
interaction via any type of user interface. This makes services available to the user
even when he or she does not have direct access to an interaction device that is
powerful enough to run the complete service environment. In such a case, the service

3

environment has to execute on a network-based server that users can access from e.g.
public Web kiosks and thin clients such as cellular phones.

During migration of a personal service environment, the services that are stored in
it are offered to save their state. This allows the user to start a session with a service
on one computer, suspend the interaction and move to another computer or device
while bringing the service environment, and finally resume and continue the
interaction exactly where it was suspended. With this, the approach also provides
continuity.

The concept of personal service environments has been implemented in the sView
system, which is a Java based specification and implementation for electronic
services. The system consists of two parts. The first part is a specification of how to
develop service components for use in the system. It also specifies how to develop the
infrastructure that is required in order to store and execute the service components.
This specification allows anyone to develop both service components and
infrastructure for handling personal service environments.

The second part is a reference implementation of the specification. The
implementation provides a server that is capable of storing and executing personal
service environments. It also allows service environments to migrate between servers.
A number of sample services (a calendar, an e-mail client, a payment service, etc.)
and utility services for handling different types of user interfaces (GUI, HTML, and
WML), user preferences, etc. are also included.

The sView system is freely available for download from http://sview.sics.se/.

Background

The ideas behind the concept of personal service environments, and later the sView
system, emerged from experiences of several previous research efforts.

The first of these projects, the KIMSAC project [4], concerned presentation
coordination in the context of public multi-service information kiosks. This work
focused on how to coordinate the presentations (to the user) of a set of independent
software agents in one single user interface. This resulted in the development of the
sicsDAIS system [5, 6], which is a system that presents a user interface, to which
agents can add user interface components. The system includes functionality for
coordination of the different agents’ interface components. The development of the
sicsDAIS system taught us the importance of coordinating the user interfaces to
independent but related functionality.

In the KIMSAC project we also worked with content adaptation [7]. The task was to
coordinate how independent software agents, which worked in a shared domain for
the same user, adapted the content of their presentations to the skills and usage history
of the user. In this project, presentation coordination was managed by a separate
personal assistant agent. This solution proved overly complex, as what really was
needed was a common locale for storing information about the user. Information that
could be added, modified, and shared between several agents simultaneously, at the
same time as the user had a reasonable chance of inspecting and modifying the
information. This experience from KIMSAC resulted in the first of the research papers
included in this thesis [8]. The focus in this paper is on basic requirements on service

4

collaboration, requirements that have influenced the design of the personal service
environment concept as well as the sView specification.

The EdInfo project [9] explored how to utilize the knowledge and expertise of
individual users when performing complex information filtering tasks, and how an
information system could be designed to support different user roles in this process.
The ideas were implemented in the ConCall system, a system for distribution and
filtering of conference calls. The system supports two user roles: expert editors and
consumers of conference calls. ConCall was implemented using mobile agent
technology [10] and it shares many properties with the sicsDAIS system and the
support for coordination of content adaptation in the KIMSAC project. The use of
mobile software agents for these kinds of systems was evaluated and it was found to
have its merits, but not to the extent that the overhead of using it is justified [11].

Having worked with autonomous agents and mobile agent systems in several
projects, we felt a need to broaden our view on our primary abstraction for software
development. In some situations we found the autonomous agent concept limiting –
especially when we designed software that could not easily be categorized as
autonomous or as having beliefs, desires, and intentions [1]. Instead we adopted the
concept of electronic services, which very well may include autonomous as well as
mobile agents.

In isolation, the different activities in the KIMSAC and the EdInfo projects were
successful. However, taken together the results of these activities suffered from the
same problems as I claim that electronic services suffer from today. The systems that
were developed were limited to one or only a few access systems. They did not
collaborate despite the fact that they explored similar domains and very well could
benefit from collaboration. From the users’ point of view they were isolated units of
functionality that did not take the user’s complete situation into account. The
identification of these problems is what triggered my work with this thesis.

The Papers

This thesis consists of three scientific papers, A through C, which are summarized
below.

Paper A [8] represents early work on the ideas behind the concept of personal
service environments and the sView system. The paper introduces a particular type of
service contracts in an agent architecture. These are described as mutual agreements
on collaboration between software agents. The paper includes an example of how the
technique can be applied as a base for coordination of adaptation of content towards
the user. The material presented in this paper has influenced the work on personal
service environments. The paper describes a classification of service architectures,
Open Service Architectures (OSA), which includes most of the properties that we
later refer to as openness. Neither personal service environments nor the sView
system implements the ideas of service contracts or content adaptation coordination.
However, a personal service environment is a sound locale for such functionality for
two reasons. Firstly, it provides functionality for performing the kind of
communication that is needed in order to specify service contracts. Secondly, it

5

provides a locale in which information about the user can be collected and stored for
the purpose of performing adaptation of content towards the user.

Paper B [12] introduces the concept of personal service environments. The concept
is motivated in terms of openness and user control, and further by more detailed
requirements on heterogeneity, extendibility, accessibility, adaptability, and
continuity. The concept is compared to alternative approaches such as the World
Wide Web (with extensions) [2, 13, 14], Mobile Agent Environments [9-11, 15-18]
and a few other systems for electronic services [19-21]. The paper also contains a
description of the sView system as an example of how the concept can be
implemented, as well as examples of our experiences with using sView in several
research activities [22-27].

Paper C [28] is a technical description of the sView system. The design of sView is
motivated in terms of openness, in particular by requirements on heterogeneity and
extendibility. The architecture of the system is described as being composed of two
main parts: a core specification and a reference implementation. The main part of the
paper is a detailed description of the core specification. The reference implementation
is also described in brief.

References

[1] J. M. Bradshaw, Software Agents. Menlo Park, CA: AAAI Press/MIT Press, 1997.
[2] T. Berners-Lee, R. Caillau, J.-F. Groff, and B. Pollermann, “World-Wide Web: The

Information Universe,” Electronic Networking: Research, Applications and Policy,
vol. 2, pp. 52-58, 1992.

[3] E. Volokh, “Personalization and Privacy,” Communications of the ACM, vol. 43, pp.
84-88, 2000.

[4] P. Charlton, Y. Chen, F. Espinoza, A. Mamdani, O. Olsson, J. Pitt, F. Somers, and A.
Waern, “An Open Agent Architecture Supporting Multimedia Services on Public
Information Kiosks,” presented at Practical Applications of Intelligent Agents and
Multi-Agent Systems, PAAM'97, London, UK, 1997.

[5] F. Espinoza, “sicsDAIS: A Multi-Agent Interaction System for the Internet,”
presented at WebNet 99—World Conference on the WWW and Internet, Hawaii,
1999.

[6] F. Espinoza, “sicsDAIS: Managing User Interaction with Multiple Agents,” Ph.Lic.
thesis, The Royal Institute of Technology and Stockholm University, Stockholm,
1998.

[7] M. Bylund, “Coordinating Adaptations in Open Service Architectures,” M.Sc. thesis,
Uppsala University, Uppsala, 1999.

[8] M. Bylund and A. Waern, “Service Contracts: Coordination of User-Adaptation in
Open Service Architectures,” Personal Technologies, vol. 2, pp. 188-199, 1998.

[9] A. Waern, M. Tierney, Å. Rudström, and J. Laaksolahti, “ConCall: An information
service for researchers based on EdInfo,” Swedish Institute of Computer Science,
Kista, T98-04, 1998.

[10] J. E. White, “Mobile Agents,” in Software Agents, J. M. Bradshaw, Ed. Menlo Park,
CA: AAAI Press/MIT Press, ISBN 0-262-52234-9, 1997, pp. 437-472.

[11] M. Tierney, “ConCall: An Exercise in Designing Open Service Architectures,”
Ph.Lic. thesis, The Royal Institute of Technology and Stockholm University,
Stockholm, Sweden, 2000.

6

[12] M. Bylund and A. Waern, “Personal Service Environments – Openness and User
Control in User-Service Interaction,” Swedish Institute of Computer Science, Kista,
Sweden, SICS Technical Report T2001:07, May, 2001.

[13] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen, S.
Thatte, and D. Winer, “Simple Object Access Protocol (SOAP) 1.1,” World Wide
Web Consortium, W3C Note 27 July 1999, May 8, 2000.

[14] A. Di Stefano and C. Santoro, “NetChaser: Agent Support for Personal Mobility,”
IEEE Internet Computing, vol. 4, pp. 74-79, 2000.

[15] N. Minar, M. Gray, O. Roup, R. Krikorian, and P. Maes, “Hive: Distributed Agents
for Networking Things,” presented at First International Symposium on Agent
Systems and Applications, Third International Symposium on Mobile Agents
featuring the Third Dartmouth Workshop on Transportable Agents, Rancho Las
Palmas Marriott’s Resort and Spa, Palm Springs, CA, 1999.

[16] C. Pullela, L. Xu, D. Chakraborty, and A. Joshi, “A Component Based Architecture
for Mobile Information Access,” Department of Computing Science and Electrical
Engineering, University of Maryland Baltimore County, Technical Report, TR-CS-
00-05, March 31, 2000.

[17] H. L. Chen, “Developing a Dynamic Distributed Intelligent Agent Framework Based
on the Jini Architecture,” M.Sc. thesis, University of Maryland Baltimore County,
Baltimore, 2000.

[18] T. Sandholm and Q. Huai, “Nomad: Mobile Agent System for an Internet-Based
Auction House,” IEEE Computer, vol. 4, pp. 80-86, 2000.

[19] “OSGi Service Gateway Specification Release 1.0,” Open Services Gateway
Initiative, May, 2000.

[20] “Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile
Telecommunications System (UMTS); Mobile Station Application Execution
Environment (MExE); Functional description; Stage 2,” European
Telecommunications Standards Institute, ETSI TS 123 057 v.3.0.0, January, 2000.

[21] “Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile
Telecommunications System (UMTS); Mobile Station Application Execution
Environment (MExE); Service description; Stage 1,” European Telecommunications
Standards Institute, ETSI TS 122 057 v.3.0.1, January, 2000.

[22] M. Boman, “Implementing services for a PSE,” M.Sc. thesis, Uppsala University,
Uppsala, Sweden, 2000.

[23] F. Espinoza, P. Persson, A. Sandin, H. Nyström, E. Cacciatore, and M. Bylund,
“GeoNotes: Social Filtering of Position-Based Information,” Swedish Institute of
Computer Science, SICS Technical Report T2001:08, May, 2001.

[24] H. Nyström and A. Sandin, “Social Mobile Services in an Open Service Environment
- an Overview, Analysis and Implementation,” M.Sc. thesis, Uppsala University,
Uppsala, Sweden, 2001.

[25] P. Persson, F. Espinoza, and E. Cacciatore, “GeoNotes: Social Enhancement of
Physical Space,” presented at CHI'2001, Seattle, WA, 2001.

[26] S. Nylander and M. Bylund. “Providing Universal Device Access to Mobile
Services,” Unpublished manuscript, available at: http://sview.sics.se, 2001.

[27] F. Espinoza and O. Hamfors. “ServiceDesigner: Enabling End-Users Access to Web
Services,” Unpublished manuscript, available at: http://sview.sics.se, 2001.

[28] M. Bylund, “sView - Architecture Overview and System Description,” Swedish
Institute of Computer Science, Kista, Sweden, SICS Technical Report T2001:06,
May, 2001.

Paper A

1

M. Bylund and A. Waern

188

© Springer-Verlag London Ltd
Reproduced from Personal Technologies (1998) 2:188-199, with permission.

1. Introduction

The computer systems of today are no longer stand-
alone programs developed for a closed group of
users or professionals in a well-known organisation
and environment. Instead, computer systems are
turning into computer services, available to a large,
distributed and heterogeneous user group. In the
same way, the individual user is no longer faced
with an individual computer system, but with a
vast and perpetually changing array of computer
services. Services move between platforms: they
are no longer bound to the individual desktop com-
puter, but run on information kiosks, portable and
wearable devices, mobile phones and the home TV.
This requires an Open Service Architecture (OSA):
a framework in which an open set of users can
access and interact with an open set of services.

A critical issue for OSAs is their integration.
An OSA forms a particular kind of complex sys-
tem, where components are developed independ-
ently of each other. Unless there is any kind of
integration of components, the individual user will
be faced with a multitude of interaction metaphors
and interfaces, that must all be understood and
learned. The situation is worsened rather than
eased by personalisation, since every service as well
as platform may provide different ranges of adapta-
tions and different means for accessing them.

In this paper, we address this issue by proposing
to view the components of an OSA as agents rather

than as stand-alone systems. The key feature here
is that agents are not integrated in the classical
sense; rather, they are constructed so that they can
adapt to and collaborate with other agents. We
propose that this collaboration is done within the
framework of negotiating and executing a service
contract: explicit or implicit descriptions of how
agents are to collaborate.

2. Open Service Architectures

An Open Service Architecture includes and
supports three necessary components:

• an open set of users,
• an open set of services,
• a means for users to access the services.

There exist today many simple examples of OSAs.
The de facto standard OSA is the World Wide Web
(WWW), that in its purest form provides nothing
but this: users can access a service by navigating
to it or by typing its web address. Services can be
anything from pure web pages, to search engines,
or market places where vendors present goods that
users can both buy and pay for through the system.

The simple structure of the WWW has several
advantages. The biggest advantage is that each
information provider, vendor, or web service pro-
vider can make himself or herself available without
collaborating with anyone else. They may gain

Service Contracts: Coordination of User-
Adaptation in Open Service Architectures

Markus Bylund and Annika Waern
Swedish Institute of Computer Science, Kista, Sweden

Abstract: An Open Service Architecture (OSA) is a framework that supports an open set of users to subscribe to, and possibly pay for, an
open set of services. Today, the World Wide Web (WWW) is the most successful example of an OSA. Nevertheless, the WWW provides
poor support for personalised services, since services cannot collaborate unless handcrafted to do so. We present a framework that allows
independent, personalised services to coordinate their adaptations to individual users. The framework is described in terms of service contracts
in an agent architecture. We first describe the general notion of service contracts, and then the particulars of service contracts used for
adaptation coordination. Adaptation coordination addresses a crucial issue for OSAs: that of providing users with homogeneous interaction
with heterogeneous services. We suggest that this is done by introducing a separate adaptation coordination agent, which orchestrates how
the individual services are personalised.

Keywords: Adaptation coordination; Agent-oriented programming; Open service architectures; Service contracts; User adaptive services

Service Contracts: Coordination of User-Adaptation in Open Service Architectures

189

advantages from collaboration, but collaboration
is not necessary. Technically, there are very few
standards to adhere to, essentially, basic knowledge
of hypertext mark-up language (HTML) is all that
is needed to go online.1

The disadvantages of the WWW are also
mainly caused by the fact that services are inde-
pendent of each other. If there is to be any kind of
collaboration between services, it must be hand-
crafted by the people developing them, and it can
only be maintained if humans agree to coordinate
their further development and maintenance of the
services. The simplest example of this problem is
stale links, but search engines, market places, and
other brokering services run into similar problems.
One effect is that it is almost impossible to develop
subservices made available to other services, such
as translation components, databases of video clips,
user modelling capabilities, etc. There are also many
problems with the WWW that occur because the
WWW protocols were originally developed for
information presentation and not as a generic
OSA platform. This has lead to problems with pay-
ment schemes, secure identification, and the user’s
control over their user profiles and usage statistics.

The problems with the WWW show that there
is good reason to attempt richer approaches to open
service architectures. These will not, of course,
replace the WWW but they can live in parallel
and within the WWW to provide better support
for service interaction. The immense success of the
WWW shows that it has some properties that
should not be disregarded in constructing an agent-
based OSA. In particular,

• developers must be able to develop services inde-
pendently of each other, adhering to a minimum
of very simple and clear standards,

• services should be identified with who provides
them.

2.1. Agent-oriented programming for
open service architectures

The notion of agency in computer science lit-
erature is not one uniform idea. In his introduction
to the book Software Agents [1], Jeffrey Bradshaw
identifies two motivations for the recent interest
in agents in computer science: the search for novel
interaction metaphors, and the need for new

programming paradigms for large and open sys-
tems. The first has spurred work on visible interface
agents that maintain a dialogue with the user,
as well as software agents to which the user can
delegate some of his or her more tedious tasks. The
latter has concentrated on what Shoham [2,3]
called Agent-Oriented Programming (AOP):
techniques for constructing software architectures
where the individual components are treated as
if they had mental qualities such as beliefs, inten-
tions, and desires, and collaborate with each other
by communicating these.

This paper is concerned directly with the second
issue: that of creating programming paradigms
for large and open systems. We propose that the
OSA be realised as a collaboration between service
and user agents. It is simple to see that these can
be viewed as entertaining beliefs, desires, and
intentions.

• Service agents will maintain beliefs concerning
the services it can provide. User agents will, in
turn, maintain beliefs that have to do with the
individual users: their characteristics, tasks and
work environment.

• A user uses a service only if it provides some
added value for him or her. Similarly, a company
offers a service only if it can gain something from
this. These objectives can be modelled as the
desires of the service and user agents.

• The intentions of agents correspond to the collab-
orations that they are currently involved in. In
this paper, we describe these in terms of service
contracts. An agent can entertain two kinds of
intentions: an intention to form a service contract,
or the intention to complete a service contract.

In the KIMSAC project [4], we investigated the use
of current agent technology for developing an
OSA. Although this experiment was partly success-
ful, it showed that building truly flexible and robust
OSAs is a major challenge to agent technology. In
particular, current agent technology gives little
support for setting up or negotiating services to a
user or another service, as opposed to just routing
individual queries to a competent service.

A more recent example is the EdInfo system
[5,6]. EdInfo is an information service system devel-
oped at the Swedish Institute of Computer Science.
The current application of EdInfo ConCall deals
with calls for papers and participation for forth-
coming conferences. It contains two services: the
ConCall service that routes information about calls
to forthcoming conferences to individual researchers

1As with all new means of human communication, WWW has
spurred novel social conventions and even fashion trends. Most
developers will also aim to adhere to such conventions.

1

M. Bylund and A. Waern

190

based on their interest profiles, and a reminder
service that users can use to set up reminders about
conference deadlines as well as other relevant dates.

The conceptual architecture of EdInfo is shown
in Fig. 1. Most of the agents, the Personal Service
Assistant (PSA), the Reminder Service, the User
Profile and the ConCall agent, are personal to the
user. They hold information about the state of the
current session with the user, and may hold infor-
mation about the user and store it between sessions.
The Personal Assistant is the user’s representative
in the agent architecture, and is used to help the
user to select services. The reminder agent and the
ConCall agent are the user’s personal “copies” of
generic services, which other users also may sub-
scribe to. The database agent is used by multiple
users, and it does not store user-specific informa-
tion. Agents communicate with each other by
Knowledge Query and Manipulation Language
(KQML) messages. The ontologies used are appli-
cation specific. Users communicate with agents
through special-purpose applets.

The EdInfo system is a very good example of
the kind of service architectures that we want to
accomplish. All agents in EdInfo have at least two
interfaces: one towards users, and one towards
other agents. Some of the agents maintain per-
sonalised information and adapt their interaction
to it: the PSA agent maintains information about
which services the user subscribes to, the User
Profile agent maintains information about user
preferences, and the Reminder Agent maintains
information about the user’s reminders. A par-
ticularly interesting functionality is the User Profile
agent, which maintains a model of the user’s

preferences. This model could potentially be shared
between different services. The only reason that it
is not is that the EdInfo system holds no other
service that needs to be adapted to user preferences.
For example, it could be shared with an alert ser-
vice, which would scan the WWW for new doc-
uments and reports in the user’s area of interest.
This would turn the profile agent used in ConCall
into a special-purpose adaptation coordination agent.
In Section 4, we will discuss the generic concept
of adaptation coordination agents in detail.

EdInfo is still not an OSA. There are no means
for users to seek for and subscribe to new services,
or for the ConCall service to utilise any other
reminder service than the one that is built-in. In
future work on the OSA platform underlying
EdInfo, we aim to achieve a way for services to be
set up automatically or semi-automatically.

As an example, let us go through an imagined
scenario for how a user could initiate subscription
to the ConCall service.

• The user instructs the PSA to contact a facilitator
service to seek a service that collects information
about conference calls.

• The facilitator suggests the ConCall service.
• The ConCall service spawns a personal ConCall

agent for the user. Its initial intention is to form
a service contract with the user. It proposes a
service contract to the PSA, indicating what the
service costs, how the service works, and what
information it needs from the user in order to
perform its services. In addition, it explains that
it cannot keep track of reminders – a reminder
service is needed for that.

• The user agrees to the deal, under the provision
that the user profile cannot be passed on to other
agents. (If he or she had declined the contract,
the personal ConCall agent would be deleted
at this point.)

• The ConCall agent agrees to the deal, includ-
ing the restriction on the user profile informa-
tion, and provides a reference to a particular
reminder service.

• The user may now register with the reminder
service in the same manner, or ask the facilitator
agent for an alternative service that can provide
the same functionality.

3. Service Contracts

A Service Contract is a mutual agreement between
a group of agents, which describes how they

Fig. 1. The ConCall service architecture.

PSAReminder
Service

ConCall
Agent

Logging
Agent

Database
Server

User
Profile

Service Contracts: Coordination of User-Adaptation in Open Service Architectures

191

collaborate. It can be partly implicit (hard-wired
into the construction of agents and in the basic
communication infrastructure), and partly expli-
citly negotiated and agreed upon. Agents may also
negotiate service contracts at multiple levels: they
may negotiate a service in itself, and they may
negotiate how to negotiate a service. The import-
ant realisation is that each scheme for negotiation
is by itself a service contract, and that this object/
meta level distinction need not stop at two levels.

At a very basic level, service contracts always
exist. All languages for Agent-Oriented Program-
ming are based on the assumption that agents
adhere to certain basic principles. KQML agents
are assumed to be benevolent and to provide
answers to queries if they can [7]. Agent commun-
ication language (ACL) agents are committed
to answering requests from facilitators that they
register with [8], and Contract Net agents are com-
mitted to a particular protocol for requesting and
accepting task allocations [9]. Within these basic
collaboration principles, agents engage in collab-
oration and may negotiate details of their collabora-
tion. Thus, agents are bound not only by the basic
collaboration principles, but also by individual or
mutual intentions or “deals” that they commit to
based on their interactions with each other, and
with external resources.

Note that agents may break service contracts,
even implicit ones. Agents may be poorly con-
structed and unable to realise the conventions,
or agents may deliberately flaunt collaboration,
defecting from what was agreed upon to gain
advantages for themselves or their owners. Further-
more, if agents engage in explicit negotiation, there
is always the risk that they do not have a mutual
understanding of what has been agreed. Agent
architectures typically must contain some means
of protection against misunderstandings, as well
as incompetent or malevolent agents [10]. In this
paper, we are not so much concerned with how
agents are to protect themselves from such behav-
iour, but how to recognise it; what are the commit-
ments that agents need to be able to make, and in
which ways can agents break their commitments?

3.1. Elements of service contracts

Service Contracts can be used both to describe
an actual service, to describe methods for service
negotiation, and even to describe methods for
negotiating ways of negotiation. But independently
of what the service contract is used for, it must

convey sufficient information to allow all particip-
ating agents to agree on two critical questions:

1. “Do we want to collaborate?”
2. “Can we collaborate?”

The first question involves comparison of the
contract and the agent’s own goals. The second
question breaks down into several components,
dealing with how the collaboration will be carried
out. We can view service contracts as comprising
at least five items of agreement, all of which could
be subjects of negotiation:

• Why: Do we want to collaborate?
• What: Do we have anything to collaborate about?
• How: How should we use these competencies?
• When: What information do we need to exchange,

and when?
• Language: What language should we use in the

information exchange?

The list is not necessarily exhaustive; it stems from
an analysis of the needs that arise in open service
architectures. Below, we analyse each of the items
and discuss why it is included. This discussion is
only intended to give an informal understanding
of what is involved in defining a service contract.
In Waern [11] we go into some detail on how ser-
vice contracts can be formulated in a semi-formal
manner. A full formalisation of the notion of
service contracts is lacking, but Verharen et al. [12]
report a similar approach based on deontic logic.

Do we want to collaborate? Agent architectures
can be built around the notion of self-interested
agents. This is the natural construction for an
OSA, where each agent is put online by some par-
ticular person or organisation, and can be seen as
serving the interests of that person or organisation.
In such architectures, agents will collaborate only
if they get something out of it. This notion of self-
interest has sometimes been seen as a defining
characteristic of agents (“objects do it for pleasure,
agents for money”).

Do we have anything to collaborate about? Even
in a collection of benevolent agents, collaboration
will occur only if at least one agent finds a need to
consult other agents. This is best analysed at task
level: there are some tasks that one agent want to
achieve, but that it either cannot do, or believes
that some other agents can do better than itself.
This agent can then take the initiative to negotiate
a service contract with other agents.

1

M. Bylund and A. Waern

192

How should we use our competencies to collab-
orate? In order to enable collaboration, the agents
may tailor their behaviour based on information
from each other. In the simplest case, this negotia-
tion becomes part of the service itself. A travel agent,
for example, needs information about my needs (trav-
elling to Spain) and preferences (no stopover in
Copenhagen) to set up a travel arrangement for me.

A more advanced example is the tailoring of
general knowledge to a specific domain. Much
work in artificial intelligence (AI) has gone into
building expert system shells, truth maintenance
systems, user modelling shells, etc., systems that
provide a generic reasoning capability. These sys-
tems could potentially be encapsulated into agents
that can provide reasoning capabilities for other
agents, provided that they are equipped with the
appropriate domain knowledge when the service
is set up. In Section 5, we will discuss the usage of
service contracts in tailoring the competencies
of an adaptation coordination agent. In this
domain, the agent’s user modelling capabilities
need to be tailored to the different domains that
the subscribed services deal with.

What information do we need to exchange, and
when? In some applications, the whole service
contract negotiation leads up to a single trans-
action; this is the prevailing case in computational
market architectures [13]. In service architectures,
the product of negotiation is more complex and
concerns a service that is to be provided over a per-
iod of time. This service will require some informa-
tion exchange. In the simplest case, this exchange
is unidirected, such as a Service Provider telling a
user agent that a certain situation has arisen (the
“tell me when I receive mail” case). A more complex
example is the interaction schemes discussed in
the adaptation coordination example (Section 4).

Which terminology should we use in the infor-
mation exchange? A quite common assumption
for agent communication languages is that agents
need to share, not only the language in which to
express ontologies, but also some domain-specific
ontologies. This requirement can be lessened by
meta-level negotiation of an object-level ontology.
Agents can both negotiate to select an ontology
they commonly understand, or exchange informa-
tion so that some of them learn new ontologies
that will be used in subsequent interactions. In par-
ticular, this occurs when a generic agent tailors
its services to a specific domain. The information
it accommodates will not only allow it to make

inferences in a new domain, but also to commun-
icate its inferences in a domain terminology that
it did not know in advance.

4. Analysis of Adaptation
Coordination

When moving from individual computer systems
to OSAs, the task of adapting system functionality,
dialogues and interfaces to the user becomes truly
complex. There are several reasons for this:

• Short life cycle: individualising software takes
time and requires effort, either from the user or
from the system. The user might not want to
spend the time required to individualise a service
manually if it is only to be used once and for a
short period. In addition, services might not get
the amount of interaction with the user that is
required for automatically performing adaptations.

• Many entities to adapt: with a multitude of
services to choose from, and frequent collab-
oration between services, the total number of
entities that the user encounters will be large.
Due to the high workload, the user cannot
possibly be expected to individualise new ser-
vices manually if such are encountered frequently.

• More of the same: the information that adap-
tations are based on is expensive to gather. This
is true whether it is done automatically by the
system or if the user enters it manually. However,
this information is not always unique to a spe-
cific service. A user’s preferred language is an
example of a preference that is likely to be stable
across all services of the user. If adaptation is to
be made individually for each service, a lot of
work will be duplicated.

• Protection of information: the user might not
want to share all information that is needed to
perform an adaptation with the services. How to
reduce that need for sharing of information while
still performing adaptations is also a challenge.

In the following, we will argue for a solution to
these problems by introducing an adaptation coor-
dination agent. Such a component could be used
to reuse user information details from services
that the user previously has subscribed to. It could
also constitute a uniform interface for controlling
adaptations made by multiple services, in order
to reduce the user’s efforts. Lastly, it could hide
information about the user from services, informa-
tion that is needed when performing adaptations.

Service Contracts: Coordination of User-Adaptation in Open Service Architectures

193

Following is an example of a very simple adap-
tive user interface in an OSA; namely, the adapta-
tion of coloured links in WWW browsers. The
example highlights many interesting aspects of
adapting information in OSAs, and throughout the
analysis it will be referenced repeatedly.

Example

Most WWW browsers automatically adapt the colour of links
to whether the user has followed it or not. The colour might,
for example, be blue if the link has never been followed (or if a
certain period has lapsed since it was most recently followed),
and red after the user has explored it. Several ways to modify
the adaptation exist, one being that of letting the user select
the colours representing followed and not followed links,
respectively. A second is to let Service Providers define colours
of their own, overriding the user’s settings. A third way to modify
the adaptation could simply be to let the user decide whether
Service Providers should be allowed to override link colour
settings or not. �

4.1. Actors

Categorisations of actors in adaptive systems
frequently occur in literature, either explicitly or
implicitly [14, 15]. However, they fail to address
the issue that is central to OSAs, the support of
an open set of both services and users. We therefore
suggest three main categories of actors in OSAs:
Users, Service Providers and Adaptation Coordinators.

Users: In this analysis, we are viewing the User as
just another agent that participates in the adap-
tation process. For this task, the user could need
assistance with representation to the other groups
of agents in the OSA. Within the EdInfo project
(see Section 2.1), such a user representative was
implemented in the form of a PSA.

To enable service interaction, it is useful if the
surface-level system-user interaction can also be
integrated. A plain window system suffices to
present the interfaces to different services, but it
is desirable that services also are enabled to inte-
grate their various presentations into a single one.
Espinoza [16] describes an interaction system that
has been developed for this purpose. It provides a
front end to agent-based frameworks for open
service architectures, in which services for example
can share user interface components or relate inter-
face components to each other through a common
layout schema. This interaction system was used
as the front-end for the Kimsac system.

Example

The prime example of an interaction system is of course a WWW
browser, through which services of all kinds share a common
interface. The browser knows how to render presentations

specified in HTML directly, but can also be equipped with a
set of components (shared between services) for rendering of
presentations in other specifications. �

Service Providers: A Service Provider is responsible
for the content and functionality that its service
constitutes. It possesses most of the knowledge
about the information and behaviour that can be
adapted to the user, and so they are bound to play
a central role in the task of performing adaptations.

Adaptation Coordinator: The Adaptation Coor-
dinator task is to coordinate actions and knowledge
between the User on the one hand, and Service
Providers on the other. It works as a container for
information in an OSA that otherwise would be
duplicated. General information about the user is
an example of an entity that an Adaptation Coor-
dinator can maintain. In the discussion that follows,
we will find other kinds of information that fall
into this category. The Adaptation Coordinator can
also perform adaptations, completely or in part, if
they either are common between a set of services,
or for other reasons delegated to the Adaptation
Coordinator by a service.

Example

In the example mentioned earlier in this section, it is easy to
identify the different actors. The User is of course the user of
the WWW browser, using the browser as an interaction system
that renders presentations of services and interprets user input
for forwarding to Service Providers. The Adaptation Coordina-
tor is a component in the browser, and Service Providers are
WWW recourses (e.g. web pages) on the Internet. �

4.2. Models

To allow agents to take on these roles in collabora-
tion, they must share common views on some
classes of information. This common understand-
ing may be built-in, or such views must be agreed
upon prior to executing adaptations.

What follows is a division of the models that
together describe an adaptation: Domain Models,
User Model and Adaptation Model. While the
division is influenced by Benyon [15], we have
switched focus from design aspects of adaptation
to the matters of how the adaptation process can
be distributed.

Domain Models: In order to perform an adaptation,
a great deal needs to be known about the domain
in which changes are to be made. Domain Models
describe adaptable aspects of services, including
physical design, logical functions and tasks related
to services.

1

M. Bylund and A. Waern

194

One important aspect of adapting services is to
recognise that in order to perform an adaptation
at a certain level, this level must be modelled in a
Domain Model. For example, if a menu is to be
adapted to usage frequency, a model describing the
menu hierarchy must exist, or if the set of tasks
that may be performed is to be adapted to the user’s
cognitive skills, a task model is needed.

Example

In the example from the introduction of Section 4, the domain
model includes a common understanding of the object link.
Also described are actions that can be performed on it (follow),
as well as attributes of it (current_state, time_since_last_ follow,
not_ followed_colour, and followed_colour). �

Models of service domains are service specific and
to the greater part owned by Service Providers, they
are not likely to be duplicated in an OSA. How-
ever, it is often useful to store at least parts of
Domain Models with the Adaptation Coordinator.
This is true if multiple services share a domain,
whether in part or completely, and wish to delegate
the task of performing adaptations to the Adapta-
tion Coordinator. This would let the user control
an adaptation that applies to multiple services from
one entry point only.

Another reason for storing parts of Domain
Models with the Adaptation Coordinator is that
the user-modelling capabilities of the Adapta-
tion Coordinator may require domain-specific
knowledge to allow for making inferences.

User Model: The User Model describes attrib-
utes that the system can adapt to; the very source
of input for the adaptive system, namely the user
of the system. Models that describe aspects of
the user include profiles, cognitive models, and
student models.

User models can be implemented with generic
components. An example of such a tool is BGP-MS
[17], a shell for modelling user’s (presumed) know-
ledge, beliefs and goals. General parts of the user
model naturally reside within the Adaptation
Coordinator. However, User Models sometimes
are not easily expressed in a generic form. For
example, Malinowski [18] describes a system that
models the user’s use of an interface as a base for
adaptation of shading and colouring of user inter-
face details. This adaptive system shades items
that have not been used for a long time, and col-
ours red fields with values not commonly used.
Malinowski’s User Model constitutes a very shal-
low description of the user, a model that is quite
implementation dependent.

Example

The model for describing what to adapt to includes all attributes
that are needed to decide the colour of the link (i.e. the adap-
tation). These attributes include one set of values each for
representing default values, the user’s values and the Service
Provider’s values. Also defined is an attribute that states whether
the user accepts Service Provider overrides or not. Note that
this model need not be completely distributed between the
actors. Only the Adaptation Coordinator needs to access
all parts of it. �

Even in the case when the User Model is service
or domain specific, there may be reasons to store
it with the Adaptation Coordinator. It is always
desirable to let users have control over their own
models. A user should for example be able to specify
what information about itself that a service should
be allowed to share with other services. In some
cases, the user might even want to hide the User
Model from the very service that the adaptation
stems from. If the Adaptation Coordinator is imple-
mented as a component that the user can trust,
the user can store information with it instead of
with individual services. Given that the Service
Providers agree to delegate the necessary parts of
their domain models, the Adaptation Coordinator
can perform the adaptation in place of the service.

Based on this discussion, it seems like a good
idea to place large parts of the User Model with
the Adaptation Coordinator. This makes for a sit-
uation where adaptations that are directed towards
the user can be based on a uniform model, no
matter which Service Provider is responsible.

Adaptation Model: The Adaptation Model describes
mappings from attributes of the User Model, to
attributes of the set of Domain Models. These map-
pings constitute descriptions of the very adaptations
that the adaptive system performs.

The Adaptation Model also includes mechan-
isms for detecting when a certain adaptation should
be triggered (i.e. a mapping from the User Model
to the Adaptation Model itself). Adaptation Models
of self-regulating, self-mediating and self-modifying
adaptive systems [19] also include functionality for
evaluating the effect of an adaptation, together
with functionality for adapting the adaptations
themselves (i.e. mapping both from and to the
Adaptation Model).

Example

The Adaptation Model includes an adaptation function
as follows:

if(isDefined(sp_not_followed_colour) &
isDefined(sp_followed_colour) &

allow_override==true)
if(current_state==followed)

Service Contracts: Coordination of User-Adaptation in Open Service Architectures

195

setLinkColour(sp_followed_colour)

else

setLinkColour(sp_not_followed_colour)

else if
(isDefined(user_not_followed_colour) &

isDefined(user_followed_colour))
if(current_state==followed)

setLinkColour(user_followed_colour)

else

setLinkColour(user_not_followed_colour)

else

if(current_state==followed)
setLinkColour(default_followed_colour)

else

setLinkColour(default_not_followed_colour)

The ontology must also properly describe the attribute
current_state, which holds information about whether the link
has been followed or not. �

The Adaptation Model can exist in both domain
specific and generic forms. Service providers gener-
ally hold knowledge about adaptations that are
specific to the service, e.g. “if the user is unidenti-
fied, disable secure transmission”. The Adaptation
Coordinator may complement such information
with generic knowledge about adaptations, e.g.
“activate help if the user makes three consecutive
errors when interacting with a new service”.

4.3. Adaptation phases

The adaptation process can be split into a set of
tasks. Kühme et al. [14] suggest the following four
phases of adaptation:

• Initiative. One of the actors suggests a need for
an adaptation.

• Proposal. Adaptation alternatives are proposed.

• Decision. One of the alternatives is chosen.
• Execution. The adaptation is executed.

Kühme et al. [14] mapped these tasks to the set of
actors that were most relevant for their analysis,
namely the system and the user, thus developing a
way to describe configurations of adaptations. In order
to describe adaptation configurations in OSAs,
we replace a system with Service Providers and
Adaptation Coordinator, as defined in Section 4.

This model of adaptation configurations in OSAs
partially determines how the models described in
Section 4.2 are distributed between actors. For
example, the configuration that is pictured in Fig.
2 indicates that the Service Provider must possess
large parts of the Domain Model. Otherwise, it
would be difficult to actually execute the adap-
tation. The Adaptation Model that describes what
is triggering the adaptation and the direct mapping
from the User Model to the Domain Model must
be held by the Adaptation Coordinator. For this
purpose, the Adaptation Coordinator, as well as
the User, need to share an ontology of terms with
the Service Provider for describing the adaptation.

Interaction schemes: The actors that participate
in the adaptation process must agree upon which
interactions are necessary in order to complete the
adaptation. We will refer to such an agreement as
an Interaction Scheme. This construct constitutes a
detailed description of the interaction that takes
place between the User, Service Providers and
the Adaptation Coordinator while performing
an adaptation.

An example of an Interaction Scheme, taken
from the KIMSAC project [4], is illustrated in
Fig. 3. In this example, the User interacts via an
Interaction System (see Section 4.1, Users) and
the task is to adapt the selection of terms in a

Fig. 2. An example of a task/actor configuration of an adaptation in an OSA. Note that this configuration allows only the user to
decide which adaptation to execute.

Adaptation Service Provider User
Coordinator

Initiative The AC initiates the adaptation

Proposal The AC proposes a set of alternatives

Decision The user selects an action from the set of alternatives

Execution The SP in question executes the choice of the user

1

M. Bylund and A. Waern

196

glossary to the content of the workspace of the
Interaction System. The adaptation is triggered
when the User requests extended help, an action
that will reveal an option for the user to request
the context-sensitive glossary. Multiple Service
Providers can sign up to contribute with terms for
the glossary, and the Adaptation Coordinator coor-
dinates the compilation of the selection of terms.

5. Adaptation Coordination
as a Service Contract

In the previous section, we analysed in detail what
information services need to share in order to allow
adaptation coordination. Here, we will discuss how

this information can be negotiated as part of a
service contract.

As should be clear from the previous discussion,
adaptation coordination requires two levels of ser-
vice contract: one that governs the actual adap-
tation coordination, and one meta level contract
that is used when a user subscribes to a new service.
We expect that the latter would be hard-wired in
the agent architecture: agents that take on the roles
of Service Providers and Adaptation Coordinators
must share a common communication language,
in which they can negotiate how to perform adap-
tation coordination. The complexity of this lan-
guage depends on when the adaptation coordination
models are decided upon, whether at design time,
at startup, or during execution.

Fig. 3. An example of an Interaction Scheme from the Kimsac system [4]. Horizontal arrows represent messages being sent between
actors. Arrows with a single head represent a single message, and arrows with two heads represent multiple messages.

Runtime

Setup
Prereq.

for
Runtime

Execution
Based on the replies

from the glossary
providers, the AC

compiles one glossary.

Initiative
The AC looks up which

SPs are registered for
the current state

Glossary provider
registration

Request for
glossary terms

Glossary terms

Event: Help sequence initiated

Proposal Decision
Based on the current
interaction with the
user, each glossary
provider proposes and
decides upon a set of
terms and explanations
to send back to the AC.

(Time)

Components in the IS
renders the glossary

Adapted glossary

Service Provider(s)Adaptation Coordinator Interaction System

Service Contracts: Coordination of User-Adaptation in Open Service Architectures

197

5.1. Specifying the domains during design

The simplest solution is to define all models,
including the interaction schemes, at design time.
If this approach is used, a new service can introduce
itself to an adaptation coordinator simply by stating
which domain models it is able to handle. This
introduction is in itself a very simple negotiation,
similar to the KQML approach, where agents
publish themselves to a facilitator by stating their
competencies [7]. We could envision that the
Adaptation Coordinator is allowed to reply “no”
to this information, implying that the service has
mentioned a domain model that the Adaptation
Coordinator is unaware of.

An obvious drawback with this option is that
all methods for adaptation need to be known when
designing the system. Adding new adaptations
to the system would require that the adaptation
coordinator and many of the services are redesigned
and reimplemented. In practice, this is a very
disturbing limitation, as it severely restricts the
OSA in terms of what kinds of services it can cover.
The very purpose of an OSA is to allow new
services and new users to come online. At least
sometimes, this should lead to the introduction of
new service domains, new user aspects, or new
methods for adaptation.

Example

The coloured links adaptation is an example where ontologies
and the interaction scheme are fixed during design. This makes
the implementation very straightforward. Service Providers do
not even have to participate in the adaptation process at all. If
they do want to affect the process though, all they have to do is
to add a few statements to the HTML code that specifies how
the service should be rendered. However, if a Service Provider
wishes to extend the adaptation, for example by introducing a
third colour for links that the user followed more than a week
ago, it would not be possible. There is simply no means for the
Service Provider to express this to the Adaptation Coordinator
and the User. �

Service Contracts defined at startup: A more flex-
ible solution is obtained if agents are implemented
in a generic manner, so that they can be specialised
by loading appropriate parts of the domain, user and
adaptation models. The models are then stored in
a separate database that is accessed by all agents
upon startup of the system.

This solution allows the designers to make
changes to the models that the system supports,
without having to redesign and reimplement an
arbitrarily large subset of the agents. There are two
main drawbacks of the method, though. First, the
option is obviously only open to systems that can
be shut down and restarted each time a novel type

of service is added. Second, all agents must share
a common language for the descriptions of these
models, so that they are able to load appropriate
parts of the domains at startup. As discussed in
Section 2, a useful requirement on an OSA is that
developers can develop services independently of
each other, adhering to as small a set of standards
as possible. It may be difficult to incorporate this
method for domain specialisation, and still adhere
to this principle.

The KIMSAC system [4] was made open for
maintenance using this technique.

5.2. Service contract negotiation
at runtime

The most flexible solution is found if agents are
allowed to negotiate service contracts at runtime.
In this case, agents must share a communication
language in which they can negotiate parts of the
runtime service contract prior to executing it.
But even this alternative has many variants: we
need not allow all five levels of the service contract
(the why, what, how, when and language levels
discussed in Section 3.1) to be negotiated. In addi-
tion, at each of the levels of the service contract
some information can be hard-wired into the
OSA structure, depending on the fact that service
and adaptation coordinator agents take on pre-
defined roles in the architecture. Below, we show
why the domain, user and adaptation models
cover most aspects of what remains to be nego-
tiated. In practice, the negotiation will be even
more limited in most systems, depending on restric-
tions in what Service and Adaptation Coordinators
actually can do.

Why: We have so far silently assumed that agents
need not negotiate at the “why” level for imple-
menting adaptation coordination. The adaptation
agent exists solely for the purpose of coordinating
adaptations. Services that wish to participate in
coordinated adaptation will simply initiate nego-
tiation with the adaptation agent, which is always
willing to negotiate a service contract.

This assumption is rather too strong, though.
The privacy issue makes it unlikely that the user
will always be willing to volunteer sufficient per-
sonal information to an arbitrary service to allow
adaptation coordination. Instead, the user may very
well choose, for the sole purpose of remaining anony-
mous, to use the service in a less personal way than
is optimal. In reality, there should be a negotiation
at the “why” level, in which the user is presented

1

M. Bylund and A. Waern

198

with some information about what the service can
do, and can decide whether he or she really wants
to use this service in a personalised manner.

What: The “what” issue is encoded in the agent
roles: service agents provide the adapted services,
and adaptation agents coordinate these adapta-
tions. The “what” issue is closely related to the
competence profiles for agents. Negation at the
“what” level may occur if there are adaptation
agents with different competence profiles, for
example if they have different capabilities to
perform user modelling or store service-specific
information about the user.

How: The adaptation model expresses the “how”
level issues for adaptation coordination. As dis-
cussed in Section 2, the adaptation model is seldom
shared, but resides partly with service and partly
with Adaptation Coordinator agents. In practice,
this means that much of the adaptation model
information will be hard-wired into agents and
never explicitly negotiated.

In addition to the adaptation model, parts of the
domain and user model structures may very well
need to be negotiated in order to tailor the compet-
encies of agents prior to execution. An example is
when a service agent provides information about
the domain structure to the adaptation coordinator,
in order to allow it to make domain-dependent
inferences about the user during execution.

When: The interaction schemes discussed in
Section 3 describe “when” agents collaborate in
adaptation coordination. Ideally, the actors should
negotiate these by the actors prior to execution.
In practice, we can expect that an OSA will only
supply one or a few types of adaptation coordina-
tion agents, each capable of only a small set of
interaction schemes. One reason is that many of
the possible interaction schemes are meaningless
in practice, since they assume impossible distribu-
tions of competencies between the actors involved
(Bylund [20] discusses this issue further). If the
agents only support a limited set of interaction
schemes, the negotiation of interaction scheme is
reduced to agreeing on the names of the ones that
will be used. At runtime, the agent that initiates
adaptation can select the interaction scheme, as is
done in KaOS [21].

Language: As should be clear from the EdInfo
example discussed in Section 2, it is often mean-
ingless or impractical to require that agents interact

in a generic language during execution of a service
contract. Much of the language of interaction
can be defined by a combination of explicit trans-
fer of domain and User Model knowledge (nego-
tiation at the “how” level), and explicit definition
of the interaction schemes. This could, however,
be very costly, and we expect that designers of
adaptive systems must compromise here between
openness and the cost of implementation. A use-
ful approach is that taken by current standard
agent communication languages such as KQML
[22]. In KQML, the syntax and certain high-level
aspects of the semantics are fixed, whereas the
detailed semantics are up to designers as well as
to agent negotiation to tailor to the specific needs
of the application.

6. Conclusions

Agent-oriented programming provides a useful
means of integration and coordination of services
inOSAs. Service contracts form a useful concept
in describing how agents negotiate and execute
collaboration.

One particularly challenging example of a service
contract is the task of coordinating multiple services
that adapt to a singular user. The example is chal-
lenging, since adaptation coordination is a very
complex process, both in terms of what information
needs to be shared between agents, and how agents
need to communicate. To deal with the task, we
suggest that a separate agent be introduced that
coordinates the adaptations between services. Based
on this architecture, we analysed the knowledge
needed to perform adaptation coordination,
and how this knowledge needs to be distributed
between the service and adaptation coordination
agents. Finally, we discussed how this knowledge
forms a service contract, taken together with such
knowledge that is hard-wired into the roles of
the service and adaptation coordinatior agents
in the architecture.

In addition to the task of coordinating adapta-
tion, service contract negotiation can also provide
means for users to find services and pay for services.
We are currently involved in the development of
different open and adaptive information service
systems. In this work, we have come to focus on a
common agent-based platform for such services,
which implements a limited range of service con-
tract negotiation for information services. The work
is carried out in collaboration with work at SICS
on open platforms for electronic commerce [23].

Service Contracts: Coordination of User-Adaptation in Open Service Architectures

199

References

1. Bradshaw JM. Software agents. AAAI Press,Menlo Park,
CA and MIT Press, Cambridge, MA, 1997

2. Shoham Y. An overview of agent-oriented programming.
In:Bradshaw JM (ed) Software agents. AAAI Press, Menlo
Park, CAand MIT Press, Cambridge, MA, 1997; 271–290

3. Shoham Y. Agent-oriented programming. Artif Intelligence,
1993; 60 :51–92

4. Charlton P, Chen Y, Espinoza F et al. An open agent
architecture supporting multimedia services on public
information kiosks. In: Proceedings from Practical Applica-
tions of Intelligent Agents and Multi-Agent Systems,
PAAM’97, London, 1997

5. Höök K, Rudström Å, Waern A. Edited adaptive hyper-
media: combining human and machine intelligence to
achieve filtered information. In: Proceedings from Flexible
Hypertext Workshop held in conjunction with the 8th ACM
International Hypertext Conference, Hypertext’97, 1997

6. Waern A, Tierney M, Rudström Å , Laaksolahti J. ConCall:
edited and adaptive information filtering. Proceedings
from Intelligent User Interfaces (IUI99), Los Angeles,
1999 (forthcoming)

7. Finin T, Labrou Y, Mayfield J. KQML as an agent
communication language. In: Bradshaw J (ed) Software
agents. AAAI Press,Menlo Park, CAand MIT Press,
Cambridge, MA, 1997

8. Geneserth MR. An agent-based framework for inter-
operability. In: Bradshaw J (ed) Software agents. AAAI
Press,Menlo Park, CAand MIT Press, Cambridge, MA,
1997; 317–345

9. Smith RG. The Contract Net Protocol: high-level
communication and control in a distributed problem
solver. IEEE Trans Comput 1980; C-29

10. Rasmusson L, Rasmusson A, Janson S. Using agents to
secure the Internet marketplace: reactive security and
social control. In: Proceedings from Practical Applications
of Intelligent Agents and Multi-Agent Systems, PAAM’97,
London, 1997

11. Waern A. Service contract negotiation: agent-based
support for open service environments. In: Proceedings
from 1998 Workshop on Distributed Artificial Intelligence,
at the 4th Australian Conference on Artificial Intelligence,
Brisbane, Australia, 1998

12. Verharen E, Dignum F, Bos S. Implementation of a cooper-
ative agent architecture based on the language-action

perspective. In: Proceedings from The Fourth Inter-
national Workshop on Agent Theories, Architectures,
and Languages, ATAL’97, Providence, Rhode Island,
USA, 1997

13. Tsvetovatyy M, MobasherB, Gini M, Wieckowski Z. An
agent-based virtual market for electronic commerce. Int J
Appl AI (in press)

14. Kühme T, Dietrich H, Malinowski U, Schneider-
Hufschmidt M. approaches to adaptivity in user inter-
face technology: survey and taxonomy. In: Engineering
for human-computer interaction. Elsevier, Amsterdam,
1992

15. Benyon D. Adaptive systems: a solution to usability prob-
lems. User Model User-Adapted Interaction 1993; 65–87

16. Espinoza F. sicsDAIS: Managing user interaction with
multiple agents. Ph.Lic. thesis, Department of Computer
and System Sciences, The Royal Institute of Technology
and Stockholm University, Stockholm, 1998

17. Kobsa A, Pohl W. The user modeling shell system BGP-
MS. User Model User-Adapted Interaction 1995; 4:59 –106

18. Malinowski U. Adjusting the presentation of forms to users’
behavior. In: Proceedings from 1993 International Work-
shop on Intelligent User Interfaces, Orlando, Florida, 1993

19. Browne DP, Totterdell PA, Normann MA. Adaptive user
interfaces. Academic Press, London, 1990

20. Bylund M. Coordinating adaptations in open service
architectures. M.Sc. thesis, Computing Science Depart-
ment, Uppsala University, Uppsala (forthcoming)

21. Bradshaw JM, Dutfield S, Benoit P, WoolleyJD. KAoS:
toward an industrial strength open agent architecture.
In: Bradshaw JM (ed) Software agents. AAAI Press,
Menlo Park, CAand MIT Press, Cambridge, MA, 1997,
375–418

22. Labrou Y. Semantics for an agent communication language.
Ph.D. thesis, Computer Science and Electrical Engineering
Department, University of Maryland Graduate School,
Baltimore, Maryland, 1997

23. Eriksson J, Finne N, Janson S. Information and interaction
in MarketSpace – towards an open agent-based market
infrastructure. In: Proceedings from Second USENIX
workshop on Electronic Commerce, 1996

Correspondence to: A. Waern, Swedish Institute of Com-
puter Science, Box 1263, SE-164 29 Kista, Sweden. Email:
annika@sics.se

Paper B

Personal Service Environments – Openness and User
Control in User-Service Interaction

Markus Bylund and Annika Waern

Swedish Institute of Computer Science, Box 1263, SE-164 29 Kista, Sweden
{bylund, annika}@sics.se

Abstract. We describe an approach for mobile and personalized use of
electronic services that meet very high requirements on openness, user control,
and mobility. The design is centered on the concept of personal service
environments. These offer users mobile and network independent access to
services from many different types of devices. The concept also allows services
to interact locally. This can be used in several ways: services can for example
share information but also make use of each other’s services. In particular, we
want to use this to support service personalization. The design has been
successfully implemented and tested with a number of sample services and in
several related research projects. This implementation, the sView system, is
described.

Keywords. Electronic services, personal service environments, user control,
ubiquitous computing, user interfaces, mobility, personalization, service
collaboration.

May 2001
SICS Technical Report T2001/07

ISSN 1100-3154
ISRN: SICS-T--2001/07-SE

2

Bylund & Waern

1. Introduction

Today, most people in the Western world are used to using Internet-based services.
We use services – almost exclusively placed in the World Wide Web (WWW)
framework – to search for information, to buy books, and to book airline tickets. We
use them to communicate with our friends, and to make new friends. A home
computer is no longer made useful only through the stack of CDs on our bookshelf –
it is a point of access to a vast and perpetually changing world of entertainment,
shopping, business and general information resources. And as if this was not enough,
we are rapidly acquiring other devices for access to the Internet world of services:
mobile phones, communicators, home gateways and Internet-equipped game
consoles.

This rapid development has created a mismatch between the development of
Internet content and the technology for content provision. Content is developing into a
set of independent (but potentially combinable), device-independent, and
personalizable services. But the predominant technology still provides a strongly
server-based functionality, where services run entirely at the server side, accessed
through media-specific, content-insensitive, interaction devices (HTML/WML
browsers, media players, etc.) with little support for user personalization.

We see two main problems with this development. Firstly, current technology
lacks true support for nomadism and continuous interaction channels through multiple
devices [1, 2]. Secondly, technology put services almost entirely in the control of
service providers. This gives rise to privacy problems, such as the fact that service
providers have complete control over the information users provide to personal
services. Even more importantly, it makes it difficult to combine services to support
specific users’ need. For example, there are still very few Web sites that offer
automatic comparisons between sales offers from other Web sites, despite the clear
benefit of such services.

These issues have not been left unaddressed in research. In particular, work on
mobile agent technology and multi-agent systems (see Section 4.2) has aimed to
address the issues of service nomadism and interaction. This paper takes a similar but
slightly different perspective: we explore how Internet-based services, rather than
generic software agents, can be developed to be nomadic, personalizable, and provide
possibilities for service interaction.

The solution proposed is that of a personal service environment. A personal service
environment is an individually collected and tailored set of services, available to the
user at all times, and at least partially independent of Internet access. The services are
retrieved from service providers around the Internet, and the personal service
environment itself is mobile, following its user around in the network.

We have designed and developed a Java-based system for electronic services that
is based on the notion of personal service environments – sView. In this system,
personal service environments are composed both of services that are mobile and
follow the user, and of services that are platform or location specific. In this way,
sView provides personal service environments that are tailored both to the user and to

3

Personal Service Environments – Openness and User Control in User-Service Interaction

the usage context. The design of sView is highly modular. In fact, it could replace the
Web browser as such, as some of the services may well be provided to support
presentation and interaction.

The paper is structured as follows. Section 2 is a requirements analysis; in this
Section we analyze the requirements on openness and user control in more depth.
Section 3 presents personal service environments and shows how this concept has
been designed to meet the requirements from Section 2. Section 4 covers existing
Web technology and some alternative approaches in terms of how well they are able
to fulfill our requirements. Finally, Section 5 presents the sView system, and Section
6 describes a few experiences that build on the work presented in this paper.

2. Requirements Analysis

We see two requirements as central for an infrastructure for electronic services. The
first is that it must be open. It should be possible to add and remove services and users
without affecting other services or users. The second requirement is that it must be
controlled by the user. An infrastructure for electronic services should give the user
control over which services to use, what information about the user that services
handle, how services collaborate, etc. Some users may not ever do so, but the
possibility for user control should always exist. Furthermore, the user should be in
control of the usage situation. In practice this means that services should be reachable
from everywhere using many different types of devices, both the user’s own devices
and publicly available devices.

These requirements on openness and user control imply a number of more specific
requirements, which we now will discuss in more detail.

2.1. Heterogeneity

Many electronic services already exist, both in the form of commercial and research
products. A sound requirement on an open infrastructure for user-service interaction
is to allow a heterogeneous mix of service components to utilize features of each
other.

2.2. Extendibility

Openness also implies a demand for extendibility. As new services are added to the
system it should be possible to add support for new protocols for user-service
interaction, protocols for communication between service components, support for
collaboration between services of different kinds, protocols and algorithms for
implementing security functionality, and more.

4

Bylund & Waern

2.3. Accessibility

User control requires that all users always can access the service infrastructure. Users
should be able to access services while on the move, not just from the office or from
home, but also while riding the bus, in an airplane, on the street while shopping, etc.
Disabled and elderly users must be able to access the infrastructure, as well as
children.

2.4. Adaptability

Accessibility is only the minimal requirement for user control, but it poses already
very high demands on adaptability. The service infrastructure must be extendable and
adaptable to a wide range of input devices [3]. Another requirement is network
adaptability: the infrastructure, and services, must be able to adapt to variations in
network connectivity and bandwidth [4, 5].

Services should also be able to adapt to their users, or rather the preferences,
experiences, or usage history of their users. This is a delicate issue since adapting to
qualities of individual users requires services to handle personal information, which in
turn may jeopardize the privacy of users [6]. The requirement on user control means
that personalization must be done in a way that ensures user privacy. Furthermore, the
infrastructure should ensure that the task of managing personalization does not
overburden the user.

2.5. Continuity

Finally, user control requires that services not only are accessible from multiple
devices, but also maintain their state when the user switches between devices. Users
should not need to restart a service just because they move over to another device.
When switching between devices, a user should be able to resume his or her
interaction with a service exactly where it was suspended.

3. Proposed Approach

The personal service environment concept describes a service infrastructure that is
targeted to fulfill the requirements from Section 2. It is a runtime environment that is
private to an individual user, and functions as a briefcase for his or her electronic
services. As with the Web, we assume that services themselves use a client-server
model. In contrast to the Web however, services can store both logic and data locally
within the personal service environment, and there is no predefined split between
what should be performed on the client and on the server sides.

The service environment infrastructure fulfills our requirements on openness. Any
individual or organization with an Internet connection can own an environment in
which services can be stored and executed. In the same way, anyone can publish

5

Personal Service Environments – Openness and User Control in User-Service Interaction

services for use in an arbitrary service environment. Adding a new user or service to
the system does not affect already present users or services.

The most important requirement we pose on service environments is that the
environment itself must be mobile. It should be able to follow its user in the network
between e.g. a workstation when the user is in the office, to a notebook computer
when the user is on the road, or to a shared server for service environments when the
user lacks immediate access to the network. As the environment migrates, the services
it stores should follow, and the state of the services and their ways of interacting with
each other should be preserved. We also require that the service environment can
move between client devices without loss of interaction state.

There are several reasons for making the service environment mobile and execute
services locally. Firstly, a service that executes locally is not necessarily dependent on
a network connection. Secondly, a local service is likely to have access to richer user
interface types than remote interfaces. Thin devices with Internet access, and possibly
with a less powerful interface (e.g. WAP/WML capable phones), can be used to
access the environment on a networked host. Finally, by having parts of the
functionality of services executing on users clients, the total CPU processing of a
service is distributed between the users, which alleviates base services.

A key feature with the personal service environment is that it provides a natural
boundary for service-service interaction. Services within an environment could be
allowed to publish their APIs (Application Programming Interfaces) to each other.

To meet requirements on user accessibility, personal service environments must
also support numerous channels for user interaction, e.g. HTML over HTTP, WML
over WAP, Graphical User Interfaces (GUI), etc. The architecture must be open to
enable integration of novel interaction models over time.

Since service environments are personal and follow their users around, they
provide an ideal place for storing personal information for use by services (e.g.
preferences and contact information). Whenever a user wants to add or change his or
her personal information, or just inspect the information, it can be done in one place
for all services. Service providers get a central access point to personal information of
each user, information that can be shared with other services (with the user’s
permission).

3.1. A Usage Scenario

Below we present a usage scenario that illustrates the use of personal service
environments and a few services.

A man is about to make a business trip to Cairo. Using his personal service
environment search tool on his desktop computer he locates a travel agency
service and initiates a dialog with it.

The travel agency uploads a travel service component to the user’s service
environment.

Once in the service environment, the travel service receives the man’s
instructions, via a standard graphical user interface (GUI), to make a flight and
hotel reservation for his planned trip.

6

Bylund & Waern

Then the man turns his attention to something else and leaves the office. But
before doing so, he lets his service environment know that he is no longer
available via his desktop computer but rather via his cellular phone.

The travel service now makes use of a number of information sources in
order to accomplish its task. It searches the service environment for a
preference manager and asks it about its client’s complete name and address, as
well as his seating and smoking preferences. It also locates a calendar within
the service environment and checks when the man must be back and if the trip
conflicts with any of his other appointments.

Having collected all background information, the travel service turns to its
base service trying to find an appropriate flight and hotel. The service finds
three alternatives that all match the man’s request, preferences, and schedule.

The travel agency is now ready to get back to the client with the result of the
search. However, since the man is no longer available via the desktop computer,
the service contacts him via his cellular phone. The man, now on the train on his
way home, selects one of the alternatives and instructs the travel agency to go
ahead with the reservation.

The travel service accepts the request and starts searching the client’s
service environment again, this time for a service that provides payment. One of
the man’s services, a bank service, is willing to provide payment, but only after
a confirmation by the user (this is also done through the interface of the cellular
telephone).

Having everything that is needed, including payment, the travel service now
executes the man’s request by instructing its base service to buy the flight tickets
and make the hotel reservation.

4. Related Technologies

There exist many techniques and systems that fulfill some of the requirements of
Section 2. The concept of personal service environments has in many ways been
inspired by existing work on WWW enhancements, as well as of experiences with
mobile agent technologies. There are also examples of more recent technology that
fulfils some, but not all, of our requirements.

4.1. The World Wide Web

The WWW was originally intended to combine hypertext and text retrieval to get a
“global information universe into existence using available technology” [7].
Considering these design goals, it is truly remarkable that the Web has been able to
take on the role as an infrastructure for general user-service interaction as it plays
today, with demands on highly interactive interfaces, mobility, and personalization.
The ambitions of the inventors of the WWW to make the Web extendible, platform
independent, and transparent has clearly played a key-role in this development.
However, with the requirements in Section 2 in mind, the WWW is facing some
challenges.

7

Personal Service Environments – Openness and User Control in User-Service Interaction

Services mediated through the WWW require a Web browser for user interaction.
Web browsers in turn, most often require a quite powerful computer as host, as well
as a keyboard and a mouse, in order to function. This limits the types of devices that
users can reach services from. Telephones (both traditional and cellular), palmtops,
and other special purpose devices can be used in some cases, but only by extending
the WWW with separate interaction systems such as WAP/WML technology.

On the WWW, service logic and data are hosted by the set of backend services
used by an individual user. This results in a dependency on the network connection
between users and services; if the connection fails, not even the simplest functionality
of a service can be utilized. In many cases (e.g. bank services), the scheme used to
ensure privacy makes it impossible to even view information that was viewed only
moments ago, just before the connection broke.

The support for saving the state of the user-service interaction is also limited. If a
user is in the middle of a session with a service the user cannot suspend the
interaction in order to resume it from someplace else. This is because WWW clients,
through HTTP, are stateless [7]. The state of the user’s services is instead distributed
across all of the user’s service providers, which makes it difficult to find a general
solution to the problem.

There is little support built into Web browsers for personalizing services.
Essentially, the only way to handle it is by having the service provider identify the
user in order to tailor the interaction at the back-end of the service. The problem is
worsened by the fact that personal information of individual users is distributed across
all of their service providers. As the number of services in use increases, the user soon
loses control over the personalization process. Also, all information that is needed for
personalization, no matter how sensitive to the user, needs to be passed to the service
via a network. This opens for privacy issues.

While it is a strength of the WWW that no information about other services is
needed in order to add a new one, the lack of a general way to obtain information
about other services makes service collaboration difficult. This is a two-faced
problem. Firstly, services have difficulties finding peers to collaborate with since
there is no uniform way for services to publish their capabilities to other services.
Secondly, how do they actually collaborate once a peer is found? The APIs of Web-
based services are typically made for humans using protocols that are very awkward
for machine-based services to utilize. While it is relatively easy for users to find and
use such services, these problems make it difficult for end-users to combine the
services’ functionality. The Simple Object Access Protocol is an example of a recent
initiative to relieve the latter problem with the WWW [8].

General Web Extensions. Web organizers (e.g. www.eorganizer.com) and virtual
desktops (e.g. www.magicaldesk.com) provide their users with integrated suites of
Web-based e-mail handling, calendar, on-line storage of data, and sometimes news
and games as well. In some cases, the services go as far as to simulate a desktop
environment of an ordinary personal computer, complete with folders, desktop icons
and even drag-and-drop functionality. In a way, this approach is similar to personal
service environments. Even closer comes NetChaser [9], which is a system that
supports personal mobility of Internet services such as the WWW, FTP, and e-mail.
The system offers its user a personal view of his or her services via WWW browsers.

8

Bylund & Waern

The system keeps track of the state of its user’s services, which makes it possible for a
user to start a session on one WWW client, suspend the session, and resume it again
from a different client.

The major difference between these approaches and the personal service
environment concept is that the former do not meet our requirements on openness.
Web organizers are not in any way open for everyone to add new services.
Furthermore, since these services rely on Web technology, they are not able to adapt
to changing bandwidth availability or intermittent Internet access.

4.2. Mobile Agent Environments

Personal service environments bears many similarities to general Mobile Agent
Environments (MAE) [10] and the concept was partly inspired by experiences from
projects in which MAE were applied [11, 12]. They both provide environments that
support dynamic loading of lightweight software components, as well as migration
between such environments.

Many application examples apply mobile agent technology to meet requirements
that are similar to those analyzed in Section 2. For example, Minar et al. [13] use
mobile agents as a primary abstraction for creating dynamic and distributed systems
with a focus on embedded computers. Hive agents are self-describing, mobile and
capable of dynamic collaboration. Users are given a high degree of control in that
they can create and manipulate (kill and move) agents using a GUI. The user can also
create new applications by connecting agents with different capabilities, just by
drawing lines between them. The system described by Minar et al. can be seen as a
potential high-end interface for personal service environments.

Pullela et al. [14] describe a middleware that dynamically distributes computations
in a mobile environment. The distribution is based on what resources are currently
available at the mobile client. In this, Pullela et al. fulfill our requirement on access
from multiple platforms, including very thin clients. They make use of the Ronin
Agent Framework [15] that mixes agent-oriented and service-oriented paradigms for
creating dynamic distributed systems. The Ronin Agent Framework shares the
requirement on heterogeneity with the PSE concept, and meets it by including a meta
agent communication language and a network independent agent communication
message mechanism.

The Nomad system [16] is an advanced example of a service built on mobile agent
technology. It allows mobile agents to travel to an auction service provider and
participate in auctions on their user’s behalf. Agents can place bids, learn and collect
information, and set up new auctions. The Nomad system is an example of a type of
service that goes beyond the requirements posed in Section 2, since the agents are
initiated by users and travel to servers.

While MAEs have been a great source of inspiration when designing the personal
service environment, the two are not altogether the same. A personal service
environment is, in contrast to MAEs in general, specialized towards a particular task:
to enable user interaction with networked services. This means that much of the
functionality that is traditionally associated with MAEs can be simplified or removed
[12]. For example, client side service components need not be able to migrate freely

9

Personal Service Environments – Openness and User Control in User-Service Interaction

between any two service environments; it is enough if a service component can be
created at its base service and then moved to its owner’s environment. Assumptions
can also be made about the scope of a service component. It only needs to know about
its base service and the other service components within the same environment.

Service environments on the other hand pose higher, or at least more complex,
requirements on mobility and persistence than pure MAEs. A personal service
environment must support persistence of itself as well as the service components that
it houses. It also controls how services are allowed to move. Once services have been
initialized in a service environment, they do not move individually over the network.
Their mobility is rather controlled by the service environment they belong to.

In summary, although personal service environments could be implemented using
MAE technology, they are not subsumed by it. As an implementation option for
personal service environments, mobile agents introduce unnecessary overhead, as
many central functionalities would be used only to a limited extent.

4.3. The OSGi Service Gateway

OSGi (the Open Services Gateway Initiative) provides a specification of an open
framework for a service gateway [17]. The gateway can be loaded with multiple
software services and it can execute on a number of platforms. The goal with OSGi
service gateway is to create a common programming model for consumer services in
which implementations are separated from their functional descriptions, and to create
a simple and self-contained format for distribution of services. The former goal allows
consumers to make use of implementations of a service from several manufacturers
interchangeably. The latter goal makes it possible to partition applications into
smaller pieces, possibly implemented and provided by different manufacturers.

The OSGi service gateway shares many of the design goals with personal service
environments, and its realization share many properties with the sView platform
described below. For example, OSGi also provides an open environment in which
service components from different manufacturers can be loaded and collaborate to
form an application. However, OSGi does not provide personal environments. The
OSGi service gateway is intended as a service gateway for small groups of users (e.g.
a family). The service gateway environment of OSGi is also stationary, which is the
natural choice for gateway software. A personal service environment needs to be
mobile, since this enables services to follow the user in the network and still execute
close to the user and independently of a network connection.

4.4. MExE

The Mobile Station Application Execution Environment (MExE) initiative is a
budding standard for platform independent development of services, targeting mobile
devices [18, 19]. The initiative includes a classification of mobile devices, which
describe minimum levels of capabilities for certain categories of devices. The
initiative also adopts W3C’s CC/PP protocol [20] for runtime capability and content
negotiation of mobile station capabilities and user preferences. This provides a

10

Bylund & Waern

foundation for performing personalization of services and adaptation of content
towards mobile devices with different capabilities.

The MExE initiative shares the requirements on device independence and
personalization with the personal service environment concept. The crucial distinction
between the two approaches lies in how mobility is defined. In the MExE case,
mobility means access to electronic services via mobile devices. In the perspective put
forth in this paper however, mobility means that the service environments themselves
are mobile, and free to migrate (in complete) between hosts.

5. The sView System

We have designed and developed sView to meet the requirements put forward in
Section 2. In sView, personal service environments are composed both of services
that are mobile and follow the user, and of services that are platform or location
specific. In this way, sView provides personal service environments that are tailored
both to the user and to the usage context.

At a high level, the sView system is separated into two parts. The core sView
specification provides an API for developers of service components and service
infrastructure that builds on sView technology. The sView reference implementation
provides developers with a development and runtime environment for service
components as well as a sample implementation of an sView server. An illustration of
how the core specification and the reference implementation are organized in three
layers can be seen in Fig. 1.

The architecture and design of the sView system is further described in [21]. Both
the core specification and the reference implementation is available for download
from http://sview.sics.se.

API and
Specification Layer

Server Layer

Service Component
Layer

The Core sView Specification
(Specification of Service Component,

Service Briefcase Server, Service Context, etc.
Implementation of Service Briefcase)

The sView Reference Implementation
(Implementations of Service Briefcase Server,

Service Context, sample service components etc.)

IntraCom
Preference

Servlet
HTML
WML

Swing GUI
SMTP

Third Party Service Components

Service
Briefcase

Fig. 1. A schematic overview of the sView system and its different parts.

11

Personal Service Environments – Openness and User Control in User-Service Interaction

5.1. The Core sView Specification

The core sView specification constitutes an API that defines the basics of service
components and personal service environment handling. It specifies service
components, a runtime environment for service components, a data structure for
persistent and mobile images of service environments (service briefcases), and a
server for handling service briefcases. The specification has been implemented as a
set of Java packages (which contains mostly interfaces and a few classes).

The Service Component. A service provider needs to implement a service
component that can be loaded into the users’ service environments. The core sView
specification includes a Java interface that service components must implement. The
service component interface includes methods for initializing, starting, suspending,
resuming, and stopping the service component. Service components can implement an
arbitrarily large part of the functionality of the service, and range from mere proxies
to Web based services, to standalone services.

Service components can be declared to be persistent and/or mobile. A persistent
service component can save its state together with the service environment when the
environment is saved locally on a host or migrates to another host in the network. If a
service component is mobile it will follow the service environment as it migrates to a
different host in the network. Note that the persistent and mobile properties are
orthogonal. A persistent service component that is not mobile can save its state
locally, but not migrate to a different host. A mobile service component cannot save
its state, neither locally nor while moving; every time such a service component is
restarted it will start from scratch (which is fine for many services). The most
powerful service component however combines the two properties. Such a service
component can both save its state and migrate. Table 1 lists and exemplifies the four
possible combinations of the two properties.

The Service Context. The service context is the entity that maintains and provides
runtime support to service components. It manifests the personal service environment
in sView and is responsible for creating, loading, and removing service components.
Once the service components are loaded, the service context controls and sets the

Mobile
Persistent

Yes No

Yes
Follows the user and preserves
its state (e.g. a calendar).

Does not follow the user but
preserves its state (e.g. a printer
queue).

No
Follows the user but does not
preserve its state (e.g. a proxy
to a Web based service).

Does not follow the user nor
preserve its state (e.g. a driver
for a loudspeaker).

Table 1. Examples of four types of service components.

12

Bylund & Waern

states of the service components. For example, newly created service components
should be taken through an initialization state, and when the service environment is
about to migrate all service components should be suspended.

When a service environment resumes after having been suspended (e.g. after
migrating to a new host), the service context loads service components and other data
from a service briefcase. Likewise, when an environment is about to migrate to
another host or save its state to disk, service components are stored in a service
briefcase.

Service components within a service environment can communicate via service
interfaces. A service component that wishes to offer its services to other service
components should come with a class that implements an interface to the service. The
service context is responsible for mediating service interfaces between service
components. It is straightforward to implement a message passing service component
on top of the core sView service-service communication scheme, and the sView
reference implementation includes such a service.

Via the service context, service components can control the behavior of the service
environment (e.g. migration and shutdown) as well as the behavior of other service
components (e.g. creation, suspension, resumption). However, since these activities
are sensitive matters, the user must grant privileges to each service component in
order for them to perform these actions. A service component may for example be
granted the privileges to create and load, but not suspend or kill, service components
within the environment. Another service component may be allowed to initiate a
migration of the whole service environment to another host, but not to control any
aspect of individual service components.

The Service Briefcase. Service briefcases are persistent and mobile images of
personal service environments of individual users. The service briefcase is what is
actually saved when the user suspends the execution of a service environment to
move or shut it down. This is also what is sent between hosts in the network when the
user switches interaction devices.

A service briefcase consists of three parts: serialized service components, service
component specifications, and preferences.

The Service Briefcase Server. A service briefcase server specifies an API for service
briefcase handling. It includes basic functionality such as create new, get, put, and
delete briefcase. It also includes functionality for synchronization of content in
different instances of a service briefcase on different servers.

Synchronization is used when a service briefcase is to be moved to a server on
which it has already been stored. In this case it is possible that parts of the briefcase
(e.g. service component specifications) need not be sent with the briefcase.
Synchronization is performed in two steps: the first step is to find out the difference
between the two service briefcases followed by the second step to update the parts
that have been changed. The two-phase commit protocol is used to ensure data
integrity during synchronization.

13

Personal Service Environments – Openness and User Control in User-Service Interaction

5.2. Dynamic Behavior

This Section describes how services are handled by the sView platform. An
illustration of the different parts of the core sView specification and their relations is
given in Fig. 2. On the computer marked I a briefcase server and a service
environment is executing. In this case the user is sitting next to the same computer as
the service environment (represented by the cloud together with service components
A, B, and C) is executing on. This makes it possible to use a standard GUI for user-
service interaction. The computer marked II hosts service briefcases and
environments for several users, which use remote interfaces. One user is using a Web-
kiosk with a Web browser for user-service interaction (III) and another user uses a
WAP phone (IV). Stored service environments, in the form of service briefcases
(illustrated between I and II), can migrate between any computers that run a briefcase
server.

Searching for and Adding Service Components. The core sView specification does
not include any predefined schema for how a user should search for and add service
components. Instead, these tasks are left to service components. Every service
component within an environment, if created with the correct privileges, is allowed to
create and load new service components to the system. Based on this, numerous types
of search engines can be implemented.

C
C

B

Web kiosk

Service Briefcase Server
with service environments

for multiple users

Service Briefcase Server
with service environments

for a single user

HTML UI to PSE

GUI to PSE

WML UI to PSE

WAP Gateway

HTML/HTTP

WML/HTTP

WML/WAP

JPanel/SWING

Service Briefcase

A
C

B

A
C

B

III

II
I

IV

Fig. 2. The main parts of the core sView specification and their relations.

14

Bylund & Waern

Saving and Moving the Personal Service Environment. A user that needs to
temporarily suspend the execution of a service environment, or move to a different
host, has two options. Firstly, if the service environment is executing locally and the
user does not intend to move to a different host, the user can save the environment to
persistent media on the host. In this case all persistent service components (see
Section 5.1) are offered to save their state together with the environment. Secondly, if
a network connection is available, the user can move the service environment to a
server for remote storage or execution. In this case all mobile service components will
migrate with the environment. Service components that in addition are declared as
persistent are also offered to save their state with the service environment during the
migration. The environment can also migrate directly between two clients, in which
case the receiver client will act as a server for remote execution during migration.

The service context includes primitives that allow service components to initiate a
save or a migration of a service environment. A service component can be
implemented that e.g. automatically saves the environment whenever the user has
been idle for more than a few minutes, or actively moves the environment if the user
is sighted on a different host.

5.3. The sView Reference Implementation

The sView reference implementation implements most of the core sView
specification. It includes a server that implements the service context API (to multiple
simultaneous users) and the service briefcase server interface. The server can execute
on any computer that hosts a Java 1.3 VM.

The core sView specification does not include UI handling. This is instead left as a
task for service components to handle. The reference implementation includes service
components that handle user interfaces of three types: GUIs specified in Java Swing
as well as HTML and WML based user interfaces.

The reference implementation also includes a set of service components for
handling other miscellaneous functionality. The IntraCom (Intra Communication)
manager let service components register a mailbox to which other service
components can post messages. The Preference manager offers rudimentary handling
of preference entries (key and value pairs) for the user. Service components can store
and fetch entries, as well as subscribe to changes in the preference database. The user
can inspect the database, and control which services should be allowed access to
which entries.

5.4. Lessons Learned

The sView design and implementation realizes personal service environments, and
fulfils the requirements on an open infrastructure for personal mobile services
discussed in Section 2. In contrast to related technologies (see Section 4), the use of
personal service environments addresses a number of challenges at the same time;
such as network independence, control over personal information and the use of
different types of devices and user interfaces. The mere work with designing,

15

Personal Service Environments – Openness and User Control in User-Service Interaction

implementing and using the sView system has shown that the personal service
environment approach is feasible.

As always when designing software that is intended for reuse, there is a conflict
between making the software general enough to allow for wide usage, and making it
specific enough to actually deliver a useful functionality. This conflict turned out to
be the biggest challenge when designing the sView system. A large effort has been
made in choosing suitable levels of abstraction for different parts of the system, in
order to make sView modular and extensible, yet easy to develop for. An informal
evaluation [22] of the feasibility of developing electronic services for sView indicated
that the current design indeed has succeeded to meet this requirement. However,
much wider usage is needed in order to prove whether that conclusion is correct.

6. Experiences with the sView System

The research group at SICS makes extensive use of the sView system as a base for
continued research on electronic services. Our first efforts along this line were to
equip the reference implementation with sample services, which illustrate service
collaboration and service mobility [22] (see Fig. 3). The Calendar service component
maintains a set of calendar entries for its user. This service offers its user three
different interfaces (via the Swing manager, HTML manager, and WML manager).
The calendar service also publishes a service interface, so that other service
components can add entries to the calendar and check for conflicts between an entry
and the user’s calendar. The IMAP service component implements an e-mail client to
IMAP (Internet Message Access Protocol) e-mail accounts. This service offers its
user interfaces via both the Swing manager and the WML manager. A
demonstrational travel booking service and a payment service (based on the Jalda
standard [23]) have also been implemented. The reader should note that the example
scenario in Section 3.1 is completely implemented by this set of services.

Fig. 3. Screen dumps showing two views of an sView service briefcase: one through an
HTML Web browser interface and one through a Java Swing GUI.

16

Bylund & Waern

6.1. Service Designer

A generic problem with service communication is that it is difficult for services to
collaborate unless they are explicitly designed to do so, or at least share ontological
information.

In the Service Designer project [24], Fredrik Espinoza and et al. use the sView
system and the SOAP standard [8] in order to explore how end-users themselves can
create GUIs to services with only programmatic descriptions of the service available.
They have developed a Service Designer service component, which allows users to
download descriptions of net-based services, and provides simple means to create a
GUI for the services. Once the GUI is finished, a new sView service component is
compiled based on the net-based service and the GUI.

The service designer also allows the user to combine functionality from several
net-based services in one GUI, thus creating explicit collaboration between services
that have not been designed to communicate with each other.

Two of the design considerations for sView proved essential to this project. Firstly,
the open design of sView enables the service generator to both support UI design, and
the actual generation and installation of the created service. Secondly, the fact that
sView provides a common locale for service logics makes it possible to create a
service that actually inspects service code (in the form of SOAP objects), presents the
result of the inspection to the user, and allows users to combine service functionality
and create UI’s.

6.2. Universal Device Access

The sView system promotes use of services from many different types of devices and
interfaces. However, the basic sView implementation requires that service
components are aware of, and designed for, each of the device and interface types that
should be used for interaction. If a new device or interface type shows up, existing
service components need to be modified.

In the Universal Device Access project [25] we have designed a method that
simplifies the process of developing services that can be accessed from different user
interface types. The method allows both service- and user-driven interaction, unlike
UIML-based [26] applications or Web-style-interaction that are entirely user-driven.

In analogy with HTML [7] and similar script languages, we separate service logic
and user interface with a general language for specifying interaction. Different
devices can then implement this script language in a way that is specific for the device
and interface type.

In this project, the open nature of sView has proven useful, in particular to enable
services to fully or partly override this functionality. If the service component wishes
to tailor the user interface on a particular device it can send a customization form to
the interaction interpreter. The interpreter will then replace its standard interpretation
of the interaction language by using this form to render output and interpret input.

17

Personal Service Environments – Openness and User Control in User-Service Interaction

6.3. GeoNotes – Virtual Notes in the Real World

GeoNotes [27-29] is an sView service component that lets its user annotate physical
locations with virtual notes. Such a note is intended to say something about the
location, just as a Post-it note can express something about the object it is attached to.
Other users of the same service get the notes as they pass by an annotated location.

The GeoNotes service relies heavily on mobile and context-sensitive usage.
Developing GeoNotes as an sView service component has therefore been an
important test of how suitable sView is for mobile and context dependent services.
sView provided good support for both of these requirements [28]. In particular, sView
proved useful for separating personal and common information in a way that protects
user privacy: the GeoNotes server is restricted to holding common information about
the posted notes, whereas the personal information is kept within the user’s (mobile)
personal service environment.

7. Conclusions

We have shown that the personal service environment concept provides a powerful
tool for handling electronic services. The key issues are openness and user control.
Systems based on personal service environments support adding and removing
services and users without affecting others. Furthermore, such systems are focused on
creating a personal space that the user has full control over.

The sView system is a fully functional implementation that is based on the
personal service environment concept, as well as a specification of how to implement
services, which proves that the concept is realistically feasible. Even though the
sView system is only a prototype intended as a research tool, we are satisfied with its
performance and we have used it for internal development in several projects [24, 25,
27-29].

Our solution is deliberately thin and generic tools are needed in order to make it
accessible and useful. However, the core sView specification is flexible enough to
allow for almost unlimited development of such extensions.

8. Acknowledgements

The work presented in this paper has been funded by The Swedish Institute for
Information Technology (www.siti.se). Thanks to the members of the HUMLE
laboratory at the Swedish Institute of Computer Science (www.sics.se/humle), in
particular Fredrik Espinoza, for inspiration and thoughtful comments.

18

Bylund & Waern

References

[1] A. Dearle, “Toward Ubiquitous Environments for Mobile Users,” IEEE Internet
Computing, vol. 2, pp. 22-32, 1998.

[2] L. Kleinrock, “Nomadicity anytime, anywhere in a disconnected world,” Mobile
Networks and Applications, vol. 1, pp. 351-357, 1996.

[3] B. Myers, S. E. Hudson, and R. Pausch, “Past, present, and future of user interface
software tools,” ACM Transactions on Computer-Human Interaction, vol. 7, pp. 3-
28, 2000.

[4] J. S. Hansen, T. Reich, B. Andersen, and E. Jul, “Dynamic Adaptation of Network
Connections in Mobile Environments,” IEEE Internet Computing, vol. 2, pp. 39-47,
1998.

[5] N. Davies, A. Friday, G. S. Blair, and K. Cheverst, “Distributed Systems Support for
Adaptive Mobile Applications,” Mobile Networks and Applications, vol. 1, 1996.

[6] E. Volokh, “Personalization and Privacy,” Communications of the ACM, vol. 43, pp.
84-88, 2000.

[7] T. Berners-Lee, R. Caillau, J.-F. Groff, and B. Pollermann, “World-Wide Web: The
Information Universe,” Electronic Networking: Research, Applications and Policy,
vol. 2, pp. 52-58, 1992.

[8] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen, S.
Thatte, and D. Winer, “Simple Object Access Protocol (SOAP) 1.1,” World Wide
Web Consortium, W3C Note 27 July 1999, May 8, 2000.

[9] A. Di Stefano and C. Santoro, “NetChaser: Agent Support for Personal Mobility,”
IEEE Internet Computing, vol. 4, pp. 74-79, 2000.

[10] J. E. White, “Mobile Agents,” in Software Agents, J. M. Bradshaw, Ed. Menlo Park,
CA: AAAI Press/MIT Press, ISBN 0-262-52234-9, 1997, pp. 437-472.

[11] A. Waern, M. Tierney, Å. Rudström, and J. Laaksolahti, “ConCall: An information
service for researchers based on EdInfo,” Swedish Institute of Computer Science,
Kista, T98-04, 1998.

[12] M. Tierney, “ConCall: An Exercise in Designing Open Service Architectures,”
Ph.Lic. thesis, The Royal Institute of Technology and Stockholm University,
Stockholm, Sweden, 2000.

[13] N. Minar, M. Gray, O. Roup, R. Krikorian, and P. Maes, “Hive: Distributed Agents
for Networking Things,” presented at First International Symposium on Agent
Systems and Applications, Third International Symposium on Mobile Agents
featuring the Third Dartmouth Workshop on Transportable Agents, Rancho Las
Palmas Marriott’s Resort and Spa, Palm Springs, CA, 1999.

[14] C. Pullela, L. Xu, D. Chakraborty, and A. Joshi, “A Component Based Architecture
for Mobile Information Access,” Department of Computing Science and Electrical
Engineering, University of Maryland Baltimore County, Technical Report, TR-CS-
00-05, March 31, 2000.

[15] H. L. Chen, “Developing a Dynamic Distributed Intelligent Agent Framework Based
on the Jini Architecture,” M.Sc. thesis, University of Maryland Baltimore County,
Baltimore, 2000.

[16] T. Sandholm and Q. Huai, “Nomad: Mobile Agent System for an Internet-Based
Auction House,” IEEE Computer, vol. 4, pp. 80-86, 2000.

[17] “OSGi Service Gateway Specification Release 1.0,” Open Services Gateway
Initiative, May, 2000.

[18] “Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile
Telecommunications System (UMTS); Mobile Station Application Execution
Environment (MExE); Functional description; Stage 2,” European
Telecommunications Standards Institute, ETSI TS 123 057 v.3.0.0, January, 2000.

19

Personal Service Environments – Openness and User Control in User-Service Interaction

[19] “Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile
Telecommunications System (UMTS); Mobile Station Application Execution
Environment (MExE); Service description; Stage 1,” European Telecommunications
Standards Institute, ETSI TS 122 057 v.3.0.1, January, 2000.

[20] F. Reynolds, J. Hjelm, S. Dawkins, and S. Singhal, “Composite Capability/Preference
Profiles (CC/PP): A user side framework for content negotiation,” World Wide Web
Consortium, W3C Note 27 July 1999, July 27, 1999.

[21] M. Bylund, “sView - Architecture Overview and System Description,” Swedish
Institute of Computer Science, Kista, Sweden, SICS Technical Report T2001:06,
May, 2001.

[22] M. Boman, “Implementing services for a PSE,” M.Sc. thesis, Uppsala University,
Uppsala, Sweden, 2000.

[23] “The Jalda Charging API, Release 1.3,” EHPT Sweden AB, available at:
http://www.jalda.com/ [2001, April 18], 2000, May.

[24] F. Espinoza and O. Hamfors. “ServiceDesigner: Enabling End-Users Access to Web
Services,” Unpublished manuscript, available at: http://sview.sics.se, 2001.

[25] S. Nylander and M. Bylund. “Providing Universal Device Access to Mobile
Services,” Unpublished manuscript, available at: http://sview.sics.se, 2001.

[26] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M. Williams, and J. E. Shuster,
“UIML: an Appliance-Independent XML User Interface Language,” Computer
Networks, vol. 31, pp. 1695-1708, 1999.

[27] F. Espinoza, P. Persson, A. Sandin, H. Nyström, E. Cacciatore, and M. Bylund,
“GeoNotes: Social Filtering of Position-Based Information,” Swedish Institute of
Computer Science, SICS Technical Report T2001:08, May, 2001.

[28] H. Nyström and A. Sandin, “Social Mobile Services in an Open Service Environment
- an Overview, Analysis and Implementation,” M.Sc. thesis, Uppsala University,
Uppsala, Sweden, 2001.

[29] P. Persson, F. Espinoza, and E. Cacciatore, “GeoNotes: Social Enhancement of
Physical Space,” presented at CHI'2001, Seattle, WA, 2001.

Paper C

 sView – Architecture Overview and System
Description

Markus Bylund

Swedish Institute of Computer Science, Box 1263, SE-164 29 Kista, SWEDEN
bylund@sics.se

Abstract. This report presents an architecture overview and a system
description of the sView system. The system provides developers, service
providers, and users of electronic services with an open and extendible service
infrastructure that allows far-reaching user control. This is accomplished by
collecting the services of an individual user in a virtual briefcase. Services
come in the form of self-contained service components (i.e. including both
logic and data), and the briefcase is mobile to allow it to follow as the user
moves between different hosts and terminals. A specification of how to build
such service components and the infrastructure for handling briefcases is
presented. A reference implementation of the specification as well as extensions
in the form of service components is also described. The purpose of the report
is to serve as a technical reference for developers of sView services and
software infrastructure that builds on sView technology.

Keywords. Electronic services, personal service environments, user interfaces,
mobility, personalization, service collaboration, component-based software
engineering.

May 2001
SICS Technical Report T2001/06

ISSN 1100-3154
ISRN: SICS-T--2001/06-SE

2

Bylund

1. Introduction

The use of electronic services is spreading more and more to an increasingly broader
group of users, and there is a growing need for support for continuous interaction with
multiple services, via different types of devices, and from all sorts of places and
locations. Further more, it is desirable that this is done in a way that assures the user
control over personal information that services gather and maintain. The user should
also be able to control what services do and whether or not, and how, they collaborate
with each other.

All these demands represent current research topics such as privacy in the context
of electronic service usage, service collaboration, and ubiquitous user interface
design. The sView system has been designed as a solution to some of these research
topics, and to cater for further research on others. The system assumes a client server
model. But instead of having a uniform client without service specific functionality
for access to all servers (as in the case with the world wide web), access to the servers
is channeled through a virtual service briefcase. The briefcase in turn, supports access
from many different types of devices and user interfaces. It is also private to an
individual user, and it can store service components containing both service logic and
data from service providers. This allows the service provider to split the services in
two parts. One part with commonly used functionality and user specific data that
executes and is stored within the virtual briefcase. The other part provides network-
based functionality and data that is common between all users. Finally, the service
briefcase is mobile and it can follow its user from host to host. This allows local and
partially network independent access to the service components in the briefcase.

At a high level, the sView system consists of two parts. The core sView
specification provides APIs (Application Programming Interfaces) to developers of
service components and service infrastructure that builds on sView technology.
Implementing these APIs and adhering to the design guidelines that accompany the
APIs, assures compatibility between sView services and service infrastructure of
different origin. The sView reference implementation provides developers with a
development and runtime environment for service components as well as a sample
implementation of an sView server

The report is structured as follows. Section 2 describes a number of basic concepts
and entities. Section 3, specifies the main requirements that has influenced the design
of the sView system. Section 4 provides a detailed description of the core sView
specification. Section 5 describes the sView reference implementation, and Section 6
concludes with a summary.

3

sView – Architecture Overview and System Description

2. Basic Concepts

The sView system builds on the concept of personal service environments [1]. A
personal service environment is an individually collected and tailored set of services,
available to the user at all times. The services are retrieved from service providers
around the Internet, but after retrieval they are at least partially independent of
Internet access. The personal service environment itself is mobile, following its user
around in the network. The interaction state of the services is saved as the personal
service environment moves between hosts on the Internet. This allows for continuous
interaction sessions as the user of the services switches between different interaction
devices. In the reminder of this text, the personal service environment is referred to as
the service environment or simply the environment.

The sView system defines three main entities: service components, service
briefcases, and service briefcase servers.

• A service component is an entity that provides services to the user, and/or other
service components within the same service environment. It is a collection of class
definitions and resources that together define a component that can be loaded and
executed in a personal service environment. This allows service components to
collaborate about e.g. content provision, personalization, and user interface
handling.

• A service briefcase is a data structure in which a personal service environment is
stored. A service briefcase contains service component definitions, saved execution
states of service components, and settings. It also includes functionality for
loading, saving, and creating new service components.

• A service briefcase server constitutes an API that offers service briefcase handling
such as create new service briefcase, start service briefcase (i.e. create a personal
service environment based on a service briefcase), and synchronization between
instances of a service briefcase on different service briefcase servers.

An illustration of the different parts of the sView system and their relations is
given in Fig. 1. On the computer marked I a briefcase server and a service
environment is executing. In this case the user is sitting next to the same computer as
the service environment (represented by the cloud together with service components
A, B, and C) is executing on. This makes it possible to use a standard GUI for user-
service interaction. The computer marked II hosts service briefcases and
environments for several users, which use remote interfaces. One user is using a web-
kiosk with a web browser for user-service interaction (III) and another user uses a
WAP phone (IV). Stored service environments, in the form of service briefcases
(illustrated between I and II), can migrate between any computers that run a briefcase
server.

Finally, in the reminder of this document I will refer to an sView server as a
combination of a service briefcase server and the server software with which personal
service environments execute.

4

Bylund

3. Design Requirements

The high-level design goals with the sView system have been specified as openness
and user control [1]. Openness implies that it should be possible to add service
components and users to the system without affecting other parts of the system. User
control implies that the system should give the user control over which services to
use, what information about the user that services handle, how services collaborate,
etc. Some users may chose not to use make use of this control, but the possibility for
user control should always exist. Furthermore, the user should be in control of the
usage situation. In practice this means that services should be reachable from
everywhere using many different types of devices, both the user’s own devices and
publicly available devices.

Openness and user control can be further analyzed in the terms of five more
specific requirements: heterogeneity, extendibility, accessibility, adaptability, and
continuity. The three former requirements are closely related to the personal service
environment concept, and are discussed in more detail in [1]. The two latter
requirements however, heterogeneity and extendibility, have had a profound impact
on the design and implementation of sView and are discussed further below.

C
C

B

Web kiosk

Service Briefcase Server
with service environments

for multiple users

Service Briefcase Server
with service environments

for a single user

HTML UI to PSE

GUI to PSE

WML UI to PSE

WAP Gateway

HTML/HTTP

WML/HTTP

WML/WAP

JPanel/SWING

Service Briefcase

A
C

B

A
C

B

III

II
I

IV

Fig. 1. The main entities of the sView system and their relations.

5

sView – Architecture Overview and System Description

3.1. Heterogeneity

Many electronic services already exist, both in the form of commercial and research
products. A sound requirement on an open infrastructure for user-service interaction
is to allow a heterogeneous mix of service components to utilize features of each
other. We approach the requirement on heterogeneity in a number of ways.

The sView system is implemented in Java. This brings at least two advantages: a
reasonable chance of creating a platform independent system and easy integration of
other Java based electronic service infrastructures [2-5]. The sView system puts few
constraints on the implementation of the service components, which makes the
integration of other service infrastructures straightforward.

Developers of an sView service component can chose between implementing all of
the functionality in the service component, or placing all functionality on a server in
the network (in which case the sView service component only serves as a proxy to the
network based functionality). Any combination of the two alternatives is also
possible. This allows for integration of already existing network-based services into
the sView system.

sView service components are free to communicate with external resources (such
as network-based services) using any protocol of their like. This communication is not
in any way limited by the sView system.

3.2. Extendibility

Openness also implies a demand for extendibility. As new services are added to the
system it should be possible to add support for new protocols. This would make it
possible to add functionality for user-service interaction, communication between
service components, collaboration between services of different kinds, enhanced
security handling, etc. With the current design of sView, we approach the requirement
on extendibility in three different ways.

Firstly, the functionality of an sView service component need not be targeted
towards the user of the system, but can instead provide functionality to other service
components in the user’s service environment. This makes it easy to extend the sView
system with new functionality. For this purpose, it is useful that sView service
components can build on, and include in its distribution, existing Java packages.

Secondly, the sView system is separated in two parts: a core specification and a
reference implementation. The core specification includes the APIs that are necessary
in order to implement sView servers that are compatible with each other. The API
also ensures that all sView service components are executable in any implementation
of an sView server.

Thirdly, the core specification includes a method for sView servers to dynamically
load new implementations of server-server communication protocols. sView servers
can therefore communicate in any protocol that can be implemented in Java.

6

Bylund

Class/Interface Service Component Server Functionality

Constants Can implement/Must use Must use
Mobile Can implement Must use

Monitor Must use
Persistent Can implement Must use

ServerProxy Can implement/Must use
ServiceBriefcase Must use

ServiceBriefcaseServer Must implement
ServiceComponent Must implement Must use

ServiceComponentPermission Must use
ServiceContainer Must use

ServiceContext Must implement
ServiceInterfaceFactory Can implement Must use

ServiceListener Must implement
ServiceProxy Can implement/Must use

TransactionCoordinator Can implement/Must use
TransactionInitiator Can implement/Must use

TransactionParticipant Can implement/Must use

Table 1. The main classes and interfaces in the core specification (se.sics.sview.core).

4. The Core sView Specification

The core sView specification consists of about 60 Java classes and interfaces that are
needed in order to implement service components and sView servers. The total size of
the specification is less than 40 KB. Table 1 lists the most important classes and
interfaces and relates them to either service components or server functionality. See
Appendix I for a full listing of all classes and interfaces.

4.1. API Overview

The basic architecture of the core sView specification can be described with four
entities (see Fig. 2): service component, service briefcase, service briefcase server,
and service context.

The three former entities were briefly described in Section 2. The latter entity, the
service context, constitutes the context in which a service component executes. The
service context offers a service component an API that allows the component to e.g.
register services, subscribe to other services, and manage other service components.

7

sView – Architecture Overview and System Description

4.2. Service Component

An sView service component is created by implementing the Java interface
se.sics.sview.core.ServiceComponent. The class definitions of the service
component needs to be packaged in a JAR file together with a manifest with
information about the component. During runtime, the service component follows a
lifecycle that is defined by a set of states and a state transition graph. Finally, the
service component can be extended to allow persistence and mobility.

Packaging and Distribution of a Service Component. A service component is
packaged and distributed as a JAR file [6]. All class definitions and resources of the
service component should be included in this file, as well as information about e.g.
the name and structure of the service component.

The most important part of the JAR file is the set of class files that define the
functionality of the service component. Class files can be included in the JAR file in
two ways: either directly as main JAR entries (which is the usual way), or in nested
JAR files. The latter way is convenient if the service component depends upon
external packages in JAR files. If classes are included in this way an internal class
path must be given in the JAR manifest (see below).

If the service component registers services for other service components to use, it
should export class definitions from its own JAR file to these other service
components. Every class or interface definition that is needed in order to use the
service should be exported. In the simplest case, only a single interface is needed, but
for more advanced services whole packages might have to be exported. Class
definition exports are specified in the JAR manifest (see below).

Resources in the form of images, databases or just about anything that can be
stored in a file can be included in the JAR file. Upon request, resources are made
available to the service component (via the service context) in the form of byte arrays.

Service
Briefcase Server

sView Server

Service
Context

Service
Briefcase

Personal Service Environment

Service
Component

Service
Component

Service
Component

Fig. 2. Overview of the basic architecture of the core sView specification.

8

Bylund

The JAR file of a service component must contain a manifest with information
about the service component. Following is a list of entries that can (must) be specified
in the manifest.

• ServiceComponentName (mandatory) – a symbolic name of the service
component.

• ServiceComponentActivator (mandatory) – the fully qualified class name of
the class of the service component that implements the interface
se.sics.sview.core.ServiceComponent.

• ServiceComponentClasspath – the internal class path of the JAR file. Should
be a comma separated list of JAR entries (being themselves JAR files) or ‘.’
(which stands for the classes in the root JAR file). List entries are searched for
class definitions in order of appearance.

• ServiceComponentExport – a comma separated list of package names or fully
qualified class names that should be exported to other service components.

• ServiceComponentDepend – a list of names of services (offered by other service
components) that this service component depends upon.

• ServiceComponentPermission – a list of permissions that grants the service
component rights to functionality in the system (see Section 4.3).

An example of a JAR manifest for a service component is given in Listing 1. The
JAR file includes two nested JAR files (javamail.jar and servlet.jar) that are both
included in the service component classpath. The service component also exports a
class definition: the class Sample1ServiceInterface. Finally, the service
component is given two permissions: ServiceComponent and
ServiceEnvironment.

Service Component Lifecycle. The lifecycle of a service component is described by
a set of states and a state transition graph (see Fig. 3). Half of the transitions are
initiated by the service context and the other half by the service component. Service
context initiated state changes always occur as a result of the service context calling
one of the methods of the service component (initialize, start, suspend, resume, or
stop). Service component initiated transitions can occur in one of two ways. The
service component either initiates the state change by returning the value of the new
state from the methods that the service context calls, or if the state change should be
delayed after returning from the method, by explicitly setting the state by calling the
setState method of the service context.

Following is a description of the different states of the service component.

• INACTIVE – The service component is either newly created and not yet added, or
recently removed from, a service environment. In this state the service component

Manifest-Version: 1.0
ServiceComponentName: Sample 1 Service Component
ServiceComponentActivator: Sample1
ServiceComponentClasspath: ., javamail.jar, servlet.jar
ServiceComponentExport: Sample1ServiceInterface
ServiceComponentPermission: ServiceComponent, ServiceEnvironment

Listing 1. An example of a JAR manifest of a service component. When listing permissions
from the package se.sics.sview.core.permission, the package name can be omitted.

9

sView – Architecture Overview and System Description

is not allowed to interact with either its service context or with other service
components.

• INITIALIZING – The service component automatically reaches this state when
the service context calls the initialize method of the service component. This
is done as a first step to add the component to the service environment. In this
state, the service component is expected to perform initialization that is only done
once during the lifetime of a service component. This is the first chance of the
service component to interact with the service context, but interaction with other
service components is not allowed yet. The service component signals that
initialization is done either by having the initialize method return
INITIALIZED, or, if initialization continues after returning from the initialize
method, by calling setState(INITIALIZED) on the service context. In the latter
case a negative number should be returned by the initialize method to signal
that initialization is not finished.

• INITIALIZED – The service component reaches this state when it has finished
initialization.

• STARTING – The service component automatically reaches this state when the
service context calls the start method of the service component. In this state, the
service component should perform tasks that should be done every time it is about
to start. Interaction with the service context is allowed, but not with other service
components. The service component signals that starting is done either by having
the start method return ACTIVE, or, if starting continues after returning from the
start method, by calling setState(ACTIVE) on the service context. In the latter
case a negative number should be returned by the start method to signal that
starting is not finished.

• ACTIVE – The service component reaches this state when it has finished starting.
This is the state where most of the lifecycle of a service component is spent. The
service component is allowed to interact with both the service context and other
service components from here.

Inactive
(no state)

Initializing

Stopped

Initialized

Stopping Active

Starting

Suspending

Resumed

Suspended

Resuming

return INITIALIZED/
setState(INITIALIZED)

start()

return RESUMED/
setState(RESUMED)

start()

return STOPPED/
setState(STOPPED)

stop()

return SUSPENDED/

setState(SUSPENDED)

suspend()

–

initialize()

resume()
return ACTIVE/
setState(ACTIVE)

Fig. 3. The state graph describing the lifecycle of a service component.

10

Bylund

• SUSPENDING – The service component automatically reaches this state when the
service context calls the suspend method of the service component. This is done
as a first step to suspend the component. In this state, the service component is
expected to unregister all services that it offers other service components, as well
as unsubscribe to services of other service components. The service component is
allowed to interact with the service context in this state. It is also allowed to
interact with other service components, but only for the purpose of handling
unsubscriptions and unregistrations. The service component signals that suspension
is done either by having the suspend method return SUSPENDED, or, if suspension
continues after returning from the suspend method, by calling
setState(SUSPENDED) on the service context. In the latter case a negative
number should be returned by the suspend method to signal that suspension is not
finished.

• SUSPENDED – The service component reaches this state when it has finished
suspension. In this state the service component is not allowed to interact with either
its service context or other service components. The service component can now be
saved to persistent media or moved to another server.

• RESUMING – The service component automatically reaches this state when the
service context calls the resume method of the service component. This is done as
a first step to resume the component after suspension. This state is comparable to
the INITIALIZING state, with the exception that the state can occur more than
once. The service component signals that resumption is done either by having the
resume method return RESUMED, or, if resumption continues after returning from
the resume method, by calling setState(RESUMED) on the service context. In
the latter case a negative number should be returned by the resume method to
signal that resumption is not finished.

• RESUMED – The service component reaches this state when it has finished
resumption.

• STOPPING – The service component automatically reaches this state when the
service context calls the stop method of the service component. This is done as a
first step to stop the component. In this state, the service component is expected to
unregister all services that it offers other service components, as well as
unsubscribe to services of other service components. The service component is
allowed to interact with the service context in this state. It is also allowed to
interact with other service components, but only for the purpose of handling
unsubscriptions and unregistrations. The service component signals that stopping is
done either by having the stop method return STOPPED, or, if stopping continues
after returning from the stop method, by calling setState(STOPPED) on the
service context. In the latter case a negative number should be returned by the
stop method to signal that stopping is not finished.

• STOPPED – The service component reaches this state when it has finished stopping.
In this state the service component has reached the end of its lifecycle. Only a
reload of a previously saved copy or creating a new instance of the service
component can bring the service component back to the service environment. In
this state the service component is not allowed to interact with either its service
context or other service components.

11

sView – Architecture Overview and System Description

import se.sics.sview.core.*;
import se.sics.sview.core.event.*;

public class Sample1 implements Constants, ServiceComponent, Runnable {
Thread ct;
ServiceContext sc;
ServiceContextEvent ce;

// Implementations of interface ServiceComponent

public int initialize(ServiceContext context, ServiceContextEvent evt) {
// do initialize here – NOT computation intensive
return INITIALIZED;

}

public int start(ServiceContext context, ServiceContextEvent evt) {
// do start here
sc = context;
new Thread(this).start();
return -1;

}

public int suspend(ServiceContext context, ServiceContextEvent evt) {
if (ct==null) {
// already suspended
return SUSPENDED;

} else {
interrupt(context, evt);
return -1;

}
}

public int resume(ServiceContext context, ServiceContextEvent evt) {
// do resume here – NOT computation intensive
return RESUMED;

}

public int stop(ServiceContext context, ServiceContextEvent evt) {
if (ct==null) {
// already stopped
return STOPPED;

} else {
interrupt(context, evt);
return -1;

}
}

// Implementations of interface Runnable

public void run() {
sc.setState(ACTIVE);
ct = Thread.currentThread();

try {
// do run here – computation intensive

} catch (InterruptedException e) {
if (ce instanceof SuspendEvent) {

// do suspend here – computation intensive
sc.setState(SUSPENDED);

} else if (ce instanceof StopEvent) {
// do stop here – computation intensive
sc.setState(STOPPED);

}
}
ct = null;

}

// Misc.

public void interrupt(ServiceContext context, ServiceContextEvent evt) {
ce = evt;
sc = context;
ct.interrupt();

}
}

Listing 2. A sample implementation of a threaded service component with state handling.

12

Bylund

Listing 2 gives an example of the state handling of a threaded service component.
The purpose is to have code that requires lots of computation (in the example the calls
to start, suspend, and stop) execute in a separate thread. Initialization and
resumption, which are not computation intensive in the example, are run from the
thread of the service context (i.e. within the call to initialize and resume). In the
start method, the thread of the service component is started, but state ACTIVE is not
entered until the service component executes in its own thread. Suspension and
stopping is also handled within the thread of the service component, but only if
suspend or stop are called while the thread of the service component is running.
Otherwise it is handled in the same way as initialize and resume.

Persistence and Mobility. Service components can be made persistent and have its
execution state (as a serialization of the objects that constitute the service component)
saved in the service briefcase. They can also be made mobile which means that they
will follow the service briefcase as it migrates between servers.

A service component is made persistent by implementing the interface
se.sics.sview.core.Persistent. This requires the service component to
implement two methods: freeze and thaw (see Listing 3 for an example).

The service briefcase calls the freeze method when it saves the service
component. This occurs after the service component has reached state SUSPENDED,
but before state RESUMING is reached. The freeze method should be used to prepare
for serialization by optimizing or removing data structures. The service component
could e.g. compact a hash table or empty a media cache for more efficient storage
After returning from the freeze method all external references (such as references to
the service context, file and socket handles etc.) must have been set to null1.

The service briefcase calls the thaw method when a saved version of the service
component is loaded. This occurs after the freeze method has been called (possibly
in a different VM and on a different host), but before state RESUMING is reached. The
thaw method should be used to, if needed, recreate data structures that were removed

1 Unless the reference is declared as transient.

import se.sics.sview.core.*;
import se.sics.sview.core.event.*;

public class Sample2 implements Constants, ServiceComponent, Persistent {
Vector users = new Vector(42); // a vector for user information
Hashtable mediaCache = new Hashtable(); // a media cache for video clips

<snip>

// Implementations of interface Persistent

public void freeze() {
users.trimToSize(); // compact the vector of users
mediaCache = null; // remove the media cache

}

public void thaw() {
mediaCache = new Hashtable(); // recreate the media cache

}
}

Listing 3. An example of an implementation the interface Persistent.

13

sView – Architecture Overview and System Description

or converted in the freeze method. It should also be used to re-associate references
that were set to null in the freeze method or during serialization.

A service component is made mobile by implementing the marker interface2
se.sics.sview.core.Mobile. This will allow the service briefcase to include the
service component when migrating to other hosts.

The properties of service component persistence and mobility are orthogonal. A
persistent service component that is not mobile can save its state locally, but not
migrate to a different node. A mobile service component cannot save its state, neither
locally nor while migrating; every time such a service component is restarted it will
start from scratch (which is fine for many services). The most powerful service
component however combines the two properties. Such a service component can both
save its state and migrate. Table 2 lists and exemplifies the four possible
combinations of the two properties.

4.3. Service Context

The service context provides runtime handling of service components. It controls the
lifecycle of service components by setting the states of the components. While doing
so, the context informs the service component about the reason for the state change by
sending an event. The service context gives service components access to three
different kinds of properties (simple databases for storing settings). The context also
provides an API for communication between service components, as well as handling
of other service components and even the server itself. For the latter part, service
components needs privileges that are granted to the component based on permissions.

Events. The service context controls the state of service components by calling the
methods initialize, start, suspend, resume, and stop on the activator objects
of the components. These methods take two arguments: the first is a reference to the
service context itself. The second is an event, a subclass of
se.sics.sview.core.ServiceContextEvent, with information about the reason

2 A marker interface is an interface with an empty body. The purpose of such an interface is to

signal that the implementation of the interface should be considered to have a certain
property. In this case to be mobile.

Mobile
Persistent

Yes No

Yes
Follows the user and preserves
its state (e.g. a calendar).

Does not follow the user but
preserves its state (e.g. a printer
queue).

No
Follows the user but does not
preserve its state (e.g. a proxy
to a web based service).

Does not follow the user nor
preserve its state (e.g. a driver
for a loudspeaker).

Table 2. Examples of four types of service components.

14

Bylund

behind the state change. The service component might want to use this information
when deciding how to act upon the state change.

There are three main types of events.

• StartEvent – is used to take the service component from state INACTIVE and
RESUMED through all the states to ACTIVE. Examples of this event include
CreateEvent and LoadEvent.

• SuspendEvent – is used to take the service component from all states except
INACTIVE, STOPPING, and STOPPED through the states to SUSPENDED. Examples
of this event include SaveEvent and SynchronizeEvent.

• StopEvent – is used to take the service component from all states except
INACTIVE and STOPPED to the state STOPPED. Examples of this event include
RemoveEvent and ReloadEvent.

The documentation of for the events in package se.sics.sview.core.event
contains a more detailed description of the information that individual events carry
(see Appendix I).

Properties. The service context administers three sets of properties for storing
settings of different kinds.

• Local properties deal with settings that are shared between all personal service
environments on a particular server (such as references to means of interacting
with the user from the server). Local properties cannot be set or changed by the
service context or individual service components; instead, the administrator of the
server controls these properties.

• Stationary properties are not shared between users, but they are still bound to a
particular server. They can for example store settings such as the user’s UI
preferences, which is likely to differ between servers. Stationary properties can be
created and modified by the service context and individual service components.

• Mobile properties are personal, just like stationary properties, but in contrast they
do not vary with server. Mobile properties typically deal with settings that are not
location dependent (e.g. user information such as name, address, etc.).

The three types of properties are convenient for pushing server settings to service
components (local properties) and for saving and sharing information between service
components (stationary and mobile properties).

Service Component Communication. Service components can communicate and
collaborate by offering services to each other. The establishment of a service
provider/consumer relationship is described in Fig. 4, in which service component A
(SCA) offers service component B (SCB) a service.

I. The process is initiated by SCA by registering its service (S1) to the service
context, during which SCA passes two parameters: a name of the service and a
service interface factory. The latter should be an implementation of the interface
se.sics.sview.core.ServiceInterfaceProxy, which is used by the
service context to create interfaces to the service.

15

sView – Architecture Overview and System Description

II. SCB requests a proxy to the service that SCA registered from the service context.
The service proxy is of the same type regardless of which service is requested
(se.sics.sview.core.ServiceProxy).

III. Using the service proxy, SCB starts a subscription to service S1. The service
proxy uses the service interface factory that SCA provided to create an interface
the service.

IV. SCB can now use service S1 by invoking methods on the service interface. Note
that SCB needs to know the type of the service interface for this scheme to be
effective.

The above description is only an example of how a relationship can be established;
alternative ways are also possible. Phase II could for example happen before phase I
(even without the existence of SCA). In such a case, SCB could attempt to start a
subscription to a service that was not registered already, resulting in a null-reference
instead of a reference to a service interface. The service proxy includes functionality
for handling such situations. SCB could for example specify that if the requested
service is not registered, the call should wait until it is. The service component could
also register itself as a listener to (un)register notifications of the service, in which
case SCB would know when to start the subscription.

The providing service component can unregister its services at any time.
Consumers of those services are then obliged to unsubscribe and to stop using the
services as soon as possible.

Server and Service Component Handling. The service context provides an API that
allows service components to handle its server as well as other service components.
The API lets service components reload, save, and synchronize the service
environment, as well as shutting down the service environment (or, in the case of a
single-user server, the server).

 Service
Context

Service
Component A

Service
Component B

I

Service
Interface
Factory

Service
Interface

Service
Proxy

subscribe()

getServiceProxy(“S1”) registerService(“S1”, factory)

xxx()

II

III

IV
Fig. 4. A graph describing the establishment of a service provider–consumer relationship.

16

Bylund

The API allows service components to create, load, and save other service
components. It also allows service components to partially control the lifecycle of
other components in that they can force other components to suspend, resume, and
stop3.

Finally, service components can also control their own lifecycle with this API by
requesting the service context to start, suspend, resume, and stop the service
component.

Permissions. The service context functionality for handling the service environment
and other service components is protected by permissions. Permissions specifications
are included in the core specification, and they are arranged in a hierarchy so as to
allow both specific and general permissions (see Fig. 5). By extending an interface
with several permissions at the same time, combinations of permissions can be
implemented.

Permissions for a service component are specified by a comma-separated list of the
class names that corresponds to the permissions should be included in the JAR
manifest (see Listing 1).

4.4. Service Briefcase

The service briefcase (se.sics.sview.core.ServiceBriefcase) contains
functionality for creating, loading and saving service components. It also provides
storage of the JAR files of service components, persistent service components, and
properties.

The service briefcase is serializable and it can be stored on persistent media and
sent between servers, or have its content synchronized with service briefcases on
other servers.

Much of the functionality of the service briefcase is delegated to service containers
(se.sics.sview.core.ServiceContainer), of which there is one for each

3 Initialize occurs implicitly as a result of adding a component to the service environment and

start occurs automatically whenever a component has finished initializing or resuming.

All permissions

Permission Handling Service Environment Handling Service Component Handling

Runtime Handling Component Handling

Suspend Stop Resume Create Load Save

Reload Save Shutdown SynchronizeOthers’
permissions

Own
permissions

Fig. 5. The hierarchy of permissions for accessing service context functionality.

17

sView – Architecture Overview and System Description

service component in the briefcase. The service container provides storage and
serialization handling of individual service components. It includes functionality for
creating, loading, and saving service components, storing persistent service
components, and caching the JAR file of service components.

Service component creation and loading requires that a class loader is provided by
the server implementation. The server typically uses separate class loaders for every
service component in the system. This ensures that no service component should be
able to manipulate other service components without permission.

Service Briefcase State. An important step when synchronizing content between
different service briefcases is to compare the state of service briefcases. The service
briefcase state includes the names, keys, creation dates, change dates, and JAR status,
of every mobile service component in the service briefcase.

User id and password. Most of the functionality of the service briefcase is protected
with a user id and a password. Upon creation of the service briefcase, the user has to
provide a user id and a password. The user id is used to uniquely identify the owner of
the briefcase when moving briefcases between servers or synchronizing content
between several instances of the same briefcase. However, sView does not provide a
method of assigning unique identifiers to every user. Users are instead encouraged to
use an already existing unique Internet identifier (such as an e-mail address) as their
user id.

The password is encrypted using the MD5 Message-Digest Algorithm [7] and
stored in the service briefcase as a 128 bit long ‘fingerprint’ of the password. In order
to use the protected functionality, the user has to provide the password, which is
encrypted and compared with the original password ‘fingerprint’.

Note that the user id and password by no means represents a complete, or even
partially satisfying, protection of the service briefcase. The scheme is merely used as
an illustration of the need for protection. A true protection of the service briefcase
must include at least two parts: authentication and encryption of the content. This
should be implemented as a plugable solution, allowing the user to freely select which
implementation, and therefore also which algorithm, for each of the two parts to use.

4.5. Service Briefcase Server

The service briefcase server provides an API for service briefcase handling such as
creating new and removing existing briefcases, as well as starting and stopping the
execution of personal service environments. The API also includes functionality for
moving service briefcases between servers, and for synchronizing content between
different instances of a briefcase on different servers. The API is specified as a Java
interface (se.sics.sview.core.ServiceBriefcaseServer).

Server-Server Communication. Since this server is designed to communicate with
servers on other hosts, a Java interface will not be sufficient for most purposes. What
is missing is a protocol that is capable of wrapping the server interface (e.g. Java RMI

18

Bylund

[8], SOAP[9], and HTTP [10]). However, every such protocol has its special
characteristics with both strengths and weaknesses, and it would be impossible to
select one or a few as the preferred protocols for sView. For this reason we have
chosen not to specify any protocol at all in the core sView specification. Instead, an
interface that provides access to implementations of service briefcase servers is
specified (se.sics.sview.core.ServerProxy).

Note that this solution for server-server communication allows the implementation
of different types of secure communication schemes. A server proxy could e.g.
implement a protocol for secure authentication to avoid synchronizing service
briefcases with fake servers. Different types of channel encryption and protocols to
ensure information integrity could also easily be implemented.

Fig. 6 illustrates a communication path between two service briefcase servers.
Without knowing anything about the communication protocol itself, local service
briefcase servers can establish a communication link by creating instances of the
‘protocol xxx Server Proxy’ (which must implement the
se.sics.sview.core.ServerProxy interface). Upon request, the server proxy
creates the ‘protocol xxx remote Service Briefcase Server’. In the above example, the
server proxy acts as a server for incoming protocol xxx communication. It would also
be possible let the remote service briefcase server take on this role, in which case the
server proxy would only act as a factory for remote service briefcase servers.

Service Briefcase Synchronization. Service briefcase synchronization is a process
that involves two or more service briefcase servers, and whose purpose is to
synchronize the content of instances of a service briefcase on different servers. Note
that this process concerns synchronization of the service briefcase instances of one
user at a time. It can be described in a number of steps.

1. The initiating server (the initiator) requests the states of the service briefcase
instances on the other servers (the participants).

2. The initiator requests the mobile properties of the service briefcase instances on the
participants.

3. Based on its own and the participants states and mobile properties, the initiator
generates a new state and a new set of mobile properties that represent the most up-
to-date state and mobile property set of the service briefcase.

local Service
Briefcase Server

Communication
over protocol xxx

Java VM on host A

protocol xxx
Server Proxy

protocol xxx
remote Service
Briefcase Server

local Service
Briefcase Server

Java VM on host B

protocol xxx
Server Proxy

protocol xxx
remote Service
Briefcase Server

Fig. 6. A graph describing communication between two service briefcase servers over the
fictive protocol xxx.

19

sView – Architecture Overview and System Description

4. The initiator generates a new instance of the service briefcase that reflects the latest
state. This may involve requests of service components from one or more
participants.

5. The initiator generates update instances of the new service briefcase. This is done
exclusively for each participant, taking into account only the information that is
needed to make that participant up-to-date.

6. The update instances are sent to the participants.

During this process, it is crucial that the service briefcase instances of the initiator
and the participants are not modified, or else consistent behavior cannot be
guaranteed. For this purpose, the service briefcase is equipped with a monitor
(se.sics.sview.core.Monitor) that allows the service briefcase server to
prevent modifications of the service briefcase. The monitor is designed to allow for
concurrent modification of the service briefcase while unlocked.

It is also important to be able to handle both initiator and participant failure during
the synchronization process. This is accomplished by wrapping the synchronization
process in a modified version of the two-phase commit transaction protocol.

The whole process (i.e. both synchronization and transaction handling) is described
in Fig. 7. At any time, the transaction coordinator may send an abort message to both
initiator and participants. Participants that receive an abort message before getting the
‘Update service briefcase’ message will simply reset the transaction and unlock the

Synchronization and
Transaction Initiator Transaction Coordinator

Synchronization and
Transaction Participant

Invite participants

Vote to commit (true/false)

true/false

Global commit Global commit

Request service briefcase state

Compile
up-to-date

state (Request the latest components)

Request mobile properties

Compile
update

instances

Update service briefcase

Acknowledge

Global acknowledge

Lock
service

briefcase

Lock
service
briefcase

Update and
unlock
service
briefcase

Update and
unlock
service

briefcase

Fig. 7. A diagram describing the synchronization process with transaction handling.

20

Bylund

service briefcase. This will also happen if the response time from either the
transaction coordinator or the initiator is too long. Abort messages that participants
receive after the service briefcase update are discarded.

If the initiator receives an abort message before the ‘Global acknowledge’
message, the transaction is reset and the synchronization has to be restarted. However,
if the initiator has updated its service briefcase before abort is received, the
synchronization process is likely to require fewer steps than otherwise since the
initiator has an up-to-date instance of the service briefcase. Note that it does not
matter if an abort occurs when some of the participants have updated their briefcases
and some have not. The briefcases that have not been updated will be so during a
following retry.

5. The sView Reference Implementation

The reference implementation of the sView system was developed for two purposes.
Firstly, it should serve as a development and runtime environment for developers of
sView service components. Secondly, it should serve as a sample implementation of
the core sView specification for developers of sView server functionality. It is freely
available for download from the sView web site (http://sview.sics.se/) for everyone to
use.

5.1. Current Implementation

The reference implementation is based on J2SE (Java 2 Platform, Standard Edition)
version 1.3. The implementation is, apart from the core sView specification, only
based on a number of packages from the J2SE runtime libraries (see Listing 4).

The current version of the reference implementation (version 2.0, alpha 1) supports
most of the features of the core sView specification. However, it is not intended as an
optimized, secure, and fully scalable runtime environment. The support for such
features is therefore limited or non-existent. It is also limited to serving one personal
service environment at a time and it does not support briefcase retrieval by date (see
se.sics.sview.core.ServiceBriefcaseServer). The implementation consists
of about 40 classes and its size is less than 125 KB.

java.awt java.swing.event
java.awt.event java.swing.table
java.io java.text
java.net java.util
java.lang java.util.zip
java.swing java.util.jar

Listing 4. The packages that the reference implementation is built upon.

21

sView – Architecture Overview and System Description

5.2. Extensions

For server-server communication, the reference implementation includes an IP socket
based implementation of the server proxy communication wrapper (described in
Section 4.5). This allows different implementations sView servers to communicate
over an IP socket based protocol.

In order to be open and customizable, the core sView specification does not
include UI handling. This is instead left as a task for service components to handle.
The reference implementation includes service components that handle user interfaces
of three types: GUIs specified in Java Swing as well as HTML and WML user
interfaces.

To complement the set of user interface managers, the reference implementation
includes a set of service components for handling of other miscellaneous
functionality. The IntraCom (Intra Communication) manager let service components
register a mailbox to which other service components can post messages. This allows
spontaneous communication between service components that are new to each other.
The Preference manager offers rudimentary handling of preference entries (key and
value pairs) of the user. Service components can store and fetch entries, as well as
subscribe to changes in the preference database. The user can inspect the database,
and control which services should be allowed access to which entries. The Preference
manager stores its database of preference entries as mobile properties.

6. Conclusions

We have described the overall architecture and the basic design and implementation
of the sView system. In general, the design is motivated by the two requirements
openness and user control. In particular, demands on heterogeneity and extendibility
have influenced the design.

In order to allow extensions to the system it is separated into two parts: one core
specification that provides APIs to main components of the system, and one reference
implementation that provides developers of sView components and server
functionality with a development and runtime environment.

The core specification builds roughly on three main components: a service
component, a service briefcase, and a service briefcase server. In combination these
three components provides developers, service providers, and end-users of electronic
services with an open and extensible service infrastructure that allows far-reaching
user control.

7. Acknowledgements

The design and implementation described in this report builds upon the author’s
experiences from participating in the development of similar systems [11-14].

The work presented in this report has been funded by The Swedish Institute for
Information Technology (www.siti.se). Thanks to the members of the HUMLE

22

Bylund

laboratory at the Swedish Institute of Computer Science (www.sics.se/humle), in
particular Fredrik Espinoza, for inspiration and thoughtful comments. Special thanks
to Mikael Boman and Anna Sandin for help with the implementation of sView.

References

[1] M. Bylund and A. Waern, “Personal Service Environments – Openness and User
Control in User-Service Interaction,” Swedish Institute of Computer Science, Kista,
Sweden, SICS Technical Report T2001:07, May, 2001.

[2] “OSGi Service Gateway Specification Release 1.0,” Open Services Gateway
Initiative, May, 2000.

[3] H. L. Chen, “Developing a Dynamic Distributed Intelligent Agent Framework Based
on the Jini Architecture,” M.Sc. thesis, University of Maryland Baltimore County,
Baltimore, 2000.

[4] N. Minar, M. Gray, O. Roup, R. Krikorian, and P. Maes, “Hive: Distributed Agents
for Networking Things,” presented at First International Symposium on Agent
Systems and Applications, Third International Symposium on Mobile Agents
featuring the Third Dartmouth Workshop on Transportable Agents, Rancho Las
Palmas Marriott’s Resort and Spa, Palm Springs, CA, 1999.

[5] C. Pullela, L. Xu, D. Chakraborty, and A. Joshi, “A Component Based Architecture
for Mobile Information Access,” Department of Computing Science and Electrical
Engineering, University of Maryland Baltimore County, Technical Report, TR-CS-
00-05, March 31, 2000.

[6] “JAR File Specification,” Sun Microsystems, Inc., available at:
http://java.sun.com/j2se/1.3/docs/guide/jar/jar.html [2001, April 18], 1999.

[7] R. Rivest. “RFC1321: The MD5 Message Digest Algorithm,” MIT and RSA Data
Security, Inc., available at: http://www.faqs.org/rfcs/rfc1321.html [2001, April 17],
1992.

[8] “Java Remote Method Invokation Specification,” Sun Microsystems, Inc., available
at: http://java.sun.com/j2se/1.3/docs/guide/rmi/spec/rmiTOC.html [2001, April 18],
1999.

[9] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen, S.
Thatte, and D. Winer, “Simple Object Access Protocol (SOAP) 1.1,” World Wide
Web Consortium, W3C Note 27 July 1999, May 8, 2000.

[10] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. “RFC2616: Hypertext Transfer Protocol - HTTP/1.1,” World Wide Web
Consortium, available at: http://www.w3c.org/Protocols/rfc2616/rfc2616.txt [2001,
April 17], 1999.

[11] P. Charlton, Y. Chen, F. Espinoza, A. Mamdani, O. Olsson, J. Pitt, F. Somers, and A.
Waern, “An Open Agent Architecture Supporting Multimedia Services on Public
Information Kiosks,” presented at Practical Applications of Intelligent Agents and
Multi-Agent Systems, PAAM'97, London, UK, 1997.

[12] F. Espinoza, “sicsDAIS: Managing User Interaction with Multiple Agents,” Ph.Lic.
thesis, The Royal Institute of Technology and Stockholm University, Stockholm,
1998.

[13] F. Espinoza, “sicsDAIS: A Multi-Agent Interaction System for the Internet,”
presented at WebNet 99—World Conference on the WWW and Internet, Hawaii,
1999.

23

sView – Architecture Overview and System Description

[14] M. Tierney, “ConCall: An Exercise in Designing Open Service Architectures,”
Ph.Lic. thesis, The Royal Institute of Technology and Stockholm University,
Stockholm, Sweden, 2000.

Appendix I

This appendix has been removed from the reprint of this technical report. Please see
Appendix I of SICS Technical Report T2001:06 (available at http://www.sics.se), or
Appendix I of this thesis for a shortened documentation of the core sView
specification.

Appendix I

Contents

1 Package se.sics.sview.core 2

1.1 Interfaces . 4

1.1.1 Interface Constants . 4

1.1.2 Interface Mobile . 6

1.1.3 Interface Persistent . 7

1.1.4 Interface ServerProxy . 7

1.1.5 Interface ServiceBriefcaseServer . 8

1.1.6 Interface ServiceComponent . 9

1.1.7 Interface ServiceComponentPermission 11

1.1.8 Interface ServiceContext . 11

1.1.9 Interface ServiceInterfaceFactory . 14

1.1.10 Interface ServiceListener . 15

1.1.11 Interface ServiceProxy . 15

1.1.12 Interface TransactionCoordinator . 16

1.1.13 Interface TransactionInitiator . 16

1.1.14 Interface TransactionParticipant . 17

1.2 Classes . 18

1.2.1 Class Monitor . 18

1.2.2 Class ServiceBriefcase . 19

1.2.3 Class ServiceContainer . 22

1

Chapter 1

Package se.sics.sview.core

Package Contents Page

Interfaces

Constants . 4

A set of constants used by service briefcases, service contexts, servers, etc.

Mobile . 6
A service component that implements this interface will be included in the

service briefcase during synchronization with other servers.

Persistent . 7

A service component that implements this interface will be o�ered to save

its state in the service briefcase before service briefcase synchronization and

save.
ServerProxy . 7

This interface should be used to wrap implementations of remote service

briefcase server communication and transaction initiator to transaction par-

ticipant communication.
ServiceBriefcaseServer . 8

This interfcase speci�es an API to sView service briefcase servers.

ServiceComponent . 9

Should be implemented by service components that wish to execute in an

sView PSE.
ServiceComponentPermission . 11

Superclass of all service component permissions.

ServiceContext . 11
This interface speci�es an API to the runtime environment of a service brief-

case.
ServiceInterfaceFactory . 14

Service components that wish to register services for other service compo-

nents to use must implement this interface.

ServiceListener . 15

The listener interface for receiving service events.

ServiceProxy . 15

A service component that wish to subscribe to a service requests a service

proxy (de�ned by this class) to the service from its service context.

TransactionCoordinator . 16

A transaction wraps the steps in service briefcase synchronization in order

to make it atomic, and to provides exception handling.

TransactionInitiator . 16

2

se.sics.sview.core{ 3

A transaction wraps the steps in service briefcase synchronization in order

to make it atomic, and to provides exception handling.

TransactionParticipant .17

A transaction wraps the steps in service briefcase synchronization in order

to make it atomic, and to provides exception handling.

Classes

Monitor . 18

Implements a 'one-to-many monitor' for exclusive access to critical sections.

ServiceBriefcase . 19

Contains functionality for creating, loading and saving service components.

ServiceContainer . 22
A ServiceContainer wraps a service component, a JAR cache, and informa-

tion about the service.

se.sics.sview.core{ Constants 4

1.1 Interfaces

1.1.1 Interface Constants

A set of constants used by service briefcases, service contexts, servers, etc. Implement this

interface to get easy access to the constants.

Declaration

public interface Constants

Fields

� public static �nal String JAR NAME
The JAR manifest key to the symbolic name of the service component.

� public static �nal String JAR ACTIVATOR
The JAR manifest key to the activator of a service component. The value of this key should

be the fully quali�ed class name of the class of the service component that implements the

interface ServiceComponent .

� public static �nal String JAR CLASSPATH
The JAR manifest key to the JAR-internal classpath that should be used when loading the

service component. The value of this key should be a comma separated list of JAR entries
(being themselves JAR �les) or '.' (which stands for the classes in the root JAR �le). List

entries are searched for class de�nitions in order of appearance.

� public static �nal String JAR EXPORT
The JAR manifest key to the list of classes that this service component exports to other

components. The value of this key should be a comma separated list of package names or

fully quali�ed class names.

� public static �nal String JAR IMPORT
Currently not used.

� public static �nal String JAR DEPEND
The JAR manifest key to the list of names of services (o�ered by other service components)
that this service component depends upon. The value of this key should be a comma

separated list of service names.

� public static �nal String JAR PERMISSION
The JAR manifest key to the list of permissions that grants the service component rights to

functionality of the system. The value of this key should be a comma separated list of

permission interfaces in package se.sics.sview.core.permission or fully quali�ed class names

that implement (or extend) one or more of the permission interfaces in

se.sics.sview.core.permission.

� public static �nal String MP HOSTS
The mobile property key to the list of servers that the service briefcase has visited. The

value of this key is used when the service briefcase is synchronized with other servers.

se.sics.sview.core{ Constants 5

� public static �nal int INACTIVE
The service component is either newly created and not yet added, or recently removed from,

a service environment. In this state the service component is not allowed to interact with

either its service context or with other service components.

� public static �nal int INITIALIZING
The service component automatically reaches this state when the service context calls the
initialize method of the service component. This is done as a �rst step to add the

component to the service environment. In this state, the service component is expected to

perform initialization that is only done once during the lifetime of a service component.

This is the �rst chance of the service component to interact with the service context, but

interaction with other service components is not allowed yet. The service component signals

that initialization is done either by having the initialize method return INITIALIZED, or, if

initialization continues after returning from the initialize method, by calling

setState(INITIALIZED) on the service context. In the latter case a negative number

should be returned by the initialize method to signal that initialization is not �nished.

� public static �nal int INITIALIZED
The service component reaches this state when it has �nished initialization.

� public static �nal int STARTING
The service component automatically reaches this state when the service context calls the

start method of the service component. In this state, the service component should perform

tasks that should be done every time it is about to start. Interaction with the service

context is allowed, but not with other service components. The service component signals
that starting is done either by having the start method return ACTIVE, or, if starting

continues after returning from the start method, by calling setState(ACTIVE) on the

service context. In the latter case a negative number should be returned by the start

method to signal that starting is not �nished.

� public static �nal int ACTIVE
The service component reaches this state when it has �nished starting. This is the state

where most of the lifecycle of a service component is spent. The service component is

allowed to interact with both the service context and other service components from here.

� public static �nal int SUSPENDING
The service component automatically reaches this state when the service context calls the

suspend method of the service component. This is done as a �rst step to suspend the

component. In this state, the service component is expected to unregister all services that it

o�ers other service components, as well as unsubscribe to services of other service

components. The service component is allowed to interact with the service context in this

state. It is also allowed to interact with other service components, but only for the purpose

of handling unsubscriptions and unregistrations. The service component signals that

suspension is done either by having the suspend method return SUSPENDED, or, if suspension
continues after returning from the suspend method, by calling setState(SUSPENDED) on

the service context. In the latter case a negative number should be returned by the suspend

method to signal that suspension is not �nished.

� public static �nal int SUSPENDED
The service component reaches this state when it has �nished suspension. In this state the

service component is not allowed to interact with either its service context or other service

components. The service component can now be saved to persistent media or moved to

another server.

se.sics.sview.core{ Persistent 6

� public static �nal int RESUMING

The service component automatically reaches this state when the service context calls the

resume method of the service component. This is done as a �rst step to resume the

component after suspension. This state is comparable to the INITIALIZING state, with the

exception that the state can occur more than once. The service component signals that

resumption is done either by having the resume method return RESUMED, or, if resumption
continues after returning from the resume method, by calling setState(RESUMED) on the

service context. In the latter case a negative number should be returned by the resume

method to signal that resumption is not �nished.

� public static �nal int RESUMED

The service component reaches this state when it has �nished resumption.

� public static �nal int STOPPING

The service component automatically reaches this state when the service context calls the

stop method of the service component. This is done as a �rst step to stop the component.
In this state, the service component is expected to unregister all services that it o�ers other

service components, as well as unsubscribe to services of other service components. The

service component is allowed to interact with the service context in this state. It is also

allowed to interact with other service components, but only for the purpose of handling

unsubscriptions and unregistrations. The service component signals that stopping is done

either by having the stop method return STOPPED, or, if stopping continues after returning

from the stop method, by calling setState(STOPPED) on the service context. In the latter

case a negative number should be returned by the stop method to signal that stopping is

not �nished.

� public static �nal int STOPPED

The service component reaches this state when it has �nished stopping. In this state the

service component has reached the end of its lifecycle. Only a reload of a previously saved

copy or creating a new instance of the service component can bring the service component

back to the service environment. In this state the service component is not allowed to

interact with either its service context or other service components.

� public static �nal String stateNames

An array of symbolic names of the states of the service component. The value of the state

variables of this class work as index to its corresponding name.

1.1.2 Interface Mobile

A service component that implements this interface will be included in the service briefcase

during synchronization with other servers.

Declaration

public interface Mobile

se.sics.sview.core{ ServerProxy 7

1.1.3 Interface Persistent

A service component that implements this interface will be o�ered to save its state in the service

briefcase before service briefcase synchronization and save.

Declaration

public interface Persistent

implements java.io.Serializable

Methods

� freeze

public void freeze()

The service briefcase calls the freeze method when it saves the service component. This

occurs after the service component has reached state SUSPENDED, but before state RESUMING

is reached. The freeze method should be used to prepare for serialization by optimizing or

removing data structures. The service component could e.g. compact a hash table or empty

a media cache for more eÆcient storage After returning from the freeze method all

external references (such as references to the service context, �le and socket handles etc.)

must have been set to null.

� thaw

public void thaw()

The service briefcase calls the thaw method when a saved version of the service component

is loaded. This occurs after the freeze method has been called (possibly in a di�erent VM

and on a di�erent host), but before state RESUMING is reached. The thaw method should be

used to, if needed, recreate data structures that were removed or converted in the freeze

method. It should also be used to re-associate references that were set to null in the

freeze method or during serialization.

1.1.4 Interface ServerProxy

This interface should be used to wrap implementations of remote service briefcase server

communication and transaction initiator to transaction participant communication.

Declaration

public interface ServerProxy

Methods

se.sics.sview.core{ ServiceBriefcaseServer 8

� getProtocol

public String getProtocol()

Returns the protocol that this server proxy implements.

� getServiceBriefcaseServerProxy

public ServiceBriefcaseServer getServiceBriefcaseServerProxy(

java.lang.String uri)

Creates a new proxy to a service briefcase server.

� getTransactionParticipantProxy

public TransactionParticipant getTransactionParticipantProxy(

java.lang.String uri, java.lang.String id)

Creates a new proxy to a transaction participant.

� initialize

public void initialize(se.sics.sview.core.ServiceBriefcaseServer localServer,

java.lang.String [] args)

This method should be called by the service briefcase server before any calls to

#getServiceBriefcaseServerProxy(java.lang.String) or java.lang.String) are made.

1.1.5 Interface ServiceBriefcaseServer

This interfcase speci�es an API to sView service briefcase servers. It speci�es methods for

exchanging service briefcases and starting and stopping PSEs.

Declaration

public interface ServiceBriefcaseServer

Methods

� getMobileProperties

public Properties getMobileProperties(java.lang.String uid,

java.lang.String pwd, java.lang.String transactionId)

Returns the mobile properties of a service briefcase

� getServiceBriefcase

public ServiceBriefcase getServiceBriefcase(java.lang.String uid,

java.lang.String pwd)

Returns a service briefcase.

� getServiceBriefcase

public ServiceBriefcase getServiceBriefcase(java.lang.String uid,

java.lang.String pwd, java.util.Date date)

Returns a backuped service briefcase. The will return the version that was the latest at the
time speci�ed by the parameter date.

se.sics.sview.core{ ServiceComponent 9

� getServiceBriefcaseState

public Properties getServiceBriefcaseState(java.lang.String uid,

java.lang.String pwd, java.lang.String transactionId)

Returns an array containing the keys of the service components

� getServiceComponents

public ServiceContainer getServiceComponents(java.lang.String uid,

java.lang.String pwd, java.lang.String [] keys, java.lang.String

transactionId)

Returns an array of service components that corresponds to an array of service component

keys.

� newServiceBriefcase

public void newServiceBriefcase(java.lang.String uid, java.lang.String

pwd)

Creates a new service briefcase.

� removeServiceBriefcase

public void removeServiceBriefcase(java.lang.String uid, java.lang.String

pwd)

Removes a service briefcase from this server.

� startPse

public void startPse(java.lang.String uid, java.lang.String pwd)

Starts a PSE.

� stopPse

public void stopPse(java.lang.String uid, java.lang.String pwd)

Stops a PSE.

� updateServiceBriefcase

public void updateServiceBriefcase(java.lang.String uid, java.lang.String

pwd, se.sics.sview.core.ServiceContainer [] serviceComponents,

java.util.Properties mobileProperties, java.lang.String transactionId)

Updates a service briefcase of a remote service briefcase server with new service containers

and properties.

1.1.6 Interface ServiceComponent

Should be implemented by service components that wish to execute in an sView PSE. See

ServiceContext for a description of the context in which the service component will execute.

Declaration

public interface ServiceComponent

se.sics.sview.core{ ServiceComponentPermission 10

Methods

� initialize

public int initialize(se.sics.sview.core.ServiceContext context,

se.sics.sview.core.ServiceContextEvent evt)

Instructs the service component to initialize. The implementation of this method should

execute fast. If initialization �nish before the method terminates, it should return

INITIALIZED . Otherwhise it should return a negative value to indicate that initialization

is ongoing. In this case the service component must call setState with INITIALIZED when

initialization is done to signal that the service component is ready to start.

� resume

public int resume(se.sics.sview.core.ServiceContext context,

se.sics.sview.core.ServiceContextEvent evt)

Instructs the service component to resume. The implementation of this method should

execute fast. If resumption �nish before the method terminates, it should return

RESUMED . Otherwhise it should return a negative value to indicate that resumption is

ongoing. In this case the service component must call setState with RESUMED when

resumption is done to signal that the service component is ready to start.

� start

public int start(se.sics.sview.core.ServiceContext context,

se.sics.sview.core.ServiceContextEvent evt)

Instructs the service component to start. The implementation of this method should

execute fast. If the service component is started before the method terminates, it should

return ACTIVE . Otherwhise it should return a negative value to indicate that starting is

ongoing. In this case the service component must call setState with ACTIVE when the

service component is started to signal that the service component is active.

� stop

public int stop(se.sics.sview.core.ServiceContext context,

se.sics.sview.core.ServiceContextEvent evt)

Instructs the service component to stop. The implementation of this method should execute

fast. If the service component is stopped before the method terminates, it should return

STOPPED . Otherwhise it should return a negative value to indicate that stopping is

ongoing. In this case the service component must call setState with STOPPED when the

service component is stopped to signal that the service component can be terminated.

� suspend

public int suspend(se.sics.sview.core.ServiceContext context,

se.sics.sview.core.ServiceContextEvent evt)

Instructs the service component to suspend. The implementation of this method should

execute fast. If suspension �nish before the method terminates, it should return

SUSPENDED . Otherwhise it should return a negative value to indicate that suspension is

ongoing. In this case the service component must call setState with SUSPENDED when

suspension is done to signal that the service component is suspended.

se.sics.sview.core{ ServiceContext 11

1.1.7 Interface ServiceComponentPermission

Superclass of all service component permissions. See the interfaces in package

se.sics.sview.core.permission for a full listing of prede�ned permissions.

Declaration

public interface ServiceComponentPermission

Fields

� public static �nal String description

A textual description of the permission. Override this �eld to describe what the permission

grants access to.

1.1.8 Interface ServiceContext

This interface speci�es an API to the runtime environment of a service briefcase. It speci�es an

methods for handling service components (creation, maintenance, removal, etc.), the runtime

environment (save, synchronize, reload, and shutdown), and the state of the service component.

A service component has access to three types of properties via its service context: local,

stationary, and mobile. Local properties are controlled by the administrator of the server on which

the PSE executes. These properties can be read but not be set nor modi�ed by service

components. Stationary properties can both be read, set, and modi�ed by service components.

However, every service component has its own view of stationary properties which means that the
one service component cannot reach the stationary properties of another. Stationary properties

are local to a speci�c server. Mobile properties can both be read, set, and modi�ed by service

components. However, every service component has its own view of mobile properties which

means that the one service component cannot reach the mobile properties of another. Mobile

properties follow the PSE as it migrates from server to server.

Declaration

public interface ServiceContext

implements Constants

Methods

� createServiceComponent

public void createServiceComponent(java.lang.String jarName)

Creates and adds a service component based on a JAR �le containing a speci�cation of an

service component.

se.sics.sview.core{ ServiceContext 12

� getJarAttribute

public String getJarAttribute(java.lang.String name)

Gets an attribute from the JAR �le of the service component.

� getJarEntry

public byte getJarEntry(java.lang.String name)

Gets a JAR entry from the JAR �le of the service component.

� getLocalProperty

public String getLocalProperty(java.lang.String key)

Searches for the property with the speci�ed key in local property list. The method returns

null if the property is not found.

� getLocalProperty

public String getLocalProperty(java.lang.String key, java.lang.String def

)

Searches for the property with the speci�ed key in the local property list. The method

returns the default value argument if the property is not found.

� getMobileProperty

public String getMobileProperty(java.lang.String key)

Searches for the property with the speci�ed key in the mobile property list. The method

returns null if the property is not found.

� getMobileProperty

public String getMobileProperty(java.lang.String key, java.lang.String

def)

Searches for the property with the speci�ed key in the mobile property list. The method

returns the default value argument if the property is not found.

� getServiceProxy

public ServiceProxy getServiceProxy(java.lang.String name)

Acquire a proxy to a service.

� getState

public int getState()

Returns the state of the service.

� getStationaryProperty

public String getStationaryProperty(java.lang.String key)

Searches for the property with the speci�ed key in the stationary property list. The method

returns null if the property is not found.

� getStationaryProperty

public String getStationaryProperty(java.lang.String key, java.lang.String

def)

Searches for the property with the speci�ed key in the stationary property list. The method

returns the default value argument if the property is not found.

� loadServiceComponent

public void loadServiceComponent(java.io.InputStream is)

Loads and adds a saved service component from an input stream.

se.sics.sview.core{ ServiceContext 13

� registerService

public void registerService(java.lang.String name,

se.sics.sview.core.ServiceInterfaceFactory interfaceFactory)

Registers a service.

� reload

public void reload()

Resets the PSE to the last saved state. This method will cause the PSE to shutdown

temorarily. Unsaved data and modi�cations will be lost.

� remove

public void remove()

Schedules the service component for removal.

� removeServiceComponent

public void removeServiceComponent(java.lang.String key)

Removes a service component from the PSE.

� resumeServiceComponent

public void resumeServiceComponent(java.lang.String key,

se.sics.sview.core.ServiceContextEvent evt)

Resumes a service component.

� save

public void save()

Saves the state of the PSE in a service briefcase. This method will cause the PSE to

shutdown temporarily.

� setMobileProperty

public void setMobileProperty(java.lang.String key, java.lang.String

value)

Sets the property with the speci�ed key in the mobile property list.

� setState

public void setState(int state)

Sets the state of the service. This method is only e�ective if the service is currnetly engaged

in a state change (i.e. the ServiceContext has called one of the state modifying methods, to

which the service has returned a negative value to indicate that the state modi�cation is

ongoing).

� setStationaryProperty

public void setStationaryProperty(java.lang.String key, java.lang.String

value)

Sets the property with the speci�ed key in the stationary property list.

� shutdown

public void shutdown()

Performs a shutdown of the PSE without saving. Unsaved data and modi�cations will be

lost.

se.sics.sview.core{ ServiceListener 14

� stop

public void stop()

Schedules the service component for termination.

� stopServiceComponent

public void stopServiceComponent(java.lang.String key,

se.sics.sview.core.ServiceContextEvent evt)

Stops a service component.

� suspend

public void suspend()

Schedules the service component for suspension.

� suspendServiceComponent

public void suspendServiceComponent(java.lang.String key,

se.sics.sview.core.ServiceContextEvent evt)

Suspends a service component.

� synchronize

public void synchronize()

Synchronizes the PSE with the default service briefcase server. This method will cause the

PSE to shutdown temporarily.

� unregisterService

public void unregisterService(java.lang.String name)

Unregisters a service.

1.1.9 Interface ServiceInterfaceFactory

Service components that wish to register services for other service components to use must

implement this interface. An instantiation of the implementation should be sent to the service

context during service registration, and is used to create interfaces to the service when other

service components requests subscriptions.

Declaration

public interface ServiceInterfaceFactory

Methods

� createServiceInterface

public Object createServiceInterface(java.lang.String key)

Invoked to create a service interface to a service of a service component.

se.sics.sview.core{ ServiceProxy 15

1.1.10 Interface ServiceListener

The listener interface for receiving service events. The class that is interested in processing a

service event implements this interface. An instantiation of the implementation is sent to the

service proxy of the service of interest by calling the addServiceListener method. When the

service event occurs, the serviceRegistered=serviceUnregistered method of the implementation are

invoked.

Declaration

public interface ServiceListener

Methods

� serviceRegistered

public void serviceRegistered(java.lang.String name)

Invoked when the service registers.

� serviceUnregistered

public void serviceUnregistered(java.lang.String name)

Invoked when the service unregisters.

1.1.11 Interface ServiceProxy

A service component that wish to subscribe to a service requests a service proxy (de�ned by this

class) to the service from its service context. Via the service proxy, the service component can

(un)subscribe to the service, and register for noti�cations of when the service (un)registers (a

service need not be registered in order for a service component to acquire a service proxy to it).

Declaration

public interface ServiceProxy

Methods

� addServiceListener

public void addServiceListener(se.sics.sview.core.ServiceListener listener

)

Adds a service listener to this service proxy. The listener will be noti�ed when the service of

this service proxy (un)registers.

se.sics.sview.core{ TransactionInitiator 16

� removeServiceListener

public void removeServiceListener(se.sics.sview.core.ServiceListener

listener)

Removes a service listener from this service proxy.

� subscribe

public Object subscribe()

Register a subscription to this service.

� subscribe

public Object subscribe(long timeout)

Subscribe to this service. If the service is not registered yet, wait timeout milliseconds for it

to registered. If the service is not registered within that time, return null.

� unsubscribe

public void unsubscribe()

Unregister a subscription to this service.

1.1.12 Interface TransactionCoordinator

A transaction wraps the steps in service briefcase synchronization in order to make it atomic, and

to provides exception handling.

A transaction coordinator shold implement this interface. The coordinator of a transaction can

be, but need not be, the initiator if the synchronization.

Declaration

public interface TransactionCoordinator

Methods

� abort

public void abort()

Aborts the transaction.

� acknowledge

public void acknowledge(se.sics.sview.core.TransactionParticipant tp)

The participants of a transaction calls this method in order to acknowledge that the

transaction has completed successfully.

1.1.13 Interface TransactionInitiator

A transaction wraps the steps in service briefcase synchronization in order to make it atomic, and

to provides exception handling.

A transaction initiator shold implement this interface.

se.sics.sview.core{ Monitor 17

Declaration

public interface TransactionInitiator

Methods

� globalAcknowledge

public void globalAcknowledge()

The coordinator of the transaction calls this method when all participants have acknowledge

that the transaction has completed successfully.

� globalCommit

public void globalCommit(se.sics.sview.core.TransactionParticipant [] tps

)

The coordinator of the transaction calls this method when all participants have voted for

participation. The participants that voted in favor of the transaction are representd in the

given array of participants.

1.1.14 Interface TransactionParticipant

A transaction wraps the steps in service briefcase synchronization in order to make it atomic, and

to provides exception handling.

A transaction participant shold implement this interface.

Declaration

public interface TransactionParticipant

Methods

� globalCommit

public void globalCommit(se.sics.sview.core.TransactionCoordinator tc)

Called by the coordinator to signal that the transaction is ready to start.

� vote

public boolean vote()

Called by the coordinator to vote for participation in a transaction.

se.sics.sview.core{ Monitor 18

1.2 Classes

1.2.1 Class Monitor

Implements a 'one-to-many monitor' for exclusive access to critical sections. When no one has

arrogated ownership of the monitor, everyone are free to enter and exit at will. Simultaneous

consumers are not synchronized (except during the very brief call to method enter).

A call to arrogate will claim ownership of the monitor, and with that exclusive access to sections

that are guarded by this monitor. Method renounce release ownership of the monitor.

For example, protect a code section with:

...

enter();

== perform protected actions

exit();

...

and claim ownership with:

...

Object monitorReference = new Object();

synchronized(monitorReference);

arrogate(monitorReference);

== perform actions that require exclusive ownership

renounce();

g

...

Declaration

public class Monitor

extends java.lang.Object

se.sics.sview.core{ ServiceBriefcase 19

Constructors

� Monitor

public Monitor()

Methods

� arrogate

public synchronized void arrogate(java.lang.Object ref)

Arrogate exclusive access to the monitor. This method will block until exclusive ownership

can be realized. This requires two conditions to be met: all consumers must leave the

monitor and the monitor cannot be arrogated by someone else.

� enter

public synchronized void enter()

Enter monitor. If monitor is locked, this method will block.

� exit

public synchronized void exit()

Exit monitor.

� renounce

public synchronized void renounce()

Renounce exclusive access to the monitor.

1.2.2 Class ServiceBriefcase

Contains functionality for creating, loading and saving service components. It also provides

storage of the JAR �les of service components, persistent service components, and properties.

The service briefcase is serializable and it can be stored on persistent media and sent between

servers, or have its content synchronized with service briefcases on other servers.

Much of the functionality of the service briefcase is delegated to service containers

ServiceContainer , of which there is one for each service component in the briefcase. The service

container provides storage and serialization handling of individual service components. It includes

functionality for creating, loading, and saving service components, storing persistent service

components, and caching the JAR �le of service components.

Service component creation and loading requires that a class loader is provided by the server

implementation. The server typically uses separate class loaders for every service component in

the system. This ensures that no service component should be able to manipulate other service

components without permission.

se.sics.sview.core{ ServiceBriefcase 20

Declaration

public class ServiceBriefcase

extends java.lang.Object

implements java.io.Serializable

Constructors

� ServiceBriefcase

public ServiceBriefcase(java.util.Properties mobileProps,

java.util.Properties stationaryProps, java.lang.String uid,

java.lang.String pwd)

Creates a new service briefcase with prede�ned mobile and stationary properties.

� ServiceBriefcase

public ServiceBriefcase(java.lang.String uid, java.lang.String pwd)

Creates a new empty service briefcase.

Methods

� changePassword

public final void changePassword(java.lang.String uid, java.lang.String

oldPwd, java.lang.String newPwd)

Changes the password of this briefcase.

� getMobileProperties

public Properties getMobileProperties(java.lang.String uid,

java.lang.String pwd)

Returns the mobile properties of this briefcase.

� getServiceComponents

public ServiceContainer getServiceComponents(java.lang.String [] keys,

java.lang.String uid, java.lang.String pwd)

Returns the service components that corresponds to the given set of keys.

� getServiceContainer

public ServiceContainer getServiceContainer(java.lang.String key,

java.lang.String uid, java.lang.String pwd)

Returns the service container that corresponds to the given key.

� getServiceKeys

public synchronized String getServiceKeys(java.lang.String uid,

java.lang.String pwd)

Returns an array that contains the keys of the service containers in this briefcase.

� getState

public Properties getState(java.lang.String uid, java.lang.String pwd)

Returns the current state of this briefcase.

se.sics.sview.core{ ServiceBriefcase 21

� getStationaryProperties

public Properties getStationaryProperties(java.lang.String uid,

java.lang.String pwd)

Returns the stationary properties of this briefcase.

� load

public static ServiceBriefcase load(java.io.InputStream is)

Loads a serialized service briefcase from a given input stream.

NOTE! Service briefcases, in order to be loaded properly, must be loaded with this method.

� lock

public void lock(java.lang.Object ref)

Locks this briefcase (see Monitor).

� putServiceContainer

public synchronized void putServiceContainer(

se.sics.sview.core.ServiceContainer service, java.lang.String uid,

java.lang.String pwd)

Adds=overwrites a service container.

� removeServiceContainer

public synchronized void removeServiceContainer(java.lang.String key,

java.lang.String uid, java.lang.String pwd)

Removes the service container that corresponds to the given key.

� save

public static void save(se.sics.sview.core.ServiceBriefcase sb,

java.io.OutputStream os)

Saves service briefcase to a given output stream.

NOTE! Service briefcases, in order to be saved properly, must be saved with this method.

� setMobileProperties

public void setMobileProperties(java.util.Properties props,

java.lang.String uid, java.lang.String pwd)

Sets the mobile properties of this briefcase.

� setMonitor

public synchronized void setMonitor(se.sics.sview.core.Monitor monitor)

Sets the monitor for this briefcase (see Monitor).

� setStationaryProperties

public void setStationaryProperties(java.util.Properties props,

java.lang.String uid, java.lang.String pwd)

Sets the stationary properties of this briefcase.

� toMobile

public ServiceBriefcase toMobile(java.lang.String uid, java.lang.String

pwd)

Creates a new service briefcase with all mobile properties and service components of this
briefcase.

se.sics.sview.core{ ServiceContainer 22

� unlock

public void unlock()

Unlocks this briefcase (see Monitor).

� updateServiceBriefcase

public void updateServiceBriefcase(se.sics.sview.core.ServiceContainer []

serviceContainers, java.util.Properties mobileProperties, java.lang.String

uid, java.lang.String pwd)

Updates this briefcase with a new set of service components and mobile properties.

1.2.3 Class ServiceContainer

A ServiceContainer wraps a service component, a JAR cache, and information about the service.

Declaration

public class ServiceContainer

extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Constructors

� ServiceContainer

public ServiceContainer(java.lang.String jarUrl, java.lang.String key)

Loads a service component speci�cation and creates a new container for a service

component with the given key. This method does not create the service component per se.

Methods

� createServiceComponent

public ServiceComponent createServiceComponent(java.lang.ClassLoader

loader)

Creates a new service component based on the currently cached speci�cation (the JAR �le).

� getCacheDate

public Date getCacheDate()

Returns the date of the current version of the JAR �le.

� getChangeDate

public Date getChangeDate()

Returns the date of the latest change of the service component in this container.

� getCreationDate

public Date getCreationDate()

Returns the creation date of the service component in this container.

se.sics.sview.core{ ServiceContainer 23

� getJar

public byte getJar()

Returns the speci�cation of the service component as a byte array.

� getJarStream

public InputStream getJarStream()

Returns the speci�cation of the service component in an output stream.

� getJarUrl

public String getJarUrl()

Returns the URL of the original speci�cation of the service component in this container (the

JAR �le).

� getKey

public String getKey()

Returns the key of the service component.

� getServiceComponent

public byte getServiceComponent()

Returns the service component of this container.

� isMobile

public boolean isMobile()

Returns true if the service component has been declared as mobile (see Mobile).

� isPersistent

public boolean isPersistent()

Returns true if the service component has been declared as persistent (see Persistent).

� load

public static ServiceContainer load(java.io.InputStream is,

java.lang.String key)

Loads a serialized service container from a given input stream.

NOTE! Service containers, in order to be loaded properly, must be loaded with this method.

� loadServiceComponent

public ServiceComponent loadServiceComponent(java.lang.ClassLoader loader

)

Loads a previously saved copy of the service component in this container.

� merge

public void merge(se.sics.sview.core.ServiceContainer sc)

Merges the content of the given service container to this service container.

� removeJar

public void removeJar()

Empties the JAR cache.

se.sics.sview.core{ ServiceContainer 24

� save

public static void save(se.sics.sview.core.ServiceContainer sc,

java.io.OutputStream os)

Saves a serialized service container to a given output stream.

NOTE! Service containers, in order to be saved properly, must be saved with this method.

� saveServiceComponent

public void saveServiceComponent(se.sics.sview.core.ServiceComponent s)

Saves the service component of this container.

� setChangeDate

protected void setChangeDate(java.util.Date changeDate)

� setCreationDate

protected void setCreationDate(java.util.Date creationDate)

� setMonitor

public void setMonitor(se.sics.sview.core.Monitor monitor)

Sets the monitor of this service container (see Monitor).

� setServiceComponent

public void setServiceComponent(byte [] serviceComponent)

Sets the service component of this container.

� stripJar

public ServiceContainer stripJar()

Returns a clone of this container, without the jar.

� stripServiceComponent

public ServiceContainer stripServiceComponent()

Removes a clone of this container, without the service component.

� toString

public String toString()

Returns a string representation of this container.

� validateJar

public void validateJar()

Validates the JAR �le of this service component. If it turns out that it is old, it will be

updated.

Licentiate theses from the Department of Information Technology

2000-001 Katarina Boman: Low-Angle Estimation: Models, Methods and Bounds
2000-002 Susanne Remle: Modeling and Parameter Estimation of the Diffusion Equation
2000-003 Fredrik Larsson: Efficient Implementation of Model-Checkers for Networks of

Timed Automata
2000-004 Anders Wall: A Formal Approach to Analysis of Software Architectures for

Real-Time Systems
2000-005 Fredrik Edelvik: Finite Volume Solvers for the Maxwell Equations in Time

Domain
2000-006 Gustaf Naeser: A Flexible Framework for Detection of Feature Interactions in

Telecommunication Systems
2000-007 Magnus Larsson: Applying Configuration Management Techniques to

Component-Based Systems
2000-008 Marcus Nilsson: Regular Model Checking
2000-009 Jan Nyström: A formalisation of the ITU-T Intelligent Network standard
2000-010 Markus Lindgren: Measurement and Simulation Based Techniques for Real-Time

Analysis
2000-011 Bharath Bhikkaji: Model Reduction for Diffusion Systems
2001-001 Erik Borälv: Design and Usability in Telemedicine
2001-002 Johan Steensland: Domain-based partitioning for parallel SAMR applications
2001-003 Erik K. Larsson: On Identification of Continuous-Time Systems and Irregular

Sampling
2001-004 Bengt Eliasson: Numerical Simulation of Kinetic Effects in Ionospheric Plasma
2001-005 Per Carlsson: Market and Resource Allocation Algorithms with Application

to Energy Control
2001-006 Bengt Göransson: Usability Design: A Framework for Designing Usable

Interactive Systems in Practice
2001-007 Hans Norlander: Parameterization of State Feedback Gains for Pole Assignment
2001-008 Markus Bylund: Personal Service Environments – Openness and User Control

in User-Service Interaction

