
UPTEC STS 17027

Examensarbete 30 hp
Juni 2017

Exploring a keyword driven testing
framework
– a case study at Scania IT

Yama Aziz

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Exploring a keyword driven testing framework

Yama Aziz

The purpose of this thesis is to investigate organizational quality assurance through
the international testing standard ISO 29119. The focus will be on how an
organization carries out testing processes and designs and implements test cases.
Keyword driven testing is a test composition concept in ISO 29119 and suitable for
automation. This thesis will answer how keyword driven testing can facilitate the
development of maintainable test cases and support test automation in an agile
organization.

The methodology used was a qualitative case study including semi-structured
interviews and focus groups with agile business units within Scania IT. Among the
interview participants were developers, test engineers, scrum masters and a unit
manager.

The results describe testing practices carried out in several agile business units,
maintainability issues with test automation and general ideas of how test automation
should be approached. Common issues with test automation were test cases failing
due to changed test inputs, inexperience with test automation frameworks and lack of
resources due to project release cycle.

This thesis concludes that keyword driven testing has the potential of solving several
maintainability issues with test cases breaking. However, the practicality and
effectiveness of said potential remain unanswered. Moreover, successfully developing
an automated keyword driven testing framework requires integration with existing
test automation tools and considering the agile organizational circumstances.

Tryckt av: Uppsala universitet, Uppsala
ISSN: 1650-8319, UPTEC STS 17027
Examinator: Elísabet Andrésdóttir
Ämnesgranskare: Tjark Weber
Handledare: Guillermina Dubra

	
	

Acknowledgments

There are a number of individuals who deserve special recognition for their contribution
to this thesis and its writing process.

§ Tjark Weber, thank you for your interest in my writings and for your insightful
comments. Your contribution helped me raise the quality of my thesis.

§ Guillermina Dubra and Charlotte Daniels, thank you for your guidance, patience,
and endless commitment to my work. Your contributions helped me succeed in
all matters regarding the thesis.

§ Johan Ahlberg, thank you for being a critical opponent during the opposition and
a dear friend. Your contribution helped me raise the quality of my thesis.

§ Elísabet Andrésdóttir, thank you for your commitment as an examiner and for
your contributions to our university program.

To all Scania employees who I encountered during my work, whether you were a
respondent or if we simply engaged in a healthy conversation about life - thank you.

To my family and friends, I love you all and wish the best for everyone.

Yama Aziz

Nyköping, June 2017

	

	 	

	
	

Sammanfattning	
En stor andel av tiden i mjukvaruutveckling går till testning av mjukvara. Testning kan
sägas uppnå två olika syften, mjukvara ska dels utvecklas på ett korrekt sätt men ska även
tillfredsställa kundens behov. Sammanslaget höjer aktiviteter som härrör testning kvalitén
i mjukvara. Organisationer som specialiserar sig på att utveckla mjukvara använder sig
idag ofta utav så kallade agila arbetsmetoder. Namnet understryker förmågan att ständigt
kunna hantera förändringar i utvecklingsprocessen. Agila arbetsmetoder prioriterar snabb
utveckling i iterationer och värdesätter tidig testning. På grund av komplexa, icke-
överskådliga beroenden i mjukvara kan nyutveckling resultera i att kringfunktionalitet i
mjukvara fallerar. För att tidigt upptäcka och åtgärda denna typ av mjukvarufel utförs
regressionstestning. I praktiken exekveras en sekvens av testfall manuellt som ska
säkerställa att mjukvarufunktionalitet är intakt. En problematik uppstår när dessa
regressionssviter växer sig stora och konsumerar tid för en manuell testare att exekvera.
I en agil organisation som utvecklar mjukvara snabbt och därmed har ett stort behov för
tidig testning kan manuella regressionssviter innebära ett problem på grund av dess
tidsåtgång. En möjlig väg att gå vore att automatisera exekveringen av delar av
regressionssviten för att minska den manuella tidsåtgången. Studier visar däremot att
automatiska testfall lider av underhållsproblem. Standardisering av testningsmetoder
tycks dock kunna lösa dessa underhållsproblem genom införandet av ett testramverk som
ska främja underhåll och automatisering. För att bättre undersöka hur ett sådant ramverk
kan anpassas i en agil organisation krävs ytterligare studier.

Genom en kvalitativ forskningsmetodik studerades fyra avdelningar i Scania IT ingående
utifrån utvecklingsmetoder, testning och problematik med testautomatisering.
Semistrukturerade intervjuer genomfördes med personer med koppling till
utvecklingsprocessen i de respektive avdelningarna.

Resultatet beskriver problematiken med testautomatisering i en agil organisation. En
utmaning var underhåll av testfall. Testfall fallerade ofta eftersom nödvändiga indata blev
inaktuella, vilket skapade ett underhållsbehov. Ett testramverk kan underlätta underhållet
av testfall genom att istället introducera modulära metoder för att utveckla testfall.
Testfall som består av nyckelord, som sedan automatiseras, har en potential att minska
underhållet genom enklare uppdatering av indata och återanvändandet av testfall. En
lyckad automatisering av en regressionssvit vilar på förmågan att integrera testramverket
med testautomatiseringsverktyg. Vidare måste agil personal utveckla och underhålla
automatiseringsramverket men även använda ramverket för att skapa nya testfall. Det kan
tyda på att en separation av arbetsuppgifter krävs i en agil organisation för att anpassa
testramverket.

Denna studie kan användas för att se hur underhållsbara testfall kan utvecklas och stödja
testautomatisering i en agil organisation.

	
	

 Table of contents

1.	 Introduction ... 1	
1.1	 Problem definition ... 2	
1.2	 Scope of the study .. 2	

2.	 Background .. 3	
2.1	 Software development .. 3	
2.2	 Software testing .. 4	

2.2.1	 Test terminology ... 4	
2.2.2	 Test levels and types .. 5	
2.2.3	 Test limitations .. 6	

3.	 Software quality assurance .. 8	
3.1	 Organizational models and frameworks for testing .. 8	
3.2	 ISO 29119-2 Test processes .. 8	

3.2.1	 Organizational test process .. 9	
3.2.2	 Test management processes ... 10	
3.2.3	 Dynamic test processes .. 11	

3.3	 ISO 29119-5 Keyword-driven testing .. 13	
3.3.1	 Layers ... 14	
3.3.2	 Keywords .. 15	
3.3.3	 Application of keyword-driven testing ... 18	
3.3.4	 Automated keyword-driven testing framework .. 20	

4.	 Method .. 22	
4.1	 Qualitative case study .. 22	

4.1.1	 Sampling ... 23	
4.2	 Data collection and processing ... 24	

4.2.1	 Interview structure .. 24	
4.2.2	 Focus group interviews ... 25	
4.2.3	 Personal interviews ... 25	
4.2.4	 Internal documents ... 26	

4.3	 Analysis model ... 26	
4.4	 Methodology discussion ... 27	

5.	 Results .. 29	
5.1	 Data analysis and interpretation ... 29	
5.2	 Scania as a service provider .. 29	

5.2.1	 Sales portal ... 30	
5.3	 Test process in Prospecting & quotation .. 30	

5.3.1	 Agile way of working ... 31	
5.3.2	 Improving quality and adopting early testing with automation 32	
5.3.3	 Managing quality assurance ... 33	
5.3.4	 Maintainability issues with graphical user interface test cases 34	
5.3.5	 Prioritizing test automation ... 35	

5.4	 Insights from neighboring departments .. 36	
5.4.1	 Object and Structure Tools ... 36	
5.4.2	 Attributes and Config .. 36	
5.4.3	 Quality Assurance and Support .. 37	

6.	 Discussion .. 40	
6.1	 Importance of the study .. 40	
6.2	 Analysis of major findings ... 40	
6.3	 Limitations of the study ... 43	

	
	

6.4	 Future work ... 43	
6.5	 Conclusion and contribution to the field .. 43	

References ... 45	
Appendix A: Agile manifesto .. 48	
Appendix B: Interview guides ... 49	
Appendix C: Scrum .. 54	

1

	

1. Introduction

During the last decades, new software development paradigms have revolutionized the
information and communications technology (ICT) industry [1]. Businesses abandon
traditional ways of developing software and adopt new agile methodologies that prove to
be more responsive to changing circumstances [1]. The waterfall model, which divide
software development into several distinct consecutive phases [2], is not well-suited for
changes in product requirement [3] and is associated with long product delivery time [4].
The manifesto for agile development was proposed to solve these issues and since its
inception, the ICT industry has seen the influx of several practices and frameworks which
utilize the agile way [4]. Scrum is such a framework which emphasizes iterative and
incremental software development in cross-functional teams [1]. Scrum addresses the
requirements volatility issue and aims for consistent product delivery in increments [1].
Where testing is a distinct phase after implementation in a longer release cycle in the
waterfall model [3], scrum practices shorter release cycles with continuous and iterative
testing [1]. Most software development projects require extensive testing for verification
and validation purposes [5]. The project must ensure that delivered software is fault-free
and meets customer needs. Finding and resolving bugs is cheap in a development
environment and the cost increases as software approach production [6]. Thus, early and
extensive testing serves as an investment for reducing cost and increasing quality. With
incremental development and short software release cycles, scrum teams must ensure that
new code and functionality does not induce bugs or defects into the existing code base.
To prevent such deficiencies, regression testing is utilized [7]. A single regression test
case focuses on a limited part of software’s functionality. Establishing predetermined
outcomes with the use of a test oracle, regression tests assess whether previously
developed and deployed software is still intact. Regression tests can be executed
manually. A tester would in such a scenario follow a number of steps and execute certain
tasks. The test passes if the evaluated outcome equals to the pre-determined outcome.
Automatic regression tests benefit from low execution time and can in theory run around
the clock to find bugs [8]. However, automated test cases require maintenance in order to
adapt to and accommodate for changing circumstances in the system under test [8].
Therefore, automating regression tests imposes challenges on maintainability.

A possible solution could be found in the international testing standard ISO 29119 which
describes test processes and design and implementation of modular and maintainable test
cases through keyword-driven testing [9], [10]. Furthermore, studies have proved to
integrate keyword-driven testing with common test automation tools [11], [12], [13]. To
evaluate its suitability in an agile organizational context, more research on the topic is
needed.

2

	

1.1 Problem definition

This thesis will investigate how an organization works with the management of quality
assurance and how test cases for a graphical user interface may be composed by exploring
an international test standard. The particular research questions that will be answered are:

1) How can a keyword-driven testing framework facilitate the development of
maintainable test cases in an agile organization?

2) How can a keyword-driven testing framework be used to support test case
automation in an agile organization?

1.2 Scope of the study

The research questions will be studied in the organizational context of Scania IT in
Södertälje, Sweden. The focus will be on functional system testing through regression
testing.

	

3

	

2. Background

2.1 Software development

Software development is a process with the purpose of creating value for an intended user
by releasing software which will provide the functionality to satisfy certain requirements
given limited project resources. The software development life cycle can be divided into
these set of activities:

1) Conception
2) Requirements analysis
3) Design
4) Coding and debugging
5) Testing
6) Release
7) Maintenance
8) Retirement [14, p. 7].

Traditional software development models are plan-driven, performing these activities in
a linear fashion [14, p. 8]. In the waterfall model each activity, represented as a phase, is
performed consecutively and the progression of phases takes the shape of a waterfall [2].
The waterfall model is appropriate for projects where requirements are well known and
have a low risk of changing [15, pp. 62–63]. The V-model, an evolution of the waterfall
model, also applies a plan-driven approach but demonstrates the different phases in a V
formation instead [16]. Compared to the waterfall model, more emphasis is put on
verification and validation by adopting early testing activities [15, p. 63]. Criticism
against the waterfall and V-model includes relying too much on documentation, inability
to adapt to requirements changes and releasing working software late during the life cycle
[14, p. 8], [17, p. 1254], [15, p. 63].

The manifesto for agile software development was published in 2001 by a group of
“organizational anarchists” as an alternative to the traditional ways of developing
software. In summary, agile software development encourages the early release of
working software, customer participation in the development process and responding to
requirements changes regardless of timing [18], [19]. The manifesto and the underlying
twelve principles behind it can be found in Appendix A. While traditional software
development models have become unconventional in the rise of agile development, it is
important to note that one is not necessarily better than the other. There is no universal
model, equally suited for developing all software products [20, p. 49]. One empirical
study targeting 51 Indian information and communications technology companies
suggests the choice of model relies on factors such as nature of the project, project
complexity, risk, understanding user requirements and the amount of customer
involvement [17].

4

	

2.2 Software testing

Testing is an integral part of the software development life cycle. The IEEE Standard
Glossary of Software Engineering Terminology defines “verification” and “validation”
as follows:

§ Verification: The process of evaluating a system or component to determine
whether the products of a given development phase satisfy the conditions imposed
at the start of that phase.

§ Validation: The process of evaluating a system or component during or at the end
of the development process to determine whether it satisfies specified
requirements [21, p. 85].

To further clarify, verification may be viewed as an internal process where software is
evaluated on the basis of conformity with internally imposed conditions. Validation may
be viewed as an external process where software is ensured to meet the needs and
expectations of stakeholders [22, p. 566]. Considering these aspects, verification and
validation can be expressed by two simple questions which capture the fundamental
essence of testing:

1) Are we building the software right?
2) Are we building the right software (for the need)? [23, p. 75], [24, Pt. Preface]

Performing verification and validation is an extensive quality assurance practice to build
and maintain confidence in the software. The ultimate goal of any software development
project should obviously be to release working software. One way of doing so is testing
early in order to find and resolve bugs fast and not let them propagate.

Downstream fixes which occur late in the software development life cycle, particularly
after release, are shown to be a costly matter. The cost escalation factor for large, critical
systems is often 100:1. Meaning it would be 100 times more expensive to find and fix a
bug downstream than doing it in an initial phase. For small, noncritical systems the ratio
is rather 5:1 [6, p. 135].

2.2.1 Test terminology

Figure 1. Illustration of how coding mistakes cause defects and eventually software
failure

Bugs are synonymous to defects, which are introduced in software by developers. The
root cause of these coding mistakes may lie in the lack of education, communication
problems, immature development processes or stress. Commonly, defects impact

Coding	
mistake Bug/Defect Failure

5

	

software by producing failure at run time as illustrated in figure 1. For users this may
result in dissatisfaction, loss of confidence and in safety critical systems loss of life [7, p.
8], [25, p. 10].

A test case is a set of inputs, execution conditions and expected results developed for a
particular objective. A set of test cases sharing some characteristic may be called a test
suite [21, p. 78]. A test oracle, which could consist of human reasoning or machine logics,
determines the expected results and evaluates the outcome of the test (pass or fail) [7, Pt.
Glossary p. 27].

2.2.2 Test levels and types

Figure 2. Hierarchical software testing levels

Regardless of the choice of software development life cycle, a selection of verification
and validation activities are performed on different hierarchical levels. From a bottom-up
perspective, the test levels are unit, integration, system, and acceptance [7, pp. 58–59].
Illustrated in figure 2.

§ Unit testing involves testing granular software composed of functions,
components or programs. The objective is to test pieces in isolation to detect the
individual failure and ensure conformity with requirements prior to integration
with other units [7, pp. 59–60], [25, p. 46].

§ Integration testing involves testing the cohesion of units. A single unit may
function according to requirements in isolation but may fail in an exchange with
multiple units. The objective is thus to expose failure which originates from
integrating several units and ensure conformity with requirements before system
testing can begin [7, p. 60], [25, pp. 46–47].

§ System testing considers the functionality from an end-to-end perspective. The
selection of test cases on unit and integration level may be unrepresentative of the
production environment with live users. Therefore, to detect failure which may
result from interactions with live users and ensure conformity with requirements,
system testing is performed [25, p. 49], [7, p. 62].

Test	levels

Acceptance	
testing

System	testing

Integration	
testing

Unit	testing

6

	

§ Acceptance testing is performed to establish confidence in the system and to
obtain user acceptance based on their requirements and expectations. It may also
cover operational, contractual and regulatory aspects of the system. Alpha and
beta tests may be used, where the development team or potential users have access
to the software for a limited period to test the overall behavior of the system [7,
pp. 64–65], [25, pp. 51–52].

Figure 3. The different types of tests performed on software covering a multitude of
properties

A number of test types can be used to meet the objective of each test level. The test types
are functional, non-functional, structural and regressive [25, p. 53]. Illustrated by figure
3.

§ Functional testing covers the specific functionality of the system and provides
detail on what it will do [25, pp. 50, 53]. Details are usually defined in the
functional requirements specification. For instance, a user wanting to do online
shopping should be able to search for items in a web shop.

§ Non-functional testing covers the behavior of the system and provides detail on
how it performs in use. It may cover maintainability, performance, load and stress
handling, reliability and usability [25, pp. 50, 53].

§ Structural testing is used to examine the thoroughness of the testing performed on
the system. It is a measure on how much testing has been carried out. A common
measure is code coverage, e.g. how much of the source code has been executed
by test cases [25, p. 53], [7, p. 71].

§ Regression testing focuses on finding negative side effects (regressions) which
may have been induced by changes in the code. Modifications include defect
fixes, introduction, and removal of functionalities, integration of new units and
modification of software interfaces – all of which could lead to unforeseen
regressions. A regression test suite is usually executed regularly to detect
regressions, making it suitable for automation [7, p. 72], [25, p. 54].

2.2.3 Test limitations

Software testing aims to show the presence and facilitate the removal of defects by
reporting them. This contributes to an enhanced quality of a system. However, it is
important to note that testing cannot show the absence of defects. Exhaustive testing,

Test	types

Functional	
testing

Non-functional	
testing

Structural	
testing

Regression	
testing

7

	

covering all ways in which a system can be used, is in many cases impossible. The
problem then becomes on deciding when enough testing has been conducted. One way of
evaluating this is ensuring the most significant risks have been addressed by executing
test cases covering the most important functional and non-functional requirements of the
system as specified by the user [25, pp. 12–16], [7, p. 11].

	

8

	

3. Software quality assurance

3.1 Organizational models and frameworks for testing

General quality assurance through standardizations such as ISO 9000 or the improvement
methods lean and six sigma are used within organizations to improve business processes,
increase profitability and to comply with government regulations [26], [27], [28].
Extending this notion of organizational quality assurance to software development, the
capability maturity model (CMM) and later its successor the capability maturity model
integration (CMMI) describes software development frameworks which are used to
increase software quality and facilitate the release of working software [29], [30], [31].

Complementary to CMM and CMMI are the testing frameworks test maturity model
(TMM) and test maturity model integration (TMMI) which emphasize verification and
validation activities [32]. While TMMI is said to be applicable for both traditional plan-
driven software development models and agile models [33], research shows TMMI
having conflicting values with the agile manifesto for its heavy reliance on documentation
and separation of team members into developers and testers [32]. Combining TMMI with
agile development is not apparent and requires additional efforts [34], [35].

A competitive alternative to TMMI is the international software testing standard ISO
29119, which defines generic software testing practices suitable for any organization
using any software development life cycle including agile [33], [36].

A detailed explanation of ISO 29119-2 test processes and ISO 29119-5 keyword-driven
testing will be given below in Section 3.2 and 3.3. Test processes describe how testing
can be planned and carried out in an organization. Keyword-driven testing describes how
modular and maintainable test cases may be designed and implemented and automated.

The remainder of the ISO 29119 standard, namely 29119-1 concepts and definition,
29119-3 test documentation and 29119-4 test techniques will not be used since these
topics are largely covered by other sources in the background section.

3.2 ISO 29119-2 Test processes

SO/IEC/IEEE 29119 is a series of international software testing standards. The series
consists of five parts: concepts and definitions, test processes, test documentation, test
techniques and keyword-driven testing [9], [10]. The purpose is to define a generic
process model for software testing suitable for any organization using any software
development lifecycle. The test process model, defined in the second part of the series, is
multilayered consisting of an organizational test process, a test management process and
a dynamic test process, as shown in Figure 4. Each process has a specific purpose,
activities and desired outcomes [9].

9

	

Figure 4. The test process model and its layers (reproduced from [9, p. 10])

The organizational test process is the first layer and aims to create and maintain assets
such as organizational test specifications. The test management process is the second
layer and covers the management of testing on all test levels and test types. Sub-processes
are test planning, test monitoring and control and test completion. The dynamic test
process is the third layer and covers dynamic testing on all test levels and test types. The
sub-processes are test design and implementation, test environment set-up and
maintenance, test execution, and test incident reporting [9, pp. 10–11]. Figure 5 shows
the complete test process model including its sub-processes.

Figure 5. The complete test process model and sub-processes
(reproduced from [9, p. 11])

3.2.1 Organizational test process

The organizational test process aims to create and maintain test specifications which
apply across the organization and is project independent. Test policy and test strategy are
examples of such specifications which serve as guidelines for testing. The assets are living

10

	

documents shaped by among other things mission statements, IT policy, and knowledge
of ongoing testing practices. The organizational test policy is a document governed at the
executive-level that describes purpose, goals and the scope of testing within the
organization. It serves as a foundation for establishing testing practices and motivates
continuous reviewing and improvement of the overall test process. The organizational
test strategy is a detailed, technical document defining how testing practices are carried
out. The test strategy needs to align with the test policy. Feedback from activities in the
test strategy, such as testing practices, are used as possible improvements in the test policy
[9, pp. 11–14].

3.2.2 Test management processes

The test management processes are test planning, test monitoring and control and test
completion. These management processes may be used in a project for a specific type of
testing, such as regression testing. Important artifacts in this process are the test plan, test
results, and test completion report. Figure 6 illustrates the relationship between the three
processes and their interaction with the organizational test process and the dynamic test
process. Artifacts such as test policy, test strategy, test plan and test measures produce
feedback on the organizational and dynamic test process [9, p. 15].

Figure 6. The relationships within the test management process and interaction with
external processes (adapted from [9, p. 15])

The purpose of the test planning process is to create a test plan which will establish the
scope and approach taken to testing and identify resources, environments, and
requirements of testing. The test plan may target a specific type of testing, such as
regression testing. Activities include understanding the context of testing by

11

	

communicating with relevant stakeholders; organizing test plan development; identifying
and analyzing software testing risks; risk mitigation; designing test strategy by estimating
test time and resources needed, deciding software features to be tested, test design
techniques and test completion criteria; and lastly producing the test plan [9, pp. 16–21].

The purpose of the test monitoring and control process is to track the testing progress and
determine if it is in accordance with the test policy, test strategy, and test plan. A
significant departure from the planned progress will initiate activities that will correct or
compensate for the variance. Activities include identifying and monitoring test measures
and risks; implementing control directives to correct deviations from the test plan by
updating the test plan, test data, test environment or staffing — all of which affect how
testing is performed and lastly compiling test results [9, pp. 22–25].

The test completion process marks the end of testing for a certain level, e.g. unit testing
or type, e.g. regression testing. The purpose is to archive test assets, clean up the test
environment, identify lessons learned during testing and lastly producing the test
completion report. Activities include identifying test cases to be reused and archiving
others; restoring the test environment to its pre-testing state; evaluating testing by
identifying weaknesses, strengths and possible improvements and lastly producing and
making available the test completion report to all stakeholders, which includes relevant
information from the test plan and contains test results by level and type [9, pp. 25–27].

3.2.3 Dynamic test processes

The test management processes oversee the dynamic test processes, which include test
design and implementation, test environment set-up and maintenance, test execution and
test incident reporting. These processes are a resulting implementation of the test plan
and test strategy. The overall purpose is to carry out dynamic testing on a specific level
or for a certain test type by designing and executing test cases and observing, measuring
and evaluating the software under test. Figure 7 shows the interaction of the dynamic test
processes and their relationship with the test management processes [9, p. 27].

12

	

Figure 7. The dynamic test processes and their relationship with the test management
processes (adapted from [9, p. 28])

These processes are illustrated sequentially in figure 7, they may, however, be revisited
and performed iteratively to complete testing. Test measures and control directives are
information communicated to and from the dynamic process and test management
process, respectively. Test measures may be produced from any activity in the dynamic
process and similarly, control directives may dictate any dynamic process. An example
of a test measure can be the amount of executed test cases. A control directive can be
instructions to design and execute more test cases, assuming a certain test completion
criteria is not fulfilled [9, p. 28].

The first dynamic test sub-process is the test design and implementation process which
aims to create test cases, document them in a test specification and prepare for execution.
In the case of exploratory testing, where testing is carried out instinctively without the
support of a test specification, test cases are unlikely to be documented in advance. This
sub-process may be revisited to create more test cases if the code coverage is not
sufficiently high. Previous test cases may be used, especially in the case of developing
regression tests. Testers are required to write test cases using various test design
techniques, such as black box testing or white box testing, to address the most significant
identified risks in the software [37]. Important activities are identifying software features
needed to be tested, identifying test data and test environment requirements and taking a
risk approach to designing and writing test cases [9, pp. 29–33].

The second dynamic test sub-process is the test environment set-up and maintenance
process which aims to establish and maintain the test execution environment.
Requirements for the test environment may be specified in the test plan, but they usually
become clear after the test design and implementation process. In line with information

13

	

transparency, it is important to communicate the status of the test environment to all
relevant stakeholders. Important activities are setting up proper test tools and test data;
ensuring test environment is aligned with the test environment requirements; maintaining
the environment by making sure it reflects changed environment requirements and using
results from previous tests as feedback to the maintenance work and lastly to confirm that
the test environment is in a steady state for testing [9, pp. 34–35].

The third dynamic test sub-process is the test execution process where the developed test
cases are executed in the prepared test environment and the results are recorded. The test
execution process is usually revisited several times since all test cases are not developed
in one iteration of the test design and implementation process. Resolved bugs also need
to be re-tested by revisiting this process. Important activities are executing the test cases,
recording the results and comparing the pre-determined results with the actual results. A
test tool may be used to manage these activities [9, pp. 36–37].

The fourth and final dynamic test sub-process is the test incident reporting process. Test
results are analyzed and a test incident report is created, containing detailed descriptions
of incidents, anomalies and bugs which need to be escalated [9, pp. 38–39].

3.3 ISO 29119-5 Keyword-driven testing

The last part of the ISO 29119 series is keyword-driven testing, which introduces a unified
way of creating modular test cases. Keyword-driven testing is a practical implementation
of the first dynamic test sub-process test design and implementation, defined in ISO
29119-2 and presented in section 3.1.3. Keywords refer to actions which are defined and
used to compose test cases. This lays the foundation for keyword-driven test case
specification and supports test automation. Test cases can be created with keywords,
which do not require detailed knowledge of programming or test tool expertise. Test
automation is then performed by implementing each keyword in software [10].

High-level keywords can be utilized to create an abstraction layer from individual actions
in test cases. Composite keywords, comprised of several keywords, may be used to
describe associated actions. The inherent modularity with the use of keywords benefits
test case maintainability. Should the exact set of actions to perform an operation change,
the modularity of keywords allows then for modification of only the actions for the
changed operation in the relevant low-level keyword. The alternative without modularity
would be to modify each occurrence of the operation in all the test cases [10, p. 5].

Keyword-driven testing is comprised of several entities as shown in Figure 8. A test
procedure defines how to run a sequence of test cases. There exists a 1:N relationship
between test procedures and test cases. A test case may then be specified by a keyword
test case or a manual test case – each describing specific execution steps. Each newly
developed keyword test case implements a manual test case, in the case of where manual
test cases are already created and used within a development project. A keyword test case
is comprised of one or several keywords. A manual test case describes actions which a

14

	

tester needs to execute in order to test the software. Keyword-driven testing connects
keywords with actions with a mutual 1:N relationship between the respective entities. In
this context, test automation is made possible through implementation of each keyword
into executable code. The keyword execution code is used within a test automation
framework which generates automated test cases based on keyword test cases [10, pp. 6–
7].

Figure 8. The relationship between entities in keyword-driven test automation
(reproduced from [10, p. 6])

3.3.1 Layers

Keywords can be created representing actions at different abstraction levels. A typical
distinction is made between the domain layer and the graphical user interface layer [10,
p. 8].

Domain layer keywords are associated with business, end user related or functional
actions of software. Examples of domain layer keywords are create_account and sign_in.
Domain layer keywords are generally independent of implementation choices. Keywords
are defined at such an abstract level that they become independent of the technology used
to implement the keyword execution code. Therefore, it may be easier for domain experts
or business-side employees to create test cases [10, p. 9].

15

	

Graphical user interface layer keywords reflect navigation or control operations in a
window-based application. Examples of graphical user interface layer keywords are
click_button and select. The implementation of keywords on the graphical user interface
layer into keyword execution code is dependent on the choice of technology [10, p. 9].

The advantage of defining keywords on multiple layers is the management of hierarchical
keywords. High-level domain layer keywords can be comprised of several low-level
technically written graphical user interface layer keywords. Figure 9 illustrates the use of
multiple layers in defining hierarchical keywords [10, p. 9].

Figure 9. Hierarchical keywords in domain and graphical user interface layer
(reproduced from [10, p. 10])

The test case highlighted in Figure 9 is a cash withdrawal from an ATM. Keywords are
then defined on several layers regarding the software. In this example, keywords are
defined on the domain layer which covers ATM services and the graphical user interface
layer which covers user interactions [10, p. 10].

3.3.2 Keywords

There is a distinction between high-level keywords, low-level keywords and composite
keywords which may be a combination of both [10, p. 10].

§ Low-level keywords are associated with one or more set of detailed actions
describing the exact steps of user behavior in a test case. For instance, a user may
go to a web page, click on the sign in form, enter sign in credentials and click on
the sign in button. Each user action may then be represented by a keyword, such
as go_to, click_button, and enter.

16

	

§ High-level keywords are associated with the general actions of a test case and may
require a set of input parameters. The keyword and parameters give a high-level
description of the action associated with the test case. For instance, a user signing
into a web page may be represented by the keyword sign_in() together with the
parameters credentials [10, p. 5].

Simple keywords used on the graphical user interface, such as select or click_button,
connect high-level domain layer keywords with the implemented keyword execution code
which is tool dependent. Extensive use of simple keywords creates test cases with many
actions though. The right balance between high-level and low-level keywords is
necessary in order to easily create maintainable and efficient test cases. A limited number
of keywords are also easier to use and maintain. To implement efficient test automation,
the flexibility and powerfulness of keywords should be considered since test cases must
be able to test an assorted set of software complexities. For example, the keyword select
should only be implemented once to reduce redundancy but need to address several types
of components such as lists, tables, and buttons which call for a flexible and powerful
implementation of the keyword [10, pp. 10–11].

Composite keywords have an inherent hierarchical structure and consist of a combination
of high-level and low-level keywords. To increase the flexibility and power of keywords,
a composite keyword may be used together with a data structure. Domain level keywords
such as sign_in can be implemented using low-level keywords such as enter(username),
enter(password) and click_button [10, p. 11].

17

	

Figure 10 illustrates how a sign in procedure is implemented with a composite keyword
in three layers. In this example, the composite keyword Login(username, password) only
uses two parameters entered by the user whereas keywords Set_context() and
Enter_value() are assigned literal values in their first argument since they will be used in
the same way in the intermediate layer [10, p. 11].

Figure 10. Composite keywords used with input parameters
(reproduced from [10, p. 12])

The relationship between a keyword test case and its composition of keywords at different
levels including composite keywords is illustrated by figure 11. Composite keywords are
shown to consist of low-level keywords or high-level composite keywords. This
hierarchical framing of keywords provides domain experts a way to compose
understandable keywords at a high level. The business case for low-level keywords may
be difficult to comprehend because of its technical details however this is required to
facilitate the implementation of keyword execution code and keyword-driven test
automation. [10, p. 13].

18

	

Figure 11. Keyword test cases represented by keywords at different levels
(reproduced from [10, p. 13])

As shown by the examples, keywords may use data to facilitate efficient and powerful
implementation of keyword test cases. This association between keywords and data may
become complex if the number of input parameters increases. The solution would be to
separate the data from the actions. Parameters can be stored in a database and used as
input to the keyword by referencing a unique id in the database. The composite keyword
create_customer may have the input parameters first name, surname, and address. Storing
this test data in an external database allows a unique reference to a row in the database to
serve as the input to the keyword. This decouples the data from the keyword test case.
Furthermore, keyword test cases may be extended by using different data as input to the
same sequence of actions. This method of testing describes data driven testing which is a
way of separating data from actions and is frequently used with keyword-driven testing.
The advantage comes from storing data separately from actions, which enables the use of
multiple sets of data to perform the same actions. Data may be stored in a table,
spreadsheet or database [10, pp. 15–16].

3.3.3 Application of keyword-driven testing

A successful implementation of keyword-driven testing relies on performing certain
activities. Addressing these concepts benefits test design and facilitates the development
of test cases. The concepts are:

§ Identifying keywords

19

	

§ Composing test cases
§ Keywords and data-driven testing
§ Modularity and refactoring
§ Keyword-driven testing in the test design process
§ Converting non-keyword-driven test cases into keyword-driven testing [10, p. 16]

Identifying keywords is important since it will determine how keyword test cases are
defined. Keywords describe frequent actions and should be defined in an understandable
and natural way. The first step in identifying keywords is understanding in which layer
they will be used. The name of the keyword should then reflect the context or layer in
which it is used and be self-explanatory. A keyword is described by its name, parameters
(may be empty) and an optional description. The description could tell in which layer the
keyword is used in, the actions associated with the keyword and if it is a composite
keyword. Keywords should be named with uniqueness, reusability, completeness, clarity,
and specificity in mind [10, pp. 16–17].

Composing test cases entails using defined keywords to construct an end-to-end test,
which tests some functional aspect of the software. Keyword test cases can be
documented using an agreed-upon notation and stored in a table or database [10, p. 17].

Keyword-driven testing can be improved by implementing data-driven keywords with the
use of parameters and separate data sets. The idea is to execute keyword test cases with
different sets of data, which in effect creates new tests. The guidelines to consider with
this approach are to create a generic implementation of keywords test cases where they
work the same if they are executed independently in sequence or if a single keyword test
case is looped over several times with different data inputs. Multiple nested and non-
nested loops are discouraged. An ideal implementation uses a single loop [10, p. 18].

Modularity and refactoring increase the reusability and life length of keywords. During
the course of the project, maintenance issues may arise due to changes in the testing
procedure or the addition of new project members. These issues could manifest in the
creation of redundant or unused keywords and changes in one keyword test case affecting
others due to interdependencies, thus resulting in rework or invalidation of test cases.
There are several ways of treating these issues. A certain group could be made responsible
for changes made to keywords and how they are used. This group assures consistency in
the development of keyword test cases. Furthermore, review meetings could be held
where the structure of keywords and possible changes and introductions of new ones are
discussed. To see how changes in keywords impact the testing process, a dependency
chart could be produced and maintained that shows which keywords are used in which
places and the frequency of their use. This would help in foreseeing the impact of changes
[10, p. 19].

Keyword test cases are designed by determining pre-conditions, selecting appropriate
input values and actions and finally determining expected results [10, p. 21].

20

	

Ongoing development projects with existing non-keyword-driven test cases may decide
to switch over to keyword-driven testing. Benefits for doing so include uniformity,
understandability, and efficiency. Uniform keyword test cases increase readability and
maintainability and lead to reduced costs. However, it should be noted that the expected
benefits of implementing keyword-driven testing should exceed the cost of converting
non-key word test cases for it to be a viable option [10, p. 22].

3.3.4 Automated keyword-driven testing framework

A framework helps organize necessary activities regarding the design and implementation
of keyword-driven testing. It includes concepts, documents, and tools with the aim of
facilitating test automation. The ISO 29119-5 standard highlights general aspects of the
needed capabilities and requirements of the framework which are tool-independent [10,
pp. 22–23]. Figure 12 shows the different entities in an automated keyword-driven testing
framework used for keyword test case execution.

Figure 12. Entities in an automated keyword-driven testing framework
(reproduced from [10, p. 24])

§ The keyword-driven editor is used to create keyword test cases from keywords.
Keywords may be used from a separate keyword library. The editor can be

21

	

implemented as a spreadsheet application, a dedicated standalone application or
be part of a test management tool [10, p. 25].

§ The decomposer can be used to transform high-level composite keywords into a
sequence of low-level keywords [10, p. 26].

§ The data sequencer is used in data driven testing to provide parameters and
placeholders in keyword test cases with several sets of data [10, p. 26].

§ The tool bridge acts as a connection between the keywords and the associated
implementation in the test execution environment. Its task is to receive keywords
from the decomposer or data sequencer and then call the appropriate keyword
execution code [10, p. 26].

§ The test execution environment and execution engine are responsible for
executing the keyword test cases by performing the actions associated with the
keywords [10, p. 26].

§ The keyword library functions as a storage unit for keyword definitions. It stores
name, description, and parameters if the keyword is composite and the list of
keywords from which the composite keyword is derived from [10, p. 27].

§ The data element represents the external storage of test data. It can be
implemented by a spreadsheet, a dedicated database or by a test management tool
[10, p. 27].

§ The script library is used to store keyword execution code. For each keyword,
there is an implemented script which performs the actions associated with the
keyword. Thus, the scripts are the technical implementations of the keywords [10,
p. 28].

Figure 13. An example of how a test case editor would be implemented in Excel
(adapted from [13])

Figure 13 shows how the editor entity in figure 12 could be implemented in a spreadsheet
document. The keyword column describes possible operations, which are implemented
in the test execution environment by an automation tool. Page object refers to the user
interface component in the intended web page. The separation of keywords from the
operated upon page objects is an important modularity and reusability factor. The locator
column may refer to a class or id of a user interface component, or the xpath which is a
way of locating components in an XML document.

	

22

	

4. Method

Research is the notion of inquiring into a problem in a systematic manner. A common
distinction is made between pure and applied research. Pure research is driven by
intellectual curiosity to extend knowledge and contribute to the knowledge base in a field.
Whereas applied research involves improving the quality of practice of a particular
discipline [38, pp. 3–5]. This thesis aims to understand organizational quality assurance
better and to improve the practice of composing maintainable graphical user interface test
cases by introducing the ISO standard keyword-driven testing. Thus, the nature of this
thesis is applied with elements of pure in attempting limited knowledge creation.

Conducting research involves asking questions to solve a problem. The driving force
behind the research are the research questions, which may change or evolve during the
course of study. To help define a problem worthy of research, the relationship between
the practical problem and the research problem must be fully understood [39, pp. 57–58].
Figure 14 illustrates the relationship between the two concepts.

Figure 14. The relationship between the practical problem and research problem
(reproduced from [39, p. 58])

The practical problem is caused by some condition in the world which results in palpable
unhappiness and loss of time and money. The research problem is motivated by
incomplete knowledge or flawed understanding [39, p. 59]. Knowing how to differentiate
between the two and their inherent relationship creates a healthy foundation for research.
Time was spent initially on observing and learning more about the practical problem
surfacing in the Sales IT department on Scania IT. As the research progressed, the
research problem was identified through the research questions and studied more
extensively.

4.1 Qualitative case study

The research for this thesis was conducted on Scania IT in Södertälje during the spring
semester of 2017. The research problem was studied through a qualitative case study.
Qualitative research design focuses on understanding the meaning people have
constructed; how individuals interpret their world and their experiences within it [38, p.

23

	

15]. Philosophically, an interpretivist stance on qualitative research assumes a socially
constructed reality over a single, observable reality. Furthermore, multiple realities or
interpretations of a single event may exist. Leading to the conclusion that researchers do
not “find” knowledge; they construct it from their own subjective socially constructed
reality [38, p. 9]. Social constructivism is thus merely an acknowledgment of the specific
contexts in which people operate and interact in. Researchers recognize this setting and
are aware of how interpreted findings are shaped by their own experiences and
background. The objective of the researcher is then to interpret the meanings others have
about the world [40, p. 21].

The qualitative aspect of this thesis manifested through the focus of the problem definition
and the structure of the research questions. Understanding how quality assurance is
managed in an organizational setting; how test case composition can be improved with
regard to maintenance and finally automated requires deep insight into the specific
context where individuals who work with these questions daily operate. This insight was
achieved through observing and participating in meetings and interacting with the Scania
IT employees to learn more about their line of work and what it aimed to accomplish.

A case study could be defined as an in-depth description and analysis of a bounded system
[38, p. 37]. The bounded system delimits the target of study or phenomenon of interest.
Case studies imply having a finite data collection process. The number of people needed
to be interviewed or the time needed for observations within a case to achieve data
saturation should be finite [38, p. 39]. Data in a case study may be collected from multiple
sources of information such as interviews, observations, audiovisual material, documents
and reports [40, p. 73]. The structure of the case study could have a single or multiple
approaches. The differences are whether one or several targets of study are used to
highlight the research problem. In the case of multiple targets of study, the researcher
must choose cases which are representable for inclusion in the qualitative study since the
contexts of each case differ [40, p. 74].

4.1.1 Sampling

The case study in this thesis used several departments in Scania IT as the target of study,
with Sales IT as the main focus. Neighboring departments were identified on their
progress and implementation of test automatization and were chosen to be included in the
qualitative study. This created an opportunity to perform an in-depth study of the Sales
IT department and compare their challenges with neighboring departments’ solutions and
success factors. The neighboring departments were used to bridge the solution gap and
for comparison with Sales IT. Sales IT were struggling with test automatization but
neighboring departments had progressed more with their individual implementations.
Although every single department developed software different from each other, their
development practices remained agile and all departments had experience with using the
test automation tool Selenium.

24

	

4.2 Data collection and processing

The data collected in this thesis consists of primary and secondary sources. The primary
sources are the interviews conducted on Scania IT with several departments. The
secondary sources are internal documents collected from Scania IT’s private network.

4.2.1 Interview structure

The interviews consisted of two focus group interviews and six personal interviews. The
respondents were all employees involved in the development process in their respective
departments. The respondents had different roles including tester, developer, scrum
master, and manager. Several roles were interviewed to understand the organizational
context better and to receive nuanced answers. The main focus of the interviews was to
understand the testing practices performed on an organizational level and how test
automatization was implemented in the respective department with a focus on test case
composition. All interviews were semi-structured and prepared using an interview guide
containing open-ended questions, attached in Appendix B. The location of the interviews
was chosen by the respondents. Permission to record audio was asked before each
interview. After each interview, transcription was finished within a week. Through a
mutual agreement with Scania and the author, it was decided to anonymize the
respondents’ names. Table 1 contains a detailed overview of all the interviews. Table 2
contains a description of the focus groups topics.

Table 1. Interview participants at Scania IT

Name Title Organization Interview type Length
(min)

Date

Respondent 1 Tester Object and Structure Tools Focus group 1 75 February 17, 2017

Respondent 2 Tester Object and Structure Tools Focus group 1 75 February 17, 2017
Respondent 3 Tester Object and Structure Tools Focus group 1 75 February 17, 2017

Respondent 4 Developer Prospecting and Quotation Personal 58 February 20, 2017

Respondent 5 Tester Attributes and Config Focus group 2 60 February 23, 2017
Respondent 6 Developer Attributes and Config Focus group 2 60 February 23, 2017

Respondent 7 Scrum
master

Prospecting and Quotation Personal 65 March 13, 2017

Respondent 8 Scrum
master

Prospecting and Quotation Personal 55 March 14, 2017

Respondent 9 Manager Prospecting and Quotation Personal 57 March 15, 2017

Respondent 10 Tester Prospecting and Quotation Personal 32 March 16, 2017

Respondent 11 Tester Quality Assurance and
Support

Personal 30 March 27, 2017

25

	

Table 2. Description of focus group interviews

Interview type Topics

Focus group 1 The purpose of the first focus group was to gain insight into the department Object and
Structure Tools. Topics of discussion were agile development, agile testing, test
planning, automatic testing and test tools.

Focus group 2 The purpose of the second focus group was to gain insight into the department
Attributes and Config. Topics of discussion were agile development, agile testing, test
planning, automatic testing and test tools.

4.2.2 Focus group interviews

A focus group interview involves collecting data from a group of people who have
knowledge about a certain topic [38, p. 114]. The main advantage of a focus group over
a personal interview is the interactive discussion of the participants where everybody
shares their views and hears the views of others and possibly changes their own views in
light of what they have heard. This leads to the collection of a different type of data which
would not be made possible from personal interviews. The challenges with conducting a
focus group interview are moderating the group and stimulating the on-going discussion.
The role of the researcher becomes a moderator in the focus group. The moderator’s
responsibilities include leading the group, encouraging group responses to identify a
broad range of views and moderating dominant individuals [41, pp. 2–3], [40, p. 133].

The focus groups contained three and two participants respectively. The first focus group
interview contained three testers. The second focus group interview was with a tester and
a developer. The focus group interview was semi-structured. Questions were prepared in
advance using an interview guide. During the interview, questions were asked from the
guide and all participants were encouraged to answer and discuss. The open-ended
questions left room for follow-up questions. When consensus surrounding a question was
reached in the group and different perspectives had been explored, the interview
proceeded to discuss the next planned question.

4.2.3 Personal interviews

Personal interviews are conducted face-to-face and may be categorized intro three on the
base of their structure; highly structured, semi-structured and unstructured. The benefit
of conducting the interview in person is that the interviewer is able to perceive the
respondents’ emotions and hear the answers unobtrusively. A highly structured interview
contains predetermined questions and order. The interview becomes an oral form of a
written survey. An unstructured interview contains open-ended questions and the
interview becomes like a conversation. The semi-structured interview is a mix of both
with predetermined open-ended questions which may be asked in any order. The semi-
structured interview is thus guided by a list of topics to be explored and all pre-determined
questions are not necessarily adhered to. This creates flexibility in the interview to explore

26

	

and adapt to the respondent’s specific context [38, pp. 109–111], [40, pp. 132–132]. The
challenges of conducting specifically a personal interview and particularly a semi-
structured interview are finding participants who are not hesitant to speak and share ideas
and maintaining the proper amount of structure during the interview. Less articulate and
shy respondents may produce insufficiently adequate data. For maintaining the proper
structure during the interview, the researcher must make a judgment whether the
conversation has wandered off and if so gently steer the conversation back to the subject
at hand [40, p. 133], [42, p. 45].

The six personal interviews were conducted with testers, developers, scrum masters and
a department manager. Open-ended questions were asked in a semi-structured way. In
some instances, same questions were repeated and asked to several respondents in order
to understand the situational context and to receive nuanced answers. The semi-structured
interview design proved to be flexible enough to adapt to the respondent’s view of issues
and probe them further for unforeseen answers.

4.2.4 Internal documents

Table 3 shows the collection of internal documents studied and used in this thesis.

Table 3. Internal documents studied

4.3 Analysis model

Data analysis is the process used to answer the research questions [38, p. 202]. The
findings of the study make up the answers to the research questions through data analysis.
Data analysis begins with identifying and categorizing units of data [38, p. 203]. Through
reading the interview transcript, potentially relevant bits of data are labeled with a code.
This method of data analysis is called open coding, since the researcher is open to any
data which might be useful in answering the research questions [38, p. 204]. By iterating
this method on all interview transcripts, a large collection of codes is created. The

Title Description Pages
Agile introduction – Scrum

in Sales Portal
Internal powerpoint

presentation describing
scrum practices in

developing Sales portal.

35

How Scania is Managed Internal document
describing organizational

processes.

43

Scania IT Strategy 2017+ Internal powerpoint
presentation describing

organizational IT vision.

18

Test vision and strategy Internal, non-governing
document describing

organizational test policies

5

27

	

following step is to perform axial coding, where single codes are grouped into categories
with common themes [38, p. 206]. Coding can be described with the analogy of
identifying individual trees in nature and then trying to see the common forests. By using
coding and categorical aggregation, a classification system is created reflecting the
patterns in the study which help in answering the research questions [38, p. 206]. It should
be noted however that the categories are abstractions derived from the data and not the
data themselves [38, p. 207]. While open coding is an extension of descriptive referencing
– codes may be labeled by any specific word a respondent says – axial coding, on the
other hand, is affected by the researcher’s own interpretation and reflection on meaning.

Data analysis in a case study can be overwhelming due to the extensive data collection
process. The data can be organized in a case study database containing all major
information used for analysis. The case study database is used so the researcher can locate
specific data during intensive analysis [38, p. 233], [40, p. 163].

The data analysis methods used in this thesis were open coding and axial coding, where
several codes were aggregated to create categories of common themes which helped in
visualizing the data. All interview transcripts were read several times and the respondent’s
answers were labeled using open coding by assigning a code in the margin of the
transcript document using a word processor. After all interview transcripts had been
coded, the individual codes were written on paper, where axial coding was performed by
grouping codes to establish themes and patterns. The data analysis resulted in identifying
several categories which facilitated in quickly retrieving individual pieces of data, data
visualization and ultimately helped to answer the research questions.

4.4 Methodology discussion

The trustworthiness of research may be evaluated through the criteria credibility,
transferability, dependability, and confirmability [43]. The credibility of this thesis was
ensured primarily through prolonged engagement, persistent observation, and data
triangulation. The prolonged engagement with Scania developed sufficient trust between
the author and the respondents. This trust enabled receiving trustworthy answers from the
respondents. Moreover, the prolonged engagement helped in understanding the
situational context better and resolved any preconceptions the author may have had. On
the other hand, the prolonged engagement may have resulted in the author examining the
surrounds with less scrutiny. While the prolonged engagement with Scania provided
scope to the research questions, the persistent observation of the situational context
provided depth to them. This helped in the development of the study and the creation of
relevant interview questions. Data triangulation through the use of multiple data sources
was used to enable a comprehensive understanding. The evaluation of the transferability
of this thesis was achieved by describing the analysis model and the results sufficiently.
This enables an analysis of to which extent the conclusions may be transferable to other
situational contexts. The dependability of this thesis was achieved by conducting and
documenting interviews in a systematic manner. The interviews guides are disclosed for

28

	

transparency and reproducibility. The use of a recording device during interviews could
have contributed to respondents giving carefully thought out answers instead of
spontaneous answers and thus affecting the full selective truthfulness of statements.
However, the benefit of recording and capturing the respondents’ answers verbatim was
perceived to outweigh the drawbacks. The confirmability of the findings was ensured by
interviewing several respondents with different backgrounds across different
departments.

29

	

5. Results

5.1 Data analysis and interpretation

The results in this thesis are a reflection of the applied analysis model. Open and axial
coding was applied on the interview transcripts to enable analysis and interpretation. The
open codes were directly associated with the respondent's answers to the interview
questions and thus consisted of test processes, working practices, software tools and daily
challenges with test automation. The axial codes were the result of the author’s
interpretation and categorical aggregation of the open codes. Recurring axial codes or
rather themes were agile working practices, the importance of early testing in an agile
context, the demand for increased software quality, test case maintenance issues and a
need for test automation.

5.2 Scania as a service provider

Scania CV AB is a global manufacturer of trucks, buses, and engines with 46 000
employees in 100 countries. Production facilities are in Europe, Latin America, and Asia.
In addition to manufacturing, Scania offers vehicle support services and financial
offerings focusing on financing, insurance, and rental. The largest net sales by product
segment in 2016 were trucks (60%), buses (10%) and service-related products (20%) [44].

Scania IT, a subsidiary to Scania CV, contributes to realizing the group’s objectives by
providing IT services [45]. For 2020, the IT vision is to drive a digital transformation of
Scania with more use of cloud services, open source software and by applying Scania’s
modularization principles from manufacturing in developing IT services [46].

Figure 15. The Scania house (reproduced from [47])

The Scania house, illustrated by figure 15, is a representation of the company’s
organizational principles. The focus is put on improvements, customer care, and
efficiency by eliminating waste. The organizational principles are reflected in Scania’s
four core processes: product development, sales, services delivery and order to delivery
[47].

30

	

Commercial operations are one of Scania’s departments and have global responsibility
for strategies, operations and control of all Scania-owned sales and services companies
and dealers [47]. BVD – sales and order to delivery tools – is a unit within commercial
operations and project owner of the IT service Sales portal. Prospecting & quotation are
in charge of developing and delivering Sales portal to BVD [R9].

5.2.1 Sales portal

Sales portal is a sales system, containing a collection of tools and services, enabling the
sale of Scania trucks for dealers. Sales portal was created to consolidate and replace six
previous systems for selling trucks. This simplifies software maintenance and testing.
Both old generation and new generation trucks are available through Sales portal for all
markets using all truck configurations. In addition to receiving quotations on trucks, other
products such as driver support, financing, and service are available [R7]. An extensive
development effort was made in advance of the launch of new generation Scania trucks
on August 23, 2016 [R7]. As scrum master Respondent 7 recalls “It was all a big puzzle.
Without our agile way of working with sprints and scrum, we would not have been able
to deliver as much as we did.” (Appendix C contains a description of scrum.)

5.3 Test process in Prospecting & quotation

Figure 16. Organization chart of Sales IT

There are four development teams working on Sales portal in Södertälje [R7]. Figure 16
shows the organization chart of Sales IT. The IJXX notation is merely a reflection of
organizational indexing and not of any acronyms.

Sales	IT Prospecting	
&	Quotation

IJBA

IJBB

IJBC

IJBD

31

	

5.3.1 Agile way of working

Figure 17. Activities in scrum

Sales portal is developed through classic scrum methodology, illustrated by figure 17
[R7]. Respondent 7 explains the work begins with sprint pre-planning where coming
requirements are overlooked by the development team. The product owner is present and
items from the product backlog are chosen by the team. The product backlog containing
items are always sorted by priority. The priority of items is agreed upon in advance by
business and IT. After sprint pre-planning, the actual sprint planning begins. The team
begins overseeing the code, evaluating the complexity of items and making estimates of
how much time is needed to develop the items. When sprint planning is finished, the team
agrees upon and commits to the sprint backlog. Then begins a two-week long sprint where
the sprint backlog is developed. During daily meetings with the scrum master, yesterday’s
and today’s work are discussed and potential impediments affecting the work are brought
to attention. When the sprint is finished or approaching its end, there is a demo where the
committed items are presented, a review and lastly a retrospective [R7].

The release cycle of Sales portal follows two, two-week long sprints and then an
improvement week. Regression testing is initiated during the end of the second sprint.
During the improvement week, product increments are deployed as a release package to

Figure 18. Release cycle of Sales portal

production and the team can focus on making other improvements such as test automation
[R7]. Figure 18 illustrates the release cycle.

Sprint	
pre-

planning

Sprint	
planning

Sprint
Demo	&
Review

Retro-
spective

•Release

Improvement

•Regression	
testing

S2S1

32

	

Manager Respondent 9 says “By going agile, we have achieved an understanding of the
business requirements. We have left traditional development with fixed requirements
delivered on a certain budget. Instead, we are working with a certain budget and we
communicate our capacity to BVD and ask them what they need to be delivered.” BVD
requires from Prospecting & quotations an efficient delivery in terms of quality, cost and
time. There are continuous discussions between the units about BVD’s business needs
and what should be prioritized in development [R9]. Respondent 9 says “We have
received feedback from BVD and it has mostly concerned performance issues, response
times and such.” Respondent 9 continues, “In our discussions, raising quality is a standing
item.” Other than performance issues, Respondent 9 also mentions bug-free releases as a
significant priority. Moreover, the respondents agree that scrum enables them to deliver
software in quantity and quality [R9], [R7].

5.3.2 Improving quality and adopting early testing with automation

Scrum master Respondent 8 explains that Sales portal has been developed for a few years
now and the focus on quality was not always present [R8]. Respondent 8 says “We have
plenty of unresolved bugs in addition to a large product backlog.” Respondent 8 assists
in tackling these challenges and raising the quality of releases, to which he admits are
easier said than done and will require time and resources [R8]. Respondent 8 says
“Through testing, we receive a measure of the quality of the system, which can typically
be good or bad.” Respondent 8 mentions that testing only helps in finding faults and does
not single-handedly raise the quality in a system. There has to be a focus on quality in all
aspects of the development process, from requirements through development to testing,
in order for a system to be well built [R8]. Respondent 8 continues “We are using different
methods and are trying to push towards more automated tests rather than manual tests.”

Respondent 7 emphasizes that quality and early testing goes hand in hand when working
agile [R7]. Respondent 7 mentions, “The earlier you can find bugs, the better. Finding
bugs in production is expensive. We want to find them in compilation.” Test automation
has enabled earlier testing in the development process and unit tests are automated while
automating the regression batch, which covers the end to end flow in the graphical user
interface, has been met with challenges [R7], [R8]. Respondent 7 mentions that the initial
discussions have been about choosing the test tool framework, deciding upon when to run
the tests and in which development environment [R7]. There are four different
environments: the developer’s computer “local”, the sandbox “proj”, the acceptance
environment “acc” and the live production environment “prod”, illustrated by figure 19
[R7].

Figure 19. The development environments

The “proj” environment is a network location were several developers can collaborate.
The code is usually checked into the “proj” environment on a daily basis. All existing unit

local PROJ ACC PROD

33

	

tests must pass in order for the code to be checked into “proj” and the code coverage must
at least be preserved or ideally increased. When the items reach a robust state, they are
moved to “acc” on a weekly basis, where acceptance and regression testing are performed.
Finished release packages are deployed into the live environment “prod” on a monthly
basis [R7], [R10].

Respondent 9 agrees that test automation is necessary while working agile, however, he
mentions that the difficulties with it as a development activity in Sales portal is catching
up on the work. Test automation was not prioritized since the beginning of Sales portal
and finding the optimal solution for it afterward will require time [R9]. Respondent 9 says
“Test automation entail that you as a developer will write an automated test script during
the delivery, so you deliver your code and your test case.”

By automating more test cases on the user interface, the aim is to receive quicker feedback
on development efforts and reduce lead time on manual regression testing. In the current
situation, potential defects are unknowingly included in releases and the feedback in terms
of the market response takes too long. In addition to a quicker feedback loop, test
automation has the potential of eliminating manual regression tests which are time-
consuming for the development teams [R9], [R7], [R8].

5.3.3 Managing quality assurance

While there have been efforts to create an organizational test policy in Scania IT, the work
was never finalized and is thus not governing [48]. In reality, different units in Scania IT
have their own test strategies and policies [R8]. The progress with agile in Prospecting &
quotation has received praise internally and other units have been keen on visiting to learn
more about scrum [R7].

Test planning is carried out as soon as the sprint has started [R8], [R10]. For scrum team
member and tester Respondent 10 this means analyzing the requirements, planning on
how to execute the test cases and lastly developing both manual and automatic test cases.
Respondent 10 says “The advantage of scrum is not having to wait on items to be
developed, in order to test them. You should be able to test small pieces of the item you
are delivering.” Each scrum team consists of one or two testers. However, the teams are
trying to move away from dedicated roles such as tester or developer, despite individual
backgrounds or preferences. The aim is to increase knowledge transferability and cross
functionality [R8], [R10]. Part of the objective for Respondent 10’s work has been
automating the business logic in the back-end service of Sales portal with full code
coverage [R10].

Typically, the last two days of a sprint are scheduled for regression testing. When
developing new functionality, other than verifying its quality, the functionality
surrounding that item also has to be verified for unforeseen defects. Since the regression
suite, consisting of about 80 test cases testing for known defects, is not automated it has
to be executed manually. Previously, the regression suite was executed manually by all

34

	

scrum teams. Today, the regression suite has been divided among the teams so that each
team is responsible for executing fewer test cases. The idea is to induce team
responsibility and bring forth a team drive for manual execution. In the future, the hope
is that this will create a drive for the teams to automate their part of the regression suite
[R8].

Testing is monitored through a software planning tool. Test execution details are visible
for all stakeholders. Especially the product owner is interested in knowing test execution
status and what items will be included in the coming release. Defective functionality is
excluded from release. Testing is considered finished when all regression tests have been
executed. Failed test cases are inspected closely and all defects are resolved before a
release [R8].

5.3.4 Maintainability issues with graphical user interface test cases

The graphical user interface test automation progress has been hampered by inexperience
with the test framework and maintainability issues [R8], [R4]. Scrum team member and
tester Respondent 4 explains that the framework for writing the tests needs to be
refactored and simplified. Moreover, few scrum members are comfortable with
developing tests in the framework. Test cases for the user interface are written using the
test automation framework Selenium, which can emulate human interaction in a web
browser and thus click and navigate a web application by locating their user interface
locators and perform operations on them [R4], [49]. The maintainability issue consists of
test cases breaking and needing updating. A majority of Sales portal’s front-end code base
is written using the javascript framework Dojo, which generates new user interface
locators when changes in the code occur. This results in test cases breaking since
Selenium cannot find the user interface component by its expected locator, which creates
a need for allocating time for updating the tests [R4]. Respondent 4 says “This has led us
to rather execute the tests manually instead since the automatic ones keep breaking.
Increasing the robustness of test cases and allocating time to develop maintainable test
cases has proved to be challenging.” A migration to the javascript framework Angular for
the development of new items has proved to solve the issue with non-constant user
interface locators. Respondent 4 emphasizes that constant locators are a prerequisite for
user interface test automation in Selenium. Respondent 4 says “In Selenium, it is
necessary to be able to reach a component in a stable way. If it is reachable, present and
not invisible, then you can click on it.” However, vital parts of Sales portal are still coded
in Dojo and because of interdependency with the parts developed in Angular, the risk of
tests breaking still exists regardless of the migration to Angular [R4]. Respondent 4
explains that a full migration to Angular is needed in order to automate the complete
regression suite in Selenium [R4].

Respondent 10 and Respondent 8 explain that test cases developed in Selenium require
more maintenance than expected. This also increases the time estimation of testing during
sprints. Respondent 10 and Respondent 8 also mention the migration of the front-end
code base from Dojo to Angular as a possible solution for creating constant locators for

35

	

user interface components and developing robust test cases [R8], [R10]. Respondent 8
mentions that code migration has started and there is still more to do. Moreover, writing
new test cases in the automation framework has been difficult. By refactoring large
portions of the test framework, Respondent 8 hopes that the learning curve will be less
steep and develop new test cases easier [R8].

5.3.5 Prioritizing test automation

Besides inexperience with the test framework and maintainability issues with test cases,
the respondents experience insufficient resources allocated to test automation during the
sprints [R10], [R4]. Respondent 8 explains that the large product backlog with prioritized
items waiting to be developed has made it difficult to allocate resources to test automation
during the sprints. Moving forward, the available options are to either focus less on the
backlog and more on test automation or try to incorporate test automation as a natural
part of the sprint planning and sprint. Items are usually finished late during the sprint,
making it difficult to also deliver an automated user interface test case as part of the sprint.
However, unit tests covering the back-end services are developed and delivered as part
of the sprint [R8]. This is a requirement in order to increase code coverage for back-end
services [R7], [R4], [R10].

Other than developing automated test cases for the oncoming items, there is a regression
suite also needing attention [R8]. Respondent 8 emphasize the need for starting
somewhere and progressing. The importance of test automation is communicated and
well established with management and the development teams. Since it is a difficult task
to accomplish for the development teams, the feeling of insufficient allocated resources
is expected. However, Respondent 8 would like more time to finish test automation items.
Overall, the general sentiment from management is that the development teams should
claim responsibility and ownership for test automation and push for it. This has not yet
happened which creates a status quo surrounding the issue. There are few restrictions on
accepting new ideas and the project is generally keen on trying new ideas. Respondent 8
concludes with stating that they will have to work more within the teams on why test
automation is important and how they should go about implementing it [R8].

Respondent 9 understands the issue with test automation not being prioritized enough
[R9]. Respondent 9 says “We are mutually responsible for the quality, both IT and
business.” There is an acceptance from the business side for IT to focus on technical
improvements during sprints. However, the external requirements must be met and the
product backlog must be delivered. Respondent 9 mentions that Sales portal is a global
service supporting the launch of the new truck. On the market side, sales personnel and
dealers require certain IT services in order to sell trucks, which is Scania’s core business
[R9]. Respondent 9 says “It is easy to dictate the terms from the IT side. But IT does not
have an inherent value. There is only value in IT if it adds value to the business. The value
then consists of what IT and business deliver together. The interplay is key. If we do not
make life easier for our sellers, then what is the point? The business value for me is very

36

	

clear.” Having the operational circumstances in mind, Respondent 9 agrees that test
automation is necessary in order to develop software in an agile way [R9].

5.4 Insights from neighboring departments

The following sections will include insights from the Scania IT departments Object and
structure tools, Attributes and config and Quality assurance and support

5.4.1 Object and Structure Tools

Respondent 1, Respondent 2 and Respondent 3 are testers working with quality assurance
in an agile project relying on heavy use of test automation. The aim of the project is to
execute nightly an automated regression suite and have a release ready each morning
[R1], [R2], [R3].

Respondent 1 mentions working agile has made the developers and testers closer rather
than being two separate entities. The testers are involved in the development process from
an early start and can better foresee and plan developing test cases [R1]. Respondent 3
sees no difference between test and implementation. It is a team work and when an item
has been developed there should be test cases for it as well [R3]. Respondent 3 also
mentions that their development has reached maturity and the work consists mostly of
maintaining the application and reusing existing functionality [R3].

Regarding test automation, Respondent 1 sees it as a necessity when working agile. An
automated regression suite is run nightly which makes it possible to release every day,
although the de-facto releases are on a weekly basis in order to minimize scheduled
downtime [R1]. Moreover, the thousands of existing test cases would be impossible to
execute manually [R1]. Respondent 3 sees no other solution than to have a lot of
automated tests when developing an application with a long lifecycle and heavy usage
[R3]. Respondent 1 also mentions that the purpose of test automation must be clear, “It is
not for finding new bugs. It is for building confidence in the product [R1].” Respondent
3 adds, “Whatever was working yesterday, is it still working today [R3]?” Respondent 3
also emphasizes the importance of test cases with independent test data to increase
robustness [R3]. Robustness of test cases is needed in order to not having to re-write them.
In a user interface, this can be achieved by using constants for components [R1].
Respondent 2 says that web components must be reachable and have constants with
logical names [R2]. Respondent 1 agrees and says following strict design patterns or code
convention is key [R1].

5.4.2 Attributes and Config

Respondent 5 and Respondent 6 are working with a maintenance service called Etel back
office containing complex business logics. The operation includes four developers, one
tester, and one scrum master. The release cycle is once a month. Respondent 5 works with
test automation while Respondent 6 focuses on development [R5], [R6].

37

	

Development is following agile and Respondent 5 tries to automate basic functionality
related to the user interface application. Respondent 5 describes reoccurring user interface
operations as suitable for automation. The focus is on reusability and trying to automate
the end users’ real use cases [R5].

Respondent 6 adds to the importance of user interface testing since unit testing is limited
in finding defects in higher layers of an application [R6]. Testing ties into the customer
collaboration process also. The developers must understand customer’s requirements and
the customer must understand how those requirements translate into technical
requirements. Testing, especially on the user interface helps in creating that
understanding between the parties [R6].

Respondent 5 describes the test automation work following the development patterns of
page object models, where web pages are modeled as classes, the components within a
page are modeled as variables and the classes having methods which can perform
operations on the components. This creates readable and maintainable code [R5].

Respondent 5 explains that approaching test automation begins with the mindset of the
development team and what they want to accomplish. Initial topics such as choosing the
appropriate test framework, test design patterns and how to develop testable code should
first be addressed. If the test data is depended upon some external system, unstable and
prone to change, then it should be considered to use mock data instead. Once a test
automation framework is up and running and the team feels confident in using it, then
testing will progress quickly [R5].

Respondent 5 emphasizes that it is not only about delivering functionality to business, it
is also important to maintain the quality of your own test code. The definition of done has
extended to also including code coverage for developed items with automated tests [R5].
In addition to that, consistency with test automation during development work is
important. And not waiting for a miracle to happen and rather taking charge of test
automation yourself [R5].

5.4.3 Quality Assurance and Support

Quality assurance & support consists of mainly three agile development teams working
on a vehicle maintenance service called FLEX. Respondent 11 is responsible for technical
testing in FLEX, focusing on primarily automated integration and performance tests
[R11].

Respondent 11 shares ideas regarding how to approach test automation:

“First you have to think about. What is the core functionality in this product? I mean that
is where I go from. Not regarding any, not including CRs [change requests] or TRs
[trouble reports], you have to think what is the core of this product? What happens if one
of these core functionalities fail? I always think on test automatization focusing on these
core functionalities you have. Which could be core functionalities defined from many

38

	

years ago. Everyone focuses on new CRs and focus on maybe one new function. But I
always base what’s the core functionality and then from that base, you can go into specific
CRs or TRs [R11].”

Considering exhaustive testing in test automation, respondent 11 says:

“You cannot automate everything. That is impossible. You cannot even actually test
everything. If you think of a use case and there is a basic flow or one or many other
alternative flows, you should think that the automation should at least do the basic flow.
Because 90% of the time or something like that, it will be this that occurs in a production
system. The alternative flows are probably not going to occur as often as the basic flow
[R11].”

Respondent 11 mentions that in their work, the business-critical areas have code coverage
with automated test cases. Less business critical is not as prioritized [R11]. Respondent
11 explains the benefits of automating test cases as:

“Manual testing is good for finding new bugs. Exploratory testing, that is often the best
way to find the bugs in the system. But [automated] regression tests are when you build
it up, you cover a wide scope of the product. It is tested very quickly and it is tested in the
same way. So you can always be sure that there was not anything manual that came in
between, so it [the system under test] got tested in a different way and therefore you got
different results. Regression tests are really good. If you are going into an agile, weekly
release as we do. You need to have automated tests in order to build confidence in the
release. That is the bottom line. Even management should understand that if you drive a
project in an agile way [R11].”

Respondent 11 explains that an automated regression suite enables quicker releases.
When a customer or the project decide on a change request or resolving a bug, the effect
can be tested and put into production quickly [R11]. However, manual testing cannot be
fully excluded. Manual, exploratory testing can be used to test a system in many different
ways to find bugs. Once those bugs have been resolved by the developer, the test can be
automated and included in the regression suite in the next release cycle. Respondent 11
means that test automation is one cycle delayed from new development [R11].

Respondent 11 explains that building a successful test automation framework will require
developer skills. The work may be distributed between a test tool architect that designs
and develops the tool and testers who make use of it. Dedicated testers, if lacking a test
automation background, can learn to develop tests in the framework. Respondent 11 says:

“If you are going to make a software test automation regression tool. You have to come
from a developer background anyway. You are a mixture of a developer and tester
actually. The better you are in writing software, the easier the tool will be maintained over
a long period. It will be built the right way. Actually, organizing the code in the test
automation framework is one of the important factors for a test tool to live long and not

39

	

just die when the test architect leaves the company. Apart from that, there should be one
architect that designs how the framework should be built. There is nothing to stop normal
testers to go in there and see how the tests have been written and utilizing the
functionality. Because that requires a lot less coding skills. You can build up a very good
automation regression test batch from that. If functional testers, exploratory testers
actually get into the test tool. They can actually write the kind of tests they know capture
problems. Although a test architect cannot. His head is more or less into the code in the
test framework [R11].”

As a general rule of coding, Respondent 11 emphasizes that to ensure testability in a user
interface that undergoes changes, there should only be one method for one item in the
interface. If the user interface changes, then the corresponding change should only occur
in one place in the code [R11].

	

40

	

6. Discussion

6.1 Importance of the study

The purpose of this thesis was to investigate the management of quality assurance in an
organizational context. Automating regression testing enables continuous testing and
improves software quality by finding and resolving bugs early. However, maintainability
issues with test cases failing due to changed test inputs must be resolved for test
automation to be feasible and practical. This creates a need for researching how test cases
can be developed with a focus on maintainability and automation. Keyword-driven testing
benefits from its test case reusability, modular test case structure and can be implemented
with common test automation tools. Attempting to fill the research gap using keyword-
driven testing, creates questions of how keyword-driven testing can be implemented in
an agile organization to facilitate the development of maintainable test cases and support
test automation. Answering these questions will determine the usability of keyword-
driven testing and help further agile organizations struggling with test automation.

6.2 Analysis of major findings

The research questions were studied through the international testing standard ISO
29119-2, describing organizational test processes and ISO 29119-5, giving a detailed
specification of how keyword-driven testing is comprised. ISO 29119-2 covers the testing
practices performed within Scania IT, however since Prospecting & quotation is utilizing
the agile development methodology scrum, the testing practices are not formalized as in
ISO 29119-2. Test policy and test strategy are not maintained and communicated through
formal documents, but rather through mutual oral agreements and defined working
practices. Nevertheless, ISO 29119-2 does create an understanding of the testing practices
carried out in an agile unit such as Prospecting & quotation and how keyword-driven
testing can fit within that context. Implementing formalized test documentation as defined
in ISO 29119-2 would not necessarily add to the business value. Following the agile
methodology, defined working practices should be prioritized over formal
documentation.

Scania is primarily a manufacturing company with revenue streams from vehicle sales.
However, the importance of IT services supporting the sales process becomes evident
when regarding Sales portal. Business users dealing with potential buyers of construction
vehicles are in need of a functional and reliable sales system generating proper quotations.
Meeting these business needs entails developing bug-free software quickly. The agile
methodology of developing software and particularly scrum has benefited Prospecting &
quotation with releasing software updates or product increments regularly. The
drawbacks of a fast-paced release cycle have been software scaling issues and inadequate
quality, manifesting through performance issues and bugs.

41

	

Early testing alleviates quality deficiencies by allowing for early detection and resolution
of bugs. However, executing a regression suite consisting of about 80 test cases manually
in Prospecting & quotation has proved to be resource demanding, prompting for test
automation to replace a time consuming and mundane task. Initial efforts to automate test
cases has been through the web browser test automation tool Selenium, which models
web pages as page objects and performs operations on the web page’s components
through methods. This solution relies on effectively locating components in an HTML
web page by its locator. Test cases dependent on locators remaining constant should and
will fail when the said locators change, as experienced in Prospecting & quotation,
resulting in test cases needing to be updated. Another test input prone to change and
causing tests to fail is the test data, especially if it is acquired externally from the test case.
These sources of change in test inputs cause test cases to fail, increases maintenance work
and poses a threat to the progress of test automation as a consistent development activity.
Accepting the circumstances of web page locators and test data changing and following
the general rule of coding, in order for maintenance work to be efficient, appropriate
changes need to occur in one place within a test automation framework.

While an automated keyword-driven testing framework lacks the ability to ensure
constant test inputs since they are unrelated concepts, it does have the potential of
facilitating maintenance work for test cases through its editor. The editor in an automated
keyword-driven testing framework is intended to show test case details, such as test case
id, a description of the test case, keyword (high-level, low-level or composite), user
interface locator (class, id or xpath depending on implementation), test data and test
status. In a scenario where multiple test cases fail because of invalid user interface
locators, resulting in the test automation framework not finding the expected user
interface components to perform operations on, the test case locators can simply be
updated through the editor in order for the test cases to pass again. Updating test data is
analog. These benefits could prove to be useful for Prospecting & quotation.

The modular way in which test cases are developed, consisting of the interdependent
hierarchical high-level and low-level keywords, has the potential of increasing code
reusability in the development of test cases. Common graphical user interface operations
are implemented once as keywords within the test automation framework and used to
create extensive test cases suitable for a regression suite. This reusability opportunity can
reduce maintenance work for Prospecting & quotation since test cases are written in a
code efficient and non-redundant way. However, the implementation of keywords
remains dependent on the choice of test automation tool, making it difficult to discuss
practicality and effectiveness.

There are several aspects to consider when developing an automated keyword-driven
testing framework for organizational use in Prospecting & quotation. In order for the
framework to support automation, it has to integrate well with the test automation tool
Selenium. While general aspects of a keyword-driven testing framework are tool-
independent, such as the test case editor, execution engine and external data, the actual

42

	

implementation of keywords into execution code are dependent on the choice of
automation tool. Studies have proved to successfully integrate and automate keyword-
driven testing with Selenium [11], [12], [13]. Succeeding with this task within
Prospecting & quotation will require the scrum teams to allocate time during sprints to
design and develop the framework, converting non-keyword-driven test cases into
keyword-driven test cases and lastly to automate the test cases using Selenium. One or
several key individuals can be made responsible in the initial phase to become test tool
architects and carry out this work. Main responsibilities would be to design, develop and
refactor the automated keyword-driven testing framework during the sprints. The
objective with using the automated keyword-driven testing framework should be
automating the existing regression suite and in the future finding a procedure to deliver
automated graphical user interface test cases as part of the product increment during
sprints. This would also require the scrum teams to learn how to develop test cases using
the new framework, which could be made possible through knowledge transfer from the
test tool architects. Their roles and responsibilities for refactoring the framework would,
however, remain since maintaining the quality of the framework is essential for its
continued use and development. Through dialogue with the product owner, test
automation should address the business critical and core functionalities in Sales portal.

Future use of keyword-driven testing would require slight changes in the existing testing
practices carried out in Prospecting & quotation. Test planning would focus on
identifying suitable keywords from the requirements in the sprint backlog and assuring
user interface components have proper locators. Having existing keywords already
implemented in execution code, chances are they may be re-used. This would simplify
the creation of new test cases through the test case editor, especially if keywords are re-
used.

Potential drawbacks of an automated keyword-driven testing framework may lie in the
difficulty of developing the automation framework. Initial time and cost would be spent
on designing the framework and integrating all the entities found in figure 12 (p. 20).
Potential benefits in terms of time and cost reduction may realize at a later stage. In
addition to upfront cost, investing in an automation framework should also consider
maintenance work and usability of the framework. The aim should be towards making
test cases easy to write for all team members and mitigating maintenance work. These
factors threaten the continued use of an automation framework.

In the agile context of Prospecting & quotation, much of the challenges with test
automation can be summarized with insufficient resources, inexperience with test
automation, lack of interest from the development teams and lack of leadership mutually
from the management and the development teams in resolving the challenge. Sales portal
is an expanding IT service on a global market and the challenges with test automation
should be understood with Sales portal’s background and prerequisites in mind.

Moving forward, Prospecting & quotation should focus on developing a working proof
of concept of an automated keyword-driven testing framework which automates a limited

43

	

aspect of the functionality. This proof of concept should be evaluated by the relevant
stakeholders before deciding upon developing and using it further during the sprints. The
key is to delegate responsibility to one or two testers in each development team which
oversees and takes ownership of the initial test automation effort.

6.3 Limitations of the study

The findings of this case study are based on empirical research carried out in four software
development units in Scania IT. Generalizability may thus be limited to only industrial
and information and communication technology companies facing similar challenges.
Moreover, the main focus of this thesis was keyword-driven testing in relation to
maintainability and automation. These topics were discussed on a conceptual level in the
context of an agile organization. However, discussing the ultimate benefits and
drawbacks of real use cases would require developing a keyword-driven testing
framework and integrating it with, for instance, the test automation tool Selenium, making
the ultimate benefits and drawbacks dependent of the said integration. Thus, the
discussion in this thesis may not necessarily apply but on a conceptual level.

6.4 Future work

To evaluate the practicality and effectiveness of a keyword-driven testing framework
within agile organizations, research needs to be carried out focusing on design patterns
and implementation.

6.5 Conclusion and contribution to the field

There are conclusions which correspond with both research questions and which consider
the prerequisites for test automation in an agile organization. The frequent release cycle
in an agile organization contributes to the release of defective software, especially if
insufficient resources are allocated to software testing. Quantity and quality should not
be competing forces and quantity should not compromise quality. The business value
should thus consist of adding functionality to the product, but also delivering bug-free
software.

Moreover, ownership of test automation is needed in order for it to be successful. This
requires management showing clear leadership, support in the question, and delegating
responsibility to the development teams. The development teams must in return accept
responsibility and strive for resolving the test automation challenge. This requires
persistence, self-motivation, and team motivation. An understanding of the business value
and how test automation contributes to it should underlie the effort throughout
management and the development teams.

1) How can a keyword-driven testing framework facilitate the development of
maintainable test cases in an agile organization?

44

	

A keyword-driven testing framework can reduce maintenance work for agile teams
through keyword reusability and by the convenience of updating test inputs through a
framework editor. The separation of keywords and test cases shifts the maintenance work
from maintaining test cases to maintaining keywords. The number of keywords in a
keyword-driven testing framework, by keyword reusability, should be less than the
number of test cases. This reduces maintenance work and limits it to keeping keywords
updated. The framework editor helps in visualize the dependencies between keywords
and test inputs, which benefits maintenance work.

2) How can a keyword-driven testing framework be used to support test case
automation in an agile organization?

A keyword-driven testing framework, through its modular approach in composing test
cases with the use of keywords, is suitable for automation with test automation tools. The
success of the implementation in an agile organization relies initially on the ability to
delegate responsibilities to key individuals who can design, develop and maintain the
framework. The long-term usage of the framework is dependent on usability factors, such
as making sure all team members are confident in developing automated test cases within
the framework.

By answering the research questions, this thesis contributes to its scientific field by
investigating how quality assurance is managed within an agile organization and how
testing standards combining theory and practice may be adapted to solve software testing
issues.

45

	

References

[1] H. Schrödl and S. Wind, “Adoption of SCRUM for Software Development Projects: An
Exploratory Case Study from the ICT Industry,” AMCIS 2011 Proc. - All Submissions,
no. Paper 256, 2011.

[2] A. Butterfield and G. E. Ngondi, “Waterfall model,” in A Dictionary of Computer
Science, 7th ed., Oxford: Oxford University Press, 2016.

[3] S. Balaji and M. Sundararajan Murugaiyan, “WATEERFALLVs V-MODEL Vs AGILE:
A COMPARATIVE STUDY ON SDLC,” Int. J. Inf. Technol. Bus. Manag., vol. 292, no.
1, 2012.

[4] M. Moniruzzaman, D. Syed, and A. Hossain, “Comparative Study on Agile software
development methodologies.”

[5] M. Tuteja and G. Dubey, “A Research Study on importance of Testing and Quality
Assurance in Software Development Life Cycle (SDLC) Models,” Int. J. Soft Comput.
Eng., vol. 2, no. 3, pp. 251–257, 2012.

[6] B. Boehm and V. R. Basili, “Software Defect Reduction Top 10 List,” Computer (Long.
Beach. Calif)., vol. 34, no. 1, pp. 135–137, 2001.

[7] B. Homés, Fundamentals of Software Testing. London: ISTE, 2012.

[8] E. Engström and P. Runeson, “A Qualitative Survey of Regression Testing Practices,”
Lect. Notes Comput. Sci., vol. 6156, pp. 3–16, 2010.

[9] I. O. for Standardization, I. E. Commission, I. of E. and E. Engineers, and I.-S. S. Board,
“Software and systems engineering : software testing - part 2: test processes,”
ISO/IEC/IEEE 29119-2:2013, pp. 1–59, 2013.

[10] I. O. for Standardization, I. E. Commission, I. of E. and E. Engineers, and I.-S. S. Board,
“Software and systems engineering : software testing - part 5: keyword-driven testing,”
ISO/IEC/IEEE 29119-5:2016, pp. 1–54, 2016.

[11] A. Jain and S. Sharma, “AN EFFICIENT KEYWORD DRIVEN TEST AUTOMATION
FRAMEWORK FOR WEB APPLICATIONS,” Int. J. Eng. Sci. Adv. Technol., no. 23,
pp. 600–604, 2012.

[12] S. Singla and H. Kaur, “Selenium Keyword Driven Automation Testing Framework,”
Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 4, no. 6, pp. 2277–128, 2014.

[13] K. V. Aiya and H. Verma, “Keyword driven automated testing framework for web
application,” in 2014 9th International Conference on Industrial and Information
Systems (ICIIS), 2014, pp. 1–6.

[14] J. Dooley, Software development and professional practice. New York: Apress, 2011.

[15] I. H. Sarker, F. Faruque, U. Hossen, and A. Rahman, “A Survey of Software
Development Process Models in Software Engineering,” Int. J. Softw. Eng. Its Appl., vol.
9, no. 11, pp. 55–70, 2015.

[16] A. Butterfield and G. E. Ngondi, “V-model,” in A Dictionary of Computer Science, 7th
ed., Oxford: Oxford University Press, 2016.

[17] R. Mahanti, M. S. Neogi, and V. Bhattacherjee, “Factors Affecting the Choice of
Software Life Cycle Models in the Software Industry-An Empirical Study,” J. Comput.

46

	

Sci., vol. 8, no. 8, pp. 1253–1262, 2012.

[18] J. Highsmith, “History: The Agile Manifesto,” 2001. [Online]. Available:
http://agilemanifesto.org/history.html. [Accessed: 28-Feb-2017].

[19] K. Beck, M. Beedle, A. van Bennekum, and A. Cockburn, “Principles behind the Agile
Manifesto,” 2001. [Online]. Available: http://agilemanifesto.org/principles.html.
[Accessed: 28-Feb-2017].

[20] S. V Zykov, “Software Product Lifecycles: What Can Be Optimized and How?,” in
Crisis Management for Software Development and Knowledge Transfer, Cham: Springer
International Publishing, 2016, pp. 27–50.

[21] IEEE, “IEEE Standard Glossary of Software Engineering Terminology,” IEEE Std
610.12-1990, pp. 1–84, Dec. 1990.

[22] P. M. Institute, A Guide to the Project Management Body of Knowledge, 5th ed.
Newtown Square: PMI Publications, 2013.

[23] B. W. Boehm, “Verifying and Validating Software Requirements and Design
Specifications,” IEEE Softw., vol. 1, no. 1, pp. 75–88, Jan. 1984.

[24] M. S. Fisher, Software Verification and Validation. Boston: Springer US, 2007.

[25] P. Morgan, A. Samaroo, G. Thompson, and P. Williams, Software Testing: An ISTQB-
BCS Certified Tester Foundation Guide, 3rd ed. Swinton: BCS Learning &
Development, 2015.

[26] J. A. Clougherty and M. Grajek, “International standards and international trade:
Empirical evidence from ISO 9000 diffusion,” Int. J. Ind. Organ., vol. 36, pp. 70–82,
2014.

[27] M. Terziovski and J.-L. Guerrero, “ISO 9000 quality system certification and its impact
on product and process innovation performance,” Int. J. Prod. Econ., vol. 158, pp. 197–
207, 2014.

[28] R. Andersson, H. Eriksson, and H. Torstensson, “Similarities and differences between
TQM, six sigma and lean,” TQM Mag., vol. 18, no. 3, pp. 282–296, 2006.

[29] R. B. Hunter, R. H. Thayer, and M. C. Paulk, “The Capability Maturity Model for
Software,” in Software Process Improvement, Wiley-IEEE Press, 2001, pp. 49–88.

[30] Z. Xiaosong, H. Zhen, ZhangMin, W. Jing, and Y. Dainuan, “Process integration of Six
Sigma and CMMI,” in 2008 6th IEEE International Conference on Industrial
Informatics, 2008, pp. 1650–1653.

[31] L. Zhang and D. Shao, “Software process improvement for small and medium
organizations based on CMMI,” in 2011 2nd International Conference on Artificial
Intelligence, Management Science and Electronic Commerce (AIMSEC), 2011, pp.
2402–2405.

[32] K. Rungi and R. Matulevičius, “Empirical Analysis of the Test Maturity Model
Integration (TMMi),” in Information and Software Technologies: 19th International
Conference, ICIST 2013, Kaunas, Lithuania, October 2013. Proceedings, T. Skersys, R.
Butleris, and R. Butkiene, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp.
376–391.

[33] E. Van Veenendaal, “TMMi and ISO/IEC 29119: Friends or Foes?,” TMMi Foundation,

47

	

2016. [Online]. Available: https://www.tmmi.org/wp-
content/uploads/2016/09/ISO_29119_vsTMMix.pdf. [Accessed: 13-May-2017].

[34] A. B. Farid, E. M. Fathy, and M. A. Ellatif, “Towards Agile Implementation of Test
Maturity Model Integration (TMMI) Level 2 using Scrum Practices,” IJACSA) Int. J.
Adv. Comput. Sci. Appl., vol. 6, no. 9, 2015.

[35] F. S. Silva, F. S. F. Soares, A. L. Peres, I. M. d. Azevedo, P. P. Pinto, and S. R. d. L.
Meira, “A Reference Model for Agile Quality Assurance: Combining Agile
Methodologies and Maturity Models,” in 2014 9th International Conference on the
Quality of Information and Communications Technology, 2014, pp. 139–144.

[36] C. Garcia, A. Dávila, and M. Pessoa, “Test Process Models: Systematic Literature
Review,” in Software Process Improvement and Capability Determination: 14th
International Conference, SPICE 2014, Vilnius, Lithuania, November 4-6, 2014,
Proceedings, A. Mitasiunas, T. Rout, R. V O’Connor, and A. Dorling, Eds. Cham:
Springer International Publishing, 2014, pp. 84–93.

[37] I. O. for Standardization, I. E. Commission, I. of E. and E. Engineers, and I.-S. S. Board,
“Software and systems engineering : software testing - part 4: test techniques,”
ISO/IEC/IEEE 29119-4:2015, pp. 1–139, 2015.

[38] S. B. Merriam and Tisdell Elizabeth J, Qualitative research: a guide to design and
implementation, 4th ed. San Francisco: Jossey-Bass, 2016.

[39] W. C. Booth, G. G. Colomb, and J. M. Williams, The Craft of Reseach, 2nd ed. Chicago:
The University of Chicago Press, 2003.

[40] J. W. Creswell, Qualitative Inquiry and Research Design: Choosing Among Five
Traditions, 2nd ed. Thousand Oaks: Sage Publications, 2007.

[41] M. M. Hennink, Focus group discussions. New York: Oxford University Press, 2014.

[42] F. Shull, J. Singer, and D. I. K. Sjøberg, Eds., Guide to Advanced Empirical Software
Engineering. London: Springer London, 2008.

[43] A. K. Shenton, “Strategies for ensuring trustworthiness in qualitative research projects,”
Educ. Inf., vol. 22, pp. 63–75, 2004.

[44] Scania CV AB, “Scania at a glance 2016,” 2016. [Online]. Available:
https://www.scania.com/group/en/scania-at-a-glance/. [Accessed: 16-May-2017].

[45] Allabolag, “Scania IT Aktiebolag - Företagsinformation,” 2017. [Online]. Available:
http://www.allabolag.se/5560841206/scania-it-aktiebolag. [Accessed: 19-May-2017].

[46] Scania IT, “Scania IT Strategy 2017+.” Internal document, pp. 1–18, 2016.

[47] Scania CV AB, “How Scania is Managed.” Internal document, pp. 5–48, 2017.

[48] Scania IT, “Test vision and strategy.” Internal document, p. 1–5, undated.

[49] S. Project, “Selenium WebDriver — Selenium Documentation,” 2017. [Online].
Available: http://www.seleniumhq.org/docs/03_webdriver.jsp#introducing-webdriver.
[Accessed: 27-May-2017].

	

	 	

48

	

Appendix A: Agile manifesto

Manifesto for Agile Software Development1

We are uncovering better ways of developing software by doing it and helping others do
it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more
(Text formatted by the author for clarification).

Principles behind the Agile Manifesto2

We follow these principles:

§ Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

§ Welcome changing requirements, even late in development. Agile processes
harness change for the customer's competitive advantage.

§ Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

§ Business people and developers must work together daily throughout the project.
§ Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.
§ The most efficient and effective method of conveying information to and within

a development team is face-to-face conversation.
§ Working software is the primary measure of progress.
§ Agile processes promote sustainable development. The sponsors, developers, and

users should be able to maintain a constant pace indefinitely.
§ Continuous attention to technical excellence and good design enhances agility.
§ Simplicity--the art of maximizing the amount of work not done--is essential.
§ The best architectures, requirements, and designs emerge from self-organizing

teams.

																																																													
1 K. Beck, M. Beedle, A. Bennekum et al., “Manifesto for Agile Software Development”, 2001. [Online].
Available: http://agilemanifesto.org/history.html. [Accessed: 28-Feb-2017].

2 K. Beck, M. Beedle, A. Bennekum et al., “Principles behind the Agile Manifesto”, 2001. [Online].
Available: http://agilemanifesto.org/principles.html. [Accessed: 28-Feb-2017].

49

	

Appendix B: Interview guides

Interview guides

The interview guides are sorted by date.

Date: 2017-02-17
Participants: Respondent 1, Respondent 2, Respondent 3, Yama Aziz
Place: Södertälje
Questions:

1) What is your professional working role and which responsibilities does it entail?
2) What projects are you involved in?
3) Describe how your department conducts software development. Do you use any

agile ways of working?
4) What does it mean to you to work with testing in an agile way?
5) How is test planning conducted in your project?
6) How are developers and testers involved in test planning? What type of

communication and feedback do you have?
7) Do you believe in test automation? If yes, why?
8) What test types are automatic in your project today?
9) Which test automation tools do you use?
10) What are the challenges with test automation?
11) Do you experience automatic tests breaking often? If yes, which ones and why?
12) How can automatic test cases be maintained?
13) Do you have a regression suite consisting of automated tests? If yes, how is it

maintained?

Date: 2017-02-20
Participants: Respondent 4, Yama Aziz
Place: Södertälje
Questions:

1) Describe your role in the SPORT-project.
a. What have you been working with within the project?

2) Why do you believe test automatization is important?
3) How familiar are you with SPORT’s back-end?
4) What are your thoughts on SPORT’s automated unit tests?
5) How familiar are you with SPORT’s front-end?
6) What are your thoughts on SPORT’s automated regression tests?
7) What are the challenges with regression testing on the GUI?
8) Why are automated regression tests focusing on the GUI breaking?
9) How can automated regression tests focusing on the GUI be maintained?
10) What is the interaction in the scrum teams – between developers and testers –

during the sprints with regards to finishing the scrum backlog?
a. Does developers and testers work independently?
b. When do developers and testers communicate?
c. What problems do they solve together?

50

	

d. In what ways can they work together to write maintainable automated
regression tests?

Date: 2017-02-23
Participants: Respondent 5, Respondent 6, Yama Aziz
Place: Södertälje
Questions:

1) What is your professional working role and which responsibilities does it entail?
2) What projects are you involved in?
3) Describe how your department conducts software development. Do you use any

agile ways of working?
4) What does it mean to you to work with testing in an agile way?
5) How is test planning conducted in your project?
6) How are developers and testers involved in test planning? What type of

communication and feedback do you have?
7) Do you believe in test automation? If yes, why?
8) What test types are automatic in your project today?
9) Which test automation tools do you use?
10) What are the challenges with test automation?
11) Do you experience automatic tests breaking often? If yes, which ones and why?
12) How can automatic test cases be maintained?
13) Do you have a regression suite consisting of automated tests? If yes, how is it

maintained?

Date: 2017-03-13
Participants: Respondent 7, Yama Aziz
Place: Södertälje
Questions:

1) Describe your role in the SPORT-project.
2) Could you describe what Sales Portal is in your words?
3) How many development teams are working on SPORT?
4) What agile methodology is the project using?

a. What is the reasoning and decision behind said method?
b. Is this common/unique for Scania IT?

5) Tell me about Sales Portal’s project lifecycle – from release planning to release to
production:

a. Which “phases” can the activities in the lifecycle be divided into?
b. How is testing conducted?

i. When can the testing process start?
ii. On what levels is the software tested?

iii. Which test types are used?
iv. Are you trying to implement early testing? How?
v. What is the distribution between developing and testing

efforts/resources?
vi. How is incident reporting conducted?

6) How has the need for test automation manifested in the SPORT-project?

51

	

a. Which test cases are automated today? On what level?
b. How is well is test automation performing on the different test levels

today?
c. From your point of view, what have the challenges with test automation

been?
7) Tell me about the build pipeline in SPORT?

a. What development environments are there?
b. How is software built and deployed in different environments?
c. How are you keeping track of the build pipeline?
d. Who is overseeing the build pipeline? Is it a shared responsibility to

maintain it?

Date: 2017-03-14
Participants: Respondent 8, Yama Aziz
Place: Södertälje
Questions:

1) Tell me about yourself and your role in the SPORT-project.
2) What is software testing?
3) What does quality mean to you?
4) How is quality created?

a. Writing bug-free code?
b. Finding bugs and reporting and/or resolving them?

5) Does Scania IT have an organizational test/quality policy?
6) Describe the regression testing planning process in the SPORT context?

a. Inputs? Activities? Output?
7) How is the regression testing monitored and controlled?

a. How is progress tracked?
b. How is progress shared with stakeholders?
c. How is regression testing adapted to changed circumstances?
d. How regression test selection prioritized? How does one decide which

tests to run first?
8) How/When is regression testing considered finished?
9) What has the challenges been with automating regression testing on the UI level?
10) Automating the existing regression suite will take time. How do you believe this

automation process can be achieved?
11) What does the SPORT-project hope to achieve with automatic regression tests?

Vision? Goal?
a. Is the organization inclined/on board towards automation?
b. How will freed up resources be used?
c. What is your stance on exploratory testing as a complement to automatic

regression tests?

Date: 2017-03-15
Participants: Respondent 9, Yama Aziz
Place: Södertälje
Questions:

52

	

1) Tell me about yourself and your role in the SPORT-project?
2) Tell me about BVD and their role in relation to SPORT?
3) What are BVDs demands and expectations?

a. If possible, could you tell me about the SLA and what SPORT guarantees
to BVD?

4) In what way does BVD influence the development process in SPORT?
a. Working practices? Use of tools and frameworks?

5) What do you believe the benefits of test automation are?
6) Do you think these benefits are visible to BVD?
7) Have BVD requested more test automation in the development process?
8) How do you believe test automation can be motivated and argued for to implement

to BVD?

Date: 2017-03-16
Participants: Respondent 10, Yama Aziz
Place: Södertälje
Questions:

1) Tell me about yourself and your role in the SPORT-project
2) Describe the testing process in the SPORT context?

a. When can testing start? When does it finish? What activities do you do in
between?

b. Who are the testers?
c. Who writes the tests?

3) What is your experience with test automatization?
a. What level? What type of tests?
b. How much maintenance does automated tests need?

4) In your experience, what have the challenges with test automatization been?
5) Why should SPORT invest in test automatization? What opportunities do you

believe it will bring?
6) Do you see any risks with a large manual executing regression batch?
7) How can the regression batch be automated in the coming sprints?

a. What are the key elements?

Date: 2017-03-27
Participants: Respondent 11, Yama Aziz
Place : Södertälje
Questions:

1) Which test cases should be automated?
2) How much should be optimized?

a. Optimal distribution between manual and automatic tests?
3) How should management regard test automation?

a. Why are not manual regression tests good enough?
4) How does exploratory testing relate to automatic testing?

a. Is it a complement or competition?
5) How do you write good maintainable test cases?

53

	

6) How do you ensure testability in a graphical user interface which changes
constantly?

	

54

	

Appendix C: Scrum

Figure 1. The Scrum methodology1

The Scrum methodology is illustrated in figure 1. A brief explanation of scrum
terminology is given below2.

Roles

§ Product owner: often one person, representing all stakeholders, who manage the
product backlog by prioritizing and delivering the highest business value first.

§ Team: a close-knitted, self-organizing and cross-functional group of individuals
who develops product increments during sprints.

§ Scrum master: an individual who shields the team by removing impediments and
implements scrum practices and rules.

Artefacts

§ Product backlog: a list of software requirement items owned and prioritized by
the product owner. Is used as input to the sprint planning.

§ Sprint backlog: a subset of the product backlog, chosen and committed to being
developed by the team.

§ Product increment: an executable deploy package which can be presented during
demos and should have the potential to be shipped after each sprint.

																																																													
1 Scania IT, ”Agile Introduction – Scrum in Sales Portal”, Internal document, 2015.
2 Ibid.

55

	

Meetings

§ Sprint pre-planning: a preparation for a coming sprint where the team achieves a
common understanding of the requirements and estimation of their capacity.

§ Sprint planning: planning of the sprint scope is performed where the team
commits to developing items from the sprint backlog.

§ Daily scrum: a brief meeting with the team where impediments and current
information are shared.

§ Scrum of scrum: a brief meeting with scrum masters or team representatives and
stakeholders where impediments and current information are shared.

§ Demo: a demonstration where new features are presented to stakeholders.
§ Sprint review: a review where the sprint outcome is evaluated together with the

product owner and team. Unfinished items are moved back to the backlog.
§ Retrospective: a meeting where the team reflects back on the previous sprint and

acknowledges positive things and raises awareness to possible improvements.

