
ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2018

Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1602

Effective Techniques for Stateless
Model Checking

STAVROS ARONIS

ISSN 1651-6214
ISBN 978-91-513-0160-0
urn:nbn:se:uu:diva-333541

Dissertation presented at Uppsala University to be publicly examined in ITC/2446,
Lägerhyddsvägen 2, 752 37, Uppsala, Friday, 2 February 2018 at 13:15 for the degree of
Doctor of Philosophy. The examination will be conducted in English. Faculty examiner:
Patrice Godefroid (Microsoft Research).

Abstract
Aronis, S. 2018. Effective Techniques for Stateless Model Checking. Digital Comprehensive
Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1602. 56 pp.
Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0160-0.

Stateless model checking is a technique for testing and verifying concurrent programs, based
on exploring the different ways in which operations executed by the processes of a concurrent
program can be scheduled. The goal of the technique is to expose all behaviours that can be a
result of scheduling non-determinism. As the number of possible schedulings is huge, however,
techniques that reduce the number of schedulings that must be explored to achieve verification
have been developed. Dynamic partial order reduction (DPOR) is a prominent such technique.

This dissertation presents a number of improvements to dynamic partial order reduction
that significantly increase the effectiveness of stateless model checking. Central among these
improvements are the Source and Optimal DPOR algorithms (and the theoretical framework
behind them) and a technique that allows the observability of the interference of operations
to be used in dynamic partial order reduction. Each of these techniques can exponentially
decrease the number of schedulings that need to be explored to verify a concurrent program. The
dissertation also presents a simple bounding technique that is compatible with DPOR algorithms
and effective for finding bugs in concurrent programs, if the number of schedulings is too big
to make full verification possible in a reasonable amount of time, even when the improved
algorithms are used.

All improvements have been implemented in Concuerror, a tool for applying stateless model
checking to Erlang programs. In order to increase the effectiveness of the tool, the interference
of the high-level operations of the Erlang/OTP implementation is examined, classified and
precisely characterized. Aspects of the implementation of the tool are also described. Finally, a
use case is presented, showing how Concuerror was used to find bugs and verify key correctness
properties in repair techniques for the CORFU chain replication protocol.

Keywords: Concurrent, Parallel, Model Checking, Partial Order Reduction, Dynamic Partial
Order Reduction, DPOR, Sleep Set Blocking, Source Sets, Source DPOR, Wakeup Trees,
Optimal DPOR, Observers, Verification, Bounding, Exploration Tree Bounding, Testing,
Erlang, Concuerror, Protocol, Chain Replication, CORFU

Stavros Aronis, Department of Information Technology, Division of Computing Science, Box
337, Uppsala University, SE-75105 Uppsala, Sweden.

© Stavros Aronis 2018

ISSN 1651-6214
ISBN 978-91-513-0160-0
urn:nbn:se:uu:diva-333541 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-333541)

Αφιερώνεται στους γονείς μου, Γιώργο και Λία.

—
Dedicated to my parents, Giorgos and Lia.

Cover art: Three execution steps, from two schedulings. The first step of both
schedulings is the same. The second scheduling has a different second step.

Inspired by Concuerror’s logo which is in turn inspired by the tool’s --graph
output (see e.g. Fig. 6.2 on page 45).

http://parapluu.github.io/Concuerror

List of papers

This dissertation is based on the following papers, which are referred to in the
text by their Roman numerals.

I Source Sets: A Foundation for Optimal Dynamic Partial Order
Reduction [4]
Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas

Published in the Journal of the ACM, Volume 64, Issue 4, September 2017.

Revised and extended version of “Optimal Dynamic Partial Order Reduction” [2] by the same

authors, published in POPL’14.

II The Shared-Memory Interferences of Erlang/OTP Built-Ins [9]
Stavros Aronis and Konstantinos Sagonas

Published in the proceedings of the 16th ACM SIGPLAN International Workshop on
Erlang, September 2017.

III Testing and Verifying Chain Repair Methods for CORFU Using
Stateless Model Checking [7]
Stavros Aronis, Scott Lystig Fritchie, and Konstantinos Sagonas

Published in the proceedings of the 13th International Conference on Integrated Formal
Methods, September 2017.

IV Optimal Dynamic Partial Order Reduction with Observers [8]
Stavros Aronis, Bengt Jonsson, Magnus Lång, and Konstantinos Sagonas

Submitted for publication.

Reprints were made with permission from the publishers.

Sammanfattning på Svenska

Bakgrund
Idag när flerkärniga processorer finns nästan överallt är programmering av pa-
rallella program ett väldigt intressant forskningsområde. Att utveckla korrekta
parallella program är ett svårt åtagande som kräver en djup förståelse av alla
sätt som operationer som exekveras av olika processer kan störa varandra. I en
maskin som har delat minne mellan processorkärnor kan sådana störningar in-
träffa när flera processer försöker använda samma del av minnet samtidigt (ett
så kallat kapplöpningsproblem). Störningarna kan också inträffa på en högre
nivå när flera processer försöker komma åt samma resurs (t.ex. ett lås) men
också på en så hög abstraktionsnivå som mellan nätverksanrop från flera olika
datorer till en dator i ett distribuerat system.

Under exekveringen av ett parallellt program kan operationer interagera på
oförutsedda sätt vilket kan leda till så kallade samtidighetsrelaterade fel (con-
currency errors). Det är svårt att utreda orsaken till sådana fel eftersom de
beror på en speciell schemaläggning av operationer som inte uppkommer un-
der alla exekveringar av programmet. Det kan till och med vara så att dessa
buggar försvinner när man lägger in debug-utskrifter eftersom det kan änd-
ra schemaläggningen (vilket är orsaken till att de ibland kallas heisenbugs).
Efter att ha försökt åtgärda sådana buggar, verifieras detta ofta genom att ba-
ra exekvera programmet flera gånger för att försöka hitta liknande problem.
Denna teknik kallas stresstestning och är ofta tillräckligt bra men kan inte ge
några garantier om att programmet är korrekt eftersom det alltid kan finnas
schemaläggningar som ännu inte har exekverats.

Tillståndsfri modellbaserad testning (stateless model checking, SMC) är en
teknik för att verifiera att ett parallellt program är korrekt genom att ta kon-
troll över schemaläggningen och på ett systematiskt sätt testa alla olika sätt ett
program kan schemaläggas. Med denna teknik kan man bevisa att ett program
är korrekt oberoende av schemaläggningen. Denna teknik kallas också sys-
tematisk parallellitetstestning (systematic concurrency testing). Metoden har
en tydlig fördel gentemot stresstestning eftersom den testar alla schemalägg-
ningar och dessutom kan förklara fel som hittas genom att rapportera den
exakta schemaläggningen som orsakade felet. Det naiva sättet att prova alla
schemaläggningar kan leda till en kombinatorisk explosion. Om varje process
kan exekvera vid varje exekveringssteg så ökar exekveringstiden exponentiellt
med längden på programmet.

Partialordningsreduktion (partial order reduction, POR) förbättrar detta skal-
ningsproblem genom att minska antalet schemaläggningar som måste testas,
samtidigt som alla möjliga beteenden som programmet kan ha fortfarande
testas. POR-tekniker drar nytta av att i typiska parallella program så kan de

flesta par av operationer från olika processer inte störa varandra. Det är där-
för tillräckligt att detektera operationer som kan störa varandra, och fokusera
utforskandet på schemaläggningar av dessa operationer. Att basera sådan de-
tektering på data som samlas in vid körning av programmet är hörnstenen till
dynamisk partialordningsreduktion (dynamic partial order reduction, DPOR).

Den har avhandlingens bidrag
I den här avhandlingen presenteras flera förbättringar av DPOR som väsentligt
ökar SMCs effektivitet. Den mest centrala av dessa förbättringar är algoritmer-
na som kallas Source-DPOR och Optimal-DPOR (och det teoretiska ramver-
ket bakom dessa algoritmer) (Artikel I) och en teknik som gör det möjligt att
använda observerbarhet av störningar mellan operationer i DPOR (Artikel IV).
Båda dessa förbättringar kan ge en exponentiell minskning av antalet sche-
maläggningar som måste utforskas för att verifiera ett parallellt program. Den
här avhandlingen presenterar också en enkel begränsningsteknik som är effek-
tiv för testning av parallella program när antalet schemaläggningar fortfarande
är för stort för att göra verifiering möjlig inom en rimlig tidsrymd, även när de
nya algoritmerna används (detta diskuteras i Artikel III).

Alla förbättringar har implementerats i Concuerror som är ett verktyg för
att använda SMC på program skrivna i programspråket Erlang. Erlang är rele-
vant för industrin och använder aktörsmodellen (the actor model) för att han-
tera parallella program. Processer i Erlang program stör inte varandra genom
att använda delat minne direkt (som är fallet med program skrivna i lågnivå-
språk) utan använder istället högnivåoperationer som är inbyggda i Erlang-
implementationen Erlang/OTP. Störningarna mellan sådana operationer grans-
kas, klassificeras och karaktäriseras på ett precist sätt (Artikel II) för att öka
Concuerrors effektivitet.

Erlangs modell för parallellism är centrerad runt asynkron medlandeöverfö-
ring som stöder så kallade timeouts. Språket är därför speciellt passande för
design, implementation och testning av distribuerade protokoll. Avhandlingen
inkluderar ett exempel som visar hur Concuerror har använts för att verifiera
egenskaper av en lagningsteknik för CORFU (ett så kallat “chain replication
protocol”) (Artikel III).

Finansiering
Det här arbetet har genomförts inom Linnaeus kompetenscentrum UPMARC
(Uppsala Programming for Multicore Architectures Research Center) och har
delvis finansierats av EU FP7 STREP projektet RELEASE (287510) och Ve-
tenskapsrådet.

Acknowledgments

My life in Uppsala was made happier and my work in Uppsala University more
productive through my interactions with a number of people who I would like
to thank in this note.

At the top of this list is Kostis Sagonas, whose student I have been for ten
years at the time this dissertation is published. Kostis was the first professor
to teach me functional programming and the principles of programming lan-
guages, supervised my diploma thesis when I was studying in the National
Technical University of Athens and was the main advisor of my PhD studies,
when I followed him to Uppsala University. I cannot thank him enough for all
the time he has spent working with me throughout these years.

Second is Bengt Jonsson, my second advisor in Uppsala University. The
algorithmic techniques discussed in this dissertation would not have been fully
developed and proven correct without his help.

Next are all of my co-authors. Parosh Aziz Abdulla made me appreciate
rigorous math. Scott Lystig Fritchie enthusiastically used the tool I developed
and collaborated with me to improve it. Magnus Lång helped tremendously
with the theory behind the final improvement to dynamic partial order reduc-
tion techniques presented in this dissertation and I wish him all the best in the
pursuit of his PhD degree.

I also had the pleasure to work with a number of other people in publications
not included in this dissertation. Jonatan Cederberg was there at the beginning
of the journey that lead to Optimal DPOR algorithm. Carl Leonardsson and
Mohamed Faouzi Atig successfully applied the Source DPOR algorithm in
their own research. I want to thank them for all their comments and feedback.

When it comes to Concuerror, the tool I expanded during my studies, spe-
cial thanks need to be given to the original developers, Alkis Gotovos and
Maria Christakis. As is the fate of such projects, I rewrote almost all of their
code after they stopped working on the tool, but they were the first to show
the value of a stateless model checking tool for Erlang. Ilias Tsitsimpis and
Daniel McCain were also students who made contributions to the tool, under
the supervision of Kostis and me, and have my thanks.

Regarding my working environment in Uppsala University, I had the plea-
sure to share an office space with Kjell Winblad, who was my first Swedish
friend (and whom I also thank for his help in writing a summary of this disser-
tation in Swedish), Andreas Löscher, with whom I shared most of my Erlang
frustrations, and David Klaftenegger, with whom I shared most of my Linux

frustrations. Elias Castegren, Stephan Brandauer, and Magnus Norgren were
also my office mates and I thank them for all the motivating discussions. I also
enjoyed fika and long discussions with Kiko Fernandez and Albert Mingkun
Yang. I wish them all success in the completion of their studies.

Most of the aforementioned people have been students or members of the
Linnaeus center of excellence UPMARC (Uppsala Programming for Multi-
core Architectures Research Center), which generously funded my studies.
UPMARC has been an extremely valuable environment for research in which I
was encouraged to interact with numerous other students and senior scientists,
who I all thank for their comments on my work. Participating in the UPMARC
board as a PhD student representative gave me invaluable experience on how
research is planned, funded and conducted successfully.

I also received funding from the EU FP7 STREP project RELEASE and am
thankful for all the feedback I received from its members. Finally, I want to
especially thank the people in the Erlang community, for their support, com-
ments and feedback on all of my presentations on Concuerror.

Life in Uppsala would have been much duller without all of my friends,
who deserve their own place in my list of thanks. Pavlina, Vasili, Zacharoula,
Kosta K., Eirini, Alberto, Alexandra, Thomas, Esther, Alex and Kosta V. you
will always be in my heart. Angelina, meeting you changed my life.

The people of Wijkmanska Blecket, Uplands Nation’s student orchestra,
offered me a new place to unwind and possibly pushed my graduation a tiny bit
later than planned. Ilka, thank you for inviting me in. Rebecca, thank you for
being my friend. Johan, Lena, Lina, Luce, and Rebeca, thank you for warming
my home. Anders, Arve, Axel, Daniel, Henning, Henrik, Isaia, Justine, Malin,
Oliver, Patrik, Zoë and everyone else, thank you for your company, which I
have enjoyed tremendously. I must also thank my accordion teacher, Kostas
Mouskoidis1, for teaching me the skills needed to join such a fantastic group
of musicians.

This list would not be complete without mentioning my life-long friends
from Greece; without their support I would not have survived so far away
from the sun! Nikola, Christina, Oresti and Violetta, thank you for always
being there for me. Dafni and Eirini, thank you for all the time we spent
together. Giorgo, Niko, Alexi, Vasili and Andrea, thank you for being my
awesome mates.

I also want to thank my parents, Giorgos and Lia, for their love and support.
This dissertation is dedicated to them.

Finally, Selma, your love has been one more reason for me to call Uppsala
(and Sweden) my second home. Thank you for your support and motivation
which helped me finish this dissertation.

1It seems that all my best teachers are named with some variant of “Konstantinos”, indeed.

Contents

List of papers . v

Sammanfattning på Svenska . vii

Acknowledgments . ix

1 Overview . 13
Personal Contributions . 18
Organization of this Comprehensive Summary . 18
Related Work . 18

2 Background . 19
2.1 Concurrent Programs . 19
2.2 Stateless Model Checking . 19

2.2.1 Schedulings . 20
2.2.2 Finitedness and Acyclicity . 20
2.2.3 Statelessness via Determinism . 21
2.2.4 Soundness and Effectiveness . 21

2.3 Partial Order Reduction . 21
2.3.1 Dependency Relations . 22

2.4 Dynamic Partial Order Reduction . 24
2.4.1 Example of Scheduling Exploration using DPOR 24
2.4.2 The Classic DPOR Algorithm . 25
2.4.3 Persistent Sets . 25
2.4.4 Sleep Sets . 26

3 The Source and Optimal DPOR Algorithms . 27
3.1 Sleep Set Blocking . 27
3.2 Source Sets and Source DPOR . 27
3.3 Wakeup Trees and Optimal DPOR . 28
3.4 Performance of Source and Optimal DPOR . 30
3.5 Correction for Paper I . 32

4 Using Observability in DPOR . 33
4.1 Observability by Examples . 33
4.2 Optimal DPOR with Observers . 35
4.3 Performance of Optimal DPOR with Observers . 36

5 Bounding . 37
5.1 Combining POR and Bounding . 38

5.2 Exploration Tree Bounding . 38

6 Concuerror: An SMC Tool for Erlang Programs . 39
6.1 Erlang . 39
6.2 Concuerror . 40

6.2.1 Instrumentation of Erlang Programs . 40
6.2.2 Controlled Scheduling . 41
6.2.3 Implementation of DPOR Algorithms . 42
6.2.4 Output . 42
6.2.5 Usability Aspects . 43

7 Applications . 47
7.1 Informal Specification of Erlang’s Implementation . 47
7.2 Verification of a Protocol . 47

7.2.1 Chain Replication . 48
7.2.2 Chain Repair . 48
7.2.3 Chain Replication in CORFU . 49
7.2.4 Modeling Repair Methods for CORFU in Erlang . 49
7.2.5 Optimizing Concuerror and Refining the Model . 50
7.2.6 Verifying a Repair Method for a CORFU Cluster . 50

8 Conclusion . 52

9 Directions for Future Work . 53

References . 54

1. Overview

This dissertation describes contributions to the field of testing and verification
of concurrent programs. It consists of a collection of published and submit-
ted work (Papers I to IV), prefaced by this comprehensive summary which
explains the necessary background and highlights the main results presented
in the papers.

Introduction
Concurrent programming is a field of significant interest in the current, mul-
ticore age of computing. Developing correct concurrent programs is however
a difficult task, requiring a deep understanding of all the ways in which op-
erations executed by different processes interfere. Such interference can be
encountered at different levels, ranging from so-called data races when pro-
cesses access the shared memory of a multicore chip, races between operations
requesting other shared resources (e.g., locks), and going all the way up to in-
terference at higher-levels, e.g., between requests arriving over the network at
a node of a distributed system.

During the execution of a concurrent program, interfering operations can
be interleaved in unexpected ways, leading to so-called concurrency errors.
Investigating such errors is hard as, due to their dependency on the schedul-
ing of operations, they are not triggered in every execution of the program.
Even worse, attempts to trace their causes can change the program’s behaviour
enough to make them disappear; for that reason, concurrency errors are also
called heisenbugs. Even when such an error is identified and fixed, the ab-
sence of other similar errors is often established just by executing the presum-
ably correct program multiple times. This approach, known as stress testing,
is often good enough, but cannot guarantee the correctness of the program,
as there may always exist schedulings leading to more errors, which have not
(yet) been exercised.

Stateless model checking (SMC) [22] is a technique that can be used to ver-
ify a concurrent program, by taking control of the scheduling and systemati-
cally exploring all the ways in which the program’s operations can be executed,
thus proving that in all possible schedulings the behaviour of the program is
correct. Due to this mode of operation, the technique is also known as sys-
tematic concurrency testing. This approach has clear advantages over stress

13

testing, as it is exhaustive and, on top of that, any detected concurrency er-
rors can be explained by reporting the exact scheduling that triggered them. A
naïve attempt to explore all possible schedulings, however, can lead to a com-
binatorial explosion: if every process is considered at every execution step, the
number of possible schedulings scales exponentially with respect to the total
length of the program’s execution [21].

Partial order reduction (POR) techniques [15, 21, 37, 42] ameliorate this
problem by requiring the exploration of only a subset of schedulings, while
provably covering all behaviours that can occur in any scheduling. POR tech-
niques take advantage of the fact that, in typical concurrent programs, most
pairs of operations by different processes are not interfering. As a result, a
scheduling E ′ that can be obtained from another scheduling E by swapping
the order of execution of adjacent but non-interfering (independent) execu-
tion steps will make the program behave in exactly the same way as E. Such
schedulings have the same partial order of interfering operations and belong to
the same equivalence class, called a Mazurkiewicz trace [34]. It is then suffi-
cient for stateless model checking algorithms to explore at least one scheduling
in each such equivalence class. To achieve this, algorithms using POR tech-
niques inspect pairs of interfering operations. If it is possible to execute such
operations in the reverse order, then their partial order will be different and
the algorithm should also explore a scheduling from the relevant equivalence
class. It is therefore enough to determine which are the interfering operations
and explore additional schedulings focusing only on those. Basing such detec-
tion on data obtained at runtime is the cornerstone of dynamic partial order
reduction (DPOR) [18].

This dissertation describes a number of improvements to the original DPOR
algorithm [18] that can exponentially reduce the number of explored schedul-
ings, increasing its effectiveness (Papers I and IV). These improvements are
described in a generic way, making them applicable to several concurrency
models. When it comes to Erlang programs, the use of improved DPOR tech-
niques together with a fine-grained characterization of the interferences be-
tween the higher-level operations of the language (Paper II) have resulted in a
practical verification tool, which has been shown to be effective in testing and
verifying programs and protocols (Paper III). Based on these observations, this
dissertation supports the following:

Thesis:
Improvements in dynamic partial order reduction techniques can

significantly increase the effectiveness of stateless model checking algorithms.

14

Source and Optimal DPOR (Paper I)
The work that lead to this dissertation began in an attempt to increase the effec-
tiveness of Concuerror, a stateless model checking tool for Erlang programs.
Erlang is an industrially relevant programming language based on the actor
model of concurrency [6]. Prior to this work, Concuerror was a prototype
used for researching systematic concurrency testing and test driven develop-
ment of Erlang programs. Its main achievements had been in its ability to
successfully instrument and schedule Erlang programs without modifying the
language’s VM-based runtime environment [12] and in enabling new ways of
testing concurrent programs during their development [28].

Concuerror did not originally use any POR technique and was suffering
from the combinatorial explosion in the number of explored schedulings, when
used for verification. It was therefore a good candidate for trying the original
DPOR algorithm [18], which in this dissertation will also be referred as “clas-
sic DPOR”. While implementing that algorithm in Concuerror, however, we
noticed that in a significant number of cases classic DPOR performed some re-
dundant exploration. In particular, the algorithm could initiate exploration of
a scheduling, but determine at a later point that any further exploration would
make the scheduling equivalent with already explored schedulings. At that
point, the algorithm would abort the exploration.

Research into how this problem could be avoided identified the use of per-
sistent sets [21] by the classic DPOR algorithm as one of the reasons for re-
dundant exploration and resulted in Paper I1 presenting a new category of sets,
source sets, as a new theoretical foundation for POR techniques that can re-
place persistent sets. The paper shows that the classic DPOR algorithm can
be easily modified to use source sets instead of persistent sets, leading to the
Source DPOR algorithm, which outperforms classic DPOR. As Source DPOR
could also not completely avoid redundant exploration, the same paper intro-
duced Optimal DPOR, a novel algorithm that uses source sets and wakeup
trees, a new technique complementing the use of sleep sets [21], to never initi-
ate redundant exploration, therefore achieving optimal reduction.

Both Source and Optimal DPOR algorithms were experimentally tested
with Concuerror on Erlang programs, but are also applicable in other models
of concurrency. As an example, Nidhugg [1] is a verification tool that applied
Source and later Optimal DPOR on C++/Pthread programs. Source sets and
Source DPOR have since been used as a basis in a number of publications and
tools [5,31], including a more in-depth comparison with persistent sets [3]. Pa-
per I also includes proofs of the correctness and optimality of both algorithms
and a comparison of the tradeoffs in the use of the Source and Optimal DPOR
algorithms.

1 These results were also presented in an earlier version of the paper, published in POPL’14 [2].

15

Specifying the Interferences of Erlang’s High-level
Built-in Operations (Paper II)
While research in the theory of DPOR was ongoing, Concuerror continued to
be developed as a practical tool for testing and verifying Erlang programs. Un-
like in lower level languages, where processes interfere by accessing shared
memory directly or by using synchronization operations, processes in Erlang
interact using higher-level operations that are built-in in the language’s imple-
mentation, the Erlang/OTP system. Examples include operations for sending
and receiving messages, monitoring other processes (and receiving notifica-
tions if they crash), or accessing data shared via internal databases (e.g., the
Erlang Term Storage system).

POR techniques crucially depend on determining which operations inter-
fere and, as a result, increasing the accuracy of such decisions can significantly
improve their effectiveness [25]. In order to be sound, Concuerror had to start
from the assumption that any two Erlang built-in operations can interfere and
then carefully exclude pairs of operations that cannot. As this information was
getting more and more refined, it became clear that a deeper investigation of
the interference of Erlang built-in operations was warranted.

This was the motivation for Paper II, which presents the first categoriza-
tion and fine-grained characterization of the interferences between the built-in
operations of the Erlang/OTP implementation. These interferences can lead
to observable differences in program behaviour and must therefore be consid-
ered by a testing and verification tool. The paper includes a description and
treatment of implicit or asynchronous events that can interfere with such oper-
ations, such as process termination and message delivery. It is also supported
by a repository of small litmus test programs that have different results based
on the scheduling of their processes, each highlighting a particular interference
between Erlang’s built-in operations (and/or asynchronous events). Tools for
Erlang (like Concuerror) can soundly focus on just the cases presented in the
paper and refine their interference detection techniques appropriately. Using
such precise information, Concuerror can significantly reduce the number of
schedulings it needs to explore.

Applying Concuerror to Protocol Verification (Paper III)
Erlang’s concurrency model revolves around asynchronous message passing,
including support for timeouts. The language is therefore particularly suitable
for the design, implementation and testing of distributed protocols. Wanting to
test error recovery methods for CORFU [33] (a variant of the Chain Replication
protocol used in distributed shared log systems [43]), an engineer at VMWare
wrote an Erlang model for a CORFU system and tried Concuerror on it. Using
Optimal DPOR and a simple bounding technique, the tool was able to quickly

16

detect errors in two buggy methods but could neither find bugs nor explore all
schedulings of a third (possibly correct) repair method in a reasonable amount
of time.

Collaboration with this engineer lead to Paper III, which starts from the
presentation of the initial model and describes a number of refinements that we
applied on both the model and Concuerror’s interference detection mechanism.
Using the resulting refined model and optimized version of Concuerror, we
achieved exhaustive testing of the third method, verifying its correctness. This
case study also gave empirical proof for the usability of a simple bounding
technique suitable for finding bugs (exploration tree bounding) and provided
insight into the use of Erlang as a modeling language.

Optimal DPOR with Observers (Paper IV)
The last paper included in this dissertation contains the formal description
of the improvement applied on the Optimal DPOR algorithm to achieve the
verification result presented in Paper III.

In concurrent programs, it can be the case that particular operations are
interfering only when executed in particular contexts. As mentioned earlier,
refining the conditions under which POR algorithms consider operations as in-
terfering has been shown to have significant impact, regardless e.g. of whether
the states in which operations are executed are also taken into account or
not [25]. However, in order to guarantee their soundness, POR techniques
often have to be conservative, treating operations as interfering even in cases
where they are not.

In Paper IV, we describe how a DPOR algorithm can decide whether opera-
tions are interfering or not using later operations, which we call observers. As
an example, an algorithm can treat pairs of write operations to the same mem-
ory location or message delivery events to the same process as independent,
unless there exist later read or message receiving operations, respectively. The
idea that interference can be conditional had been applied before, but limited
only to considering the state in which operations were executed [29]. In the pa-
per, we describe the challenges of using observers in DPOR algorithms, give
a formal description of an extension of the Optimal DPOR algorithm with
observers and report on two implementations (in Concuerror and Nidhugg),
demonstrating that Optimal DPOR with Observers can achieve exponentially
better reduction in both shared memory and message passing programs.

17

Personal Contributions
As all papers included in this dissertation have been co-authored, this is an
explicit note of the author’s contributions to each paper.
Paper I: I contributed to the design of the Source and Optimal DPOR algo-

rithms equally with my co-authors. I am the sole implementer of Source
and Optimal DPOR in Concuerror. I performed the evaluation, highlight-
ing the tradeoffs in the use of each algorithm.

Paper II: I am the main author of the paper. I investigated the Erlang/OTP
implementation, designed the classification and wrote all the litmus pro-
grams in the test suite.

Paper III: I am the main author of the paper. I refined the models, extended
Concuerror with the bounding and optimization techniques discussed in
the paper, and performed the evaluation.

Paper IV: I am the main author of the paper. I designed the algorithm to-
gether with Magnus Lång, who did most of the proofs and implemented
the algorithm in Nidhugg. I am the sole implementer of the algorithm in
Concuerror.

Organization of this Comprehensive Summary
The contributions are organized thematically in this comprehensive summary,
beginning with an introduction to concurrent programs, stateless model check-
ing, and partial order reduction (Chapter 2).

A description of the Source and Optimal DPOR algorithms (including their
background) is given next (Chapter 3), followed by a description of the ex-
tension of Optimal DPOR with observers (Chapter 4). The exploration tree
bounding technique is discussed separately (Chapter 5).

The summary continues with a presentation of Erlang (including its main
implementation) and Concuerror (Chapter 6), followed by a chapter describ-
ing applications of the research (Chapter 7). Last, some concluding remarks
(Chapter 8) and suggested directions for future research (Chapter 9) are given.

Related Work
A separate “Related Work” chapter has not been included in this comprehen-
sive summary, as each of the included papers discusses relevant publications.

Related work on stateless model checking and partial order reduction tech-
niques is given in Section 1 (Introduction) and 12 (Related Work) of Paper I,
and Section 8 of Paper IV. Other specification attempts and testing tools for
Erlang are presented in Section 7 of Paper II. Finally, a brief discussion regard-
ing other attempts to verify aspects of the Chain Replication protocol is given
in Section 6 of Paper III.

18

2. Background

This chapter gives an introduction to concurrent programs, stateless model
checking, and partial order reduction techniques, including dynamic partial
order reduction.

2.1 Concurrent Programs
A concurrent program consists of a number of processes, each executing a se-
quential program. Each process may operate on data that is shared between
several processes (e.g., shared memory, messages or other resources) or pri-
vate (i.e., no other process can access/modify them). An operation executed
by a process is characterized as local if it only affects private data, and global
otherwise. Global operations that involve the same data can be interfering.

When executing a concurrent program, a number of schedulers determine
when and for how long each process will execute its sequential program. In
practice, schedulers correspond to software mechanisms provided by the oper-
ating system or a programming language’s runtime environment. The sched-
ulers may enforce a different order and/or duration of execution of each pro-
cess each time the program is executed. This scheduling non-determinism can
lead to different orderings between interfering global operations executed by
different processes, which may in turn make those processes follow different
execution paths in their programs. This can lead to concurrency errors, i.e.,
errors that appear only under particular scheduling decisions and not in every
possible execution of a concurrent program.

We assume that all concurrency-related non-determinism in the programs
we examine is described by the effects of scheduling. Effects from so-called
relaxed accesses to shared memory are out of scope, i.e., we assume that mem-
ory accesses follow the sequential consistency model.

2.2 Stateless Model Checking
Model checking [14,39] is a well studied verification technique, in which an ar-
bitrary system is described by a number of states and transitions between those
states. By exploring the resulting state space, one can then check whether
each reachable state satisfies some given properties; this is called a reachabil-
ity problem. Such exploration is typically stateful, requiring maintenance of a
representation of visited states in order to explore transitions from those states.

19

We can see the verification of a concurrent program as a reachability prob-
lem in model checking, by using the code and data (shared and private) of the
program’s processes as states and the execution of operations by the processes
as transitions. If no errors (e.g., assertion violations) are reachable, then the
program is correct. It is however easy to imagine that, for programs of any sig-
nificant size, the number of states in the resulting system can be huge. More-
over, storing each of these individual states would require impractical amounts
of memory. The goal of stateless model checking (SMC) [22] is to explore the
described state space without explicitly storing information about each state.

2.2.1 Schedulings
The first step to enable stateless exploration of the states and transitions of a
concurrent program is to take control of the scheduling of its processes. State-
less model checking tools use cooperative scheduling, making processes ex-
plicitly return control to a special scheduler at specific points of their execu-
tion. The points where such release of control happens are called preemption
points, as it is only at those points that the special scheduler can preempt a
process that could continue executing. This allows for more precise control
compared to scheduling mechanisms provided by the operating system or a
language’s runtime environment. SMC tools modify the program executed by
each process to insert preemption points before global operations. Local oper-
ations are executed together with a preceding global operation, as they cannot
be individually affected by scheduling.

During execution under an SMC tool, the special scheduler will allow a
single process at a time to execute a global operation (and any local operations
following it), record information about the executed global operation and stop
at the next preemption point. This is called an execution step. The scheduler
may then allow the same process to perform more steps or choose a different
one. The result of this procedure is a sequence of execution steps, called a
scheduling of the processes (or an execution sequence or an interleaving or a
trace). After each step, a process may not be able to continue executing (e.g.,
because its next global operation would be the acquisition of a lock that is held
by another process). For that reason, after each execution step the scheduler
needs to know which processes are enabled, i.e., able to continue execution. If
no process is enabled, the resulting scheduling is called maximal.

2.2.2 Finitedness and Acyclicity
In order for schedulings to be finite, the state space corresponding to the con-
current program must be finite and acyclic. This is an assumption made by
most SMC tools [18, 23, 36]. A SMC tool can use a depth bound to detect
when a scheduling exceeds some predefined length, but techniques such as dy-

20

namic partial order reduction require that the program itself does not contain
infinite schedulings. The reason is that such techniques rely on inspecting the
operations that actually appear in schedulings and can therefore not take into
account operations that are not executed due to a depth bound.

2.2.3 Statelessness via Determinism
If we assume that the execution of each process is deterministic, then by reset-
ting the processes and any shared data back to their initial states, and replaying
the execution steps used in a particular scheduling, we can reach any interme-
diate state of that scheduling. States of the program can therefore be encoded
using the sequence of execution steps used to reach them. This eliminates the
need to store any other state information.

In order to ensure that the execution of each process is deterministic, all
other sources of non-determinism must be controlled, including inputs to the
program and values returned by calls to the operating system or other program-
ming language runtime mechanisms.

2.2.4 Soundness and Effectiveness
In order to be useful for verification, a stateless model checking algorithm
needs to achieve two conflicting goals: on one hand, if a program behaviour
is possible under some scheduling, then the algorithm must be able to find it
(soundness). On the other hand, complete exploration of the state space (and
therefore verification of the program) must be possible in a reasonable amount
of time (effectiveness).

By using a controlled scheduler as described in Sect. 2.2.1, one could de-
vise a naïve SMC algorithm which would simply try all possible scheduling
choices after every preemption point. Such an algorithm would be sound, but
ineffective, however, as the number of explored schedulings would be expo-
nential with respect to the length of the execution, even when only global op-
erations are considered as preemption points. This well-known phenomenon
is often called the state space explosion problem [21].

2.3 Partial Order Reduction
Schedulings, as described in Sect. 2.2.1, impose a total order between oper-
ations, i.e., the order in which operations appear in the scheduling. When
investigating the behaviour of a concurrent program, however, this total order
may not be interesting, in the sense that small changes, such as swapping the
execution of two adjacent steps (from different processes), may not affect the
behaviour of the program.

21

As an example, consider a program in which two processes write at different
shared memory locations. After both write operations have been completed,
the state of the program is the same, regardless of the order of their execution.
Exploring two schedulings whose only difference is the order of execution of
these two operations would evidently be redundant.

The idea that SMC algorithms should avoid such redundant exploration is
the basis of partial order reduction (POR) techniques [15, 21, 37, 42]. Instead
of exhaustively exploring all possible scheduling choices at every step, an al-
gorithm should focus instead on the partial order of interfering operations in a
scheduling, as it is just those operations that need to be executed in a specific
order to make the program’s processes behave as in that particular schedul-
ing; any other scheduling that maintains this partial order of operations will be
equivalent. An SMC algorithm using POR must then ensure that it explores
at least one scheduling in each such equivalence class (called a Mazurkiewicz
trace [34]). This is sufficient for checking most interesting safety properties,
including race freedom, absence of global deadlocks and absence of assertion
violations [15, 21, 42].

2.3.1 Dependency Relations
In order to formally describe that two operations are interfering, POR algo-
rithms use a dependency relation. This relation determines the partial order
relation of interfering operations in a scheduling (also called happens-before
relation [32]) which can be used to decide whether it is possible to reverse the
order of execution of a particular pair of interfering operations. If that is the
case, the pair is in a reversible race.

As POR algorithms work by exploring schedulings that reverse the order
of such races, the precision of the dependency relation can significantly affect
the achieved reduction. If, for example, all operations are assumed to be in-
terfering, each possible scheduling will have a different partial order and no
reduction will be possible. Operations should be considered as interfering only
when their order of execution can affect a program’s behaviour, i.e., one should
be able to write a program in which executing a pair of interfering operations
in a different order leads to a different result. We discuss some examples.

Read/Write Operations on Shared Memory
Two operations accessing shared memory are considered as interfering if they
access the same memory location and at least one of them is a write operation.
This leads to the following three pairings:
Write before Read: A write operation happens-before any later read opera-

tions at the same memory location.
Read before Write: A read operation happens-before any later write opera-

tions at the same memory location.

22

Write before Write A write operation happens-before any later write opera-
tions at the same memory location.

It is easy to write programs in which reversing the execution order of such
pairs of operations can lead to different behaviours.

Notice that the precision of interference detection can be increased if we
also consider the values used in write operations: operations that write the
same value can be seen as independent, but all such operations must be ordered
before a later operation that writes a different value in the location or reads it.
This corresponds to the fact that operations that write the same value can be
reordered without any observable result.

A common characteristic of all these orderings is that a particular pair of
shared memory operations is considered ordered or not, regardless of what
happens later in a scheduling. One can however argue that ordering pairs
of write operations (i.e., the third case above) is interesting only when the
memory location is later read. It could therefore be beneficial to treat such
operations as interfering only in some particular extensions of the scheduling.
This idea is discussed in Paper IV.

Synchronization Operations
Processes in concurrent programs often need to execute operations in a partic-
ular order, regardless of the choices of the scheduler. For that reason, concur-
rent systems support synchronization operations. A common example are op-
erations involving locks. Once a process has acquired a lock, other processes
attempting to acquire it are prevented from continuing their execution until the
lock has been released. Therefore, lock acquisitions have dependencies with
each other and are also dependent with lock releases.

Many other variants of synchronization operations exist, with the common
feature that their execution may prevent some processes from continuing their
execution. In Paper I we describe why dependencies for such variants can be
trickier to handle.

Message Passing Operations
In actor programs, the sending and receiving of a particular message are de-
pendent operations. Moreover, the delivery of a message may by itself be im-
portant, if messages can also be lost or if a process can perform some default
action when no messages have arrived before some timeout.

If the order of delivery can affect which message is received, then it can
alter the behaviour of a program. Even in such cases, however, if particular
messages are never received, then the order of their delivery becomes irrele-
vant. This is an argument similar to the one made for write operations whose
values are never read (in shared memory programs) and is another case exam-
ined in Paper IV.

23

2.4 Dynamic Partial Order Reduction
An algorithm can determine pairs of interfering operations statically, by in-
specting the source code of a concurrent program. However, such analysis
needs to make over-approximations in order to be sound. Aliasing of vari-
ables, for example, needs to be treated conservatively and operations that are
not always executed due to the control flow of the program may also not be
easy to detect accurately. In such cases, the loss of precision can make a static
technique conservatively explore redundant schedulings, limiting the achiev-
able reduction.

Dynamic Partial Order Reduction (DPOR) [18] achieves better reduction
by detecting interferences between operations that are actually executed in a
scheduling and planning additional schedulings by need. Each executed op-
eration can be seen as an event in a scheduling. A DPOR algorithm can be
described by the following steps:

(1) Explore some arbitrary first scheduling.
(2) In the currently explored scheduling, find pairs of events that are in a

reversible race.
(3) For each such pair, check whether a different scheduling, in which the

order of execution of the racing events is reversed, has already been
explored or planned to be explored.

(4) If not, plan the exploration of a new scheduling that reverses the order
of the racing operations. A suitable such scheduling is one that diverges
from the one currently explored at the state from which the first event
was executed (so that the second event can be executed before it). One
or more steps of this new scheduling need to be specified.

(5) Backtrack to the latest state that describes an unexplored (diverging)
scheduling (by replaying an appropriate prefix of the current schedul-
ing), then diverge and explore a new scheduling, following any initial
steps specified in step 4 and completing the scheduling arbitrarily.

(6) Repeat from step 2, until no more unexplored schedulings remain.

2.4.1 Example of Scheduling Exploration using DPOR
Let’s see an example (also presented in Paper I). In Fig. 2.1, the three processes
p, q, and r perform dependent (interfering) accesses to the shared variable x.
We consider two accesses as interfering if they access the same variable and
one of them is a write. Variables y and z are also shared, but since there are
no write operations to them, the read accesses to them are not dependent with
any other operation.

For this program, there are four Mazurkiewicz traces, each characterized by
the sequence of accesses to x (three accesses can be ordered in six ways, but
two different pairs of those orderings are equivalent since they only differ in
the ordering of adjacent read operations, which are not dependent).

24

p : q : r :
write x; (1) read y; read z;

read x; (2) read x; (3)

Figure 2.1. Three processes that interfere by accessing shared memory.

Assume that the first arbitrarily explored scheduling is p.q.q.r.r (schedulings
are denoted by the dotted sequence of scheduled process steps). A DPOR
algorithm will detect that step (1) by p and step (2) by q are in a reversible
race and note that it should explore a scheduling that starts with a step of q.
The DPOR algorithm will also detect the dependency between (1) and (3)
and possibly decide that it is necessary to explore schedulings that start with a
step of r. The algorithm will then backtrack at the initial state, note that there is
an unexplored scheduling diverging in the first step (starting with q), perform
this diverging step and arbitrarily continue exploration. This procedure will
continue until no more unexplored schedulings remain.

2.4.2 The Classic DPOR Algorithm
The operation of the classic DPOR algorithm [18] follows the sketch given in
Sect. 2.4. Reversible races (step 2) are detected after the exploration of each
execution step. New schedulings (step 4) are added by trying to schedule (at
the state where the first operation was executed) a step from any process that
has execution steps that happen before the second racing operation. If that is
not possible (e.g., due to none of the possible processes being enabled at that
state), the classic algorithm plans instead to explore schedulings starting with
each enabled process. Such alternative scheduling choices are added in what
is called a backtrack set at each state. Classic DPOR uses the following two
important abstractions: (i) persistent sets, which are used to prove soundness
and (ii) sleep sets, which are used to increase the effectiveness of the reduction.
We take a closer look at each.

2.4.3 Persistent Sets
To prove the soundness of classic DPOR, it is shown [18] that, when backtrack-
ing, the final backtrack set at every state in the execution sequence is a persis-
tent set. This is enough to guarantee the exploration of at least one scheduling
in each Mazurkiewicz trace, when the explored state space is acyclic and finite.
A set P of processes is persistent in some state if in any possible scheduling
from that state, the first step that is dependent with the first step of some pro-
cess in P is also taken by some process in P.

25

What this practically means is that, when inspecting a step p of a scheduling
E.p.w, if the algorithm can see that by following a different scheduling E.w′ it
would execute an operation that is interfering with p, then it must also explore
a scheduling starting with an operation happening before p in w′.

The classic DPOR algorithm specifies the first step of additional schedul-
ings in order to create backtrack sets of processes that eventually become per-
sistent sets. In the example of Fig. 2.1, the only persistent set which contains
p in the initial state is {p,q,r}. To see this, suppose that, e.g., r is not in the
persistent set P, i.e., P = {p,q}. Then, the scheduling r.r.p contains no step
from a process in P, but its second step is dependent with the first step of p,
which is in P. In a similar way, one can see that also q must be in P.

2.4.4 Sleep Sets
By just specifying the first step of new schedulings, there exists the possibility
that the exploration of a scheduling does not reverse the order of execution for
any pair of racing operations. In the example of Fig. 2.1, when the algorithm
explores a scheduling starting with q, if it immediately continues with a step
of p it will explore a scheduling that will be equivalent to the first scheduling.

A technique that can reduce the schedulings explored by a DPOR algorithm
by avoiding explorations like the one just described is the use of sleep sets [21,
26]. Sleep sets use information from past explorations to prevent redundant
future explorations. A sleep set is maintained for each prefix E of a scheduling
that is currently explored, containing processes whose exploration would be
redundant, because equivalent schedulings have already been explored. The
algorithm then never explores steps by processes in the sleep set.

The sleep set at each prefix E is manipulated as follows: (i) after exploring
schedulings that extend E with some process p, the process p is added to the
sleep set at E, and (ii) when exploring executions that extend E.p, the sleep set
at E.p is initially obtained as the sleep set at E, with all processes whose next
step is dependent with p removed. The result of this procedure is that in new
schedulings each previously explored step needs to have some step interfering
with it. In the program of Fig. 2.1, after having explored executions starting
with p, the process p is added to the sleep set at the initial state, following
rule (i). When initiating the exploration of executions that start with q, the
process p remains in the sleep set, according to rule (ii), and it cannot be
explored immediately after q, as executions that start with q.p are equivalent to
executions that start with p.q, and such executions have already been explored.
The algorithm can, however, execute p after e.g., q.q, as the second step of q
interferes with the first step of p and removes it from the sleep set.

Sleep sets are useful to guide new schedulings, but, as we will see in the
next section, they are not always enough to completely avoid redundant explo-
ration.

26

3. The Source and Optimal DPOR Algorithms

This chapter explains why the classic DPOR algorithm may perform redundant
exploration and presents the Source and Optimal DPOR algorithms, summa-
rizing the improvements to DPOR presented in Paper I1.

3.1 Sleep Set Blocking
In classic DPOR, the use of persistent sets is enough to guarantee the explo-
ration of at least one maximal scheduling in each Mazurkiewicz trace, en-
suring soundness. Moreover, the use of sleep sets is sufficient to prevent the
complete exploration of two different but equivalent maximal schedulings [24].
At first glance, the combination of the two techniques seems to achieve opti-
mal reduction, producing an algorithm that explores exactly one scheduling
in each Mazurkiewicz trace. The actual result, however, is an algorithm that
can initiate the exploration of a scheduling equivalent to an already explored
one. Such exploration will however be sooner or later blocked by the sleep
sets, in the sense that all enabled processes will be in the sleep set. We call
such schedulings sleep set blocked. When persistent sets and sleep sets are
used for reduction, the exploration can include an arbitrary number of sleep
set blocked schedulings.

In the example of Fig. 2.1, if the backtrack set formed at the initial state is
{p,q,r}, then any schedulings that start with r will be sleep-set blocked, after
having explored schedulings starting with p and q, as there is no operation
that can interfere with q’s read on y and take it out of the sleep set. This is
clear evidence that persistent sets cannot be the basis of a DPOR algorithm
that never initiates exploration of redundant schedulings.

3.2 Source Sets and Source DPOR
In Paper I, we present a fundamentally new DPOR technique, based on a new
theoretical foundation for partial order reduction, in which persistent sets are
replaced by a novel class of sets, called source sets. Source sets subsume
persistent sets (i.e., any persistent set is also a source set), but are often smaller

1 The chapter contains text from Paper I, edited to conform to the terminology used in this
comprehensive summary.

27

than persistent sets. Moreover, source sets are provably minimal, in the sense
that the set of explored processes from some state must be a source set in order
to guarantee exploration of all maximal Mazurkiewicz traces.

Source sets are defined for a particular state and a set of possible continua-
tions from that state. The set of processes S is a source set for the state after
an execution sequence E and a set of sequences W such that E.w is a valid
execution sequence for each w ∈W , if for all w ∈W there exists a scheduling
E.p.w′ that is equivalent to E.w and p is a process in S.

In the example of Fig. 2.1, the set S = {p,q} is a source set for the initial
state and the set of all maximal execution sequences, even though it does not
include r. This is because any maximal scheduling starting with a step of r is
equivalent to some maximal scheduling starting with the first step of q. Note
that the set S is not a persistent set. Any persistent set is also a source set,
but, as illustrated by this example, the converse is not true. The example also
demonstrates that, if the smallest persistent set that contains a particular pro-
cess contains more elements than the corresponding source set, the additional
elements will always initiate sleep set blocked explorations.

As described in Sect. 2.4.2, the correctness of the classic DPOR algorithm
was proven by establishing that sets of explored process steps are always per-
sistent sets. In Paper I we prove that it is enough to show the weaker property
that this set is always a source set. We thus claim that source sets are a better
conceptual foundation for developing DPOR techniques.

To show the power of source sets we developed Source DPOR (Paper I),
an algorithm based on source sets. It is derived by modifying the classic
persistent-set-based DPOR algorithm [18] to generate source sets instead of
persistent sets. The modification consists of a small change to a single test
in the classic algorithm. The power of source sets can be observed by not-
ing that Source DPOR achieves significantly better reduction in the number
of explored schedulings than classic DPOR. In fact, Source DPOR achieves
optimal reduction for a large number of the benchmarks used in Paper I.

Source sets were first presented in an earlier version of Paper I [2]. Sufficient
sets [16] are a similar concept, described concurrently and independently but
used for an entirely different purpose (bounded partial order reduction).

3.3 Wakeup Trees and Optimal DPOR
By utilizing source sets, Source DPOR explores the optimal number of exe-
cutions for the program of Fig. 2.1. There are cases, however, where Source
DPOR can also encounter sleep set blocked explorations.

We illustrate this by the example in Fig. 3.1 (also taken from Paper I). In
this program with four processes, p,q,r and s, two operations are dependent
if they access the same shared variable, i.e., x,y or z. Variables l,m,n and o
are private. Each global operation has a unique label; e.g., process s has three

28

Initially: x = y = z = 0

p : q : r : s :
l := x; (1) y := 1; (2) m := y; (3) n := z; (5)

if m = 0 then o := y; (6)
z := 1; (4) if n = 1 then

if o = 0 then
x := 1; (7)

Figure 3.1. Processes whose control flow can be affected by the scheduling.

Initial State

p : (1)

q : (2)

Other
schedulings

r : (3)

r : (4)

s : (5)

s : (6)

s : (7)

q : (2)

r : (3)

q : (2)

SSB
sched.

r : (4)

s : (5)

s : (6)

s : (7)

p : (1)

q : (2)

q : (2)

SSB
sched.

Figure 3.2. Schedulings for the program of Fig. 3.1.

such operations labeled (5), (6), and (7). Operations on private variables are
assumed to be part of the previous global operation. For example, label (6)
marks the read of the value of y, together with the assignment to o, and the
condition check on n. If the value of n is 1, the condition check on o is also
part of (6), which ends just before the assignment to x that has the label (7),
if the second condition is also satisfied. Similar assumptions are made for all
other local operations.

Consider a DPOR algorithm that starts the exploration with p. The al-
gorithm should eventually also explore the scheduling p.r.r.s.s.s (marked in
Fig. 3.2 with a red arrow). During this scheduling, it will detect the race
between events (1) and (7). It must therefore explore some scheduling in
which the race is reversed, i.e., event (7) occurs before event (1). Note that
event (7) will only occur if preceded by the sequence (3)-(4)-(5)-(6) and
not preceded by a step of process q. Thus, a scheduling that reverses this race
must start with the sequence r.r.s.s.

29

When Source DPOR detects this race in p.r.r.s.s.s, it will add r to the back-
track set at the initial state in order to make it a source set. However, when
exploring a scheduling starting with r, Source DPOR cannot ‘remember’ that
r must be followed by r.s.s to reverse the race. It is therefore free, after ex-
ecuting r, to continue with q. However, after r.q, any further exploration is
doomed to encounter sleep set blocking. To see this, note that p goes in the
sleep set when exploring r, and will remain there forever in any sequence that
starts with r.q (as explained above, p can be removed only by the last event
of the sequence r.r.s.s.s). This corresponds to the left chunk labeled as “SSB
sched.” (Sleep Set Blocked schedulings) in Fig. 3.2.

The algorithm cannot completely ignore sleep set blocked schedulings, as it
has to reverse racing operations in them to eventually find the ‘correct’ schedul-
ing (shown in Fig. 3.2 between the two “SSB sched.” chunks). It may however
have to explore an arbitrary number of sleep set blocked schedulings; the “SSB
sched.” chunk on the right is reachable by a similar ‘bad’ scheduling of q.

In order to obtain an optimal DPOR algorithm, we can replace the backtrack
set with a data structure called a wakeup tree. Wakeup trees are constructed
using information from already explored schedulings, hence they do not in-
crease the amount of exploration. They consist of so called wakeup sequences
that guarantee the reversal of detected races, and are composed in a way that
ensures that future explorations will never be sleep set blocked.

Use of wakeup trees leads to the Optimal DPOR algorithm. The algorithm
differs from classic and Source DPOR as it performs race detection at the end
of a scheduling. This happens because wakeup sequences need to contain all
the events that are independent with a race, in order to guarantee soundness.

In the example, Optimal DPOR will handle the race between (1) and (7)
by adding the entire wakeup sequence r.r.s.s.s to a wakeup tree at the initial
state. When this sequence is executed, the last event will remove process p
from the sleep set and so sleep set blocking will be avoided. Any other se-
quence added to this tree must also lead to an operation removing p from the
sleep set. However, new sequences are only added when they are not ‘compat-
ible’ (due to races) with any existing sequences in the tree. Such incompatibil-
ities immediately imply that such sequences will include operations that will
also clear any future additions to sleep sets.

In Paper I, Optimal DPOR is initially presented with the assumption that
a process may only block itself, e.g., by waiting to receive a message. The
handling of operations by which a process can affect the enabledness of other
processes is trickier and is discussed separately.

3.4 Performance of Source and Optimal DPOR
Table 3.1 aggregates evaluation results presented in Paper I. All results corre-
spond to verification, i.e., exploration of the entire state space of each bench-

30

Table 3.1. Comparison of the classic, Source and Optimal DPOR algorithms.

Schedulings Explored Time

Benchmark classic source optimal classic source optimal

filesystem(14) 4 2 2 0.54s 0.36s 0.35s
filesystem(16) 64 8 8 8.13s 1.82s 1.78s
filesystem(18) 1 024 32 32 2m 11s 8.52s 8.86s
filesystem(19) 4 096 64 64 8m 33s 18.62s 19.57s

indexer(12) 78 8 8 0.74s 0.11s 0.10s
indexer(15) 341 832 4 096 4 096 56m 20s 50.24s 52.35s

readers(2) 5 4 4 0.02s 0.02s 0.02s
readers(8) 3 281 256 256 13.98s 1.31s 1.29s
readers(13) 797 162 8 192 8 192 86m 7s 1m 26s 1m 26s

dialyzer 12 436 3 600 3 600 14m 46s 5m 17s 5m 46s
gproc 14 080 8 328 8 104 3m 3s 1m 45s 1m 57s
poolboy 6 018 3 120 2 680 3m 2s 1m 28s 1m 20s
rushhour 793 375 536 118 528 984 145m 19s 101m 55s 105m 41s

lastzero(5) 241 79 64 1.08s 0.38s 0.32s
lastzero(10) 53 198 7 204 3 328 4m 47s 45.21s 27.61s
lastzero(15) 9 378 091 302 587 147 456 25h 39m 11s 55m 4s 30m 13s

example-3.1-ext(7) 373 29 2.38s 0.26s
example-3.1-ext(8) 674 33 4.70s 0.34s
example-3.1-ext(9) 1 222 37 8.79s 0.44s

mark. In all benchmarks it is evident that Source DPOR can explore an
order of magnitude fewer schedulings than classic DPOR. It is even often
the case that Source DPOR achieves optimal reduction. However, in cases
where Source DPOR encounters a lot of sleep set blocked explorations (e.g.,
the lastzero benchmark), Optimal DPOR can halve the number of explored
schedulings.

When Source DPOR does not encounter a lot of sleep set blocked explo-
rations, Optimal DPOR can be slower, even when it explores fewer schedul-
ings (e.g., the gproc and dialyzer benchmarks), due to the added complexity of
maintaining wakeup trees. In our tests however, Optimal DPOR never requires
more than 10% of additional time in such cases.

Notice that even in cases such as the one shown in Fig. 3.2, Source DPOR
can be ‘lucky’ and explore the ‘correct’ scheduling first, encountering no sleep
set blocking. When Source DPOR does encounters sleep set blocked explo-
rations, however, Optimal DPOR can dramatically reduce the total exploration
time. In Paper I, we show that on particularly hard inputs, such as an extended
version of the example of Fig. 3.1 (example-3.1-ext in Table 3.1)2, Source
DPOR may explore an exponential number of additional schedulings com-
pared to Optimal DPOR. This has also been confirmed in other work [30],
showing that Source DPOR is sensitive to scheduling choices.

2See however Sect. 3.5.

31

Another observation from our tests is that memory use is practically the
same between Source and Optimal DPOR (more data is given in Paper I). One
can nevertheless construct programs where the size of wakeup trees grows
exponentially and, consequently, the memory requirements of Optimal DPOR
become considerably worse than those of Source DPOR. Each branch in a
wakeup tree, however, is a prefix of some execution that needs to be explored.
The size of the wakeup trees can therefore never be larger than the size of
all explored executions and memory consumption becomes a problem only
when any DPOR algorithm would have to explore an exponential number of
schedulings.

In conclusion, we believe that, while Source DPOR is a good direct replace-
ment of classic DPOR, Optimal DPOR is the algorithm that should be used in
state-of-the-art SMC tools.

3.5 Correction for Paper I
When writing this summary, we noticed that the pseudocode given in Paper I,
page 38, Fig. 10 for an extended version of the program of Fig. 3.1 in this
summary (Fig. 2 in Paper I) did not exactly correspond to the program that
was used to produce the results shown in Paper I, page 39, Table 1. The results
were produced by a program (shown in Fig. 6.1 in this summary) in which the
read of the variable yi (and the assignment “l := yi”) by each process si is
executed after the following check “if n = 1” that involves the local variable
n (the two lines have essentially been swapped in the program used to produce
the results in Table 1 of Paper I).

The number of explored schedulings for the program that is exactly corre-
sponding to the pseudocode given in Paper I are:

n 1 2 3 4 5 6 7 8 9

Source DPOR 12 29 61 110 189 315 518 845 1373
Optimal DPOR 7 13 19 25 31 37 43 49 55

These results also demonstrate an exponential gap between Source and Opti-
mal DPOR, as described in both Paper I and in Sect. 3.4 of this summary.

32

4. Using Observability in DPOR

This chapter describes how the use of the observability of the interference
between operations can lead to better reduction in DPOR algorithms, summa-
rizing the improvements presented in Paper IV1.

4.1 Observability by Examples
DPOR algorithms conservatively consider operations to be interfering if their
execution order may influence the result of future operations. In the previous
chapter, for example, the interference of shared memory operations was deter-
mined using data races: two operations on the same variable were deemed as
interfering if at least one of them was a write.

Initially: x = 0

p : q : r :
x := 1 x := 2 assert(x < 3)

In the example shown on the right,
the shared variable x is accessed by pro-
cesses p,q and r, with r checking its
value in an assertion. If interference is
decided using data races then all three
operations (two writes and a read) inter-
fere with each other. As a result, each
of the 3! = 6 possible interleavings has a different partial order and therefore
belongs to a different Mazurkiewicz trace that should be explored by a DPOR
algorithm. In schedulings starting with r, however, the order of the execu-
tion of p and q is irrelevant (if one does not care about the final contents of
the memory), as the values written by these operations will never influence
the assertion. A DPOR algorithm could detect that the written values are not
observed and treat the write operations as non-interfering.

Initially: x = 0

p1 : p2 : . . . pN :
x := 1 x := 2 . . . x := N

join processes;
assert(x > 0)

Taking this idea further, in the pro-
gram shown on the right, N processes
write on the shared variable x, and as a
result there exist N! schedulings. In each
such scheduling, however, only the last
written value will be read in the asser-
tion, which is now executed after all pro-
cesses have completed their execution.

1 The chapter contains text from Paper IV, edited to conform to the terminology used in this
comprehensive summary.

33

A DPOR algorithm could consider write operations that are not subsequently
observed as independent and therefore explore just N instead of N! schedul-
ings, thereby achieving an exponential reduction.

In both examples, better reduction could be obtained if the interference of
write operations, which are conservatively considered as always interfering,
was characterized more accurately by looking at complete executions and tak-
ing observability by ‘future’ operations into account.

Initially: r’s mailbox is empty

p : q : r :
r ! M1 r ! M2 receive x

This idea is also applicable in other
models of concurrency. In the message
passing program shown on the right, pro-
cesses p and q each send a different mes-
sage to the mailbox of process r using the
send operator “!”. Process r uses a receive
operation to retrieve a message and store it
in a (local) variable x. If we assume that receive operations pick and return
the oldest message in the mailbox and return null if no message exists, send
operations can interfere (the order of delivery is significant) and so can send
and receive operations (an empty mailbox can yield a different value). As a re-
sult, six schedulings are again possible. However, only three schedulings need
to really be explored: the receive operation interferes only with the earliest
send operation and cannot be affected by a later send; moreover, if the receive
operation is executed first, the order of the send operations is irrelevant.

If we instead assume that receive operations block if no matching message
exists, only two schedulings need to be explored, as r can receive either M1 or
M2. Again, if we generalize the example to N processes instead of just two,
the behaviour is similar to the program with N writes: only N schedulings
(instead of N!) are relevant, each determined by the first message delivered;
the remaining message deliveries are not observable. Note that, in this concur-
rency model, we are interested in the observability of the first instead of the
last operation in an execution sequence.

In some message-passing concurrency models (e.g., Erlang programs [6]),
it is further possible to use selective receive operations instead, which also
block when no message can be selected. Using this feature, the previous pro-
gram can be generalized and rewritten so that r is explicitly picking messages
in order, using pattern matching.

Initially: r’s mailbox is empty

p1 : p2 : . . . pN : r :
r ! M1 r ! M2 . . . r ! MN receive M1;

receive M2;
...

receive MN

Such a program is shown on
the right. Here r wants to re-
ceive the N messages in order:
first M1, then M2, etc. Thus, the
order of delivery of messages
is irrelevant. A DPOR algo-
rithm could take advantage of
the additional information pro-
vided by the selective receive

34

operations, notice that each such operation can pick only one specific message
and therefore determine that the N sends are independent. A single scheduling
is enough to explore all behaviours of the program!

This idea of observability can be combined with the Optimal DPOR al-
gorithm to achieve such reductions. The intuition behind this improvement
comes from the fact that operations that observe a value (e.g., assertions that
check some value, receive statements, etc.) are the only ones that can influ-
ence the control flow and lead to erroneous or generally unexpected behaviour.
At the same time, other operations (e.g., writes, sends, etc.) cannot affect pro-
gram behaviour if no future operation observes their effects. In such cases,
interference between those other operations can be ignored.

4.2 Optimal DPOR with Observers
In Paper IV we extend the Optimal DPOR so that it lazily considers inter-
ferences based on the existence of later operations, called observers. In the
simplest case, operations which would normally be considered interfering are
considered independent in the absence of an observer. There are two main
challenges to enable this extension:

1. We need to handle the fact that interference between operations is condi-
tional.

2. Optimal DPOR uses sleep sets to guarantee that there is no redundant
exploration, but, as we explain in the paper, their use in the presence
of observers is problematic. A suitable replacement must therefore be
found.

To address challenge 1, we extend the wakeup sequences constructed for
reversing the order of interfering operations that require an observer with a
suffix that includes the observer. It is allowed for this suffix to include opera-
tions happening after the interfering operations (even in program order) as any
such operations will behave identically in the new scheduling. This is because
the observer is the first event in the original scheduling that could be affected
by the order of the interfering operations.

To address challenge 2, we build on the intuition behind sleep sets and
assert that, when the extended algorithm backtracks from a particular state, it
has explored all schedulings that can start with the step that led to that state.
In Optimal DPOR, sleep sets are used to perform redundancy checks before
adding a wakeup sequence. When the extended algorithm needs to consider
whether to add a new wakeup sequence or not, information about observers is
recalculated from the operations in the sequence. The algorithm then performs
an exhaustive test, ensuring that each step previously explored from any point
in the execution is overtaken by some other step in the wakeup sequence under
consideration.

35

4.3 Performance of Optimal DPOR with Observers
Results from the evaluation of Optimal DPOR with observers, as presented
in Paper IV, are given in Table 4.1. As in Sect. 3.4, all results correspond to
verification of the benchmarks.

Table 4.1. Comparison of Optimal DPOR and Optimal DPOR with Observers.

Schedulings Explored Time

Benchmark optimal observers optimal observers

lock(3) 30 6 0.9s 0.9s
lock(4) 336 24 1.4s 0.9s
lock(5) 5 040 120 9s 1.3s
lock(6) 95 040 720 3m 27s 2.6s

poolboy 746 265 6.6s 4.0s

gproc 1168 784 12.7s 10s

corfu-repair > 30 000 000 3 864 604 > 750h 52h

selective(2) 2 1 1.0s 1.0s
selective(6) 720 1 1.8s 1.0s
selective(7) 5 040 1 6.3s 1.0s
selective(8) 40 320 1 51s 1.0s

It is clear that use of observers increases the effectiveness of Optimal DPOR.
In particular cases (e.g., the corfu-repair benchmark) use of observers is prac-
tically required to achieve verification. It is also evident (e.g., in the selective
benchmark) that use of observers can even lead to an exponential reduction in
the number of explored schedulings.

36

5. Bounding

Apart from verification, stateless model checking can also be used for test-
ing, in which case the goal is just to find concurrency errors. The algorithms
described before guarantee that if a scheduling that triggers an error exists,
an equivalent scheduling will eventually be explored. Systematic algorithms,
however, may need to explore an arbitrary amount of schedulings before they
find a scheduling that exposes the error. When using stateless model checking
for testing it may therefore be desirable to spread-out the exploration.

This can be achieved using bounding techniques, that impose constraints
on how/when processes can be scheduled by a stateless model checking al-
gorithm and force the algorithm to focus the exploration on schedulings that
satisfy those constraints. In this way, bugs in ‘simpler’ schedulings can be
detected faster than when using exhaustive exploration. Schedulings that vi-
olate the constraints can also be explored, but each exploration begins with a
budget (also called a bound), which is spent whenever the algorithm schedules
processes in a way that violates the constraints. When no budget remains, the
SMC algorithm can only explore schedulings that satisfy the constraints.

The two main bounding techniques used in stateless model checking are
preemption bounding and delay bounding [41].

Preemption bounding [38] limits the number of times the scheduler can pre-
empt a process which could execute more operations, in order to run other
processes. The justification is that common patterns of concurrency bugs re-
quire few operations to be scheduled in a particular order and this observation
can in turn can be related to few preemptions [11]. When a process cannot run
more operations (e.g., by trying to acquire a lock that is not free), any other
process can be scheduled without consuming budget.

Delay bounding [17] is a more restrictive technique, forcing the scheduler to
always pick the first available process from a total order (e.g., round-robin) of
all processes. The bound here corresponds to the number of times a process is
skipped (or delayed). Unlike preemption bounding, only a specific process can
be picked for scheduling without consuming budget, even when a process is
blocked; other choices would ’delay’ the next process in the order. Moreover,
preempting a process (in the way described before) has a variable cost that
depends on which process is scheduled instead, as this decision affects how
many other processes (including the preempted one) have to be delayed.

A noteworthy point is that if a tool tries all possible ways to spend the
budget without finding a bug, it can guarantee that no bug exists in schedulings
with a cost lower than the bound.

37

5.1 Combining POR and Bounding
It has been shown that delay bounding is more effective than preemption
bounding for finding bugs [41]. It is easy to see however, that by using just
bounding a tool may explore multiple equivalent schedulings.

A combination of classic DPOR and preemption bounding has already been
attempted [16]. In that work, the key idea of the proposed Bounded DPOR
algorithm is to explore two schedulings in which a detected race can be re-
versed. The first of these schedulings diverges from the one exposing the race
exactly at the step where the first operation was executed (this will possibly
preempt the first operation’s process and cost budget) and the second diverges
at the closest step where the original process was freely scheduled (avoiding
the cost, as any other process can also be freely scheduled there). This second
scheduling is added conservatively, to cover cases where it is possible to re-
verse the race without spending budget (and save budget to be spent for revers-
ing later races, retaining preemption bounding’s guarantee). Unfortunately, in
such conservative schedulings, sleep sets can no longer be used, as the racing
operation is different from the one that is deferred. As a result, Bounded POR
may sometimes redundantly explore maximal schedulings that are equivalent.

Bounded DPOR can be easily modified to work with source sets, as Source
DPOR is very similar to classic DPOR, but the redundancy problem remains.
Combining preemption or delay bounding with Optimal DPOR is significantly
more difficult, as finding the minimum number of preemptions required to
explore a particular wakeup sequence is an NP-complete problem [35].

5.2 Exploration Tree Bounding
In Paper III we instead showcase exploration tree bounding, a simple bounding
technique compatible with any DPOR algorithm.

Exploration tree bounding restricts the number of times a scheduling ex-
plored by a DPOR algorithm can diverge from an already explored scheduling.
In SMC tools, the first scheduling explored is usually the one chosen under
preemption or delay bounding: a round-robin scheduling of the processes,
without preemptions enforced by the scheduler. Exploration tree bounding
limits the number of times exploration can diverge from that first scheduling,
and essentially combines all the benefits of a DPOR technique (e.g., optimal-
ity), with delay bounding’s effectiveness in finding bugs. Moreover, to avoid
cases where an exploration would become “bound blocked”, exploration tree
bounding allows processes in the sleep set to be delayed without a cost.

Exploration tree bounding does not offer guarantees such as e.g., the ex-
ploration of all schedulings that satisfy some particular scheduling constraints,
like preemption or delay bounding do, but it is nevertheless effective for find-
ing bugs. In Paper III we show, e.g., a case in which use of exploration tree
bounding resulted in finding an error in 57s instead of 144h.

38

6. Concuerror: An SMC Tool for Erlang
Programs

This dissertation’s contributions to stateless model checking were described
from a general perspective in Chapters 3 to 5. The techniques were however
also applied in practice in Concuerror, a SMC tool for Erlang programs. In
this chapter, we describe some characteristics of Erlang together with some
design and implementation aspects of the tool1.

6.1 Erlang
Erlang is an industrially relevant programming language based on the actor
model of concurrency [6]. In Erlang, actors are realized by language-level
processes implemented and managed by the runtime system instead of being
directly mapped to operating system threads. Each Erlang process has its own
private memory area (stack, heap, and mailbox) and communicates with other
processes via message passing.

Erlang is a language famous for its “shared nothing” approach to concur-
rency [6]. However, Erlang’s main implementation, the Erlang/OTP system,
comes with a large number of built-in operations that depend on and affect
shared memory. This is not surprising, as it is impossible to write any inter-
esting concurrent program without some interaction between processes. Even
if this interaction consists of sending a message from one process to another,
at the VM level this means that the send operation needs to write to some
memory that is not local to the process that executes the send, namely to the
recipient’s mailbox. Therefore, some shared memory accesses do take place,
even in pure message-passing concurrent Erlang programs.

Erlang/OTP also comes with a key-value store mechanism, called Erlang
Term Storage (ETS), that allows processes to create memory areas in which
they can insert, look up, and update terms. Such areas, called ETS tables,
can be explicitly declared as public, leading to shared access between pro-
cesses. The runtime system automatically serializes accesses to these tables
when this is necessary and also comes with mechanisms that guarantee atom-
icity of some operations (e.g., a bulk insert). It is however easy to see that
operations on a public ETS table can give rise to interference similar to that of

1 The chapter contains text from Papers I, II and IV, edited to conform to the terminology used
in this comprehensive summary.

39

data races. Moreover, ETS operations can also be affected by other events in
a program, such as a process crashing, as each ETS table is owned by the pro-
cess that created it and its memory is reclaimed by the runtime system when
this process exits if no other process has been assigned to inherit the table.

In Paper II, we systematically describe all the interferences between the
built-in operations of the Erlang/OTP implementation. We also introduce a
number of events that are considered to either be executed by processes (e.g.,
in the case of process termination), or by other independent entities (e.g., con-
ceptual transit mechanisms in the case of message delivery). The reason for
inclusion of events is that asynchronous message passing and mechanisms that
support fault tolerance add complex ways in which processes interact, which
do not always directly correspond to the execution of a built-in operation by a
process (e.g., the order of delivery of messages can be different from the order
of execution of send operations). Events are compatible with other built-in op-
erations, in the sense that they can also be placed in schedulings, facilitating
partial order reduction techniques.

Paper II is accompanied by a publicly available litmus test suite. Each
included test is a program whose result depends on the scheduling of a pair of
built-in operations or events, showing how those operations or events interfere.

6.2 Concuerror
We now turn to Concuerror [12], a stateless model checking tool for finding
concurrency errors in Erlang programs or verifying their absence. The tool is
publicly available at:

http://parapluu.github.io/Concuerror/

Concuerror is itself written in Erlang.

6.2.1 Instrumentation of Erlang Programs
Concuerror employs a source-to-source transformation that inserts preemption
points in the code under execution. This instrumentation allows the tool to
take control of the scheduling of the program, without having to modify the
Erlang VM in any way. In the current VM, a context switch may occur at
any function call. In line with other tools [22] however, Concuerror inserts
preemption points only at process actions that interact with shared state (i.e.,
global operations).

Preemption points are implemented as receive statements which block the
execution of a process until a suitable ‘continue’ message is sent by a separate
“scheduler” process. In this way, Concuerror intervenes in a minimal way in
the execution of an Erlang program.

40

Concuerror supports the complete Erlang language and can instrument pro-
grams of any size. Additionally, the tool uses Erlang’s dynamic code loading
capabilities to detect calls to any libraries a test may use, automatically instru-
ment those libraries and reload them, without affecting other processes that
use such code but are not part of the test (e.g., “system” processes of a node).
Concuerror is powerful enough to be run on itself.

6.2.2 Controlled Scheduling
The ability to reach a previously encountered state by scheduling the pro-
gram’s processes in the same way as they were originally scheduled is a basic
assumption in stateless model checking. In order to achieve that for an arbi-
trary Erlang program, a number of issues had to be addressed.

Non-deterministic Values
Some Erlang operations generate values in a non-deterministic way. Such
values are process or ETS table identifiers, as well as other special values such
as references, port identifiers, or unique integers. Such operations interfere,
since they may use shared data to ensure the uniqueness of the returned values.
However, values returned by such built-ins are in general unpredictable; e.g.,
the result of a comparison between two PIDs or two references can be different
for reasons that cannot always be explained by the scheduling of the operations
generating those values. As SMC tools require such values to remain identical
between executions, Concuerror is recording and reusing them when needed.

Process Management
Erlang supports dynamic process creation. Concuerror’s instrumentation cap-
tures calls to the spawn function and updates its knowledge of the available
processes in the program. Moreover, Concuerror does not let processes ac-
tually terminate, but simulates all the steps happening at process termination.
This allows finer control of the scheduling of the events that can happen dur-
ing process termination and is also necessary in order to keep PIDs identical
between schedulings.

Message Passing
Concuerror simulates the asynchronous message passing semantics of Erlang
using asynchronous events, as described in Paper II.

The tool does not model/handle time related to timeout clauses. As a result,
if a receive statement has a timeout clause, Concuerror will by default treat it
as reachable. A user can however override this setting, specifying a threshold
such that any such clause with a timeout value over the threshold is treated as
unreachable.

41

Operations Outside Scope
Programs running on an Erlang node may try to interact with “system” pro-
cesses that are running by default on the node. The state of such processes
may however be impossible to reset between schedulings. Moreover, a pro-
cess may try to execute operations which are difficult to control in the ways
required by SMC, such as file modifications. Concuerror includes a whitelist
for some of these operations, uses a “record and reuse” mechanism (similar
to the one employed for non-deterministic values) for some others and allows
users to specify code that should be trusted to behave as if it was purely func-
tional. If the tool however detects that some executed operation returns a result
different than expected, it reports the discrepancy and aborts the exploration.

6.2.3 Implementation of DPOR Algorithms
Earlier versions of the tool [27] did not include any POR techniques. Starting
from Paper I, all of the code of the tool was gradually rewritten to include the
several DPOR improvements described in this dissertation.

Concuerror detects interference between operations in a scheduling using
hard-coded information about the interference between Erlang built-ins. It
discerns races by identifying dependencies that are reversible (e.g., between
the delivery of two messages to the same process) or irreversible (e.g., between
a message’s delivery versus its receive). It stores dependency information
into a collection of vector clocks at each step of the execution (one clock per-
process and an additional clock for the step itself).

In Paper II, we describe how Concuerror was used in an exhaustive mode
(without any DPOR techniques enabled) to verify that the litmus tests were
correct. Conversely, the tests have been used to verify that Concuerror success-
fully detects all the dependencies between the built-in operations and events
described in the paper. This offers a minimal guarantee that the results re-
ported by Concuerror (especially when no errors are found in a program) are
valid.

6.2.4 Output
If Concuerror detects that in some explored scheduling a process has crashed
or some processes are stuck in a global deadlock (i.e., they are all waiting for
messages), it prints a trace of the scheduling that lead to the error in the report
file it generates. The trace includes all interesting events (i.e., execution of
built-in operations, message deliveries, etc.) annotated with the location at
which they were called. Concuerror can also be configured to ignore some
types of errors.

Alternatively, Concuerror can output an exploration graph, optionally anno-
tated with the pairs of racing operations that justify each explored scheduling.

42

Such a graph, generated from a modified version of the program described in
Fig. 3.1 (the corresponding Erlang program is given in Fig. 6.1) is shown in
Figure 6.2. Each of the five explored schedulings had no errors (indicated by
the green boxes in the bottom)2. Processes exiting normally are marked with
green borders, racing operations that add new schedulings with red dashed ar-
rows, and new schedulings with horizontal arrows at the state from which they
diverge.

6.2.5 Usability Aspects
One of the less highlighted aspects of computer science research is its usability
in the hands of non-expert users. Tools, especially, should have a clear purpose
and be simple and intuitive in their use.

Regarding its purpose, Concuerror was developed in an advantageous en-
vironment, as the audience of Erlang programmers innately understands the
problems of concurrent programming, particularly those involving racing mes-
sages delivered to an actor. Previous contributions in the area such as McEr-
lang [10, 19] (a model checking tool for Erlang programs, based on a formal
specification [40]) and PULSE [13] (a controlled scheduler for Erlang pro-
grams that can be used for randomized testing) have also been used to find
concurrency errors.

Nevertheless, a number of features of Concuerror, such as the automatic
instrumentation of programs, the graph output, and the existence of a mecha-
nism that monitors the explored schedulings and emits tips that guide the user
into a better understanding of the workings of the tool (and adjust their test
and use of the tool accordingly) have been implemented to increase the tool’s
usability. The command-line output3 shown in Fig. 6.3 shows examples of
such features.

An attestation of the impact of these features is that the tool has been tried
by independent Erlang users, leading to results such as the case study pre-
sented in Paper III and discussed in Sect. 7.2 of this summary.

2 For this program Concuerror was configured to ignore deadlocks, as a deadlock is caused by
fact that the first process (P) has not exited and remains blocked at the end of the execution. This
deadlock is used to avoid interferences that will appear if the first process is allowed to terminate,
as in that case the ETS table used to store the shared variables will be deleted and the deletion
will be racing with all other operations on the table. An alternative way to avoid this behaviour is
to ensure that each child process (P1-P4) has completed its accesses by having it send a message
back to the first process.
3 Notice that this is different from the report file generated by the tool.

43

-module('fig3.1').

-export([test/0]).

-concuerror_options([{ignore_error, deadlock}]).

test() ->
_P = self(),
ets:new(table, [public, named_table]),
ets:insert(table, {x, 0}),
ets:insert(table, {y, 0}),
ets:insert(table, {z, 0}),
_P1 = spawn(fun() -> [{x, _L}] = ets:lookup(table, x) end),
_P2 = spawn(fun() -> ets:insert(table, {y, 1}) end),
_P3 =

spawn(
fun() ->

[{y, M}] = ets:lookup(table, y),
case M of

1 -> ok;
0 -> ets:insert(table, {z, 1})

end
end

),
_P4 =

spawn(
fun() ->

[{z, N}] = ets:lookup(table, z),
%% [{y, O}] = ets:lookup(table, y), % <- This line...
case N of

0 -> ok;
1 ->

[{y, O}] = ets:lookup(table, y), % <- ... is moved here.
case O of

1 -> ok;
0 -> ets:insert(table, {x, 1})

end
end

end
),

block().

block() -> receive after infinity -> ok end.

Figure 6.1. A modified version of the program shown in Fig. 3.1, written in Erlang.
Shared variables are stored in a public ETS table named table. The modification
moves the assignment to variable O after the first condition check and results in a
program that has five instead of seven schedulings, conveniently allowing the corre-
sponding exploration graph shown in Fig. 6.2 to fit in the next page.

44

I
n
i
t
i
a
l

1
:

P
:

t
a
b
l
e

=

e
t
s
:
n
e
w
(
t
a
b
l
e
,

[
p
u
b
l
i
c
,
n
a
m
e
d
_
t
a
b
l
e
]
)

2
:

P
:

t
r
u
e

=

e
t
s
:
i
n
s
e
r
t
(
t
a
b
l
e
,

{
x
,
0
}
)

3
:

P
:

t
r
u
e

=

e
t
s
:
i
n
s
e
r
t
(
t
a
b
l
e
,

{
y
,
0
}
)

4
:

P
:

t
r
u
e

=

e
t
s
:
i
n
s
e
r
t
(
t
a
b
l
e
,

{
z
,
0
}
)

5
:

P
:

P
.
1

=

e
r
l
a
n
g
:
s
p
a
w
n
(
e
r
l
a
n
g
,

a
p
p
l
y
,

[
#
F
u
n
<
f
i
g
3
.
1
.
0
.
1
2
6
0
0
2
1
6
5
>
,
[
]
]
)

6
:

P
:

P
.
2

=

e
r
l
a
n
g
:
s
p
a
w
n
(
e
r
l
a
n
g
,

a
p
p
l
y
,

[
#
F
u
n
<
f
i
g
3
.
1
.
1
.
1
2
6
0
0
2
1
6
5
>
,
[
]
]
)

7
:

P
:

P
.
3

=

e
r
l
a
n
g
:
s
p
a
w
n
(
e
r
l
a
n
g
,

a
p
p
l
y
,

[
#
F
u
n
<
f
i
g
3
.
1
.
2
.
1
2
6
0
0
2
1
6
5
>
,
[
]
]
)

8
:

P
:

P
.
4

=

e
r
l
a
n
g
:
s
p
a
w
n
(
e
r
l
a
n
g
,

a
p
p
l
y
,

[
#
F
u
n
<
f
i
g
3
.
1
.
3
.
1
2
6
0
0
2
1
6
5
>
,
[
]
]
)

9
:

P
.
1
:

[
{
x
,
0
}
]

=

e
t
s
:
l
o
o
k
u
p
(
t
a
b
l
e
,

x
)

9
:

P
.
3
:

[
{
y
,
0
}
]

=

e
t
s
:
l
o
o
k
u
p
(
t
a
b
l
e
,

y
)

1
0
:

P
.
1
:

e
x
i
t
s

n
o
r
m
a
l
l
y

1
6
:

P
.
4
:

t
r
u
e

=

e
t
s
:
i
n
s
e
r
t
(
t
a
b
l
e
,

{
x
,
1
}
)

1
1
:

P
.
2
:

t
r
u
e

=

e
t
s
:
i
n
s
e
r
t
(
t
a
b
l
e
,

{
y
,
1
}
)

1
1
:

P
.
4
:

[
{
z
,
0
}
]

=

e
t
s
:
l
o
o
k
u
p
(
t
a
b
l
e
,

z
)

1
1
:

P
.
3
:

[
{
y
,
0
}
]

=

e
t
s
:
l
o
o
k
u
p
(
t
a
b
l
e
,

y
)

1
2
:

P
.
2
:

e
x
i
t
s

n
o
r
m
a
l
l
y

1
3
:

P
.
3
:

[
{
y
,
1
}
]

=

e
t
s
:
l
o
o
k
u
p
(
t
a
b
l
e
,

y
)

1
4
:

P
.
3
:

e
x
i
t
s

n
o
r
m
a
l
l
y

1
5
:

P
.
4
:

[
{
z
,
0
}
]

=

e
t
s
:
l
o
o
k
u
p
(
t
a
b
l
e
,

z
)

1
6
:

P
.
4
:

e
x
i
t
s

n
o
r
m
a
l
l
y

1
:

O
k

1
2
:

P
.
4
:

e
x
i
t
s

n
o
r
m
a
l
l
y

1
4
:

P
.
3
:

t
r
u
e

=

e
t
s
:
i
n
s
e
r
t
(
t
a
b
l
e
,

{
z
,
1
}
)

1
3
:

P
.
3
:

[
{
y
,
0
}
]

=

e
t
s
:
l
o
o
k
u
p
(
t
a
b
l
e
,

y
)

1
5
:

P
.
3
:

e
x
i
t
s

n
o
r
m
a
l
l
y

1
6
:

P
.
2
:

t
r
u
e

=

e
t
s
:
i
n
s
e
r
t
(
t
a
b
l
e
,

{
y
,
1
}
)

1
7
:

P
.
2
:

e
x
i
t
s

n
o
r
m
a
l
l
y

2
:

O
k

1
2
:

P
.
2
:

t
r
u
e

=

e
t
s
:
i
n
s
e
r
t
(
t
a
b
l
e
,

{
y
,
1
}
)

1
2
:

P
.
3
:

t
r
u
e

=

e
t
s
:
i
n
s
e
r
t
(
t
a
b
l
e
,

{
z
,
1
}
)

1
3
:

P
.
2
:

e
x
i
t
s

n
o
r
m
a
l
l
y

1
7
:

P
.
4
:

[
{
y
,
1
}
]

=

e
t
s
:
l
o
o
k
u
p
(
t
a
b
l
e
,

y
)

1
4
:

P
.
3
:

t
r
u
e

=

e
t
s
:
i
n
s
e
r
t
(
t
a
b
l
e
,

{
z
,
1
}
)

1
5
:

P
.
3
:

e
x
i
t
s

n
o
r
m
a
l
l
y

1
6
:

P
.
4
:

[
{
z
,
1
}
]

=

e
t
s
:
l
o
o
k
u
p
(
t
a
b
l
e
,

z
)

1
8
:

P
.
4
:

e
x
i
t
s

n
o
r
m
a
l
l
y

3
:

O
k

1
3
:

P
.
3
:

e
x
i
t
s

n
o
r
m
a
l
l
y

1
4
:

P
.
4
:

[
{
z
,
1
}
]

=

e
t
s
:
l
o
o
k
u
p
(
t
a
b
l
e
,

z
)

1
5
:

P
.
4
:

[
{
y
,
0
}
]

=

e
t
s
:
l
o
o
k
u
p
(
t
a
b
l
e
,

y
)

1
7
:

P
.
4
:

e
x
i
t
s

n
o
r
m
a
l
l
y

1
8
:

P
.
2
:

t
r
u
e

=

e
t
s
:
i
n
s
e
r
t
(
t
a
b
l
e
,

{
y
,
1
}
)

1
9
:

P
.
2
:

e
x
i
t
s

n
o
r
m
a
l
l
y

4
:

O
k

1
0
:

P
.
3
:

t
r
u
e

=

e
t
s
:
i
n
s
e
r
t
(
t
a
b
l
e
,

{
z
,
1
}
)

1
1
:

P
.
3
:

e
x
i
t
s

n
o
r
m
a
l
l
y

1
2
:

P
.
4
:

[
{
z
,
1
}
]

=

e
t
s
:
l
o
o
k
u
p
(
t
a
b
l
e
,

z
)

1
3
:

P
.
4
:

[
{
y
,
0
}
]

=

e
t
s
:
l
o
o
k
u
p
(
t
a
b
l
e
,

y
)

1
4
:

P
.
2
:

t
r
u
e

=

e
t
s
:
i
n
s
e
r
t
(
t
a
b
l
e
,

{
y
,
1
}
)

1
5
:

P
.
2
:

e
x
i
t
s

n
o
r
m
a
l
l
y

1
6
:

P
.
4
:

t
r
u
e

=

e
t
s
:
i
n
s
e
r
t
(
t
a
b
l
e
,

{
x
,
1
}
)

1
7
:

P
.
4
:

e
x
i
t
s

n
o
r
m
a
l
l
y

1
8
:

P
.
1
:

[
{
x
,
1
}
]

=

e
t
s
:
l
o
o
k
u
p
(
t
a
b
l
e
,

x
)

1
9
:

P
.
1
:

e
x
i
t
s

n
o
r
m
a
l
l
y

5
:

O
k

Figure 6.2. Concuerror’s --graph output for the code in Fig. 6.1, rendered with dot.

45

Concuerror v0.18-hipe (cac7c44) started at 20 Nov 2017 17:56:02

Writing results in concuerror_report.txt

* Info: Automatically instrumented module io_lib
* Info: Instrumented & loaded module t_simple_reg_other
* Info: Automatically instrumented module gproc_sup
* Info: Automatically instrumented module supervisor
* Info: Automatically instrumented module gen
* Info: Automatically instrumented module proc_lib
* Info: Automatically instrumented module erlang
* Info: Automatically instrumented module application
* Info: Automatically instrumented module application_controller
* Info: Automatically instrumented module lists
* Info: Automatically instrumented module gproc
* Info: Automatically instrumented module gproc_lib
* Info: Automatically instrumented module error_logger
* Info: Automatically instrumented module gen_event
* Info: Automatically instrumented module gproc_monitor
* Info: Automatically instrumented module gproc_bcast
* Info: Automatically instrumented module gproc_pool
* Tip: A process crashed with reason '{timeout, ...}'. This may happen

when a call to a gen_server (or similar) does not receive a reply
within some timeout (5000ms by default). You can use e.g.
'--after_timeout 5000' to treat after timeouts that exceed some
threshold (here 4999ms) as 'infinity'.

↪→

↪→

↪→

↪→

* Warning: Only assertion failures are considered crashes
('--assertions_only').↪→

* Tip: An abnormal exit signal was sent to a process. This is probably
the worst thing that can happen race-wise, as any other
side-effecting operation races with the arrival of the signal. If
the test produces too many interleavings consider refactoring your
code.

↪→

↪→

↪→

↪→

* Warning: Concuerror does not fully support erlang:get_stacktrace/0,
returning an empty list instead. If you need proper support,
notify the developers to add this feature.

↪→

↪→

* Tip: A process crashed with reason 'shutdown'. This may happen when
a supervisor is terminating its children. You can use
'--treat_as_normal shutdown' if this is expected behaviour.

↪→

↪→

* Info: Automatically instrumented module sys
* Info: You can see pairs of racing instructions (in the report and

'--graph') with '--show_races true'↪→

Done at 20 Nov 2017 17:56:11 (Exit status: ok)
Summary: 0 errors, 784/784 interleavings explored

Figure 6.3. Concuerror’s command-line output for the gproc benchmark of Table 4.1,
showing info, tips, and warnings about automatic instrumentation, use of options,
suggested refactorings, and suppression of reporting of some detected errors.

46

7. Applications

In Chapter 6 we described aspects of Erlang and Concuerror. In this chapter we
describe two applications of the research and the tool, beyond the verification
and testing of Erlang programs1.

7.1 Informal Specification of Erlang’s Implementation
Even though there is no formal specification for Erlang, prior work exists on
providing formal semantics for the language [40]. That work also includes
ideas such as the separation of sending and delivering operations, but the over-
all focus is on the formal specification of a model of the language, rather than
the description of the interactions between the operations that are available in
the implementation. The semantics also intentionally diverges from the actual
implementation (e.g., providing only monitors and not links), in the interest of
providing a design for the language that is simpler and has fewer interfering
operations.

Paper II serves as an informal specification of the implementation of the
language, offering a detailed exposition of the interfering operations in the Er-
lang runtime, beyond basic message transmission, plus an organized library
of test cases. The treatment includes all the intra-node operations covered in
the earlier work discussed above. Although many, if not most, of the actual
interferences described in Paper II are probably well-known to seasoned Er-
lang programmers, we are not aware of any other document or study that tried
to characterize and categorize them in the level of detail that we have done in
that paper.

7.2 Verification of a Protocol
The main topic of Paper III is the use of Concuerror to test or verify the cor-
rectness of a series of methods for repairing servers that use CORFU [33], a
variant of the Chain Replication [43] protocol. In this section we summarize
some key aspects of that work.

1 The chapter contains text from Papers II and III edited to conform to the terminology used in
this comprehensive summary.

47

7.2.1 Chain Replication
Chain Replication is a leader/follower protocol [43], in which a cluster of
replica servers are arranged in an ordered list of head, middle, and tail servers.
The head server is the leader; all other servers are followers. The protocol
offers linearizable read and update operations.

Clients send update operations to the head server. If the head server rejects
an update operation, it sends an error back to the client. If the operation is ac-
cepted, the head server does not reply, but sends state update requests down the
chain. Follower servers (if any) record the update requests to their respective
local data stores and then forward the requests downstream, in the same order
that they received them. After an update has been stored by the last server
in the chain, the tail server sends a successful acknowledgment (ack) to the
client. Thus, for a single update to e.g., a chain of length three, four messages
are required: client → head, head → middle, middle → tail, and tail → client.

Clients send read operations to the tail server, which is also the conceptual
linearization point for all operations. If the tail server stores a value, then all
other servers upstream in the chain must already store that value or a newer
one.

7.2.2 Chain Repair
The Chain Replication paper [43] describes a method to shorten a chain if a
server crashes or is otherwise stopped. It also discusses how to repair a chain
by reintroducing a crashed server, but omits details that an implementor must
be aware of in order to maintain Chain Replication’s linearizable consistency
guarantee. The following steps describe a naïve repair method:

1. ‘Stop’ all surviving servers in the chain, e.g., [Sa
head , Sb

tail],
2. Copy update history from Sb

tail to the server under repair Sc
repair, then

3. ‘Restart’ all servers with a chain configuration of [Sa
head ,S

b
middle,S

c
tail].

This repair method is correct, but sacrifices cluster availability, as it requires
taking the servers offline.

Online repair is desirable, but it should maintain Chain Replication’s im-
plementation of linearizable read queries sent to a single chain member. A
suitable repair method has been proposed and used in HibariDB [20], a system
implementing Chain Replication. The repair starts with a transition from chain
[Sa

head ,S
b
tail]⇒ [Sa

head ,S
b
tail,S

c
repair], where Sc is the crashed server. Read queries

ignore the server under repair; they are sent to the tail server as usual. Updates
are sent to the head server and propagate down the entire chain; replies are
sent by Sc

repair. While this intermediate chain configuration is in place, a sepa-
rate process asynchronously copies missing data from Sb

tail to Sc
repair. When all

missing history items have been copied to the server under repair, servers in
the chain enter read-only mode. A flush command is sent by the head server,
to force all pending writes down the chain to be finalized. When the flush

48

command reaches the repaired server, all update log histories must be equal:
Sa

head = Sb
tail = Sc

repair. After an acknowledgment of the flush command (sent
from the repaired server) is received by the head server, the chain can transi-
tion to [Sa

head ,S
b
middle,S

c
tail], and read-only mode can be canceled.

7.2.3 Chain Replication in CORFU

A CORFU system [33] uses Chain Replication with three changes, related to
what we described so far. First, CORFU servers do not communicate with
each other, so they cannot implement the original Chain Replication protocol.
Instead, the replication logic is moved to the clients. Thus, for a single update
to a CORFU chain of e.g., length three, six messages are now required, in three
pairs between each of client ↔ head, client ↔ middle, and client ↔ tail.

The second change is that CORFU’s servers implement write-once seman-
tics. Clients cannot overwrite a previously written value.

Third, CORFU builds upon standard Chain Replication by assigning an
epoch number to each chain configuration. All clients and servers are aware
of the epoch number, and all client operations include the epoch number. If
a client operation contains a different epoch number, the operation is rejected
by the corresponding server. A server also temporarily stops service if it re-
ceives a newer epoch number from a client. When any participant detects a
newer epoch, it can retrieve the new configuration from a dedicated server that
is storing cluster layout configuration info.

7.2.4 Modeling Repair Methods for CORFU in Erlang
Paper III begins by describing an approach followed by a user of Concuerror
to model, test and verify chain repair methods suitable for CORFU. As CORFU
servers do not communicate directly with each other, the “read-only mode +
sync flush down the chain” method cannot be directly applied, as there is no
central coordinator like HibariDB’s head server. Moreover, a straightforward
adaptation of this repair method was also found to be insufficient, as a particu-
lar race condition (explained in detail in Paper III) could lead to linearizability
violations.

In order to investigate other solutions, the user modeled a number of servers
and clients of CORFU using Erlang. A high-level view of the modeled CORFU
system is the following: A number of stable servers (one or two suffice for
the properties we want to verify) undergo a chain repair procedure to have a
single additional server added to their chain. Concurrently, two other clients
will try to write two different values to the same key, while a third client will
try to read the key twice. A coordinator process collects information from each
client and the repair process after it has completed its execution and checks a
number of assertions.

49

On this initial model, three repair methods were tested, differing in where
the recovered server is placed in the chain: the head, the tail or an intermediate
position. Concuerror was run in two modes:

1. Using exploration tree bounding (with a bound of at most 4) in order to
detect bugs, and

2. Without bounding the exploration, i.e., using the tool for verification.
The results of this investigation were the following:

1. Concuerror detected bugs in the first and second methods fairly quickly.
2. In the first method, exploration tree bounding was crucial for finding a

bug in a reasonable amount of time (57s instead of 144h).
3. After running for more than 750h, Concuerror could neither find bugs

nor verify the third method.

7.2.5 Optimizing Concuerror and Refining the Model
Paper III continues by describing an optimization of the tool and two refine-
ments of the model. The motivation behind these changes was to further re-
duce the number of schedulings explored by Concuerror and achieve full veri-
fication for the third repair method.

The optimization is an early version of the observers technique described in
Paper IV: when determining which other messages are racing with a message’s
delivery, Concuerror was extended in order to take into account patterns of the
corresponding receive statement. Since the model required a coordinator
process, which expected done messages that all clients sent upon completion,
the use of this optimization together with appropriate receive patterns in
the coordinator was expected to significantly reduce the number of explored
schedulings.

The two refinements were:
1. a change in the behaviour of the reader client, adding a condition to the

execution of the second read operation, with the goal to reduce the read
requests sent in non-interesting cases and

2. a simplification in the modeling of the layout server, using an ETS table
instead of a process, in order to take advantage of the commutativity of
read operations, which were the majority of requests towards that server.

7.2.6 Verifying a Repair Method for a CORFU Cluster
After applying the optimization and the two refinements, Concuerror managed
to verify that the third repair method had no bugs in 48 hours, after exploring
3 931 413 schedulings. The effect of each change was not evaluated on its
own on this method, since the required time would be significantly larger (e.g.,
when not using the observers optimization, the conservatively interfering done
messages sent back to the coordinator would conceptually lead to the explo-

50

ration of 4! = 24 times as many schedulings). However, we evaluated the
changes separately on the first (buggy) repair method without using a bound,
and found that the optimization reduces the time required to find the first bug
to 5h 30m and the refinement of the reader even more so: a bug is found in
6m 20s. When used together, these improvements lead to the discovery of a
bug in just 19 seconds (only 212 schedulings are explored). The layout server
refinement was not so effective on its own; it also slightly increased the num-
ber of schedulings when combined with the reader refinement. With all three
changes, the schedulings were shorter (no back and forth communication with
an extra server) and thus a bug was found slightly faster (in 18 instead of 19
seconds), even though slightly more schedulings (289 instead of 212) were
explored. A full table of these results is given in Paper III.

Overall, Paper III shows that by using Concuerror on a fairly straightfor-
ward model written in Erlang, it is possible to find bugs in two repair methods
for a CORFU system, some more quickly detectable after applying exploration
tree bounding. By optimizing Concuerror and using two refinements of the
model, it is also possible to verify the correctness of a third method in a rea-
sonable amount of time.

51

8. Conclusion

Reduction in the number of explored schedulings makes stateless model check-
ing more effective for finding bugs and enables verification of more concurrent
programs.

In this dissertation, we began by describing a number of improvements
to the original dynamic partial order reduction algorithm used in stateless
model checking. Source sets and wakeup trees were introduced to describe
the Source and Optimal DPOR algorithms. The algorithms were presented in
a generic form, applicable to several concurrency models. Each of these algo-
rithms can achieve exponential reduction in the number of explored schedul-
ings over the original algorithm. Optimal DPOR was then extended to support
observer operations achieving even further reduction. When stateless model
checking is used for testing, bounding techniques can lead to faster bug detec-
tion. We described a simple bounding technique that can be combined with
any DPOR algorithm, including Optimal DPOR, increasing its effectiveness
in finding bugs.

Next, we presented Concuerror, a public, open-source implementation of all
described improvements into a stateless model checking tool for Erlang pro-
grams. Concuerror combines the new techniques with a fine-grained character-
ization of the interferences between the higher-level operations of the Erlang
language. This characterization, which also functions as an informal specifi-
cation of the Erlang/OTP implementation, allows precise detection of races.
The result is tool that is effective in testing and verifying concurrent Erlang
programs. To show that, we presented how Concuerror was used to investi-
gate, find bugs and verify repair techniques for CORFU, a variant of the Chain
Replication protocol.

Based on these statements, we believe that this dissertation successfully
supports the following:

Thesis:
Improvements in dynamic partial order reduction techniques can

significantly increase the effectiveness of stateless model checking algorithms.

52

9. Directions for Future Work

The work presented in this dissertation can be extended in several promising
directions.

Extending Optimal DPOR with observer operations was a first step towards
a DPOR algorithm that can focus on specific operations. This improvement
can be further refined to focus exploration around schedulings that involve
particular operations in a program, e.g., assertions, possibly specified by the
user. This can dramatically reduce the number of explored schedulings by
filtering those that cannot lead to error discovery.

Source and Optimal DPOR were described as sequential algorithms, in the
same spirit as the original DPOR algorithm. Indeed, one can also see that, at
the time of publishing of this dissertation, Concuerror and Nidhugg explore
one scheduling at a time. Parallelizing the algorithms is a natural next step to
further increase the effectiveness of the tools by reducing their total execution
time on multicore or distributed systems.

When it comes to Erlang, the investigation of interference between opera-
tions and events was a sufficient first step to show Concuerror’s correctness
and increase its effectiveness by limiting the pairs of operations it considers as
interfering. However, Concuerror often needs to inspect all possible pairs of
operations, increasing the complexity of its implementation of the algorithms
(Nidhugg does not suffer from this problem). The conditions of interference
of Erlang operations can be further specified, e.g., with an index of memory lo-
cations affected by each operation, and this specification can be used to reduce
the complexity of Concuerror’s interference detection.

Finally, having predictable execution time is a basic usability requirement
for tools. Unfortunately, limited experimentation showed that providing accu-
rate estimations for the total number schedulings and exploration time when
using the new DPOR algorithms is difficult. Use of exploration tree bound-
ing helps, leading to roughly an order of magnitude increase in the number
of schedulings explored for each increment of the bound, but how close or
far that number is from the total number of Mazurkiewicz traces is usually a
puzzle. Giving accurate online estimates for total exploration time would be a
significant step towards further increasing the usability of DPOR tools.

53

References

[1] Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson,
Carl Leonardsson, and Konstantinos Sagonas. Stateless model checking for TSO
and PSO. In Proc. TACAS ’15, 21th Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems, volume 9035 of LNCS, pages 353–367.
Springer, 2015.

[2] Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas.
Optimal dynamic partial order reduction. In Proc. POPL ’14, 41th ACM Symp. on
Principles of Programming Languages, pages 373–384. ACM, 2014.

[3] Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas.
Comparing source sets and persistent sets for partial order reduction. In Models,
Algorithms, Logics and Tools: Essays Dedicated to Kim Guldstrand Larsen on
the Occasion of His 60th Birthday, pages 516–536. Springer, 2017.

[4] Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas.
Source sets: A foundation for optimal dynamic partial order reduction. Journal of
the ACM, 64(4):25:1–25:49, August 2017.

[5] Elvira Albert, Puri Arenas, María García de la Banda, Miguel Gómez-Zamalloa,
and Peter J. Stuckey. Context-sensitive dynamic partial order reduction. In Proc.
CAV 2017, 29th Int. Conf. on Computer Aided Verification, pages 526–543.
Springer, 2017.

[6] Joe Armstrong. Erlang. Communications of the ACM, 53(9):68–75, 2010.
[7] Stavros Aronis, Scott Lystig Fritchie, and Konstantinos Sagonas. Testing and

verifying chain repair methods for CORFU using stateless model checking. In
Proc. IFM 2017, 13th Int. Conf. on Integrated Formal Methods, pages 227–242.
Springer, 2017.

[8] Stavros Aronis, Bengt Jonsson, Magnus Lång, and Konstantinos Sagonas.
Optimal dynamic partial order reduction with observers. Submitted for
publication.

[9] Stavros Aronis and Konstantinos Sagonas. The shared-memory interferences of
Erlang/OTP built-ins. In Proc. Erlang 2017, 16th ACM SIGPLAN Int. Workshop
on Erlang, pages 43–54. ACM, 2017.

[10] Clara Benac Earle and Lars-Åke Fredlund. Recent improvements to the
McErlang model checker. In Proc. Erlang ’09, 8th ACM SIGPLAN Int. Workshop
on Erlang, pages 93–100. ACM, 2009.

[11] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh
Nagarakatte. A randomized scheduler with probabilistic guarantees of finding
bugs. In Proc. ASPLOS XV, 15th Edition of ASPLOS on Architectural Support for
Programming Languages and Operating Systems, pages 167–178. ACM, 2010.

[12] Maria Christakis, Alkis Gotovos, and Konstantinos Sagonas. Systematic testing
for detecting concurrency errors in Erlang programs. In Proc. ICST 2013, 6th

IEEE Int. Conf. on Software Testing, Verification and Validation, pages 154–163.
IEEE Computer Society, 2013.

54

[13] Koen Claessen, Michal Palka, Nicholas Smallbone, John Hughes, Hans Svensson,
Thomas Arts, and Ulf Wiger. Finding race conditions in Erlang with QuickCheck
and PULSE. In Proc. ICFP ’09, 14th ACM SIGPLAN Int. Conf. on Functional
Programming, pages 149–160. ACM, 2009.

[14] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic
verification of finite-state concurrent systems using temporal logics specification:
A practical approach. In Proc. 10th ACM Symp. on Principles of Programming
Languages, pages 117–126. ACM, 1983.

[15] Edmund M. Clarke, Orna Grumberg, Marius Minea, and Doron Peled. State
space reduction using partial order techniques. International Journal on Software
Tools for Technology Transfer, 2(3):279–287, November 1999.

[16] Katherine E. Coons, Madan Musuvathi, and Kathryn S. McKinley. Bounded
partial-order reduction. In Proc. OOPSLA ’13, 2013 ACM SIGPLAN Int. Conf. on
Object Oriented Programming Systems Languages & Applications, pages
833–848. ACM, 2013.

[17] Michael Emmi, Shaz Qadeer, and Zvonimir Rakamarić. Delay-bounded
scheduling. In Proc. POPL ’11, 38th ACM Symp. on Principles of Programming
Languages, pages 411–422. ACM, 2011.

[18] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for
model checking software. In Proc. POPL ’05, 32th ACM Symp. on Principles of
Programming Languages, pages 110–121. ACM, 2005.

[19] Lars-Åke Fredlund and Hans Svensson. McErlang: A model checker for a
distributed functional programming language. In Proc. ICFP ’07, 12th ACM
SIGPLAN Int. Conf. on Functional Programming, pages 125–136. ACM, 2007.

[20] Scott Lystig Fritchie. Chain replication in theory and in practice. In Proc. Erlang
’10, 9th ACM SIGPLAN Int. Workshop on Erlang, pages 33–44. ACM, 2010.

[21] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems: An Approach to the State-Explosion Problem. PhD thesis, University of
Liège, 1996. Also, volume 1032 of LNCS, Springer.

[22] Patrice Godefroid. Model checking for programming languages using VeriSoft.
In Proc. POPL ’97, 24th ACM Symp. on Principles of Programming Languages,
pages 174–186. ACM, 1997.

[23] Patrice Godefroid. Software model checking: The VeriSoft approach. Formal
Methods in System Design, 26(2):77–101, March 2005.

[24] Patrice Godefroid, Gerard J. Holzmann, and Didier Pirottin. State-space caching
revisited. Formal Methods in System Design, 7(3):227–241, November 1995.

[25] Patrice Godefroid and Didier Pirottin. Refining dependencies improves
partial-order verification methods. In Proc. CAV 93, 5th Int. Conf. on Computer
Aided Verification, volume 697 of LNCS, pages 438–449. Springer, 1993.

[26] Patrice Godefroid and Pierre Wolper. Using partial orders for the efficient
verification of deadlock freedom and safety properties. In Proc. CAV 1991,
Computer Aided Verification, volume 575 of LNCS, pages 332–342. Springer,
1991.

[27] Alkis Gotovos. Dynamic systematic testing of concurrent Erlang programs.
Master’s thesis, School of Electrical and Computer Engineering, National
Technical University of Athens, December 2011. http://artemis.cslab.
ntua.gr/Dienst/UI/1.0/Display/artemis.ntua.ece/DT2011-0081.

55

[28] Alkis Gotovos, Maria Christakis, and Konstantinos Sagonas. Test-driven
development of concurrent programs using Concuerror. In Proc. Erlang ’11, 10th

ACM SIGPLAN Int. Workshop on Erlang, pages 51–61. ACM, 2011.
[29] Shmuel Katz and Doron Peled. Defining conditional independence using

collapses. Theoretical Computer Science, 101(2):337–359, July 1992.
[30] Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor

Vafeiadis. Effective stateless model checking for C/C++ concurrency. Proc. ACM
Program. Lang., 2, POPL 2018, January 2018.

[31] Michalis Kokologiannakis and Konstantinos Sagonas. Stateless model checking
of the Linux kernel’s hierarchical read-copy-update (Tree RCU). In Proc. SPIN
2017, 24th Int. SPIN Symposium on Model Checking of Software. ACM, 2017.

[32] Leslie Lamport. Time, clocks and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, July 1978.

[33] Dahlia Malkhi, Mahesh Balakrishnan, John D. Davis, Vijayan Prabhakaran, and
Ted Wobber. From Paxos to CORFU: A flash-speed shared log. SIGOPS Oper.
Syst. Rev., 46(1):47–51, February 2012.

[34] Antoni Mazurkiewicz. Trace theory. In Petri Nets: Applications and
Relationships to Other Models of Concurrency, volume 255 of LNCS, pages
279–324. Springer, 1987.

[35] Madanlal Musuvathi and Shaz Qadeer. Partial-order reduction for
context-bounded state exploration. Technical report, Microsoft Research, 2007.

[36] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerald Basler,
Piramanayagam Arumuga Nainar, and Iulian Neamtiu. Finding and reproducing
heisenbugs in concurrent programs. In Proc. OSDI ’08, 8th Symposium on
Operating Systems Design and Implementation, pages 267–280. USENIX, 2008.

[37] Doron Peled. All from one, one for all, on model-checking using representatives.
In Proc. CAV 93, 5th Int. Conf. on Computer Aided Verification, volume 697 of
LNCS, pages 409–423. Springer, 1993.

[38] Shaz Qadeer and Jakob Rehof. Context-bounded model checking of concurrent
software. In Proc. TACAS ’05, 11th Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems, pages 93–107. Springer, 2005.

[39] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of
concurrent systems in CESAR. In Proc. Programming 1982, Int. Symposium on
Programming, volume 137 of LNCS, pages 337–351. Springer, 1982.

[40] Hans Svensson, Lars-Åke Fredlund, and Clara Benac Earle. A unified semantics
for future Erlang. In Proc. Erlang ’10, 9th ACM SIGPLAN Int. Workshop on
Erlang, pages 23–32. ACM, 2010.

[41] Paul Thomson, Alastair F. Donaldson, and Adam Betts. Concurrency testing
using controlled schedulers: An empirical study. ACM Transactions on Parallel
Computing - Special Issue on PPOPP 2014, 2(4):23:1–23:37, March 2016.

[42] Antti Valmari. Stubborn sets for reduced state space generation. In Grzegorz
Rozenberg, editor, Advances in Petri Nets 1990, volume 483 of LNCS, pages
491–515. Springer, 1991.

[43] Robbert van Renesse and Fred B. Schneider. Chain replication for supporting
high throughput and availability. In Proc. OSDI ’04, 6th Symposium on Operating
Systems Design & Implementation, pages 91–104. USENIX, 2004.

56

Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1602

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through
the series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-333541

ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2018

	Abstract
	List of papers
	Sammanfattning på Svenska
	Bakgrund
	Den har avhandlingens bidrag
	Finansiering

	Acknowledgments
	Contents
	1. Overview
	Introduction
	Source and Optimal DPOR (Paper I)
	Specifying the Interferences of Erlang’s High-level Built-in Operations (Paper II)
	Applying Concuerror to Protocol Verification (Paper III)
	Optimal DPOR with Observers (Paper IV)
	Personal Contributions
	Organization of this Comprehensive Summary
	Related Work

	2. Background
	2.1 Concurrent Programs
	2.2 Stateless Model Checking
	2.2.1 Schedulings
	2.2.2 Finitedness and Acyclicity
	2.2.3 Statelessness via Determinism
	2.2.4 Soundness and Effectiveness

	2.3 Partial Order Reduction
	2.3.1 Dependency Relations

	2.4 Dynamic Partial Order Reduction
	2.4.1 Example of Scheduling Exploration using DPOR
	2.4.2 The Classic DPOR Algorithm
	2.4.3 Persistent Sets
	2.4.4 Sleep Sets

	3. The Source and Optimal DPOR Algorithms
	3.1 Sleep Set Blocking
	3.2 Source Sets and Source DPOR
	3.3 Wakeup Trees and Optimal DPOR
	3.4 Performance of Source and Optimal DPOR
	3.5 Correction for Paper I

	4. Using Observability in DPOR
	4.1 Observability by Examples
	4.2 Optimal DPOR with Observers
	4.3 Performance of Optimal DPOR with Observers

	5. Bounding
	5.1 Combining POR and Bounding
	5.2 Exploration Tree Bounding

	6. Concuerror: An SMC Tool for Erlang Programs
	6.1 Erlang
	6.2 Concuerror
	6.2.1 Instrumentation of Erlang Programs
	6.2.2 Controlled Scheduling
	6.2.3 Implementation of DPOR Algorithms
	6.2.4 Output
	6.2.5 Usability Aspects

	7. Applications
	7.1 Informal Specification of Erlang’s Implementation
	7.2 Verification of a Protocol
	7.2.1 Chain Replication
	7.2.2 Chain Repair
	7.2.3 Chain Replication in CORFU
	7.2.4 Modeling Repair Methods for CORFU in Erlang
	7.2.5 Optimizing Concuerror and Refining the Model
	7.2.6 Verifying a Repair Method for a CORFU Cluster

	8. Conclusion
	9. Directions for Future Work
	References

