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Abstract
Francisco Rodríguez, M. A. 2017. Analysis, synthesis and application of automaton-based
constraint descriptions. Digital Comprehensive Summaries of Uppsala Dissertations from
the Faculty of Science and Technology 1591. 79 pp. Uppsala: Acta Universitatis Upsaliensis.
ISBN 978-91-513-0132-7.

Constraint programming (CP) is a technology in which a combinatorial problem is modelled
as a conjunction of constraints on variables ranging over given initial domains, and optionally
an objective function on the variables. Such a model is given to a general-purpose solver
performing systematic search to find constraint-satisfying domain values for the variables,
giving an optimal value to the objective function. A constraint predicate (also known as a global
constraint) does two things: from the modelling perspective, it allows a modeller to express a
commonly occurring combinatorial substructure, for example that a set of variables must take
distinct values; from the solving perspective, it comes with a propagation algorithm, called a
propagator, which removes some but not necessarily all impossible values from the current
domains of its variables when invoked during search.

Although modern CP solvers have many constraint predicates, often a predicate one would
like to use is not available. In the past, the choices were either to reformulate the model or
to write one's own propagator. In this dissertation, we contribute to the automatic design of
propagators for new predicates.

Integer time series are often subject to constraints on the aggregation of the features of all
maximal occurrences of some pattern. For example, the minimum width of the peaks may be
constrained. Automata allow many constraint predicates for variable sequences, and in particular
many time-series predicates, to be described in a high-level way. Our first contribution is an
algorithm for generating an automaton-based predicate description from a pattern, a feature,
and an aggregator.

It has previously been shown how to decompose an automaton-described constraint on a
variable sequence into a conjunction of constraints whose predicates have existing propagators.
This conjunction provides the propagation, but it is unknown how to propagate it efficiently.
Our second contribution is a tool for deriving, in an off-line process, implied constraints
for automaton-induced constraint decompositions to improve propagation. Further, when a
constraint predicate functionally determines a result variable that is unchanged under reversal
of a variable sequence, we provide as our third contribution an algorithm for deriving an
implied constraint between the result variables for a variable sequence, a prefix thereof, and the
corresponding suffix.
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1. Introduction

“Where shall I begin, please your Majesty?”
he asked.“Begin at the beginning,” the King
said gravely, “and go on till you come to the
end: then stop.”

Alice’s Adventures in Wonderland
LEWIS CARROLL

Consider a nonogram like the one in Figure 1.1. A nonogram is a puzzle in
the form of a grid in which cells must be filled in black or white according to
the numbers at the left and top of the grid, called clues, in order to reveal a
hidden picture. For example, the nonogram in Figure 1.1 hides a picture of a
teapot. Each clue indicates the lengths of the unbroken stretches of black cells
in a given row or column. For example, the clue ‘4 8 3’ means that there are
three stretches of black cells of length four, eight, and three respectively, with
at least one white cell between successive stretches.

With a nonogram, as with most interesting puzzles and real-world combina-
torial problems, there are simply too many possible ways of filling in the cells
for finding a solution by trial and error in reasonable time. One way of ap-
proaching a nonogram, and solving it, is to frame it as a constraint satisfaction
problem.

In this chapter we first introduce the reader in Section 1.1 to the basic con-
cepts of constraint programming, and then we list our contributions in Sec-
tion 7.1. Finally, we give in Section 1.3 an outline of the rest of the disserta-
tion.

5
24
26
11
111
281
272
5
1

3 1
1

4 6 8 8 9 1
6

2
5

6 3 3 3 1

Figure 1.1. A nonogram puzzle (left) and its unique solution (right): a teapot.

13



1.1 Constraint Programming
Constraint programming (CP) [47] is a declarative programming paradigm for
modelling and solving combinatorial problems. Constraint programming is
currently successfully applied to many real-world application areas such as
scheduling [1, 7], packing [25], and rostering [22].

The idea behind constraint programming is that the user specifies the con-
straints that should hold among decision variables and a general-purpose con-
straint solver is used to find a solution.

For example, consider again the nonogram puzzle. Each unknown in the
problem, namely each of the cells in the grid, is called a decision variable.
Each decision variable Vi can take values in a given domain, denoted dom(Vi).
In a nonogram puzzle, the domain of each decision variable is the set {w,b},
where the domain value ‘w’ stands for white and ‘b’ for black. Moreover,
solutions are distinguished from non-solutions by constraints, which are the
limitations to the values that the decision variables can take simultaneously.

A constraint is a pair γ(V), where V is a tuple of decision variables
〈V1, . . . ,Vn〉 and γ is a set of tuples of length n from some given domain. The
tuple V is referred to as the scope of the constraint. For example, the constraint
ALLDIFFERENT(V1, . . . ,Vn) holds if and only if all the n decision variables in
〈V1, . . . ,Vn〉 take n distinct values.

A solution to a constraint γ(V1, . . . ,Vn) is some assignment to all its de-
cision variables, V1 = d1, . . . , Vn = dn, such that the tuple 〈d1, . . . ,dn〉 be-
longs to γ and each di is in dom(Vi). For example, consider the constraint
ALLDIFFERENT(V1,V2,V3), where the decision variables V1, V2, and V3 can
take values in {1,2,3,4}. A solution to ALLDIFFERENT(V1,V2,V3) is, among
others, the assignment V1 = 1, V2 = 3, V3 = 4. Back to our nonogram ex-
ample, each clue constrains the values that the cells of a give row or column
can take. A solution to a given clue is a colour assignment to the cells of the
corresponding row or column such that the clue is satisfied.

A constraint satisfaction problem (CSP) is a conjunction of constraints, to-
gether with the domains of its decision variables. A constraint satisfaction
problem is sometimes considered as a set of constraints, with implicit con-
junction between the constraints of the set. For example, the conjunction:

ALLDIFFERENT(V1,V2,V3)∧V1 +V3 = 4 (1.1)

with dom(Vi) = {1,2,3,4}, is a constraint satisfaction problem. Note that a
nonogram puzzle can be modelled, in a fully declarative way, as a constraint
satisfaction problem. We will show below an elegant way to do so.

A solution to a constraint satisfaction problem is an assignment to all its
decision variables that is a solution to all its constraints simultaneously. For
example, a solution to the constraint satisfaction problem (1.1) is the assign-
ment V1 = 1, V2 = 2, V3 = 3. Note that the assignment V1 = 1, V2 = 3, V3 = 4

14



is a solution to the constraint ALLDIFFERENT(V1,V2,V3) but not a solution to
the constraint problem (1.1).

Nonogram puzzles are usually designed to have a unique solution, but CSPs
in general can have any number of solutions, including none. For example, the
unique solution to the nonogram in Figure 1.1 depicts a teapot. Nevertheless, it
can be the case that for a given constraint satisfaction problem some solutions
are measurably better than other solutions, and the goal is to find a best possi-
ble solution: then we instead call it a constrained optimisation problem (COP).
For example, we could be interested in solutions to (1.1) where the value of
V2 is as large as possible, as is the case with the assignment V1 = 1, V2 = 4,
V3 = 3, for instance. The principles discussed here are all easily extensible to
COPs, but details are omitted for brevity.

Constraint predicates are an important component in modern CP solvers. A
constraint predicate does two things: from the modelling perspective, it allows
a modeller to express concisely a commonly occurring combinatorial struc-
ture of constraint problems; from the solving perspective, it comes with an
algorithm, called a propagator, that removes impossible domain values. The
removal of impossible values by a given propagator can in turn trigger other
propagators, and this process continues until a common fixpoint is reached,
that is, a point when none of the propagators can remove any more domain
values. The calculation of this fixpoint is interleaved with a backtracking sys-
tematic search until a solution is found.

A global constraint predicate, such as ALLDIFFERENT, constrains a non-
fixed number of decision variables. Although modern CP solvers have many
global constraint predicates, often a global constraint predicate that one is
looking for is not there. In the past, the choices were either to reformulate the
model or to write one’s own propagator, as it can be seamlessly added to a CP
solver. For example, a time series is here a sequence of integers, corresponding
to measurements taken over a time interval. Time series are common in many
application areas, such as the output of electric power stations over multiple
days [17], the manpower required in a call centre [6], or the daily capacity of
a hospital clinic over a period of years. Time series are often constrained by
physical or organisational limits. For example, the number of inflexions may
be constrained, or the sum of the peak maxima, or the minimum of the valley
widths, but such global constraint predicates are not readily available in most
CP solvers.

One way to reformulate a global constraint is to decompose it. A decom-
position of a global constraint γ(V) is a polynomial-time transformation of
γ(V) into a conjunction N of constraints for whose predicates there already
are propagators, and possibly new decision variables, such that N preserves
the set of tuples that belong to γ(V). For example, the global constraint
ALLDIFFERENT(V1, . . . ,Vn) can be decomposed into the disequalities Vi 6=Vj,
where 1≤ i < j ≤ n. These disequality constraints collectively give the se-
mantics of the global constraint predicate and provide the propagation.
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In [13, 43], a framework is given where a global constraint predicate can
be described in a relatively simple and high-level way by a deterministic finite
automaton. The idea behind an automaton-based description of a constraint
predicate is to describe what it means for a constraint with that predicate to
be satisfied in terms of the accepting paths of the automaton. For example,
in a nonogram puzzle, a row constrained to contain two stretches of black
cells, of lengths 4 and 3 in this order, separated by at least one white cell
but preceded and followed by any amounts of white cells, can be checked by
an automaton equivalent to the regular expression w∗b4w+b3w∗. Based on
the automaton, the framework of [13] decomposes a constraint with the de-
scribed global constraint predicate into a conjunction of constraints for whose
predicates there already are propagators. Such a decomposition is known as an
automaton-induced decomposition of the constraint. Since this is non-standard
background material, we provide a tutorial in Chapter 2.

It is known that, in general, the propagation of the automaton-induced de-
composition of a constraint cannot eliminate all impossible values from the
domains of the decision variables. In this dissertation we tackle this problem.

1.2 Contributions
In this dissertation we work mainly in two areas: automatically generating
automaton-based descriptions of time-series constraint predicates, and auto-
matically improving the propagation of automaton-induced constraint decom-
positions. We now outline our challenges and contributions for each area. An
overview of the terminology and our contributions and how they relate to other
work can be seen in Figure 1.2.

Generating Automaton-Based Descriptions of Time-Series
Constraint Predicates
In Paper I we show how to synthesise automaton-based descriptions of time-
series constraint predicates directly from a regular expression. We do so in two
steps: first, we characterise the large class of regular expressions that can be
handled by the synthesis of automaton-based descriptions of time-series con-
straint predicates in [11], making it possible to decide when the synthesiser
is applicable; and second, we give an algorithm for, together with the synthe-
siser in [11], automatically generating automaton-based descriptions of time-
series constraint predicates directly from such a regular expression, because
the synthesiser of [11] requires the user to provide a handcrafted low-level
intermediate representation.

Together with the synthesiser of [11] and the decomposition framework
of [13], this work can be seen as providing an automated way to design check-
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pattern
(here: a regular expression)

transducerfeature + aggregator

automaton

glue constraints decompositionimplied constraints

constraint predicate

generate (3, I)

synthesise ([11], 3, IV)

derive (4, II, III, IV)derive (4, V, VI) induce ([13], 2)

describes

specifies

Figure 1.2. Our work and terminology in context. The main contributions of this
dissertation are highlighted in red. Roman numbers refer to papers in the appendix
and unbracketed Arabic numbers refer to chapters.

ers and decompositions for time-series constraint predicates without expert
knowledge on automaton-based constraint descriptions.

Improving Automaton-Induced Constraint Decompositions
In Papers II–VI we show how to derive implied constraints from automaton-
induced constraint decompositions. An implied constraint is a constraint that
is logically implied by other constraints [54]. It does not change the set of so-
lutions, but the idea is that adding it to a model might reduce the time required
to solve the problem due to additional propagation.

First, in Papers II–IV we show how to derive implied constraints directly
from an automaton-based constraint description, which can be added to the
corresponding automaton-induced constraint decomposition.

Second, consider a constraint predicate for a sequence of decision variables
functionally determining a result variable that is unchanged under sequence re-
versal. When such a constraint predicate is described using an automaton, we
show in Papers V–VI how to derive, for the automaton-induced constraint de-
composition, an implied constraint between the result variables for a sequence
of decision variables, a prefix thereof, and the corresponding suffix.
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This work can be seen as providing an automated way to improve propaga-
tion for automaton-induced constraint decompositions.

1.3 Outline of the Dissertation
Chapter 2 recapitulates the required background on classical automata theory
and introduces the reader to the automaton-based description of a constraint
predicate [13, 43].

Chapter 3 introduces the reader to time series and time-series constraint
predicates. In particular, we define the class of time-series constraint predi-
cates for which we are able to synthesise automaton-based constraint predicate
descriptions automatically.

Chapter 4 introduces the reader to implied constraints for automaton-induced
constraint decompositions. In Section 4.2 we present our tool ImpGen and
show how it can be used to derive automatically linear implied constraints di-
rectly from an automaton. In Section 4.3 we define a new kind of implied
constraint, called glue constraints, and show how to derive such constraints.

Chapter 5 summarises each of the included papers. Chapter 6 provides an
overview of related work. In Chapter 7 we conclude and present possible
future work.

To make this dissertation self-contained, we define other used concepts in
Chapter 8.

An overview of the terminology introduced in each chapter and how the
topics relate to each other can be seen in Figure 1.2.
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2. Describing Constraints by Automata

“Besides, that’s not a regular rule: you
invented it just now.”

Alice’s Adventures in Wonderland
LEWIS CARROLL

This chapter recapitulates the standard theory of automata (see also, e.g., [36]).
We introduce the reader to finite automata and regular languages (Section 2.1)
and then we define the AUTOMATON constraint predicate in three stages: first
its particular case that is also known as the REGULAR constraint predicate [43]
(Section 2.2), and then two orthogonal extensions, namely predicate automata
(Section 2.3) and automata with accumulators1 (Section 2.4). Finally, we
compose the two extensions into predicate automata with accumulators (Sec-
tion 2.5).

2.1 Finite Automata and Regular Languages
A deterministic finite automaton (DFA) [36], or automaton for short, is a tuple
〈Q,Γ,δ ,ρ0,Qa〉 where Q is the finite set of states; Γ is the finite alphabet; ρ0
is a state in Q denoting the initial state; Qa is a subset of Q denoting the ac-
cepting states; and δ is a total function from Q×Γ to Q denoting the transition
function. If δ (ρ,a) = ρ ′, then we say that there is a transition from state ρ to
state ρ ′ that consumes alphabet symbol a; this is here often written as:

ρ
a−→ ρ

′

A word is here a sequence of symbols from a given alphabet. Let Γ∗ denote
the infinite set of words built from Γ, including the empty word, denoted ε .
The extended transition function δ̂ : Q×Γ∗→ Q for words (instead of sym-
bols) is recursively defined by δ̂ (ρ,ε) = ρ and δ̂ (ρ,wa) = δ (δ̂ (ρ,w),a) for
a word w and symbol a. Note that both δ and δ̂ are total functions. A word
w = a1a2 · · ·an−1an is accepted by the automaton if there is a chain of transi-
tions:

ρ0
a1−−→ ρ1

a2−−→ . . .
an−1−−→ ρn−1

an−−→ ρn

1Automata with accumulators are called counter automata in Paper II, and memory-DFAs in
Paper III and Paper V.
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ρs ρt
2

1 1

2

3

Figure 2.1. DFA for the regular expression 1∗2(1|2|3)∗.

such that ρn ∈ Qa, that is if δ̂ (ρ0,w) ∈ Qa.
One often uses pictures to define finite automata. For example, in Fig-

ure 2.1, we define an automaton with two states, Q = {ρs,ρt}, represented
by circles, and an alphabet of three symbols, Γ = {1,2,3}, on the transitions.
The initial state ρ0 = ρs is indicated by an arrow coming from nowhere, and
an accepting state is represented by a double circle, and so Qa = {ρt}. The
transition function is represented by the annotated arrows, that is δ (ρ,a) = ρ ′

if there is an arrow from ρ to ρ ′ annotated with a. For each state, there is one
outgoing arrow per alphabet symbol; any missing arrow is assumed to go to an
implicit non-accepting state, on which there is a self-looping arrow for every
symbol of the alphabet, so that no accepting state is reachable from that state.
For example, in Figure 2.1, the missing transition from state ρs on symbol 3
goes to such an implicit non-accepting state.

A language is, in the formal sense, a set of words together with a set of
formation rules. A regular language is a language that can be defined using
a regular expression. Regular expressions describe patterns over words; for
example, the regular expression 1∗2(1|2|3)∗ over the alphabet Γ = {1,2,3}
defines the set of words that start with zero or more 1s, followed by exactly
one 2, and ending with any number of symbols, possibly zero, from Γ. We say
that 1∗2(1|2|3)∗ defines a regular language. We denote the language defined
by a regular expression σ by L(σ). For example, the words 2 and 121 are
words in L(1∗2(1|2|3)∗), whereas the words 11 and 13 are not. We can also
relate regular languages to automata: a language is regular if and only if every
word in the language is accepted by a deterministic finite automaton. For this
reason, we say that an automaton accepts a regular languageL, since it accepts
all the words in L and rejects all the other ones. For example, the automaton
in Figure 2.1 accepts the language of the regular expression 1∗2(1|2|3)∗.

A deterministic finite transducer [48] is a tuple 〈Q,Γ,Γ ′,δ ,ρ0,Qa〉, where
Q is the finite set of states, Γ is the finite input alphabet, Γ ′ is the finite output
alphabet, δ : Q×Γ→ Q×Γ ′∗ is the transition function, which must be total,
ρ0 ∈ Q is the initial state, and Qa ⊆ Q is the set of accepting states. When
δ (ρ,a) = 〈ρ ′,a′〉, there is a transition from state ρ to state ρ ′ upon consuming
the input symbol a and producing the sequence a′ of output symbols: we write
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this as ρ
a : a′−−−→ ρ ′. Note that a deterministic finite automaton is a transducer

without an output alphabet. In a graphical representation of a transducer, a
transition is depicted by an arrow between two states, possibly the same, and
is annotated by a consumed input symbol, followed by a colon and a sequence
of produced output symbols (see Figure 3.4 for an example).

2.2 Describing Constraints by Deterministic Finite
Automata

Any constraint (on a sequence of decision variables) whose extensional def-
inition forms a regular language can be described by an automaton. In fact,
any constraint on a finite sequence of decision variables that range over fi-
nite domains can be described by an automaton, since every finite language
is a regular language. The REGULAR(A,V) constraint [13, 43] holds if the
constraint described by the deterministic finite automaton A (or its equivalent
regular expression) holds for the sequence V of decision variables, that is if A
accepts the sequence of values of V .

In practice, an automaton may however have a number of states that is ex-
ponential in the number of decision variables of the constraint, such as for the
ALLDIFFERENT constraint predicate, as discussed in [43].

A REGULAR(A,V) constraint can be implemented either via a specialised
propagator [43] or via decomposition into a conjunction of constraints [13].
We here take the latter approach because it will be more convenient when
defining the extensions in Sections 2.3 and 2.4. For a given automaton
A= 〈Q,Γ,δ ,ρ0,Qa〉, we define a new constraint predicate T extensionally by
the following set:

{〈q,a,q′〉 | q a−→ q′} (2.1)

That is, T(q,a,q′) is satisfied whenever there is a transition in A from state q
to state q′ that consumes symbol a. A REGULAR(A,〈v1, . . . ,vn〉) constraint
is then decomposed into the following conjunction of n+2 constraints, called
the transition constraints:

q0 = ρ0∧T(q0,v1,q1)∧·· ·∧T(qn−1,vn,qn)∧qn ∈ Qa (2.2)

where q0,q1, . . . ,qn−1,qn are new decision variables, called the state variables,
with domain Q. For contrast, we call v1, . . . ,vn the problem variables.

This decomposition actually works unchanged for non-deterministic finite
automata (NFA), where δ is a relation rather than a total function (for exam-
ple, see Figure 2.2), but we have elected to restrict our focus to deterministic
ones, in order to ease the notation.
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Figure 2.2. NFA for the regular expression (0|1)∗1(0|1)2: all 0/1 sequences that have
a 1 two characters from the end of the sequence.

2.3 Describing Constraints by Predicate Automata
The automata in [13] are more powerful than those in [43]: The alphabet
symbols can be predicates on variables, and all predicates on an accepting
path must be satisfied.

The definition presented here is parametrised by a suitable set of predicates.
Let Predk be a set of k-ary predicates in some suitable language. That is, a
predicate takes a vector, P , of k values.

A k-ary predicate automaton is a tuple 〈Q,Γ,δ ,φ ,ρ0,Qa〉, where Q, Γ, δ ,
ρ0, and Qa are exactly as for a deterministic finite automaton, and φ is a func-
tion from Γ to Predk. For all k-ary value vectors P and all distinct symbols
a1 and a2 of Γ, we must have that φ(a1)(P)∧φ(a2)(P) is false (that is, any
two predicates must be mutually exclusive). A sequence of k-ary vectors of
values P1P2 · · ·Pn−1Pn is accepted by the automaton if there exists a chain of
transitions

ρ0
a1−→ ρ1

a2−→ . . .
an−1−−→ ρn−1

an−→ ρn

such that ρn ∈ Qa and φ(ai)(Pi) is true for all 1 ≤ i ≤ n. Such a chain of
transitions can be written as

ρ0
φ(a1)(P1)−−−−−−→ ρ1

φ(a2)(P2)−−−−−−→ . . .
φ(an−1)(Pn−1)−−−−−−−−→ ρn−1

φ(an)(Pn)−−−−−−→ ρn

Again, we often define k-ary predicate automata by pictures. The conven-
tion is similar to normal finite automata, except that the transition labels are
predicates. We assume that each distinct predicate is associated with a distinct
symbol of the alphabet Γ, and that the function φ is defined by the predicate
labels in the picture.

For example, in Figure 2.3, the function φ could be defined by lambda ex-
pressions as follows: φ(1) = λx,y : x = y, φ(2) = λx,y : x < y, and φ(3) =
λx,y : x > y. Consider the constraint that the sequence of decision vari-
ables V be lexicographically less than the sequence of decision variablesW ,
which is denoted by V <lex W . For the fixed sequences V = 〈1,2,5,6〉 and
W = 〈1,3,4,7〉, the sequence 〈1,1〉〈2,3〉〈5,4〉〈6,7〉 of binary vectors, obtained
by zipping V andW together, is accepted by the binary predicate automaton
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ρs ρt
x < y

x = y x = y

x < y

x > y

Figure 2.3. A k-ary predicate automaton with k = 2 describing the <lex constraint
predicate.

(k = 2) in Figure 2.3 because the transition chain

ρs
1=1−−→ ρs

2<3−−→ ρt
5>4−−→ ρt

6<7−−→ ρt

ends in the accepting state ρt.
Given a predicate automaton 〈Q,Γ,δ ,φ ,ρ0,Qa〉, the automaton

〈Q,Γ,δ ,ρ0,Qa〉 is referred to as the underlying automaton of the predi-
cate automaton. For example, the automaton in Figure 2.1 is the underlying
automaton of the predicate automaton in Figure 2.3.

In [13], the AUTOMATON(A,V) constraint holds if and only if the con-
straint described by the automaton A holds for the sequence V of decision
variables, where A is a predicate automaton implemented with the help of
reification. The constraint predicate T defined in (2.1) is used for the follow-
ing n+2 transition constraints:

q0 = ρ0∧T(q0,S1,q1)∧·· ·∧T(qn−1,Sn,qn)∧qn ∈ Qa (2.3)

These transition constraints are like (2.2), but are expressed for new decision
variables S1, . . . ,Sn, which are connected as follows to the sequence of prob-
lem variables V via the automaton predicates and reification: given an n-length
sequence V = 〈V1, . . . ,Vn〉 of k-ary vectors of problem variables, we add the
following n constraints, called the signature constraints:

n∧
i=1

(∧
a∈Γ

(Si = a⇔ φ(a)(Vi))

)
(2.4)

where the Si are called the signature variables, with domain Γ. Hence Predk
contains whatever can be implemented as reified constraints in the underlying
CP solver (note that most global constraint predicates can be reified [12]). For
example, in Figure 2.3, the binary predicate automaton on the two sequences
of variables V = 〈v1, . . . ,vn〉 andW = 〈w1, . . . ,wn〉 requires the transition con-
straints (2.3) and the following signature constraints for all 1≤ i≤ n:

(Si = 1⇔ vi = wi)∧ (Si = 2⇔ vi < wi)∧ (Si = 3⇔ vi > wi)
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2.4 Describing Constraints by Automata with
Accumulators

While the class of constraint predicates that can be described by (predicate)
automata is large (60 of the 381 constraint predicates of the Global Constraint
Catalogue [10] are described that way), it is often the case that (predicate) au-
tomata are very large or specific to a problem instance. The second extension
in [13] is the use of integer accumulators2 that are initialised at the start and
evolve through accumulator-updating operations coupled to the transitions of
the automaton. Such automata with accumulators allow the capture of non-
regular languages and yield (even for regular languages) automata that are of-
ten much smaller if not instance-independent and enable constraint predicates
to be described succinctly or generically. The two extensions are orthogonal
and can be composed, so we define this second extension in isolation.

Again, we give a definition that is parametric, namely on the class of
accumulator-updating functions. An accumulator-updating operation consists
of a sequence of assignments to some accumulators (the accumulators without
assignments are left unchanged), possibly guarded by a condition on the cur-
rent accumulator values and the variables. Let AccUpdate` be a set of `-ary
accumulator-updating functions. That is, given a function ψ ∈ AccUpdate`
and a vector of accumulators C ∈ Z`, we have that ψ(C) is a new vector in Z`.

An `-ary automaton with accumulators is a tuple 〈Q,Γ,δ ,ρ0,C0,Qa,α〉
where Q, Γ, ρ0, and Qa are exactly as for a deterministic finite automaton;
vector C0 has the initial values of a vector C of ` accumulators; and δ is a
function from Q×Γ to Q×AccUpdate`. If δ (ρ,a) = (ρ ′,ψ) and ψ(C) = C′,
then we write

(ρ,C) a−→ (ρ ′,C′)
and similarly for its extended version δ̂ . A word a1a2 · · ·an−1an is accepted
by the automaton if there is a chain of transitions

(ρ0,C0)
a1−→ (ρ1,C1)

a2−→ . . .
an−1−−→ (ρn−1,Cn−1)

an−→ (ρn,Cn)

such that ρn ∈ Qa. Finally, α : Qa×Zk→ Z is called the acceptance function
and transforms the accumulators at an accepting state into an integer. Given
a word w, the automaton with accumulators returns α(δ̂ (〈ρ0,C0〉,w)) if w is
accepted. Note that δ , δ̂ , and α are total functions.

As with automata, one often uses pictures to define automata with accu-
mulators. The set Q of states, the set Qa of accepting states and the initial
state ρ0 are defined exactly as for an automaton. The transition function is
also defined by the annotated arrows, but the label on the arrow of a transition
consists of a symbol followed by an accumulator-updating operation between
curly braces. That is δ (ρ,a) = (ρ ′,ψ) if there is an arrow from ρ to ρ ′ anno-
tated with a {ψ}.
2Accumulators are called counters in [13] and in Paper II.
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ρs{c := 0} ρt

return c

2

1
{c := c+1} 1

2

3

Figure 2.4. Automaton with `= 1 accumulator for the regular expression 1∗2(1|2|3)∗.
Accumulator c maintains the length of the longest prefix matching the regular expres-
sion 1∗ of the sequence of symbols consumed so far.

ρs{〈 j, p〉 := 〈0,0〉}

0
{if j < J then 〈 j, p〉 := 〈 j, p+1〉 else 〈 j, p〉 := 〈 j, p〉}

1
{if j < J then 〈 j, p〉 := 〈 j+1, p+1〉 else 〈 j, p〉 := 〈 j, p〉}

return p

Figure 2.5. An `-ary automaton with accumulators with `= 2 accumulators describing
the JTHNONZEROPOS(V,J,P) constraint [10], which holds if and only if P is the po-
sition (counting from 1) of the Jth non-zero element of the sequence V = 〈V1, . . . ,Vn〉.
Accumulator j maintains the number of non-zero values among the J first non-zero
elements of V , while accumulator p maintains the number of all values within that
prefix of V . Upon acceptance, the final value of the vector of accumulators 〈 j, p〉must
be 〈J,P〉. The signature constraints are Si = 0⇔Vi = 0 and Si = 1⇔Vi 6= 0.

For example, in Figure 2.4, the self-loop on ρs depicts that
δ (ρs,1) = (ρs,〈c+1〉) for all c. If an update corresponds to the identity func-
tion, then we do not depict it; for example, the three self-loops on ρt have
no depicted updates, as 〈c〉 := 〈c〉. If an update involves only one accumu-
lator, then we omit the angled brackets; for example, the self-loop on ρs has
c := c+ 1 instead of 〈c〉 := 〈c+ 1〉. The acceptance function α transforms
the vector of accumulators 〈c〉 at ρt into c, and is depicted by a box linked
to ρt by a dotted line. Note that an accumulator-updating operation can also
be guarded by a condition on the current accumulator values and the problem
variables, as can be seen in Figure 2.5.

In [13], constraint predicates described by automata with accumulators are
decomposed into transition constraints that are slightly extended to include
information about the values of the accumulators. We define the transition
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constraint predicate T extensionally by the following set:

{〈q,C,a,q′,C′〉 | (q,C) a−→ (q′,C′)}

An AUTOMATON(A,V,R) constraint on a sequence of n problem variables,
with V = 〈v1, . . . ,vn〉, and an result parameter (either an integer constant or a
decision variable), R, is then decomposed into the following conjunction of
n+4 transition constraints:

q0 = ρ0∧ c0 = C0∧T(q0,c0,v1,q1,c1)∧·· ·
∧T(qn−1,cn−1,vn,qn,cn)∧qn ∈ Qa∧α(cn) = R (2.5)

where q0, . . . ,qn are state variables, with domain Q, while c0, . . . ,cn are vectors
of new integer decision variables, called accumulator variables.

Upon acceptance, we must have α(cn) = R; initially, we have c0 = C0 where
C0 is a parameter of the automaton. It is also important not to mix up the vec-
tors of variables c0, . . . ,cn with the vector c of accumulators of the automaton.

By abuse of language, when there is ` = 1 accumulator, we often refer to
vector C0 as the initial value (rather than the vector with the initial value), to
vector C as an accumulator value, and to vector ci as an accumulator variable.

2.5 Describing Constraints by Predicate Automata with
Accumulators

A 〈k, `〉-ary predicate automaton with accumulators, or simply automaton, is
an automaton that is both a k-ary predicate automaton and an `-ary automaton
with accumulators. A 〈k, `〉-ary predicate automaton with accumulators is a
tuple 〈Q,Γ,δ ,φ ,C0,ρ0,Qa,α〉 where Q, Γ, ρ0, and Qa are exactly as for a
automaton; φ is a function from Γ to Predk; vector C0 has the initial values of
the ` accumulators; and δ is a function from Q×Γ to Q×AccUpdate`.

For example, in Figure 2.6, we define a predicate automaton with accumu-
lators where Q = {ρs,ρt} has two states, Γ = {1,2,3} is an alphabet of three
symbols, φ is the function defined by φ(1) = λx,y : x = y, φ(2) = λx,y : x < y,
and φ(3) = λx,y : x > y, the accumulator c has the initial value C0 = 〈0〉,
Qa = {ρt} has one accepting state, and the transition function δ is as indicated
with the annotated arrows. The arrow indicating the initial state of the automa-
ton is preceded by the sequence of initialising assignments of the accumula-
tors. The label on the arrow of a transition consists of a predicate followed by
an accumulator-updating operation between curly braces.

Since a predicate automaton with accumulators consumes the signature
variables Si instead of the k-ary vectors of problem variables Vi, the transition
constraints (2.5) given in Section 2.4 for an AUTOMATON(A,V,R) constraint,
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ρs{c := 0} ρt

return c

x < y

x = y
{c := c+1} x = y

x < y

x > y

Figure 2.6. A 〈2,1〉-ary predicate automaton with accumulators describing a con-
straint predicate on two sequences of decision variables V andW which holds if and
only if V <lexW holds and accumulator c denotes the length of the longest common
prefix between V andW .

with V = 〈V1, . . . ,Vn〉, are transformed into the following:

q0 = ρ0∧ c0 = C0∧T(q0,c0,S1,q1,c1)∧·· ·
∧T(qn−1,cn−1,Sn,qn,cn)∧qn ∈ Qa∧α(cn) = R (2.6)

Even though the transition constraints are defined extensionally, they can
be efficiently implemented using the CASE constraint predicate of SICStus
Prolog [26] and the ELEMENT constraint predicate: see [9] for details.

We collectively refer to the signature variables Si, accumulator variables ci,
and state variables qi as the induced variables of the automaton.
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3. Time-Series Constraints

“Oh dear! Oh dear! I shall be late!”

Alice’s Adventures in Wonderland
LEWIS CARROLL

We introduce time series and time-series constraints. In Section 3.1 we de-
fine time series and explain how to describe time-series constraint predicates
using the four-layered approach of [11]. In Section 3.2 we define seed trans-
ducers and show how to describe a time-series constraint predicate using such
a transducer. Finally, in Section 3.3 we show how to synthesise from a seed
transducer an automaton with accumulators that describes the predicate, from
which the framework of [13] can be used to induce a decomposition of a con-
straint predicate.

3.1 Definitions
A time series is here a sequence of integers, corresponding to measurements
taken over a time interval, such as the output of electric power stations over
multiple days [17], the manpower required in a call centre [6], environmental
data (temperature, humidity, CO2 level) in buildings, or the daily capacity of
a hospital clinic over a period of years. Time series are often constrained by
physical or organisational limits, which restrict the evolution of a series. For
example, the number of plateaus may be constrained, or the sum of the peak
maxima, or the minimum of the valley widths.

In [11] it was shown that many useful constraints γ(〈X1, . . . ,Xn〉,N) on an
unknown time series X = 〈X1, . . . ,Xn〉 of given length n can be described
by a triple 〈π, f ,g〉, where π is called a pattern and in this introductory
chapter is one of the regular expressions in Figure 3.1 over the alphabet
Σ = {‘<’, ‘=’, ‘>’},1 while f ∈ {max,min,one,surface,width}2 is called a
feature, and g ∈ {Max,Min,Sum} is called an aggregator; integer variable N is
constrained to be the aggregation, computed using g, of the list of values of
feature f for all maximal words matching π in X . For example, given a time
series, a constraint on the sum of the peak maxima can be specified by the
aggregator g = Sum, the feature f = max, and the pattern π = Peak (given in
Example 1 below) corresponding to a peak within the time series. We denote
a time-series constraint predicate specified by 〈π, f ,g〉 as g_ f _π .

1For a formal definition of pattern, see Paper I.
2Feature one corresponds to the value 1 for any pattern occurrence and it is used solely for the
purpose of counting the number of pattern occurrences.
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Increasing

<

Steady

=

SteadySequence

=+

Plateau

<=∗>

ProperPlateau

<=+>

IncreasingSequence

< (< |=)∗ <

IncreasingTerrace

<=+<

Inflexion

< (< |=)∗ >

Inflexion

> (> |=)∗ <

Peak

< (< |=)∗(> |=)∗ >

Summit

< (= |<)∗ <> (= |>)∗ >

StrictlyIncreasingSequence

<+

Zigzag

(<>)+(< |<>)

Zigzag

(><)+(> |><)

Figure 3.1. Illustration of the patterns in [11], with time on the horizontal axis and
the measurements on the vertical axis: only the relative vertical positions of adja-
cent points matter, not their magnitudes. The width of the pattern is shown with
a dashed line. Note that black points are part of a pattern occurrence, but not
the white ones. Dash-dotted lines include an arbitrary number of points. Shaded
areas approximate the surface of the pattern occurrence. Permuting the symbols
‘<’ and ‘>’ we obtain the remaining patterns in [11], namely Decreasing, Plain,
ProperPlain, DecreasingSequence, DecreasingTerrace, Valley, Gorge, and
StrictlyDecreasingSequence. (Adaptation of figures in [5].)

A sequence S = 〈S1, . . . ,Sn−1〉, called the signature and containing sig-
nature variables, is linked to a time series X = 〈X1, . . . ,Xn〉 via the
signature constraints (Xi < Xi+1 ⇔ Si = ‘<’) ∧ (Xi = Xi+1 ⇔ Si = ‘=’) ∧
(Xi > Xi+1 ⇔ Si = ‘>’) for all i ∈ [1,n− 1]. We now introduce our running
example.

Example 1. The time series X = 〈4,4,0,0,2,4,4,7,4,1,1,5,5,5,5,5,5,3〉
has the signature S = ‘=>=<<=<>>=<=====>’. Consider the regular expres-
sion Peak = ‘<(<|=)*(>|=)*>’: a peak within a time series corresponds to a
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Figure 3.2. Visual representation of the MIN_MAX_PEAK(X ,5) constraint, with
X = 〈4,4,0,0,2,4,4,7,4,1,1,5,5,5,5,5,5,3〉.

Min

max

Peak

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

4 4 0 0 2 4 4 7 4 1 1 5 5 5 5 5 5 3

= > = < < = < > > = < = = = = = >

<< << == << >> >> << == == == == == >><< == == == == == >>

7 5

5

5 6 7 8 9 12 13 14 15 16 17

time series

(I) signature

(II) maximal words

(III) feature sequence

(IV) feature aggregation

Figure 3.3. Describing time-series constraints as a function com-
position, exemplified on the MIN_MAX_PEAK(X ,5) constraint, with
X = 〈4,4,0,0,2,4,4,7,4,1,1,5,5,5,5,5,5,3〉. (Adaptation of a figure in [5].)

maximal word matching Peak in the signature. The time series X contains two
peaks, namely 〈0,2,4,4,7,4,1〉 and 〈1,5,5,5,5,5,5,3〉, visible in Figure 3.2.

The max feature value of a peak is its highest value. The highest values of
the two peaks in the time series X are 7 and 5 respectively.

Hence the lowest peak, obtained by using the aggregator Min, has as highest
value N = 5, that is, the highest point of the lowest peak in the time series X .
The underlying constraint is MIN_MAX_PEAK(X ,N).

Figure 3.3 shows how to check MIN_MAX_PEAK(X ,5) by:
(I) building the signature by comparing adjacent values of the time series;

(II) finding in the signature all maximal words matching the regular expres-
sion Peak= ‘<(<|=)*(>|=)*>’;

(III) computing the max feature value of each such peak; and
(IV) aggregating the feature values using the Min aggregator.

3.2 Specifying a Pattern by a Transducer
In [11] it was shown that many of the patterns for time-series constraint pred-
icates can be specified by transducers. The output alphabet of such a trans-
ducer, called the phase alphabet, consists of symbols that denote the phases of
identifying the maximal words matching a pattern in a signature. The symbols
of the phase alphabet and their meaning are as follows:
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ρs

ρr ρt

> : out

= : out< : out

> : found

= : maybebefore

< : maybebefore

< : outafter

> : in

= : maybeafter

Figure 3.4. Transducer for Peak= ‘<(<|=)*(>|=)*>’.

• found: the symbol consumed is in a new pattern occurrence that may
have started before and may be extended.

• foundend: the symbol consumed is the last symbol in a new pattern oc-
currence that may have started before.

• maybebefore: the symbol consumed may belong to a pattern occurrence,
but this must be confirmed by producing a found or foundend.

• outreset: the symbol consumed is outside any pattern occurrence and all
the maybebefore produced just before are outside any pattern occurrence.

• in: the symbol consumed is inside a pattern occurrence for which a
found was already produced and all symbols between the one producing
such a found and the one being consumed belong to the pattern occur-
rence.

• maybeafter: the symbol consumed may belong to a pattern occurrence
for which a found was already produced, but this must be confirmed by
producing in while consuming the rest of the signature.

• outafter: a pattern occurrence ended at the last found or in symbol pro-
duced.

• out: the symbol consumed is not in a pattern occurrence.
Each of the 20 patterns in [11] is described by what is there called a seed

transducer. A seed transducer is a deterministic finite transducer with only
accepting states, whose input alphabet, called the topological alphabet, is Σ =
{‘<’, ‘=’, ‘>’}, and whose output alphabet is the phase alphabet.3

Example 2. Figure 3.4 shows a seed transducer with three
states, Q = {ρs,ρr,ρt}, an input alphabet of three symbols,
Γ = {‘<’, ‘=’, ‘>’}, and an output alphabet of six symbols,
Γ ′ = {out,maybebefore, found, in,maybeafter,outafter}. The initial state
is ρ0 = ρs, and the set of accepting states is Qa = {ρs,ρr,ρt}. For each state,
there is one outgoing arrow per symbol of the input alphabet.

3The phase alphabet is called the semantic alphabet in [11] and in Paper I.
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State semantics
o : outside of a pattern occurrence
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a : potentially inside (after a found)

Figure 3.5. Automaton accepting the output language of a well-formed transducer.
(Adaptation of a figure in [5]).

From now on we refer to seed transducers simply as transducers.

Example 3. Consider the transducer in Figure 3.4 for the pattern
Peak= ‘<(<|=)*(>|=)*>’ and the signature S = ‘=>=<<=<>>=<=====>’.
The transitions are as follows:

ρs
= : out−−−−→ ρs

> : out−−−−→ ρs
= : out−−−−→ ρs

< : out−−−−→ ρr
< : maybebefore−−−−−−−−−→ ρr

= : maybebefore−−−−−−−−−→ ρr
< : maybebefore−−−−−−−−−→ ρr

> : found−−−−−→ ρt
> : in−−−→ ρt

= : maybeafter−−−−−−−−→ ρt
< : outafter−−−−−−→ ρr

= : maybebefore−−−−−−−−−→ ρr
= : maybebefore−−−−−−−−−→ ρr

= : maybebefore−−−−−−−−−→ ρr
= : maybebefore−−−−−−−−−→ ρr

= : maybebefore−−−−−−−−−→ ρr
> : found−−−−−→ ρt

The two found correspond to two peaks: the first one corresponds to the word
from the first maybebefore to the first in (i.e., the word maybe3

before found in);
the second one corresponds to the word from just after the last outafter to the
last found (i.e., the word maybe5

before found).

Seed transducers must obey a set of wellformedness conditions given in [11].
A transducer is well-formed with respect to a pattern π if the following condi-
tions hold:

• Its output language is a subset of the language accepted by the automaton
in Figure 3.5,

• All occurrences of π in a signature produce maximal words matching
the regular expression maybe∗b(founde | found(maybe∗a in)∗).

Each of the 20 transducers in [11] was hand-crafted and manually verified
for wellformedness.

In Paper I we characterise the class of patterns that can be handled by the
synthesis of automaton-based descriptions of time-series constraint predicates
in [11], which makes it possible to decide when the synthesiser is applicable,
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initialisation r := id f
g c := id f

g d := id f
return φg(r,c)

phase accumulator updates
letters update of r update of c update of d

outreset d := id f

outafter r := φg(r,c) c := id f
g d := id f

maybebefore d := φ f (d,δ i
f )

maybeafter d := φ f (d,δ i
f )

found c := φ f (d,δ i
f ) d := id f

foundend r := φg(r,φ f (d,δ i
f )) d := id f

in c := φ f (c,φ f (d,δ i
f )) d := id f

out

(a) Original decoration table

Feature f id f min f max f φ f δ i
f

one 1 1 1 1 1
width 0 0 +∞ + 1
surface 0 −∞ +∞ + Xi
max −∞ −∞ +∞ max Xi
min +∞ −∞ +∞ min Xi

(b) Features

Aggregator g φg id f
g

Max min min f
Min max max f
Sum + 0

(c) Aggregators

Figure 3.6. (a) Decoration table used for synthesising an automaton from a transducer,
a feature f , and an aggregator g; (b) Features: identity, minimum, and maximum val-
ues; the operators φ f and δ i

f recursively define the feature value vu of a time series
〈X`, . . . ,Xu〉 by v` = φ f (id f ,δ

`
f ) and vi = φ f (vi−1,δ

i
f ) for i > `, where δ i

f is the contri-
bution of Xi to vu. (c) Aggregators: operators and identity values relative a feature f .
(Adaptation of figures in [5].)

and we give an algorithm for generating a wellformed seed transducer from
such a pattern.

3.3 Synthesising Automaton-Based Descriptions
of Time-Series Constraint Predicates from a
Transducer

The synthesis of automaton-based descriptions of time-series constraint pred-
icates in [11] relies on a declarative encoding of procedural knowledge into
what is called a decoration table. The decoration tables are parametrised
by features and aggregators, and define substitution rules on the transducers
that allow an automaton with three accumulators to be synthesised. Recall
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ρs{〈c,d,r〉 := 〈id f
g , id f , id

f
g 〉}

return φg(r,c)

ρr ρt

>

=

<

>{
〈c,d〉 := 〈φ f (d,δ i

f ), id f 〉
}

={
d := φ f (d,δ i

f )
}

<{
d := φ f (d,δ i

f )
}

<{
〈c,d,r〉 := 〈id f

g , id f ,φg(r,c)〉
}

>{
〈c,d〉 := 〈φ f (c,φ f (d,δ i

f )), id f 〉
}

={
d := φ f (d,δ i

f )
}

Figure 3.7. Automaton for any g_ f _PEAK

that, from an automaton, the framework of [13] decomposes a constraint with
the described global constraint predicate into a conjunction of constraints for
whose predicates there already are propagators. These constraints collectively
give the semantics of the described time-series constraint predicate and pro-
vide the propagation. The decoration table in Figure 3.6a provides a substitu-
tion rule for each symbol of the phase alphabet, where accumulator c stores
the feature value of the current maximal word matching the given pattern, ac-
cumulator d stores the feature value of a potential part of a maximal word
matching the pattern, and accumulator r stores the aggregated result value for
the feature values of all the maximal words matching the pattern that have
been consumed so far. Figures 3.6b and 3.6c provide the substitution rules for
every feature and aggregator.

Example 4. Consider again the transducer for the Peak = ‘<(<|=)*(>|=)*>’
pattern in Figure 3.4. After applying the substitution rules in Figure 3.6a
to that transducer, we obtain the generic automaton in Figure 3.7 for any
g_ f _PEAK constraint predicate. Finally, after applying the substitution rules
in Figure 3.6b and Figure 3.6c for the feature f = max and the aggregator
g = Min to that generic automaton, we obtain the automaton Figure 3.8 for the
MIN_MAX_PEAK constraint predicate.

The future work in [11] included simplifying the synthesised automata, as
they often have more accumulators and more complex accumulator updates
than manually designed ones: this may weaken the induced decompositions
of the constraint predicate described by the synthesised automaton.
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ρs{〈c,d,r〉 := 〈∞,−∞,∞〉}

return min(r,c)

ρr ρt

>

=

<

>
{〈c,d〉 := 〈max(d,Xi),−∞〉}

=
{d := max(d,Xi)}

<
{d := max(d,Xi)}

<
{〈c,d,r〉 := 〈∞,−∞,min(r,c)〉}

>
{〈c,d〉 := 〈max(c,max(d,Xi)),−∞〉}

=
{d := max(d,Xi)}

Figure 3.8. Automaton for MIN_MAX_PEAK

Example 5. Reconsider the automaton in Figure 3.8 for the MIN_MAX_PEAK
constraint predicate from Example 4. Recall that this automaton has the accu-
mulators c, d, and r, which respectively denote the feature value of the current
peak, the feature value of a potential peak, and the aggregated result value
for the feature values of all the peaks already encountered. Note that, for the
particular case of MIN_MAX_PEAK, we know that when the transition from
state ρr to state ρt is used, we are at the highest point of the current peak, and
thus the accumulators c and d are redundant with accumulator r, and only r is
needed.

Rather than designing a procedural minimisation algorithm for automata
with accumulators, in Paper IV we opted for capturing such procedural knowl-
edge in a declarative and thus more easily reusable way: it suffices to spe-
cialise the decoration tables of [11] for some combinations of algebraic prop-
erties of pattern-feature-aggregator triples.

For example, for some combinations of pattern and feature, computing the
feature value over a whole pattern occurrence gives the same result as com-
puting it when a found symbol is produced, as seen in Example 5. This is
the case of the feature one combined with any pattern, as well as the features
max and min if the positions of the maximal and minimal values are uniquely
determined by the pattern and coincide with producing a found symbol. This
property is called aggregate-once, because the feature value of an occurrence
depends only on the value of δ i

f at the time a found symbol is produced, and
so it can be aggregated immediately. Hence we need only one accumulator for
aggregating.
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initialisation r := id f
g

return r

phase
letters update of r

outreset
outafter r := φg(r,δ i

f )

maybebefore
maybeafter
found
foundend r := φg(r,δ i

f )

in
out

Figure 3.9. Optimised decoration table for aggregate-once constraint predicates.
(Adaptation of a figure in [5].)

ρs{r := id f
g}

return r

ρr ρt

>

=

<

>{
r := φg(R,δ i

f )
}

=

<

<

>

=

Figure 3.10. Simplified automaton for any g_ f _PEAK, where f is either one or max.

Example 6. Consider again the transducer for the Peak = ‘<(<|=)*(>|=)*>’
pattern in Figure 3.4. After applying the substitution rules of the decoration
table in Figure 3.9 to that transducer, we obtain the generic automaton in Fig-
ure 3.10 for any g_ f _PEAK constraint predicate where f is either one or max.
Finally, after applying the substitution rules in Figure 3.6b and Figure 3.6c for
the feature f = max and the aggregator g = Min to that generic automaton,
we obtain the simplified automaton in Figure 3.11 for the MIN_MAX_PEAK
constraint predicate.

The simplification rules presented in Paper IV cover approximately 86% of
the 266 time-series constraint predicates in [11].
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ρs{r := ∞}

return r

ρr ρt

>

=

<

>
{r := min(r,Xi)}

=

<

<

>

=

Figure 3.11. Simplified automaton for MIN_MAX_PEAK
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4. Implied Constraints for Automaton-Induced
Constraint Decompositions

Ah, that is so hard that I fear I’m unable! For
it holds it like glue.

Through the Looking-Glass
LEWIS CARROLL

We first introduce the reader to implied constraints (Section 4.1). We then de-
fine two orthogonal approaches to systematically generate implied constraints
for automaton-induced constraint decompositions, namely linear implied con-
straints (Section 4.2) and glue constraints (Section 4.3).

4.1 Implied Constraints
An implied constraint, also called a redundant constraint, is a constraint that
is logically implied by the constraints defining the problem [54]. It does not
change the set of solutions, and hence it is logically redundant. The idea is
that adding implied constraints to a model might reduce the time required to
solve the problem due to additional propagation.

For example, consider the magic square problem. A magic square is an
n×n square grid filled with the integers in the range 1,2, . . . ,n2 such that each
cell contains a distinct integer and that the sum of the integers in each row,
column, and main diagonal is the same. That sum is called the magic sum of
the magic square. In Figure 4.1 there is a magic square of order n = 3. Note
that the magic square problem only requires the sum of each row, column,
and main diagonal to be the same, as can be seen in the constraint model in
Figure 4.2. Nevertheless, the magic sum can only take one particular value,
which can be calculated before attempting to find a solution. We know that
the square grid must be filled with the integers in the range 1,2, . . . ,n2, that is,
the sum of all the squares in the grid is:

1+2+ · · ·+n2 =
n2(n2 +1)

2
Moreover, we know there are n rows (and n columns), so the sum of each row
(and column) must be:

n2(n2 +1)
2n
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Figure 4.1. Magic square of order n = 3. The sum of the numbers in any row, column,
or main diagonal is the same, namely 15.

magic_square_3([C11,C12,C13,C21,C22,C23,C31,C32,C33]) :-
domain([C11,C12,C13,C21,C22,C23,C31,C32,C33], 1, 3*3),
High is 3*3*3,
Magic in 1..High,
all_different([C11,C12,C13,C21,C22,C23,C31,C32,C33]),

/* Row Constraints */
C11 + C12 + C13 #= Magic,
C21 + C22 + C23 #= Magic,
C31 + C32 + C33 #= Magic,

/* Column Constraints */
C11 + C21 + C31 #= Magic,
C12 + C22 + C32 #= Magic,
C13 + C23 + C33 #= Magic,

/* Diagonal Constraints */
C11 + C22 + C33 #= Magic,
C13 + C22 + C31 #= Magic.

Figure 4.2. Constraint model for the magic square problem of order n = 3 in SICStus
Prolog [26] syntax.

Back to the magic square in Figure 4.1, the only possible value for the magic
sum magic of a square of order n = 3 is 15. The exact value for the magic sum
is determined by an implied constraint of the magic square problem, namely
magic = n(n2 + 1)/2. Without this implied constraint, partial assignments
where the magic sum tentatively is not in the domain of magic can be formed,
and eventually the search will have to backtrack when it cannot find a solution
extending such a partial assignment.

In practice, it is not always simple to find good implied constraints, and
they can be much more complex than equality constraints on a single variable.
We now present two systematic approaches for deriving implied constraints
for automaton-induced constraint decompositions, namely linear implied con-
straints (Section 4.2) and glue constraints (Section 4.3).
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d a c b e a b

V = 3

L = 1 H = 2

G = 2

Figure 4.3. Visualisation of the instance GROUP(〈d,a,c,b,e,a,b〉,{a,e} ,2,3,2,1),
where there are G = 2 groups of a total of V = 3 values from the set {a,e} in the
sequence 〈d,a,c,b,e,a,b〉, the highest and lowest group sizes being H = 2 and L = 1.

4.2 Linear Implied Constraints
We now define the GROUP constraint predicate, to which we will be referring
heavily throughout. We then give a motivating example, introducing our ter-
minology and serving as running example throughout the rest of the chapter.

In a sequence, a group [10] is a maximal contiguous subsequence with val-
ues from a given set. The constraint GROUP(X ,W,G,V,H,L) holds if there
are G groups of a total of V values from the given set W in the possibly empty
sequence X of variables, the highest and lowest group sizes being H and L
respectively, with H = 0 = L if G = 0. (Without loss of generality, we omit
two parameters.)

For example, as seen in Figure 4.3, the instance GROUP(X ,{a,e} ,2,3,2,1),
where X = 〈d,a,c,b,e,a,b〉, holds since there are G = 2 groups of a total of
V = 3 vowels from the set {a,e} in the sequence X = 〈d,a,c,b,e,a,b〉, namely
the groups 〈a〉 and 〈e,a〉, the highest group size being H = 2 and the lowest
group size being L = 1. The GROUP constraint predicate is very useful, for
instance in staff rostering, where multiple counting constraints on the same
sequence (the shift assignments of an employee over a planning horizon) are
quite frequent.

The GROUP constraint predicate has no known propagator. The
reformulation of GROUP(X ,W,G,V,H,L) in [10] by the conjunc-
tion GROUPG(X ,W,G) ∧ GROUPV(X ,W,V ) ∧ GROUPH(X ,W,H) ∧
GROUPL(X ,W,L) can be encoded using four AUTOMATON constraints
involving automata with accumulators [13, 16] and the signature constraints:

(Xi ∈W ⇔ Si = ∈)∧ (Xi /∈W ⇔ Si = /∈) (4.1)

for all i ∈ [1,n]. See Figure 4.4 and Chapter 2 for details. In principle, we
could compute the product automaton [36] of these four automata and just
have a single AUTOMATON constraint: we do not do so here in order to be able
to refer in our examples to the simpler automata. Note also that encoding any
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ρs

{v := 0}

return v /∈

∈
{v := v+1}

(a) Automaton V for GROUPV

ρs

{〈h,c〉 := 〈0,0〉}

return h
/∈

{c := 0}

∈
{〈h,c〉 := 〈max(h,c+1),c+1〉}

(b) AutomatonH for GROUPH

return gρs

{g := 0}

ρt

/∈

∈
{g := g+1}

∈/∈

(c) Automaton G for GROUPG

return min(`,c)ρs

{〈`,c〉 := 〈+∞,0〉}

ρt

/∈

∈
{c := 1}

∈
{c := c+1}

/∈
{` := min(`,c)}

(d) Automaton L for GROUPL

Figure 4.4. Automata with accumulators for the constraint predicates of the reformu-
lation of the GROUP constraint.

of these four constraint predicates using REGULAR [43] requires designing a
DFA whose size depends on the length of X .

We now show in Section 4.2.1 how to derive implied constraints from an
imperative constraint checker, and then we show in Section 4.2.2 how to derive
implied constraints directly from an automaton with accumulators.
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Algorithm 1: Checker for the GROUPG(X ,W,G) constraint
Data: Integer variable G, a set W , and a possibly empty sequence X of

variables.
g := 0
q := ρs
i := 1
while i≤ |X | do

if X [i] ∈W ∧q = ρs then
g := g+1
q := ρt

else
q := ρs

i := i+1
return G = g

4.2.1 Linear Implied Constraints from a Constraint Checker
Note that an automaton corresponds to a constraint checker. For example, a
checker for a GROUPG(X ,W,G) constraint is given in Algorithm 1 and can
be obtained from the automaton in Figure 4.4c together with the signature
constraints (4.1).

Informally, a loop invariant [27] for a given loop is a relation on the vari-
ables occurring in the loop: it should be true on entry into the loop and be
guaranteed to remain true after every iteration of the loop. This means that on
exit from a loop both its loop invariant and its loop termination condition can
be guaranteed. For example, consider again Algorithm 1. The automatic loop
invariant generator InvGen [33] derives, among others, the loop invariant:

g≤ |X | (4.2)

In other words, there cannot be more groups than elements in a sequence X .
In order to transform loop invariants into implied constraints, we note that,

for example, the invariant (4.2) is, by definition, satisfied at every iteration.
At each iteration, some element of the sequence X is visited. Let decision
variable Gi denote the value of the accumulator g after visiting i elements. In
consequence, we write the invariant (4.2) as the following implied constraints:

Gi ≤ |X | (4.3)

for 0 ≤ i ≤ |X |. Note that the bounds of the quantification correspond to the
values of i before and after the loop. Moreover, note that to be able to use
the implied constraints (4.3) we need the AUTOMATON constraint predicate to
be implemented, in extension to how it is done in [13], by a decomposition
that introduces variables representing the accumulators of the automaton after
consuming each symbol of an argument sequence X of variables.
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Algorithm 2: Checker for the GROUPG(X ,W,G) constraint, keeping
track of the two previous accumulator values

Data: Integer variable G, a set W , and a possibly empty sequence X of
variables.

g := 0
g1 := 0
g2 := 0
q := ρs
i := 1
while i≤ |X | do

g2 := g1 // Keeping track of the previous value of g1
g1 := g // Keeping track of the previous value of g
if X [i] ∈W ∧q = ρs then

g := g+1
q := ρt

else
q := ρs

i := i+1
return G = g

Consider again the automaton in Figure 4.4c: every path of two transi-
tions increases the value of the accumulator g by at most 1. Let us extend the
checker in Algorithm 1 in order to keep track of the two previous values of
the accumulator g, yielding the checker in Algorithm 2. Accumulator g1 de-
notes the value of accumulator g at the previous iteration, and accumulator g2
denotes its value two iterations ago. We say that the history length is 2. From
the checker in Algorithm 2, InvGen derives, among others, the loop invariant:

g2 ≤ g≤ g2 +1 (4.4)

Note that g1 does not appear in this invariant, as it is only used to keep track of
the previous value of g. We translate the loop invariant (4.4) into the implied
constraints:

Gi−2 ≤ Gi ≤ Gi−2 +1 (4.5)

for 1 < i≤ n.
For more details about how to derive implied constraints from a checker,

see Paper II. In particular, we also show how to modify constraint checkers in
order to enable InvGen to derive disjunctive implied constraints. Moreover,
we prove that implied constraints derived from constraint checkers improve
propagation, even to the point of, for some constraint predicates, maintaining
hyper-arc consistency.

Although the implied constraints obtained by deriving invariants from a
checker corresponding to a given automaton are quite useful in practice, we
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want both to make the process as automated as possible and to overcome the
limitations of using InvGen. For example, we want to derive implied con-
straints (instead of invariants) directly from an automaton (instead of manually
translating an automaton into a checker). Also, at the time InvGen only allows
integer coefficients in {−1,0,1}. This limitation still exists, as a new version
of InvGen has not been released so far.

4.2.2 Linear Implied Constraints from an Automaton
In Papers III–IV our approach to deriving constraints implied by the decompo-
sition of an AUTOMATON(A,S,R) constraint consists of three steps. First, us-
ing one half of Farkas’ lemma and a template T for linear implied constraints,
we set up a system N of non-linear constraints that model T being true at
every state of the automaton A (Section 4.2.2). Second, we solve N, each so-
lution providing an instantiation of T into a particular linear implied constraint
(Section 4.2.2). Third, we eliminate uninteresting and propagation-redundant
constraints from the derived set of implied constraints, and rank the remain-
ing implied constraints by decreasing propagation strength (Section 4.2.2). We
consider the user’s final choice of implied constraints that are actually added to
the decomposition to be a problem-specific rather than an automaton-specific
task, so our tool focusses on suggesting implied constraints.

Implied Constraints: Template and Set-Up of the System N
In Paper III, we adapt the recipe of [50] for linear transition systems and de-
velop ImpGen, our own tool for deriving implied constraints. A linear tran-
sition system does not have notions of consumption and acceptance of words,
but is otherwise like an automaton with accumulators if every accumulator up-
date of the latter is a linear expression on the accumulators. Everything that
follows requires linearity, also of the implied constraints, so we now make that
restriction.

One half of Farkas’ lemma (e.g., [23]) says that a system of e linear inequal-
ities ai1y1+ · · ·+aikyk +bi ≥ 0 over k real-valued variables y j has another lin-
ear inequality α1y1 + · · ·+αkyk +β ≥ 0 over the same variables as a logical
consequence if the latter is equal to a linear combination of the former, that is,
if there exist e real numbers λi ≥ 0 such that α j = ∑

e
i=1 λiai j, for 1≤ j ≤ k,

and β ≥ ∑
e
i=1 λibi. The following representation helps to see this:

λ1 a11y1 + · · ·+a1kyk +b1 ≥ 0
...

...
...

...
...

λe ae1y1 + · · ·+aekyk +be ≥ 0
α1y1 + · · ·+αkyk +β ≥ 0

If the ith linear constraint is an equality, then the requirement λi≥ 0 is dropped.
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The other half of Farkas’ lemma gives a necessary and sufficient condition
for a linear inequality to be a logical consequence of a system of linear in-
equalities. We do not need it as we deliberately do not aim at completeness
and thus need not prove that a set of derived implied constraints is complete.

Let variable y j denote the jth accumulator of an automaton A, with
1≤ j ≤ k. Our template T for linear implied constraints for now is
α1y1 + · · ·+αkyk +β ≥ 0, where the Greek letters denote the variables for
which we will solve constraints. An instance of template T is true at every
state of A if it is true at the start state of A and if its truth is preserved by
every transition of A. We now show how to encode this using Farkas’ lemma
in order to set up a system N of non-linear constraints that model T being true
at every state of the automaton A.

For the start state, we encode using Farkas’ lemma that the point-wise ini-
tialisation equalities behind 〈y1, . . . ,yk〉 = I have T as a logical consequence,
where I is the k-tuple of initial values of the accumulators of A.

Example 7. Recall the automaton in Figure 4.4c for the GROUPG constraint
predicate. There is only one accumulator, called g, which is initialised to 0.
So the template for implied constraints is α1g+β ≥ 0 and it must be a logical
consequence of the initialisation equality g = 0, that is:

λ1 g = 0
α1g+β ≥ 0

Using Farkas’ lemma, we get the constraints ∃λ1 : α1 = λ1 ∧ β ≥ 0 for the
system N.

For each transition (q,〈y1, . . . ,yk〉)
σ−→ (q′,〈y′1, . . . ,y′k〉) of A, where each y′j

is a linear functional expression in terms of all the y j, we encode using Farkas’
lemma that template T has T [y/y′] as a template logical consequence, where
T [y/y′] denotes T with every y j substituted by y′j. The resulting constraints
are in general non-linear, as seen in the following example.

Example 8. Continuing from Example 7, first consider the transition from
state ρs to state ρt, upon which accumulator g is incremented by 1. The desired
template logical consequence T [y/y′] of T is α1(g+1)+β ≥ 0, that is:

λ2 α1 g +β ≥ 0
α1(g+1)+β ≥ 0

Using Farkas’ lemma and rearranging, we get for each of these transitions the
non-linear constraints ∃λ2 ≥ 0 : α1 = λ2α1∧α1 +β ≥ λ2β for the system N.

Now consider all the remaining transitions, upon which the value of accu-
mulator g does not change. The desired template logical consequence T [y/y′]
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of T is α1g+β ≥ 0, that is:

λ3 α1g+β ≥ 0
α1g+β ≥ 0

Using Farkas’ lemma and rearranging, we get the non-linear constraints
∃λ3 ≥ 0 : α1 = λ3α1∧β ≥ λ3β for the system N.

We now go beyond adapting the recipe of [50], by discussing four refine-
ments of the ideas seen so far. The first three refinements are included in the
first version of ImpGen in Paper III, while the last one is included only in its
second version in Paper IV.

First, many implied constraints that provide extra propagation are expressed
not only on the current values of the accumulators, but also on their values
upon previous transitions, as already seen in Section 4.2.1. For example, only
implied constraints that provide no extra propagation, such as g ≥ 0, result
from the solutions to the constraint system N we have set up in Examples 7
and 8: those examples were simple enough to explain all features of the pro-
cedure, but simpler than practical applications thereof. The following other
example is enlightening.

Example 9. Consider again the automaton G in Figure 4.4c for the GROUPG
constraint predicate, and its checker in Algorithm 1, which corresponds to G.
Recall that the checker in Algorithm 2 was obtained by extending the checker
in Algorithm 1 with the idea of keeping track of the previous two values of
accumulator g. The same idea can be used to extend directly the automaton in
Figure 4.4c. Upon adding the initialisation 〈g2,g1〉 := 〈0,0〉 to the start state,
and adding the accumulator update 〈g2,g1〉 := 〈g1,g〉 to each transition, we
obtain the automaton in Figure 4.5. Applying Farkas’ lemma to that automa-
ton, we get the template α1g2 +α2g1 +α3g+β ≥ 0, so that, for instance, the
implied constraint g ≤ g2 + 1 of (4.4) corresponds to α1 = 1 = β ∧α2 = 0∧
α3 =−1.

Our tool allows the user to indicate the history length h, so that appropriate
accumulator terms are automatically added to the template T . Things scale at
solving time when h · k grows, where k is the number of accumulators, since
the process is off-line.

Second, the template T can be extended by adding a term αk+1q with a
variable q for the state at which the automaton is. This requires numbering
the states. For example, this extension allows the tool to derive the implied
constraint g−g1 ≤ q, where the state ρs of the automaton in Figure 4.4c (or
Figure 4.5) has been numbered as 0 and state ρt as 1, meaning that g and g1
are equal at the start state ρs and apart by at most one unit at state ρt. For ex-
ample, this extension is actually necessary for deriving the implied constraint
g≤ g2 +1 of Example 9, as we will see in Example 10. Our tool ImpGen al-
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return gρs

{〈g,g1,g2〉 := 〈0,0,0〉}

ρt

/∈
{〈g1,g2〉 := 〈g,g1〉}

∈
{〈g,g1,g2〉 := 〈g+1,g,g1〉}

∈
{〈g1,g2〉 := 〈g,g1〉}

/∈
{〈g1,g2〉 := 〈g,g1〉}

Figure 4.5. Automaton for GROUPG extended with a history length of 2

lows the user to switch on this option. Note that, when this option is switched
on, the tool will automatically number the states, unless the user provides a
particular way of numbering the states, in which case our tool will use the
provided numbering.

Third, we have so far described how to derive implied constraints that are
true at every state of A. We can also make as many copies of the template as
there are states inA, so as to aim at deriving state-specific implied constraints.
We must then use the appropriate template copies each time we apply Farkas’
lemma for the start state or a transition. For example, an implied constraint
specific to the start state ρs of the automaton in Figure 4.4c (or Figure 4.5)
for the GROUPG predicate is gi−1 = gi, derived from the implied constraints
gi−1 ≤ gi and gi−1 ≥ gi; we will see in Example 10 an encoding of this implied
constraint when a term on the state variable q is added to the template. Our
tool ImpGen allows the user to switch on this option.

Fourth, the template T can be extended by adding a term αk+2i for the
index i, that is the number of symbols consumed so far. For example, this
extension allows the tool to derive the implied constraint 2gi ≤ i. Our tool
ImpGen allows the user to switch on this option.

Implied Constraints: Generation by Solving the System N
So far, we have shown how to set up a system N of non-linear constraints
that are on the variables denoted by Greek letters in the template α1y1 + · · ·+
αkyk +αk+1q+αk+2i+β ≥ 0 for implied constraints, but not on its accumu-
lator variables y j, state variable q, and index variable i. We now show how
to solve N so that each solution provides an instantiation of the variables α j,
and β of the template, yielding an implied constraint on the accumulator vari-
ables y j, state variable q, and index variable i.

Automata with accumulators are defined for integer accumulators, so it suf-
fices to solve the non-linear constraint system N for integer values of the vari-
ables α j, β , and λi: this is our second deliberate relaxation of completeness.
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An implied constraint α1y1+ · · ·+αkyk +αk+1q+αk+2i+β ≥ 0 with rational
values for the α j, and β is equivalent to its multiplication by the least common
multiplier of their denominators. Further, we reckon that for each variable a
small finite integer interval centred on zero, such as from −5 to +5, suffices
for finding many useful implied constraints: this is our last deliberate relax-
ation of completeness. Since our tool ImpGen is written in SICStus Prolog
and reads automata in the SICStus Prolog syntax used in the Global Con-
straint Catalogue, we use the finite-domain CP solver of SICStus Prolog [26],
although we could have used any integer programming solver: we solve upon
linearising N by branching on values for the variables λi.

Inductive implied constraints [24] are those implied constraints that are
provable by induction. Unfortunately, many implied constraints that provide
extra propagation are not inductive, and so are not generated in one go, even
if all options are switched on.

Example 10. Consider the implied constraint g≤ g2+1 of (4.4). Let us again
number state ρs of the automaton in Figure 4.4c as 0 and state ρt as 1. Deriving
this implied constraint requires the prior knowledge that g− g1 ≤ q. It turns
out that g− g1 ≤ q actually is an inductive implied constraint, and so it is a
solution to the system N. So let us add this implied constraint to the top side of
each application of Farkas’ lemma, with its own multiplier, and set up a second
non-linear system N2. For instance, the part of the system N2 corresponding
to the self-loop on state ρt in the automaton in Figure 4.4c, which does not
modify the accumulator g, with a history length of 2, and including the state
variable, is:

λ3 α1g+α2g1 +α3g2 +αk+1 +β ≥ 0
λ4 −g+ g1 +1 ≥ 0

α1g+α2g +α3g1 +αk+1 +β ≥ 0

Note that the variable q has been instantiated to the numerical name of
the start state and the end state of the transition, both being ρt, namely 1.
We get the non-linear constraints ∃λ3 ≥ 0,λ31 ≥ 0 : α1 +α2 = λ3α1−λ31 ∧
α3 = λ3α2 +λ31∧λ3α3 = 0∧αk+1 +β ≥ λ3(αk+1 +β )+λ31 of N2. It turns
out that g≤ g2 +1 is now an inductive implied constraint, derived from a so-
lution to N2.

Following the intuition of Example 10, after solving the system N, Imp-
Gen can set up a new system N2 by extending the system N with the implied
constraints obtained by solving N: each implied constraint is added with its
own multiplier to the top side of each application of Farkas’ lemma. This
process can be repeated by setting up a new system N j by adding the implied
constraints obtained from the system N j−1 to N, where N = N1. Our method
derives many implied constraints, each of which is inductive relative to those
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derived before it. Note that the set of implied constraints derived from the sys-
tem N j is a superset of the implied constraints derived from the system N j−1.

In practice, it is not necessary to add all the implied constraints derived
from the system N j into the new system N j+1. It suffices to add an approxima-
tion of the set of generators, that is, we reduce the set of implied constraints
by eliminating some of the inequalities that are a linear combination of other
inequalities in the set of implied constraints. The solutions obtained are the
same, but this greatly reduces the time and memory required to solve the sys-
tem for large values of j.

Our tool ImpGen allows the user to indicate an upper bound u on the num-
ber of non-linear systems it will set up and solve; it will finish earlier if at
fixpoint, that is if no new implied constraints are derived at some iteration.
The whole derivation process is specific to an automaton but not to the con-
strained sequence, so it is off-line and can take an arbitrary amount of time.
Our tool takes from seconds to days, depending on the parameters, especially u
and the history length h.

Up to this point, we have shown how ImpGen handles automata where each
accumulator update is a linear expression on accumulators. This includes in-
crements and decrements by constant amounts (as in c := c+ 1) or other ac-
cumulators (as in c := c+ `), resets (as in c := 0), etc. This excludes updates
via the ‘max’ and ‘min’ operators, for instance: this setting covers only 64 of
the 266 time-series constraint predicates in the Time-Series Constraint Cata-
logue [5].

Towards handling all the time-series constraint predicates, we extend
ImpGen to handle also conditional accumulator updates of the form
c := if ρ then φ else ψ , where ρ is a linear (in)equality and φ , ψ are linear
expressions on accumulators: following an idea in [50], we extend the en-
coding of automaton transitions by allowing preconditions to be expressed.
ImpGen now automatically first rewrites accumulator updates containing the
binary ‘min’, ‘max’, or ‘abs’ operators into conditional updates. For example,
the accumulator update on the arc from ρt to ρs in Figure 4.4d is rewritten as
` := if ` > c then c else `.

We also extend ImpGen to handle accumulator updates referring to the vari-
ables Xi and Xi+1 when they are both linked to the Si signature variable con-
sumed on the transition: we do this by adding an accumulator x which always
takes the value of the Xi variable, and add the signature constraint correspond-
ing to the consumed signature symbol Si to the top side of each application of
Farkas’ lemma, with its own multiplier.

The latest version of ImpGen, as described in Paper IV, covers all the 266
constraint predicates in the Time-Series Constraint Catalogue [5], as well as all
the 56 constraint predicates with automaton-based descriptions in the Global
Constraint Catalogue [10].
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Implied Constraints: Redundancy Elimination and Selection
Some derived implied constraints are useless. For example, when all the α j are
zero, we can get an implied constraint like 5≥ 0, which is vacuously true and
cannot improve propagation, but might slow it down. Other derived implied
constraints are propagation-redundant. For example, the implied constraint
gi+1 ≤ gi−1 +1 of Example 10 is redundant with 3gi+1 ≤ 3gi−1 +3, and the
former will give better propagation than the latter. As another example, the im-
plied constraint gi +gi−1 ≥ 0 is redundant with the implied constraints gi ≥ 0
and gi−1 ≥ 0 that result from the solutions to the constraint system N we have
set up in Examples 7 and 8. Such redundancies stem from our not finding
generators for the solutions to N.

Our tool ImpGen automatically eliminates useless and propagation-
redundant constraints.

Finally, ImpGen ranks the implied constraints by decreasing estimated prop-
agation strength when added to the automaton-induced CP decomposition:
this is done based on a series of random instances. This enables automated
selection via a top-m rule for a user-chosen parameter m.

Intuitively, the implied constraints derived by ImpGen can improve infer-
ence also for the MIP decomposition of the AUTOMATON constraint predicate
in Paper IV because they are derived directly from an automaton and are not
necessarily linear combinations of the linear inequalities in that decomposi-
tion [38]. Our experiments in Paper IV confirm that implied constraints that
improve the propagation of the CP decomposition can also improve the infer-
ence of the MIP decomposition.

For more details and experimental results, see Papers II–IV.

4.3 Glue Constraints
Consider a constraint γ(X ,R) encoded using an AUTOMATON con-
straint, where variable R takes the same value for both the variable se-
quence X and its reverse X rev. For example, consider again the instance
GROUP(X ,{a,e} ,2,3,2,1) from Figure 4.3, where X = 〈d,a,c,b,e,a,b〉. As
can be seen in Figure 4.6, the instance GROUP(X rev,{a,e} ,2,3,2,1), where
X rev = 〈b,a,e,b,c,a,d〉 also holds since there are also G = 2 groups of a total
of V = 3 vowels from the set {a,e} in the sequence X rev, namely the groups
〈a,e〉 and 〈a〉, the highest group size also being H = 2 and the lowest group
size also being L = 1. We say that GROUP is its own reverse. This setting cov-
ers 45 of the 56 constraint predicates described using automata in the Global
Constraint Catalogue [10] and 19 of the 20 time-series patterns in [11].

Given a partition of X into a prefix P and the corresponding suffix T , we
derive in Paper V an implied constraint, called a glue constraint, shown to exist
and be unique, between R,

−→
R , and

←−
R when γ(X ,R), γ(P,

−→
R ), and γ(T rev,

←−
R )

hold.
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b a e b c a d

V = 3

L = 1H = 2

G = 2

Figure 4.6. Visualisation of the instance GROUP(〈b,a,e,b,c,a,d〉,{a,e} ,2,3,2,1),
where there are G = 2 groups of a total of V = 3 values from the set {a,e} both in the
sequence X = 〈d,a,c,b,e,a,b〉 and its reverse X rev = 〈b,a,e,b,c,a,d〉, the highest and
lowest group sizes being H = 2 and L = 1.

A constraint γ(V1, . . . ,Vn) is a total-function constraint [12] if its vari-
ables Vi can be partitioned into two non-empty sets, X and R, such
that for any assignment to the variables of X there is a unique assign-
ment to the variables of R that satisfies γ . For example, the con-
straints GROUP(X ,W,G,V,H,L), GROUPG(X ,W,G), GROUPV(X ,W,V ),
GROUPH(X ,W,H), and GROUPL(X ,W,L) are total-function constraints,
where X and W uniquely determine G, V , H, and L. Also, signa-
ture constraints (see Chapter 2) are total-function constraints. However,
ALLDIFFERENT(X1, . . . ,Xn) is not a total-function constraint, because, for the
pairwise distinctness of the values of its variables, no subset of {X1, . . . ,Xn}
uniquely determines its complement. The result set R may contain more
than one variable, witness the SORT(〈X1, . . . ,Xn〉,〈Y1, . . . ,Yn〉) constraint [10],
where the set {X1, . . . ,Xn} uniquely determines the variables of its sorted per-
mutation 〈Y1, . . . ,Yn〉.

We write a constraint γ(X ,R) as γ(X → R) when the variables X function-
ally determine the variables R. We denote the reverse of a word or variable
sequence w by wrev. We now define our first core concept.

The reverse of a total-function constraint predicate γ is a total-function con-
straint predicate γ ′ such that both γ(X → R) and γ ′(X rev→ R) hold, where X
is a sequence of variables.

Example 11. The constraint predicates GROUP, GROUPG, GROUPV,
GROUPH, and GROUPL are their own reverses. The constraint predicate
LENGTHFIRSTSEQUENCE, where LENGTHFIRSTSEQUENCE(X ,L) holds
if L is the size of the first group of identical values within the sequence X of
variables [10], does not have itself as reverse, but LENGTHLASTSEQUENCE,
where LENGTHLASTSEQUENCE(X ,L), holds if L is the size of the last group
of identical values within X [10].
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d a c b e a b

V = 1+2

G = 1+1

(a) Partition of X = 〈d,a,c,b,e,a,b〉 into P = 〈d,a〉 and T = 〈c,b,e,a,b〉.

d a c b e a b

V = (1+1)+1

2 = G 6= (1+1)+1

(b) Partition of X = 〈d,a,c,b,e,a,b〉 into P = 〈d,a,c,b,e〉 and T = 〈a,b〉.
Figure 4.7. Visualisation of the instance GROUP(〈d,a,c,b,e,a,b〉,{a,e} ,2,3,2,1),
where there are G = 2 groups of a total of V = 3 values from the set {a,e} in the
sequence 〈d,a,c,b,e,a,b〉, the highest and lowest group sizes being H = 2 and L = 1.

We can now explain the key insight behind glue constraints using an exam-
ple.

Example 12. Consider again the instance GROUPV(X ,{a,e} ,3), where
X = 〈d,a,c,b,e,a,b〉. If we split the sequence X = 〈X1, . . . ,Xn〉 into a
non-empty prefix P = 〈X1, . . . ,Xi〉 and the corresponding non-empty suffix
T = 〈Xi+1, . . . ,Xn〉, with 1≤ i< n, then observe that the numbers V ,

−→
V , and

←−
V

of group values respectively in the entire sequence X , the prefix P, and the re-
verse suffix T rev are related by the glue constraint V =

−→
V +
←−
V . This constraint

is implied by the conjunction of GROUPV(X ,W,V ), GROUPV(P,W,
−→
V ), and

GROUPV(T rev,W,
←−
V ). In Figure 4.7 we show two partitions of X and the cor-

responding values for V ,
−→
V , and

←−
V . Note that, while GROUPV(T rev,W,

←−
V )

could be replaced above by GROUPV(T,W,
←−
V ), this will be seen to be im-

possible in general with our approach, where the third implied constraint
must be on the reverse suffix, not on the suffix itself. Consider again the in-
stance GROUPG(X ,{a,e} ,2), where X = 〈d,a,c,b,e,a,b〉, and the two parti-
tions of X in Figure 4.7. Observe that the numbers G,

−→
G , and

←−
G of groups

respectively in the entire sequence, the prefix, and the reverse suffix are not
always related by the equality G =

−→
G +
←−
G . Indeed the total number of groups
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ρs

ρs V =−→v +←−v

(a) Glue constraint for GROUPV

ρs

ρs H = max(
−→
h ,−→c +←−c ,

←−
h )

(b) Glue constraint for GROUPH

ρs ρt

ρs G =−→g +←−g G =−→g +←−g

ρt G =−→g +←−g G =−→g −1+←−g

(c) Glue constraint for GROUPG

ρs ρt

ρs L = min(
−→
` ,−→c +←−c ,

←−
` ) L = min(

−→
` ,←−c ,

←−
` )

ρt L = min(
−→
` ,−→c ,

←−
` ) L = min(

−→
` ,−→c +←−c ,

←−
` )

(d) Glue constraint for GROUPL

Figure 4.8. Glue constraints for the constraints of the reformulation of GROUP: a row
index refers to the state of the corresponding automaton in Figure 4.4 reached by the
prefix, and a column index refers to the state reached by the corresponding reverse
suffix; recall that each of the four constraint predicates is its own reverse.

depends on whether or not the partition of X into P and T splits a group.
We then want to post a GROUPG constraint together with the glue constraint
for every split of the sequence V into a possibly empty prefix P and the corre-
sponding possibly empty suffix T . Glue constraints for all the integer variables
of GROUP are given in Figure 4.8.

We need the AUTOMATON constraint predicate to be implemented, in ex-
tension to how it is done in [13], by a decomposition that introduces variables
representing not only the accumulators but also the state of the argument au-
tomatonA= 〈Q,Γ,δ ,ρ0,C0,Qa,α〉 after reading each symbol of an argument
sequence X of variables. Upon reading the entire X , we have that δ̂ (〈ρ0, I〉,X)
is a tuple 〈q,R〉, where variable q represents the reached state of A, and R is
an array of k variables representing the k obtained accumulator values of A.
In Paper V we show that the result of A on a sequence X can be computed
from only these state and accumulator variables, as they encode all informa-
tion on X . We exploit this insight by constructing a glue constraint, which is
unique and correctly constrains the result of A on a word X by combining the
state and accumulator variables reached by a prefix P of X and the reverse of
its corresponding suffix T .

Consider a total-function constraint γ(X → R), for which an automa-
ton A= 〈Q,Γ,δ ,φ ,C0,ρ0,Qa,α〉 consumes a signature S linked with the
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sequence X by signature constraints, such that the variable R must
be the result returned by A on S. Hence γ(X → R) can be en-
coded by AUTOMATON(A,S,R) and the signature constraints. Con-
sider a split of S into the concatenation of the possibly empty prefix P
and the corresponding possibly empty suffix T , that is S = PT , with
R = α(δ̂ (〈ρ0,C0〉,PT )). Suppose, in addition to AUTOMATON(A,PT,R), we
post the constraint AUTOMATON(A,P,−→R ) on the prefix P, as well as the con-
straint AUTOMATON(A′,T rev,

←−
R ) on the corresponding reverse suffix T rev,

where A′ = 〈Q′,Γ′,δ ′,φ ′,C′0,ρ ′0,Q′a,α ′〉 is an automaton for the reverse of γ .
Let δ̂ (〈ρ0,C0〉,P) = 〈

−→
Q ,
−→
C 〉 and δ̂ ′(〈ρ ′0,C′0〉,T rev) = 〈←−Q ,

←−
C 〉. The relation-

ship between the variables R,
−→
C ,
←−
C ,
−→
Q , and

←−
Q gives rise to an implied con-

straint, called the glue constraint:

R = GLUE(〈−→Q ,
−→
C 〉,〈←−Q ,

←−
C 〉) (4.6)

where GLUE is automaton-specific, and independent of P and T : it only de-
pends on the reached tuples of state and accumulator variables.

We then post an AUTOMATON constraint and the glue constraint for every
split of the signature S into a possibly empty prefix P and the corresponding
possibly empty suffix T .

In Paper V we show that the glue constraints improves the propagation
of the given automaton-induced decomposition. Note that the extra pruning
achieved by the linear implied constraints in Section 4.2 is incomparable with
that achieved by the glue constraints, as can be seen in the experimental results
of Paper VI. We also show in Paper V the usefulness of glue constraints in the
context of constraint-based local search [55], where glue constraints enable
constant-time move probing.

In Paper V we show how to automatically derive the glue constraint for
a useful class of constraints, namely those that can be encoded using an au-
tomaton with a single accumulator, which is initialised to zero at the start state
and increased by a non-negative quantity at each transition as well as by the
acceptance function. For instance, this class includes the GROUPV constraint
predicate encoded using the automaton in Figure 4.4a and the GROUPG con-
straint predicate encoded using the automaton in Figure 4.4c. This setting
excludes the GROUPH constraint predicate encoded using the automaton in
Figure 4.4b and the GROUPL constraint predicate encoded using the automa-
ton in Figure 4.4d. This setting covers 16 of the 56 constraint predicates de-
scribed using automata in the Global Constraint Catalogue [10], and about one
third of the constraint predicates in the Time-Series Constraint Catalogue [5].
The derivation of the glue constraint in Paper V for all the other constraint
predicates outside of this class was ad hoc.

The reverse of a pattern is for the topological alphabet Σ = {‘<’, ‘=’, ‘>’}
a pattern that has the reverse order of its symbols and has all occurrences of
the symbol ‘<’ flipped into ‘>’ and vice versa. In Paper VI we introduce para-
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metric glue constraints and show that they can be derived automatically for
time-series constraint predicates, which were introduced in [11]. A paramet-
ric glue constraint for a time-series constraint specified by 〈π, f ,g〉 is specific
to the pattern π , but generic in terms of the feature f and the aggregator g. We
derive parametric glue constraints for the 19 of 20 patterns defined in [11] that
also have a reverse pattern in [11]. Moreover, of the 56 constraint predicates in
the Global Constraint Catalogue [10] that have their reverse constraint pred-
icates in [10], some of them correspond to time-series constraint predicates
as defined in Chapter 3. For example the GROUPH constraint predicate cor-
responds to a time-series constraint predicate where the aggregator g is Max,
the feature f is width, and the accumulators 〈c,r〉 for time-series automata
have the same semantics as the accumulators 〈c,h〉 of the automaton in Fig-
ure 4.4b. The accumulator d for time-series automata is unused because the
concept of potential group does not exist, and thus it is eliminated. Note that
the constraint GROUPL(X ,W,L) is not a time-series constraint as defined in
Chapter 3 because it is especially designed to hold if L = 0 when there are no
groups of W in the variable sequence X . The equivalent time-series constraint
would hold if L =+∞ when there are no groups in the variable sequence X .

In Paper I we introduce an algorithm for automatically generating a seed
transducer for a given pattern. Using that algorithm together with the au-
tomaton synthesiser in [11], it is now possible to generate automata for the
reverse of any g_ f _INFLEXION constraint predicate from the reverse of the
INFLEXION pattern, which are the only constraint predicates in [11] without a
reverse. In turn, this makes it possible to derive the parametric glue constraint
for the INFLEXION pattern, thus covering all the 20 patterns in [11].
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5. Summaries of Papers

“Why, sometimes I’ve believed as many as six
impossible things before breakfast.”

Through the Looking Glass
LEWIS CARROLL

We summarise briefly the contents of Papers I–VI.

I Automatic Generation of Descriptions of Time-Series
Constraints

In: M. Virvou (editor), ICTAI 2017. IEEE Computer Society, 2017 (in press).

We show how to apply the synthesiser of automaton-based time-series con-
straint predicate descriptions in [11] directly to high-level patterns, instead of
low-level transducers. We do so in two steps: first, we characterise the large
class of patterns, called recognisable patterns, which are the only patterns that
can be handled by the synthesiser in [11], making it possible to decide when
the synthesiser is applicable; and second, we give an algorithm for automati-
cally generating a transducer from a recognisable pattern.

Our tool generates exactly the 20 handcrafted transducers of [11].
Our tool also generates the handcrafted transducers for the patterns
BumpOnDecreasingSequence and DipOnIncreasingSequence, thus cov-
ering all 22 patterns in the Time-Series Constraint Catalogue [5]. By proving
that our tool only generates well-formed transducers, we also prove that the
transducers in [11] and [5] are well-formed.

This work contributes, in the context of time-series constraint predicates, to
the systematic reconstruction of the Global Constraint Catalogue [10] that was
previously advocated [15]. Note that, in this paper, we restrict the alphabet of
the patterns to the topological alphabet Σ = {‘<’, ‘=’, ‘>’}, which is also the
only input alphabet considered in [11], in order to ease the notation. However,
both the characterisation of recognisable patterns and the algorithm for gener-
ating transducers from such patterns are independent of the input alphabet.
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II Generation of Implied Constraints for Automaton-
Induced Decompositions

In: A. Brodsky (editor), ICTAI 2013, pages 1076–1083. IEEE Computer So-
ciety, 2013.

We show how to improve propagation of automaton-induced constraint de-
compositions by means of systematically-derived implied constraints. Such
implied constraints are derived off-line and are specific to the automaton but
instance independent. From an analysis of constraint checkers corresponding
to automata with accumulators, we identify loop invariants by means of an au-
tomatic invariant generator called InvGen [33], as well as by more involved
loop-invariant generation techniques. After generating the loop invariants,
we translate them into implied constraints and add them to the correspond-
ing automaton-induced decomposition to improve propagation.

A key problem in automatic loop invariant generation is the inference of
disjunctive invariants, which contain at least one disjunction and generally
arise from the existence of conditionals in the loop body. In order to simplify
the generation of disjunctive loop invariants, we manually use a technique pro-
posed in [53] to decompose a constraint checker into a semantically equivalent
sequence of loops, each of which has only conjunctive invariants. As a result,
the disjunction of the conjunctive invariants of the loops is a disjunctive in-
variant of the original constraint checker. Note that InvGen can be used to
generate invariants for each of the individual loops.

With the aim of generating loop invariants linking the values of the accu-
mulators on a given iteration to the values of the accumulators in previous
iterations, we systematically extend the constraint checkers to keep track of
the previous values of the variables. The extension consists of adding new
variables to the checker in such a way that the new variables store the values
of the accumulators one or more iterations before.

We demonstrate the use of these invariant-generation techniques via the
JTHNONZEROPOS1 and GROUPG2 constraint predicates. First, we show that
the presence of these implied constraints does not increase the time or space
complexity of computing the common fixpoint of the propagators of the de-
composition. Second, we prove that in the presence of these implied con-
straints, domain consistency3 is maintained on the automaton-induced decom-
position of a JTHNONZEROPOS(V,J,P) constraint. This example demon-
strates that these implied constraints can be quite powerful. Finally, we also

1The JTHNONZEROPOS constraint predicate is called ITH_POS_DIFFERENT_FROM_ZERO in
the Global Constraint Catalogue [10].
2The GROUPG constraint predicate is called NGROUP in Papers II and III, and it is a subcon-
straint predicate of the GROUP constraint predicate in the Global Constraint Catalogue [10].
3Domain consistency is called hyper-arc consistency (HAC) in Paper II
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experimentally show that these implied constraints often improve propagation,
incurring little or no time overhead.

III Implied Constraints for AUTOMATON Constraints
In: G. Gottlob, G. Sutcliffe, and A. Voronkov (editors), GCAI 2015. Easy-
Chair Proceedings in Computing, volume 36, pages 113–126, 2015.

We continue the work of Paper II towards improving propagation of
automaton-induced constraint decompositions. Here we present the first ver-
sion of ImpGen (the second version of ImpGen is presented in Paper IV): a
fully automated tool that reads an automaton with accumulators4 in the SICS-
tus Prolog syntax [26], and selects, in an off-line process, linear constraints
that are implied by the automaton-induced constraint decomposition. We here
focus on automata with accumulators where every accumulator update is a
linear expression on the accumulators. This includes increments and decre-
ments by constant amounts (as in c := c+ 1) or by other accumulators (as in
c := c+ `), resets (as in c := 0), etc, but excludes updates using the ‘max’ and
‘min’ operators, for instance. This setting covers a large percentage of those
in the Global Constraint Catalogue [10], but only a small percentage of those
in the Time-Series Constraint Catalogue [5].

For better control compared to using an off-the-shelf loop-invariant genera-
tor (such as InvGen [33] in Paper II), we design our own tool to derive implied
constraints, which works directly on the automaton (rather than on its manual
translation into an imperative checker) and directly derives implied constraints
(rather than generating loop invariants that have to be translated into implied
constraints). Using one half of Farkas’ lemma (e.g., [23]) and a linear tem-
plate for implied constraints, we set up a system of non-linear constraints that
model the template being true at every state of the automaton.

Our tool ImpGen goes beyond adapting Farkas’ lemma for automata, by
having extra parameters for controlling the quality of its results. First, as seen
in Paper II, many implied constraints that provide extra propagation are ex-
pressed not only on the current values of the accumulators, but also on their
values upon previous transitions. ImpGen allows the user to indicate the his-
tory length, so that appropriate accumulator-induced terms are added to the
template. Second, the template can also be extended by adding a term for a
state variable denoting the state at which the automaton is. This requires num-
bering the states: either the user provides a numerical value for each state, or
the tool automatically assigns a numerical value to each state. Third, ImpGen
can also generate state-specific implied constraints. Finally, ImpGen elim-

4Automata with accumulators are called counter automata in Paper II, and memory-DFAs in
Paper III and Paper V.
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inates uninteresting and propagation-redundant constraints from the derived
set of implied constraints, so as to ease the user’s choice of implied con-
straints that are actually added to the decomposition. The actual choice of
which implied constraints are added to the decomposition is problem-specific
and beyond the scope of our tool.

We experimentally show that a suitable choice, made by the user, among the
tool-selected implied constraints can considerably improve solving time and
propagation, both on an automaton-induced decomposition in isolation and on
entire constraint problems containing the decomposition. In some cases we
observe a big improvement in solving time compared to the decomposition
alone, despite the overhead in running more propagators. For example, the
automaton-induced decomposition of INFLEXION5 [10] with the implied con-
straints is always faster than the decomposition alone, is about 35% faster on
average, and has almost no failures on average. We obtain similar results for
other automaton-induced constraint decompositions.

IV Time-Series Constraints: Improvements and
Application in CP and MIP Contexts

In: C.-G. Quimper (editor), CP-AI-OR 2016. Lecture Notes in Computer
Science, volume 9676, pages 18–34. Springer, 2016.

We describe and evaluate extensions to three different techniques related to
automaton-induced constraint decompositions.

First, we improve the synthesiser of automaton-based constraint predicate
descriptions in [11] for a large family of time-series constraints, so as to syn-
thesise automata with fewer accumulators and simpler accumulator updates,
improving both propagation time and memory usage. Note that the generated
automata have non-linear accumulator updates (as in c := max(c,d)).

Second, we decompose a constraint described by an automaton with ac-
cumulators into a linear-sized conjunction of linear inequalities, for use by a
mixed-integer programming (MIP) solver.

Third, in order to cover the entire family of time-series constraint predicates
of [11] and the Time-Series Constraint Catalogue [5], we extend ImpGen, our
implied-constraint generator ImpGen of Paper III, so that it can handle non-
linear accumulator updates. Moreover, we extend ImpGen to include a rank
of the derived implied constraints by decreasing propagation strength, thereby
easing the human selection of which implied constraints actually to use.

5The INFLEXION constraint predicate in [10] is called NBINFLEXION in the Time-Series Con-
straint Catalogue [5], where NB stands for ’number of’ and corresponds to the feature one

together with the aggregator Sum.
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Our results show that the newly synthesised automata for time-series con-
straint predicates outperform the automata of [11], for both the automaton-
induced CP and MIP decompositions, and that the newly derived implied con-
straints boost the inference, again for both the CP and MIP decompositions,
as well as for both the automata of [11] and the newly synthesised ones.

We also evaluate CP and MIP solvers on a prototypical application mod-
elled using time-series constraints. On their own, both the old and the new au-
tomata for time-series constraints perform quite poorly. Nevertheless, adding
the top two ImpGen-derived implied constraints to the new automata allows
us to find solutions for all problem instances.

V Linking Prefixes and Suffixes for Constraints Encoded
Using Automata with Accumulators

In: B. O’Sullivan (editor), CP 2014. Lecture Notes in Computer Science,
volume 8656, pages 142–157. Springer, 2014.

We consider constraints γ(X ,R) over a sequence of variables X , such that γ is
described using an automaton with accumulators and functionally determines
the result variable R, and where R is the same for both X and its reverse X rev.
This class of constraints is called reversible constraints and covers 45 of the 56
constraints that are described using automata with accumulators in the Global
Constraint Catalogue [10], and 19 of the 22 patterns in the Time-Series Con-
straint Catalogue [5].6

Given a partition of X into a prefix P and the corresponding suffix T , we
define an implied constraint, called glue constraint, shown to exist and be
unique, between R,

−→
R , and

←−
R when γ(X ,R), γ(P,

−→
R ), and γ(T rev,

←−
R ) hold.

After formalising reversible constraints and glue constraints, we first show
how to hand-craft glue constraints for any reversible constraint described using
an automaton with accumulators. Second, we show how to automatically de-
rive glue constraints for a useful class of reversible constraints, namely those
that can be encoded using an automaton with a single accumulator, which is
initialised to zero at the start state and increased by a non-negative quantity
at each transition as well as by the acceptance function. Third, we show how
to further improve propagation in the presence of implied constraints on the
result variables of multiple total-function constraints on the same sequence X
of variables. The general idea is to take such an implied constraint and add it,
together with the glue constraints, for the result variables of all prefixes (and
corresponding suffixes) of X .

6The class of reversible constraints covers 19 of the 20 patterns in [11].
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We evaluate the effectiveness and efficiency of the glue constraints, finding
that using glue constraints and implied constraints on the results of all prefixes
and suffixes greatly improves propagation. In particular, we use the glue con-
straint to compute, in constant time, the violation cost of γ(X ,R) when probing
an assignment move in local search.

VI Systematic Derivation of Bounds and Glue
Constraints for Time-Series Constraints

In: M. Rueher (editor), CP 2016. Lecture Notes in Computer Science, vol-
ume 9892, pages 13–29. Springer, 2016.

We give parametric ways of systematically deriving glue constraints, which
are a particular kind of implied constraints introduced in Paper V, as well as
aggregation bounds that can be added to the automaton-induced decomposi-
tion of the time-series constraints in [11] and in the Time-Series Constraint
Catalogue [5].

First, we show how to systematically derive glue constraints, parametrised
by the aggregator and feature functions, for any regular expression.

Second, we give a methodology for systematically deriving bounds,
parametrised by a regular expression, on the result variable, for any pair of
aggregator g and feature f , and then we demonstrate our methodology on the
case when g = Max and f = min.

Finally, we experimentally show the beneficial propagation impact of the
derived glue constraints and bounds, both alone and together. In particular, we
show that bounds and glue constraints on their own bring good reductions of
the search space, and that their combinations can greatly improve propagation.
For example, the combined approach in most cases reduces the number of
backtracks by more than three orders of magnitude.
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6. Related Work

“Curiouser and curiouser!” Cried Alice

Alice’s Adventures in Wonderland
LEWIS CARROLL

We review related work along the main topics of this dissertation:
automaton-based constraint predicate descriptions, automatically generating
propagators or decompositions for constraint predicates, improving propaga-
tion of automaton-induced constraint decompositions, and time-series con-
straints.

6.1 Constraints Over Formal Languages
In Chapter 2 we explain regular languages and how to describe a constraint
predicate by means of an automaton. In particular, we introduce the reader
to automaton-based descriptions of constraint predicates using predicate au-
tomata with accumulators. In this section we outline other approaches to de-
scribing constraints of membership of a variable sequence in a formal lan-
guage.

The REGULAR Constraint Predicate
The REGULAR constraint predicate is discussed at length in Section 2.2.
We widen our approach to automata with accumulators because they al-
low the capture of non-regular languages and yield (even for regular lan-
guages) automata that are often much smaller and, more importantly, instance-
independent.

The CONTEXTFREE Constraint Predicate
A context-free grammar (CFG) encompasses a set of production rules that
describe all possible strings in a given formal language. The production rules
are replacements. For example, the production rule E ⇒ E +E states that an
expression (denoted by the non-terminal E) can be formed by taking any two
expressions and connecting them by a plus sign. Given a context-free grammar
G = 〈Γ,N,P,S0〉 with alphabet Γ, non-terminals N, production rules P, start
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symbol S0 ∈ N, and a word w ∈ Γ∗, the problem is to answer the question
whether w is in the language of G or not.

In [44, 52, 34] the constraint predicate CONTEXTFREE is introduced, to-
gether with a propagator that maintains HAC.

6.2 Other Types of Automata
In Chapter 2 we present automata with accumulators. Here we review other
extensions to classical automata.

Weighted Automata
Weighted finite automata [40] are classical possibly non-deterministic finite
automata in which the transitions carry weights [28]. These weights may
model, for example, the cost of executing a transition, the amount of resources
needed for this, or the probability of its successful execution. The behaviour of
a weighted finite automaton can then be considered as the function associating
with each word the weight of its execution. For instance, if an automaton with
accumulators A = 〈Q,Γ,δ ,ρ0,C0,Qa,α〉 has a single accumulator, which is
initialised to zero (hence C0 = 0) at the start state ρ0 and increased by a non-
negative quantity at each transition, and if the acceptance function α returns
that accumulator increased by a non-negative quantity, then A is a weighted
automaton over the tropical semiring over the integers, and the algorithms im-
plemented in [41] can be used. Among the 45 of 56 constraint predicates of the
Global Constraint Catalogue [10] covered in Paper V, there are 16 described
by weighted automata, such as GROUPG and GROUPV, but not GROUPH and
GROUPL, whose accumulator updates use the ‘max’ and ‘min’ operators. Re-
call that in Paper V we automatically derive glue constraints for this particular
class of automata.

The reverse of a weighted automaton is a weighted non-deterministic finite
automaton (NFA), possibly with ε-transitions; if (but not only if) a weighted
NFA satisfies the twins property [2], then it can be finitely determinised into
a weighted automaton (the algorithms implemented in [41] can be used for
reversal, ε-removal, determinisation, and minimisation). The twins property
can be checked in time polynomial in the size of the weighted NFA [2], but
at present no characterisation is known for a weighted automaton to have a
reverse satisfying the twins property; this is not an issue though, as the de-
composition of the AUTOMATON constraint predicate works unchanged for
NFAs with accumulators [13].
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Register Automata
Register finite automata [18, 37] are classical possibly non-deterministic finite
automata in which the input alphabet is provided as a set of parameterised
actions, states have registers that can store data values, and transitions are la-
belled with parameterised actions, guards over parameters and registers, and
assignments to the registers. Register automata are similar to automata with
accumulators except that the registers can only be assigned data values or other
registers, while accumulators can be assigned the result of arithmetic opera-
tions performed on other accumulators. Moreover, register automata also re-
strict possible relations between data values, for example, only equality com-
parisons. Automata with accumulators do not have such restrictions.

6.3 Quantitative Properties of Data Streams
Quantitative regular expressions (QREs) [3, 4] are a high-level programming
abstraction for specifying numerical queries over data streams. Like automata
with accumulators, QREs allow complex numerical updates using operations
such as min, max, sum, difference, and averaging. Unlike our focus on the
practical aspects of using automata with accumulators to describe constraint
predicates, the key technical challenge in [3] is defining an update language
that is expressive but also theoretically guarantees well-typed programs. They
prove that the expressiveness of QREs is the same as that of streaming com-
position of regular functions, that is monadic second-order definable string-
to-term transformations, leading to a robust foundation for understanding the
expressiveness of QREs.

6.4 Improving Propagation of Automaton-Induced
Constraint Decompositions

In Chapter 4 we present two approaches for deriving implied constraints for
automaton-induced constraint decompositions, namely linear implied con-
straints (Section 4.2) and glue constraints (Section 4.3). In this section we
describe other approaches aimed at improving the propagation of automaton-
induced constraint decompositions.

Structure of an Automaton-Induced Constraint Decomposition
The structure of a constraint problem can determine how easy it is to solve
it [32]. In [29, 30] we review some of these results and apply them to
automaton-induced constraint decompositions.
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Manually Derived Decompositions of Constraints
There is also a large body of related work (e.g., [19, 20, 21, 45]) on decom-
posing global constraints manually in order to maintain HAC on the whole
decomposition. Papers II, III, and V can be seen as a more systematic ap-
proach towards improving propagation, and possibly maintaining HAC, of
automaton-induced decompositions.

Graph Invariants
There is some related work using graph invariants to systematically derive
implied constraints in [14] in order to improve efficiency.

For example, the GROUP(X ,W,G,V,H,L) constraint [10] has graph invari-
ants, which can be seen as implied constraints. In particular, consider the
following bounds on V :

max(G−1,0) ·L+H ≤V ≤max(G−1,0) ·H +L

Intuitively, the lower bound corresponds to having one group of H elements
while all the other groups are as small as possible, that is they have L elements.
The upper bound is justified in a similar way. There are 90 graph invariants
in [14] for the GROUP constraint predicate: the pruning upon adding all the
corresponding implied constraints is compared with the glue constraints in
Paper V.

Papers II–VI explore different approaches, which are capable of deriving
other implied constraints and do not require a database of invariants.

Automated Reasoning
Initial experiments with using automated reasoning systems towards inferring
implied algebraic constraints from a constraint problem are reported in [31,
35], both using an extension [35] of the PRESS equation solver. In con-
trast, the work in Paper II uses a tool for deriving loop-invariant, while in Pa-
pers III and IV we develop a specialised tool for deriving implied-constraint
for automaton-induced decompositions. Our work is aimed at a specialised
class of constraint problems (namely automaton-induced decompositions) and
at a specialised class of implied constraints (on the induced accumulator vari-
ables), and is therefore more successful.

6.5 Time-Series Constraints
In Chapter 3 we present time-series constraint predicates and explain how to
use our transducer generator in Paper I together with the automaton synthe-
siser in [11] to synthesise automaton-based constraint predicate descriptions
for time-series constraint predicates.
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Our approach in Paper I to generating transducers from patterns differs from
that of [49], which formulates the semantics of regular-expression matching
as a non-deterministic transducer, while we generate minimal deterministic
transducers for a specific output alphabet in Paper I. Note that neither deter-
minising nor minimising transducers is in general a trivial task. Most general
approaches have underlying assumptions, for example that the transducers are
acyclic [39].

Moreover, in Papers IV and VI we enhance the propagation for time-series
constraint predicates. Rather than improving the automaton-induced decom-
position for each time-series constraint predicate independently, we modify
the synthesiser in [11] in order to improve the synthesised automata, that is
to generate automata with fewer accumulators and simplified accumulator up-
dates. Moreover, we automatically derive linear implied constraints and intro-
duce the concepts of parametric bounds and parametric glue constraints. Our
approach differs from existing ones, which design dedicated propagation algo-
rithms [46, 8] and reformulations [19, 20] for specific constraints, or propose
generic approaches [56, 42] that do not focus on the combinatorial aspect of a
constraint predicate.
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7. Conclusion

“Would you tell me, please, which way I ought
to go from here?” “That depends a good deal
on where you want to get to,” said the Cat. “I
don’t much care where–” said Alice. “Then it
doesn’t matter which way you go,” said the
Cat. “–so long as I get somewhere,” Alice
added as an explanation. “Oh, you’re sure to
do that,” said the Cat, “if you only walk long
enough.”

Alice’s Adventures in Wonderland
LEWIS CARROLL

Automata with accumulators provide a uniform description format for many
constraint predicates. We believe that automatically synthesising automaton-
based descriptions of time-series constraint predicates, as well as automat-
ically deriving implied constraints that improve propagation on automaton-
induced constraint decompositions help extending CP solvers with new con-
straint predicates.

We first summarise the contributions of this dissertation in Section 7.1. We
then describe in Section 7.2 some lines of future work in the areas of the
synthesis of automaton-based descriptions of time-series constraints and the
derivation of implied constraints for automaton-induced constraint decompo-
sitions.

7.1 Contributions
First, we have formalised the class of time-series patterns whose transducers
can be handled by the automaton synthesiser in [11] and we have described a
fully automated parametric tool that generates, in an off-line process, a trans-
ducer from such a pattern. Note that our tool generates exactly the handcrafted
transducers of [11]. By proving that our tool only generates well-formed trans-
ducers, we have also proved that the transducers in [11] are well-formed.

This work contributes, in the context of time-series constraint predicates,
to the systematic reconstruction of the Global Constraint Catalogue [10], ad-
vocated in [15]. These constraint predicates are useful not only to describe
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properties of known time series, but can also be used in a wide range of appli-
cations to constrain (parts of) new time series based on previously observed
samples.

Second, we have described a fully automated parametric tool that selects,
in an off-line process, a set of non-redundant linear constraints that are im-
plied by the automaton-induced decomposition in [13] of a constraint on a
sequence of variables, the constraint predicate being described by a checker
provided as an automaton with accumulators. We have shown that a suitable
choice, by the user, among the tool-selected implied constraints can consider-
ably improve solving time and propagation, both on a decomposition in isola-
tion and on entire constraint models containing the decomposition. With the
extra propagators for the implied constraints, it potentially takes more time
to compute the fixpoint of the propagators at each node of the search tree:
this may backfire on the decomposition alone, but usually pays off on entire
constraint models containing the decomposition, due to the extra propagation.
Within the context of automaton-based descriptions of constraint predicates in
general, and time-series constraint predicates in particular, the results of this
work have been shown to improve significantly both constraint programming
(CP) and mixed-integer programming (MIP) models.

Finally, for a total-function constraint on a sequence of variables whose
result does not change under sequence reversal, we have shown how to de-
rive, from a description of the constraint predicate by an automaton with ac-
cumulators, an implied constraint, called glue constraint, between the result
variables for a sequence of variables, a prefix thereof, and the corresponding
suffix. Such total-function constraints have proved very useful, for instance
in production sequencing and staff rostering. We have shown that the glue
constraint is unique and always exists. We have also shown the usefulness of
the glue constraint in solving, both by local search, where the glue constraint
enables constant-time move probing, and by propagation-based systematic CP
search, where the glue constraint improves propagation: our concept is thus
not oriented toward a specific solving technology. Within the context of time-
series constraints in particular, we have further enhanced the propagation of
time-series constraints by a systematic derivation of glue constraints. Rather
than deriving glue constraints for each time-series constraint predicate inde-
pendently, we have introduced the concepts of parametric glue constraints.

We hope our work motivates the quest for other general results that have a
positive impact on several solving technologies, such as CP, MIP, local search,
and Boolean satisfiability (SAT).

7.2 Future Work
There are some directions of future work that we would like to explore, and we
outline them here separated by area: generation of time-series constraint de-
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ρs{r := 0}

return r

ρr ρt

>

=

<

>
{r := r+1}

=

<

<

>

=

Figure 7.1. Automatically simplified automaton for the SUMONEPEAK constraint
predicate in the Time-Series Constraint Catalogue [5].

ρs{r := 0} return r ρt
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<

=>
{r := r+1}

Figure 7.2. Handcrafted automaton for the SUMONEPEAK constraint predicate in the
Global Constraint Catalogue [10].

scriptions, and implied-constraints for automaton-induced constraint decom-
positions.

Generation of Time-Series Constraint Predicate Descriptions
It would be interesting to extend the phase alphabet to be able to automatically
generate seed transducers for a larger class of patterns. This would require
modifying both the algorithm in Paper I and the synthesiser in [11].

Another research direction would be to design a minimisation algorithm
for the synthesised automata. For example, as can be seen in Figure 7.1, the
simplified automaton synthesised in [11] for the SUMONEPEAK1 constraint
predicate has three states. The SUMONEPEAK constraint predicate can also

1The SUMONEPEAK constraint predicate is called NBPEAK in Paper IV and [5], and simply
PEAK in [10].
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be described using the handcrafted automaton in [10], which, as can be seen in
Figure 7.2, has only two states. Minimising automata with accumulators is not
a trivial task, as it would require, in the general case, moving accumulator up-
dates to earlier (or later) transitions, as well as determining whether or not two
accumulator updates are equivalent. Another example is the GROUP constraint
predicate. As seen in Section 4.2, a GROUP(X ,W,G,V,H,L) constraint can be
decomposed into the conjunction GROUPG(X ,W,G)∧GROUPV(X ,W,V )∧
GROUPH(X ,W,H)∧GROUPL(X ,W,L), and each of the involved four con-
straint predicates can be described using an automaton [13]. Moreover, each
of those four constraint predicates can be described as a time-series constraint,
that is, by a pattern, a feature and an aggregator, and thus it is possible to use
the algorithm in Paper I to generate a transducer from the pattern, and then use
the generated transducer, together with the feature and the aggregator as inputs
to the synthesiser in [11]. The problem is again that all four automata would
have the same number of states, namely two, while some of the handcrafted
automata in [10] have only one state.

Implied Constraints for Automaton-Induced Constraint
Decompositions
It would be interesting to extend our ImpGen tool to use a richer template than
linear inequalities for implied constraints. For instance, a non-linear template
can be used by exploiting Gröbner bases. Also, disjunction enables the gener-
ation of implicative implied constraints. A motivating example is our manual
derivation in Section III of Paper II of the disjunctive non-linear implied con-
straint

(Si = 0∨ ji−1 6= J−1)⇔ pi+1 6= i

for 0 < i < n, for a JTHNONZEROPOS(V,J,P) constraint, whose automaton
is in Figure 2.5.

Moreover, we mention in Paper III that an implied equality constraint of
the form Ci−1 =Ci can be inferred from the implied constraints Ci−1 ≤Ci and
Ci−1 ≥Ci. It would be interesting to process the linear implied constraints in
order to derive stronger and fewer implied constraints like linear equalities, or
for even richer templates including the ‘max’, ‘min’, and ‘abs’ operators, such
as the implied constraints abs(Ci−Ci−1)≤ 1 and Ci ≥max(Di,Ci−1).
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8. Glossary

“Speak English!” said the Eaglet. “I don’t
know the meaning of half those long words,
and I don’t believe you do either!”

Alice’s Adventures in Wonderland
LEWIS CARROLL

To make this dissertation self-contained, we define the remaining used con-
cepts, namely extensionally-defined constraint, support, hyper-arc consis-
tency, checker, and reification.

A constraint γ(V) on a sequence of decision variables V = 〈V1, . . . ,Vn〉 can
be defined in a extensional fashion by listing all the combinations of domain-
compatible assignments to V that satisfy γ .

The assignment Vk = dk is supported by a constraint (problem) if there is a
solution to that constraint (problem) where Vk = dk and all decision variables
take values in their current domains.

There is hyper-arc consistency (HAC) on a constraint γ(V) if every domain
value of every decision variable of V is supported by γ(V); we also say that
γ(V) is HAC. Hyper-arc consistency is also known as generalised arc consis-
tency and domain consistency.

There is HAC on a constraint problem if every current domain value of
every decision variable of the problem is supported by the problem; we also
say that the problem is HAC.

A checker is an algorithm that returns true if and only if a given assign-
ment is a solution to a given constraint. For example, consider the constraint
EXACTLY(N,V,P), which holds if and only if the sequence V of decision
variables contains exactly N elements taking the given value P. Parameters N
and P must be constants, under the restriction 0 ≤ N ≤ |V|. For instance,

Algorithm 3: Checker for an EXACTLY(N,V,P) constraint
i := 1
c := 0
while i≤ |V| do

if V[i] = P then c := c+1;
i := i+1

return N = c
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EXACTLY(2,〈4,2,4,5〉,4) holds since exactly 2 elements of the sequence
〈4,2,4,5〉 take the value 4. A checker for the EXACTLY constraint is given
in Algorithm 3.

A reified constraint [51] γ(V) ⇔ B associates the truth value of the con-
straint γ(V) with a 0/1 decision variable B. If γ(V) is entailed by the domains
of the decision variables V , then B is constrained to be 1. Conversely, if γ(V)
is disentailed by the domains of the decision variables V , then B is constrained
to be 0. Moreover, if B = 1 holds, then γ(V) must hold, and if B = 0 holds,
then ¬γ(V) must hold.
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Sammanfattning på svenska

“Var behagar Ers Majestät att jag börjar?”
frågade han. “Börja med början,” sa kungen
högst allvarligt, “och läs tills du kommer till
slutet. Sluta där.”

Alice i Underlandet
LEWIS CARROLL

Översättning: ÅKE RUNNQUIST

Figur 8.1 visar ett nonogram. Ett nonogram är en gåta i form av ett rutnät, där
varje ruta måste vara antingen tom (vit) eller fylld (svart). Om alla rutorna är
korrekt ifyllda (enligt givna ledtrådar, d.v.s. siffrorna till vänster och ovanför
rutnätet) avslöjas en bild. Nonogrammet i figur 8.1, till exempel, gömmer en
bild av en hatt. Varje ledtråd indikerar hur många rutor som ska vara svarta
i en given rad eller kolumn och hur dessa är fördelade. Till exempel betyder
ledtråden ‘4 8 3’ att det ska finnas tre sekvenser med svarta rutor med längden
fyra, åtta respektive tre rutor, och med minst en vit ruta emellan.

För att lösa ett nonogram inom rimlig tid, är det inte möjligt att bara an-
vända sig av trial-and-error, eftersom det helt enkelt finns alldeles för många

12
1111
41
16
115
16
423
214
46
213
5112
5112
512

102
5

1
1

1
5

1
10

10
1

1
12

1
3
2
1

1
4
1
2
1

1
4
1
1

1
2
1
5

1
1
1
1
1
4

1
1
1
1
4

14 1
8

1
1

Figur 8.1. Ett nonogram (till vänster) och dess enda möjliga lösning (till höger): Hatt-
makarens hatt.
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sätt att fylla i rutorna. Detsamma gäller för de flesta andra intressanta gåtor och
verkliga kombinatoriska problem. Ett sätt att hantera sådana problem är istället
att beskriva dem som villkorsproblem, och lösa dem med hjälp av villkorspro-
grammering (eng. "constraint programming"). Villkorsprogrammering är ett
sätt att programmera deklarativt i syfte att modellera och lösa kombinatoris-
ka problem med hjälp av villkorslösare (eng. "constraint solvers"). Det finns
många tillämpningsområden, t.ex. inom schemaläggning, där man använder
villkorsprogrammering med goda resultat.

Villkorsproblem
Ett villkorsproblem specificeras över en mängd variabler (som kan anta olika
värden) och en mängd villkor (som anger vilka värden de olika variablerna får
anta samtidigt). I exemplet med nonogrammet kan varje ruta i rutnätet repre-
senteras av en variabel. Variablerna kan anta värden från en given domän. I ett
nonogram kan rutorna vara svarta eller vita, så domänen för variablerna kan
uttryckas som {svart,vit}. Villkoren som måste uppfyllas representeras här av
ledtrådarna: varje ledtråd kan sägas vara ett villkor över en viss rad eller ko-
lumn, och tillsammans specificerar alla ledtrådarna villkoren för nonogrammet
som helhet.

Formellt sett är ett villkorsproblem en konjunktion bestående av ett villkor
över en mängd variabler och dessa variablers domän(er), till exempel

ALLDIFFERENT(V1,V2,V3)∧V1 +V3 = 4 (8.1)

där ALLDIFFERENT(V1,V2,V3) anger att variablerna V1, V2 och V3 alla ska anta
olika värden, och där V1 +V3 = 4 anger att värdet på V1 och V3 tillsammans
ska bli 4. Domänen för alla variablerna kan skrivas dom(Vi) = {1,2,3,4}.

Medan ett nonogram ofta är gjort så att det bara har en enda möjlig lös-
ning, kan villkorsproblem i allmänhet ha mer än en lösning (eller ingen alls).
Villkorsproblemet i (8.1) ovan, till exempel, har mer än en lösning. Ibland kan
vissa lösningar också vara mätbart bättre än andra, och då kan målet vara att
hitta den bästa lösningen. I sådana fall kallas problemet ett villkorsoptime-
ringsproblem (eng. "constraint optimisation problem"). Om vi till exempel är
intresserade av lösningar på problemet i (8.1) där värdet på V2 är så stort som
möjligt, är V1 = 1, V2 = 4, V3 = 3 ett optimalt val.

Villkorspredikat
En viktig komponent i moderna villkorslösare är villkorspredikat.
ALLDIFFERENT är exempel på ett villkorspredikat. Ur ett modelleringsper-
spektiv gör villkorspredikat det enklare att modellera vanligt återkommande
delar av villkorsproblem, till exempel att en viss mängd variabelvärden
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ska vara skilda från varandra genom predikatet ALLDIFFERENT. Ur ett
lösningsperspektiv gör villkorspredikat att omöjliga värden på variabler kan
elimineras direkt. En algoritm för beräkning av omöjliga värden på variabler
kallas här propagator.

Ett problem med villkorspredikat är att de ofta inte existerar. Det gäller till
exempel sådana som kan beskriva tidsserier, d.v.s. sekvenser av heltal som re-
presenterar mätningar över olika tidsintervall. Tidsserier förekommer i många
olika tillämpningsområden, såsom elproduktion, personalbehov i ett call cen-
ter eller patientkapaciteten per dag på ett sjukhus. Ett sätt att lösa detta problem
är att dela upp villkorspredikaten i mindre delar. Då kan man utnyttja propaga-
torer som redan finns för de ingående delarna. Ett annat sätt är att använda sig
av finita automater eller reguljära uttryck för att beskriva ett villkorspredikat.
Till exempel kan uttrycket vit∗svart4vit+svart3vit∗ användas för att beskriva
att en rad i ett nonogram ska innehålla exakt två sekvenser med svarta rutor,
den första fyra rutor lång och den andra tre rutor lång. Mellan sekvenserna
ska finnas minst en vit ruta, och före samt efter sekvenserna av svarta rutor
ett godtyckligt antal vita rutor. En finit automat kan sedan kontrollera om det
reguljära uttrycket är uppfyllt eller ej på en viss rad i ett nonogram.

Forskningsproblem
I allmänhet är det inte möjligt att eliminera alla omöjliga värden på variabler,
även med användning av propagatorer och uppdelning av villkorspredikat. Det
är ett känt problem, och i denna avhandling tacklas det på två sätt: dels med
fokus på hur villkorspredikat för tidsserier kan beskrivas med hjälp av finita
automater, och dels med fokus på förbättring av propagatorer.

I Paper I visas hur villkorspredikat för tidsserier kan representeras med hjälp
av finita automater och hur dessa automater kan genereras direkt från reguljära
uttryck. Vi beskriver för vilka typer av reguljära uttryck som det är möjligt att
generera automater, och ger en algoritm för att generera dem. Tillsammans
med tidigare arbeten inom området ([11, 13]) kan våra resultat användas för
att automatisera t.ex. uppdelning av villkorspredikat.

I Paper II–VI visar vi hur vi kan få fram implicita villkor från uppdelade
villkorspredikat. Ett implicit villkor är en logisk konsekvens av andra villkor.
Implicita villkor påverkar inte mängden möjliga lösningar på ett problem, men
genom att lägga till dem i en modell kan man i vissa fall göra en tidsvinst under
lösningen, eftersom man kan använda ytterligare propagatorer för dessa vill-
kor. Våra resultat kan ses som en del i att förbättra möjligheten till propagering
på automatisk väg.
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