
UPTEC STS 17018

Examensarbete 30 hp
Juni 2017

From Intent to Code
Using Natural Language Processing

Adam Byström

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

From Intent to Code using Natural Language
Processing

Adam Byström

Programming and the possibility to express one’s intent to a machine is becoming a
very important skill in our digitalizing society. Today, instructing a machine, such as
a computer to perform actions is done through programming. What if this could be
done with human language? This thesis examines how new technologies and
methods in the form of Natural Language Processing can be used to make
programming more accessible by translating intent expressed in natural language
into code that a computer can execute. Related research has studied using natural
language as a programming language and using natural language to instruct robots.
These studies have shown promising results but are hindered by strict syntaxes,
limited domains and inability to handle ambiguity. Studies have also been made
using Natural Language Processing to analyse source code, turning code into
natural language. This thesis has the reversed approach. By utilizing Natural
Language Processing techniques, an intent can be translated into code containing
concepts such as sequential execution, loops and conditional statements. In this
study, a system for converting intent, expressed in English sentences, into code is
developed. To analyse this approach to programming, an evaluation framework is
developed, evaluating the system during the development process as well as usage
of the final system. The results show that this way of programming might have
potential but conclude that the Natural Language Processing models still have too
low accuracy. Further research is required to increase this accuracy to further
assess the potential of this way of programming.

ISSN: 1650-8319, UPTEC STS17 018
Examinator: Elísabet Andrésdóttir
Ämnesgranskare: Joachim Parrow
Handledare: Magnus Lundstedt

Populärvetenskaplig sammanfattning

Programmering och förståelsen för hur man interagerar med en dator blir allt viktigare i

vårt alltmer digitaliserade samhälle. Programmering blir ett verktyg för att ta till sig och

kontrollera den nya tekniken. Detta skapar ett stort behov av personer med denna

specifika kompetens men också frågeställningar om tekniken verkligen är tillgänglig för

alla.

Ny teknik kan vara lösningen på detta. Idag har de flesta människor en dator i fickan

och behöver bara säga “Siri” eller “Okej Google” för att denna dator ska kunna göra allt

från att svara på deras frågor till att skicka ett SMS eller boka en restaurang. Det har

under senare år gjorts stora framsteg inom maskininlärning; att en dator kan lära sig

saker genom att kolla på stora mängder data och Natural Language Processing; en

dators förmåga att förstå mänskligt språk. Denna teknik gör det möjligt att få en dator

att tolka en människas avsikt med högre säkerhet och flexibilitet än tidigare.

Denna studie undersöker möjligheten att använda nya tekniker inom Natural Language

Processing som ett hjälpmedel att skapa förståelse för hur man interagerar med en dator

och som ett verktyg att lära sig programmering. Under studien utvecklas ett system som

omvandlar användarens avsikt, uttryckt i mänskligt språk, till kodspråk som sedan kan

exekveras av datorn. Detta system implementeras i ett spel där användaren beskriver

vad hen önskar ska hända i spelet, i form av spelpjäser som utför handlingar. Denna

vilja översätts därefter till kod som visas för användaren och sedan exekveras för att

styra spelet.

För att utvärdera dessa teknikers framtida möjlighet att användas för att översätta

mänsklig avsikt till kod utvecklas ett testramverk. Ramverket utvärderar såväl teknikens

begränsningar som användarupplevelsen av att programmera genom att beskriva sin

avsikt i mänskligt språk.

Resultaten av studien pekar på att denna typ av programmering potentiellt skulle kunna

bidra till att föra mänskligt språk och programmering närmare varandra. Studien visar

dock att det krävs vidare forskning och utveckling inom Natural Language Processing

för att öka noggrannheten av modellerna. Det krävs också vidare utveckling för att

kunna modellera ytterligare delar av kontexten av användarens avsikt. I dagsläget håller

dessa modeller låg noggrannhet. Detta medför att framförallt personer utan, eller med

begränsad, programmeringserfarenhet har svårt att använda systemet. Med ökad

noggrannhet hos dessa modeller skulle system, likt det som utvecklas i denna studie, på

ett mer korrekt sätt kunna representera användarens avsikt, oavsett användarens tidigare

programmeringserfarenhet. Detta skulle bana väg för mer forskning för att vidare

undersöka dessa systems påverkan på förståelse för programmering och hur en dator

fungerar.

1

Acknowledgements

I would first like to thank my supervisor Magnus Lundstedt and everyone else at

Precisit for great brainstorming sessions and great support during my work with this

thesis. It has been a very pleasant experience to work alongside you all.

I would also like to send much gratitude to my subject reader Joachim Parrow for

welcomed guidance and feedback. Starting off with a crazy idea, you helped me realize

it.

Others who helped realize this thesis and deserve boundless appreciation are the people

who took time to participate in this study; Oscar, Elisabeth, Selma, Arvid, David and

Magnus. Thank you all!

And finally, a huge thank you to Linn Öfverstedt for being my STS partner in crime,

making the most out of our education by making it our own.

2

1. Introduction .. 3

2. Background .. 4

2.1 Computational Thinking .. 4

2.2 Alternative means of programming ... 5

2.2.1 Learning programming .. 5

2.2.2 Natural Language Programming .. 7

2.3 Natural Language Processing .. 9

2.3.1 Part-of-Speech Tagging ... 10

2.3.2 Word-Sense disambiguation and similarity .. 11

2.3.3 Dependency Parsing .. 12

2.3.4 Semantic Role Labelling .. 15

2.4 Related work ... 17

2.5 Present work... 18

3. Methods .. 18

3.1 Methodical Approaches .. 18

3.1.1 Approach 1: Dependency parsing and Part-of-Speech tagging 19

3.1.2 Approach 2: Semantic Role Labelling and Part-of-Speech tagging 19

3.1.3 From speech to text ... 20

3.1.4 From code to game .. 20

3.1.5 Performance evaluation .. 20

3.2 User testing .. 23

3.3 Limitations .. 23

3.4 Implementation .. 24

3.4.1 Testing interface... 24

3.5 Speech to Text Implementation .. 25

3.6 Study 1: Dependency Parsing .. 25

3.7 Study 2: Semantic Role Labelling .. 26

3.8 Semantic matching .. 27

3.9 Code generation ... 28

4. Results and Discussion .. 29

4.1 Ease of implementation... 29

4.2 Amount of generalisation.. 30

4.3 Learnability ... 31

4.4 Efficiency .. 32

4.5 Errors .. 33

4.6 Satisfaction ... 36

5. Conclusions and future work ... 37

References .. 40

3

1. Introduction

With a society that is becoming increasingly integrated with IT and technology, the

need to understand and interface with computers is becoming more and more important.

With programming being a core skill for doing this, the need for programmers will only

increase. According to Code.org, a non-profit organisation dedicated to expanding

access to computer science and programming, in 2020 there will be 1.4 million

computing jobs in the United States alone, but only 400 000 computer science students

to fill them (Code.org, 2013). In a newly published report on the technology outlook for

Nordic schools, one of the key trends observed was an increased importance of coding

and Computational Thinking: “the skills required to learn coding combine deep

computer science knowledge with creativity and problem-solving” (Adams Becker et al,

2017). According to the report, many make the case that coding should be embedded as

a part of primary and secondary education curricula, something that is now done in

Finland (Yle, 2015) and will be done in Sweden, starting from 2018 (Regeringskansliet,

2017).

Parallel to this, a lot of progress has been made in the field of Natural Language

Processing, the possibility for a computer to learn, understand and produce human

language. This progress is primarily made possible by four different factors; increased

computing resources, increased availability of data, improved machine learning

methods and finally; improvements in the field of linguistics (Hirschberg & Manning,

2015). These improvements have made it possible for computers to, with a much higher

accuracy than before, understand human language and humanity over all. With virtual

assistants like Apple’s Siri, Cortana and Google Assistant, we humans can interact with

a computer in a whole new way, asking it to handle interactions with our smartphone

apps or answering questions. What if this technology could be used to develop new

ways of interacting with a computer? What if it could replace programming, making

technology accessible for everyone?

This thesis studies how a computer can, using the available tools for Natural Language

Processing, translate an intent, expressed in human language, into code, making

Computational Thinking and programming more accessible.

To do this, two different approaches are developed based on Part-of-Speech tagging and

either Dependency Parsing or Semantic Role Labelling. As a testing framework, a

system that takes an intent, expressed in natural language, applies one of the approaches

and generates Actions, Objects and their relations, is developed. These are then

semantically matched using the lexical resource WordNet to handle ambiguity. Finally,

code is generated that is executed to control a game environment. To evaluate the two

approaches, an evaluation framework consisting of two parts is developed. The first part

evaluates the technical challenges of implementing the approaches and their limitations.

The second part is aimed at evaluating the user experience of the system and its

4

potential for giving a greater understanding of programming and Computational

Thinking.

This study can conclude that this way of programming might have potential, especially

using Semantic Role Labelling. But due to the low accuracy and flexibility of the

Natural Language Processing models, it is difficult to evaluate its future potential. This

study shows that the errors that occur in the Natural Language Processing models

creates confusion and frustration to a degree where the system’s purpose becomes

almost impossible to evaluate. Further research and development of Natural Language

Processing models with higher accuracy is required to be able to further research similar

approaches to programming as studied in this thesis.

2. Background

As a basis for this thesis, the background covers three main areas of research. First, to

analyse the underlying reasoning involved in programming, Computational Thinking is

explored; what it is and how abstractions help with solving problems in a structured

way. Second, the thesis gives a brief overview of alternative methods of programming.

The overall goal of this thesis is to make learning programming more accessible. This

background section explores many attempts to do so, with everything from games to

Natural Language Programming, and the lessons learned from that. Third, a range of

Natural Language Processing techniques are explored, with the goal of extracting the

intent from natural language sentences; Part-of-Speech tagging, Word-Sense

Disambiguation and Similarity, Dependency Parsing and Semantic Role Labelling.

2.1 Computational Thinking

Computational Thinking is using the concept of abstraction to solve problems, design

systems and understand human nature in a way that is derived from computing. Wing

(2008) describes the abstractions of Computational Thinking as richer and more

complex than the ones found in other fields, such as mathematics or physical sciences.

They are often abstractions “beyond the physical dimensions of time and space”, but at

the same time being limited by them (Wing, 2008). Wing (2008) also predicts that this

way of thinking will be a central part of everything in the future and that this introduces

new educational challenges; how and when should people learn Computational

Thinking?

One basis for Computational Thinking is the selection process of which details to

highlight and which to hide with abstraction (Wing, 2008). Another is the concept of

working with several layers at the same time, with standardised connections between

them. Examples of this in computing are for example the network stack or different

components in a larger system that interfaces with API calls, making it possible to

interact with other layers without deeper knowledge of them (Wing, 2008).

5

From the perspective of Computational Thinking, a computer program is a list of step-

by-step instructions that tell the computer what to do in a very precise manner. Sáez-

López et al (2015) wrote that the creation of such a computer program does not require

a special expertise, just a structured way of thinking. It all boils down to how a

computer, either a computer in the classical sense or a computing human, can solve a

problem by choosing the right abstractions and computer for the task at hand (Wing,

2008). According to, among others, Wing (2008) and Sáez-López et al (2015); to ensure

a broad understanding and use of Computational Thinking, as needed in the digitalizing

society, Computational Thinking should be taught to everyone in the early years of

childhood.

2.2 Alternative means of programming

To make it easier for children as well as adults to learn and practise Computational

Thinking and programming, alternative means of programming have been developed.

Many of them use abstractions for the underlying computer instructions, such as

graphical elements or natural language.

2.2.1 Learning programming

Since the early 1960’s, there has been a substantial amount of research in developing

tools to make it easier for people to learn programming. New programming languages

and environments have been developed. They focus on different aspects of

programming and how these can be learnt: how to structure a solution to a problem and

how to write unnatural syntax and commands (Kelleher & Pausch, 2005).

Kelleher and Pausch (2005) divide the different aspects of programming into two

different categories based on what they conclude are the biggest obstacles in learning

programming. These are expressing the intention of the program to the computer and

understanding how the computer executes this intention in the form of instructions.

Several languages have been developed to make it easier for a user to express intentions

in a syntax that the computer can understand. According to Kelleher and Pausch (2005),

novice programmers often have problem with translating intention to code.

Programming languages in this category primarily focus on either making the syntaxes

easier to learn or by using alternative ways in which a user can express intention to the

computer.

Several different approaches to making the syntax easier have been taken. These

include: simplifying the language, limiting the domain of problems to be solved by

programming and preventing syntax errors. As Kelleher and Pausch (2005) conclude:

many general-purpose languages use syntaxes and names of commands that feel

unfamiliar to users since they originate from the computer rather from the human

language. Languages like BASIC, Blue and Junior Java tackle this by adopting the

programing languages vocabulary to English, as well as deriving syntaxes and concepts

from everyday life. By doing this, the scope of solvable problems is limited, as

6

described by Wing (2008), but this makes the language look and function like a

traditional programming language. This in turn, according to Kelleher and Pausch

(2005), makes the transition to a general-purpose language easier.

To prevent syntax errors, the most common method is to use a programming synthesizer

with a finite set of predefined building blocks or templates with blank sections with

space for a specific statement, condition or phrase. By limiting the combinations of

these templates, syntactic errors can be avoided (Kelleher & Pausch, 2005). This

concept is also used in programming languages that focus on expressing intention in

alternative ways to the computer.

Several ways to express intention to the computer have been developed with great

success. One approach in which programming languages try to abstract out the syntaxes

is using user actions, such as button presses in a game, within a digital environment, to

define a program. Another approach is to create objects that in some sense represent

units of code that can be moved around and combined in different ways (Kelleher &

Pausch, 2005). These objects can be in the form of graphical elements on a computer

screen but also in the form of physical building blocks, such as in Electronic Blocks

from Wyeth and Purchase (2000). Environments for learning programming especially

targeted at children have increased in popularity the last couple of years. Some of the

most popular of these are graphical, object based programming languages like Alice,

Scratch and the website Code.org, and where the last two are based on the block-based

programming language Google Blockly (Good, 2011; Kalelioğlu, 2015).

Scratch is a block based programming language created by the Lifelong Kindergarten

group at the MIT Media Lab, as an extension on Google Blockly. The Scratch-blocks,

that focus on creating interactive stories, games and simulations fall into seven different

categories. These are: motion, looks, sound, pen, control, sensing operators and

variables (Sáez-López et al, 2015; Lifelong Kindergarten Group, 2017). Results from

studies performed by Sáez-López et al. (2015) show that, because of the playfulness and

the graphical nature of the language, coding in this interface is much easier than

traditional general-purpose programming languages. Brennan and Resnick (2012) have

developed a framework of concepts used in many programming languages and that are

also implemented in Scratch using different sets of blocks. These are Sequences, Loops,

Events, Parallelism, Conditionals, Operators and Data.

Sequences are described as dividing an activity or task into a series of smaller steps or

instructions that each do one thing. Loops are described as executing several of these

instructions several times without repeating the instructions themselves. Events are

“one thing causing another thing to happen” (Brennan & Resnick, 2012); for example,

when a button on the keyboard is pressed or when an object on screen is clicked.

Parallelism is when several sets of instructions are executed simultaneously, or in

parallel. Conditionals are the concept of making decisions based on if a condition is

fulfilled or not. Operators are instructions that perform numerical or string

manipulations using mathematical, logical and string expressions, or operations. Lastly,

7

the Data concept involves storing, retrieving and updating values, and which in Scratch

are represented by variables and lists. Variables can hold one value, a number or a

string, while lists can hold a collection of numbers and strings.

Studies on how games can be used in education and to teach programming show that

teaching concepts of programming and Computational Thinking through a game can

make it easier to learn as well as be more fun and engaging (Bromwich, Masoodian &

Rogers, 2012). Bromwich, Masoodian & Rogers (2012) conducted a study where they

developed a game for learning and practising the basic concepts of programming in an

engaging way, without using traditional syntax. They saw that students who learn

programming traditionally are taught syntax first and then rushed into more complex

projects without practising the basic concepts, like loops. Their game environment

consisted of a 2D word with a visual programming editor where commands, conditional

statements and loops were represented by circles with text. These circles are then

connected to control an avatar. The goal was to, for each level in the game, navigate it

through a maze with an increasing level of complexity. The study showed that a game

environment is both a fun and inspiring way of learning and practicing fundamental

programming concepts.

2.2.2 Natural Language Programming

What if we could use human language, or “natural language”, for programming? Could

that make it easier for novice programmers to get into coding? Up to date, several

attempts to create such a programming language have been made. Languages such as

HyperTalk, Cobol or Inform 7 all are based on this notion, writing code that is as close

to the human language as possible, making programming more accessible. But there

have also been other attempts with less noble intent. LOLCode is a programming

language that its creators call “An esoteric programming language” (LOLCode, 2017).

It is based around internet slang and so called memes, a set of culturally significant

references, primarily the internet's obsession with cats.

Several studies into the use of natural language as means of programming, both in the

context of code generation, but also for comprehension, debugging and collaboration

have also been made. As early as 1966, Sammet (1966) was discussing the potential of

using the human language as a programming language. Sammet (1966) describe that the

challenge of using English or any other human language for programming will always

be for the computer to accurately resolve any ambiguity. For example, by querying the

user. It is also important that the computer can determine the correct interpretation of a

sentence where a number of possible syntactic interpretations could be made. She

speculates that there could be patterns to these ambiguities and syntactic variations that

the computer potentially could learn and thereby reduce the amount of query-interaction

with the user (Sammet, 1966).

Empirical studies on the feasibility of programming in natural language have, over the

years, yielded varying results. Biermann et al (1983) showed promising results in their

8

study using the Natural Language Programming system NLC on a limited domain of

operations on data tables and matrixes. As concluded in the study, students in a first

course in programming could quickly learn and get started programming with the subset

of the English language implemented in the system. They also concluded that the

vagueness and ambiguity of natural language did not significantly affect performance

when used with the limited domain of NLC (Biermann et al, 1983). Capindale and

Crawford (1990), in another study, found that another natural language system,

Intellect, could be used successfully in limited querying of databases in the case when

the stored data is known to the user. Although successful, this study found that one of

most potent limitations to the system was its inability to handle context and grammatical

variations as well as the systems limited vocabulary and functionality (Capindale and

Crawford, 1990). Another, more sceptical approach comes from Miller (1978). In his

study, he found that descriptions of programs from the users are often incomplete in

relation to the code of the program. His study also showed that the users’ descriptions

state the actions first and then the conditions in which the action is performed, and

which is the opposite to how a computer handles conditions (Miller, 1978).

Among the more recent publications on the subject, Good (2016) performed several

studies on game development as a basis for Natural Language Programming. First

Inform 7, a programming language primarily focused on developing interactive stories

with a ‘read like English’-syntax was studied (Good, 2016). The goal of this study was

to identify potential problems that arose when adults with no prior programming

experience were faced with the programming language. Two major groups of problems

were discovered. First, the differentiation between what natural language should be

interpreted as programming language and what should be interpreted as strings. Second,

problems related to using natural language as a programming language in general, such

as the use of synonyms of syntactic keywords or the use of incorrect Inform 7 syntax

(Good, 2016).

In the second study, Good analysed how children, aged 11 – 12 years, would naturally

describe events and behaviours in a game by letting them play a game that embodied

one of several programming elements (conditions, Booleans etc.). The results of this

study showed poor performance for code generation, primarily because of problems

with incomplete descriptions, much like the findings of Miller (1978). A third study

found that the children showed great improvement when using laminated cards with

different programming elements that should be paired together in a non-digital setting.

Good (2016) could confirm the findings of Miller (1978), that incomplete statements

result in a large portion of encountered errors. Good (2016) also confirmed the

ambiguity discussed by Sammet (1966) and her own findings regarding strings in

contrast to natural language “code”. Based on these findings, Good (2016) developed

seven design principles for developing a Natural Language Programming language.

They are divided into two categories; the first one code generation and the second is

comprehension, debugging and collaboration.

9

Code generation

1) Constraint expression during program generation. Good suggests that, in

order to prevent novice programmers from running into syntax errors, the

domain of expressions should be limited. This could also be combined with an

autocomplete feature in the case of a text-based language.

2) Clearly distinguish ‘code’ from free-text. When using natural language as a

programming language it should be clear to the user when natural language

should be interpreted as ‘code’ and when it should be interpreted as strings.

3) Highlight distinctions between different computational categories. It is,

according to Good, important to differentiate between different programming

constructs, such as states and actions, so that they don’t get mixed up.

4) Make underlying structure visible to avoid errors of omission or

commission. It should be clear how different programming constructs go

together, and, when there are missing constructs, what they are.

Comprehension, debugging and collaboration

5) Provide a full-sentence natural language description of the code. Good found

in her studies that it was vital that the user easily could understand and review

the code they have just written. She suggests that a description of the code in

natural language could solve this.

6) Use ‘natural’ natural language. The studies also found that full-sentence,

everyday language should, as far as possible, be used for both syntax and in

error messages to the user.

7) Do not suggest the system can engage in dialogue when it cannot. In one of

the studies, using the programing language Inform 7, the error messages were

verbose and “pseudo-conversational”. In the study, Good found that this was

confusing rather than helpful and so suggests to not portray the system as more

capable than it is.

2.3 Natural Language Processing

Human language, or natural language, is complex and ever evolving. One of the first

recognized attempts to, in the tradition of scientific theory, create theorems and rules for

understanding and generating language was made by Chomsky (1957). He found that

grammatical structure, or Grammatical sequences and Ungrammatical sequences, could

be described in terms of logical rules, as opposed to the semantic meaningfulness of the

sequence. The classical example of this is the sequence ”colourless green ideas sleep

10

furiously” (Chomsky, 1957) that does not hold any valid semantic meaning but,

according to Chomsky (1957), is still grammatically valid.

Even though there have been debate and criticism of these theories, Chomsky has been

renowned for the scientific approach he brought to linguistics (Sampson, 1980; Markus,

1995). This scientific approach has made a great impact in the field of Natural

Language Processing, NLP. NLP is the technique for making a computer understand

natural language. The Natural Language Processing community has grown since the

1960s and has focused on a set of tasks. Some of these are Machine Translation, Named

Entity Recognition, Part-of-Speech Tagging, Parsing, Question Answering,

Relationship Extraction, Speech Recognition and Word Sense Disambiguation. In the

following sections some of these techniques, related to this thesis, are explained in more

detail.

2.3.1 Part-of-Speech Tagging

Part-of-Speech tagging is the process of labelling a word in a sentence with what part of

language it belongs to, such as verbs, adverbs and nouns. A lot of research and work in

general has been done in this area of Natural Language Processing. This is mostly

thanks to the development of large corpora, structured set of texts (Martinez, 2012).

The two major challenges for Part-of-Speech tagging are ambiguous words; words that,

depending on context, are part of different parts of speech and words that are unknown.

Since the Part-of-Speech taggers are trained on a limited set of corpora (a finite amount

of text), if that word does not occur in the training data, it is harder for the tagger to

label the word correctly (Martinez, 2012). Several methods for Part-of-Speech tagging

and trying to address these problems have been made using different approaches. These

can be divided in two categories; rule-based and probabilistic methods.

Rule-Based methods use, as the name suggests, rules, in the form of rule sets of allowed

sequences of tags. In most cases these are created manually by experts in linguistics,

something that Martinez (2012) describes as “too inefficient to be practical”. Due to this

inefficiency, Brill (1995) developed a method, where a model can learn rules from

corpora using Transformation-based learning, as depicted in Figure 1.

Figure 1: Transformation-based learning, (Brill, 1995)

11

The method starts off with an unannotated set of texts that it gives an initial annotation.

This is then processed by a learner that compares it with a pre-labelled text, referred to

as truth. By doing this iteratively the learner automatically creates new set of rules

(Brill, 1995).

In the early 1990s, a different approach to Part-of-Speech tagging started replacing the

rule-based methods with probabilistic methods, and primarily Markov model taggers.

The Markov models, in combination with increased access to structured data,

transformed the whole field of Natural Language Processing altogether (Martinez,

2012). By not needing to write rules that tended to be extremely complex and often had

a low amount of flexibility they could reach a higher effectiveness with the same or

higher accuracy (Markus, 1995).

Modern Part-of-Speech taggers are often based on Hidden Markov Models (HMM:s), a

variant of the Markov models (Martines, 2012). Markov models, or Markov chains are

based on the notion that, for a sequence of random variables that can take on one, out of

a finite set of states, a variable is only dependent on the immediately preceding variable,

independent of time. In the case of Part-of-Speech (POS) tagging, the POS-tag of a

word is only dependent on the POS-tag of the preceding word, independently of where

in a sentence these words are.

A Markov chain can also be envisioned as stochastic transitions between states where

the transition probabilities to the next state are based on the current state. In a standard

Markov model these states are observable and it is therefore possible to compute these

transitions. In a HMM the sequence of states is not observable. It is only the output

from these states that is visible; the words, in the case of POS-tagging, that can be

observed. By training the POS-tagger model on a pre-tagged corpus that is treated as a

visible Markov model where the states are observable and probabilities can be

computed, it is then possible to apply this model to a new set of words, but as a HMM,

observing the word we wish to tag (Manning & Schütze, 1999).

Another probabilistic technique used for Part-of-Speech tagging is the Maximum

Entropy method, MaxEnt. In contrast to Markov chains, MaxEnt models assume that

the unknown POS-tags are conditionally independent of each other. The MaxEnt model

is based on maximizing the entropy of a probability distribution subject to certain

constraints. These constraints are based on contextual features observed in the training

data, such as number of occurrences of a tag. By doing this, these models have shown to

be able to tag words with the correct tag with high accuracy (Ratnaparkhi, 1996).

2.3.2 Word-Sense disambiguation and similarity

One word can have different meanings, fire could for example refer to flames and

smoke, to shoot or to terminate employment. The way humans can tell the difference is

often from the context the word is used in. Word-Sense Disambiguation (WSD) is a task

12

in Natural Language Processing that focuses on finding the correct semantic meaning of

a word given its context (Navigli, 2009).

At its core, a WSD system works by, given a set of words, using some technique to

apply one or several sources of knowledge, for example corpora, dictionaries or other

lexical resources, to find the most likely semantic meaning of the analysed word

(Navigli, 2009). One of the most used sources of word meaning knowledge is WordNet,

a lexical database for the English language, created and maintained at Princeton

University (Princeton University, 2010). It uses sets of cognitive synonyms, called

Synsets, representing words with approximately the same meaning. Since a word can

have different meanings, several Synsets can exist that contain a given word. WordNet

also include semantic relationships between words, for example, if one word is a

superset of another, and, relationships between adjective antonyms (Princeton

University, 2010). The paths formed by these relationships can be used to measure the

semantic similarity between two words.

To find the most likely meaning of a word, a set of features is chosen for that word to

represent the word’s context, for example from Part-of-Speech tagging and Parsing

(Navigli, 2009). These features are then used in different ways to classify the word as

one of the potential meanings. The two main approaches in which models for this

classification are trained are, as is the case for many of the Natural Language Processing

tasks; supervised and unsupervised (Navigli, 2009). Supervised approaches use

manually pre-labelled data, labelled with their syntactic meaning, to create classifier

models. These models are then used to classify new words with syntactic meaning. The

unsupervised approaches on the other hand, are not able to classify a word with a

specific meaning but rather clusters words with similar meaning, based on them

occurring in similar contexts.

2.3.3 Dependency Parsing

Dependency Parsing is a type of parsing based on syntactic dependency grammar. It is

based on the notion that the syntactic structure of language consists of words that are

linked by dependencies, or “binary, asymmetrical relations” (Nivre, 2010). A

dependency consists of a Head and its subordinate words, called the Dependents. These

dependents can have different syntactic relationships to the Head based on the

grammatical context; subject (SBJ), object (OBJ), attribute (ATT) etc. The head and the

dependents are often structured as a tree structure where every word has a single

syntactic head and each branch is dependent on the word on the top of the branch.

Often, the head of the top of the tree is labelled ROOT, so that every real word in the

sentence can be assigned to a head.

Within the tree structure, the task of Dependency Parsing becomes mapping the input

sentence to one or more tree structures where every word is linked to a head with a

dependency label (Nivre, 2010). As discussed by Nivre (2010), there are several

approaches to dependency parsing: Context-free Dependency Parsing, Constraint

13

Dependency Parsing, Graph-based Dependency Parsing and Transition-based

Dependency Parsing. An example of a Context-free dependency tree is shown in Figure

2.

Figure 2: Context-free dependency parsing.

Context-free Dependency Parsing is based on non-terminal nodes, labelled with words,

that indicate the top of a subtree, indicated with an “X” in Figure 2, followed by the

word label. For example, in the sentence “The Ozzy barked at the moon.”, “Xbarked”

would be the node dependent of ROOT and would in itself be the head of “barked” as

well as the subtrees branching from “XOzzy”, “Xat” and “X.” (containing the

punctuation). This parsing is based on the notion of context-free grammar, CFG, a finite

set of rules of binary relations for each non-terminal symbol to a finite string of symbols

(Scheinberg, 1960). In their example, a rule could be that a sentence should contain a

noun phase and a verb phrase, another that a noun phrase can contain a noun and a

determiner. The nodes starting with X would be the different phrases, called non-

terminal symbols. Nouns, verbs etc. would be the terminal symbols.

According to Nivre, Context-free Dependency Parsing, holds two important restrictions.

Firstly, the grammar is lexicalized, as the non-terminal symbols are indexed by lexical

items, or terminal symbols. Secondly, every branch in the tree not connected to ROOT

has exactly one word, or a terminal symbol in it. By satisfying these restrictions, it can

be classified as a Context-free Dependency Grammar (Nivre, 2010). One issue

discussed by Nivre (2010) is the restriction of the Context-free Dependency Parsing,

that is limited to strictly projective dependency trees, where each head word represent

itself and all the dependents of the word. Another issue is that algorithms for computing

this type of lexicalized grammar structures have high complexity; O(n3), or in worst

case O(n5), with a large set of rules (McDonald et al, 2005a; Nivre, 2010).

Another approach to Dependency Parsing is the Constraint Dependency Parsing, as

defined by Maruyama (1990). It is based on a set of Boolean constraints, rather than

14

binary relationship rules, set on well-formed dependency trees called Constraint

Networks. These Constraint Networks then control the branching of the Dependency

Tree. Such a Boolean constraint can be, for example, that a noun in singular form must

have a determinant. By evaluating every possible dependency tree with these constraints

and successively eliminating those where the constraints are violated, when there is only

one left, it is known that it is valid (Maruyama, 1990). This makes Constraint

Dependency Parsing to be not, in theory, limited to projective dependency trees as is the

case with context-free dependency parsing. In practice this is a computationally

demanding task, as it is a NP-complete problem and which has, at best, an exponential

complexity (Menzel and Schröder, 1998; Nivre, 2010).

The original version of the constraint dependency parsing by Maruyama (1990) was

subsequently evolved to take into concern the different importance of these constraints,

in order to account for the possibility that no dependency tree was valid (Menzel and

Schröder, 1998). As Menzel and Shröder (1998) suggested, instead of giving the

assessment function map a constraint of zero or one, give it a weight based on how

serious the violation of that constraint is. By then summing up these weights for a

dependency tree, the tree with the highest score can be chosen (Menzel and Schröder,

1998). More recent implementation of these concepts have used transformation-based

methods, making it possible to have complex constraints other than binary and still

maintain efficiency (Foth et al, 2004).

A similar dependency parsing method is Graph-based Dependency Parsing, which also

uses scoring of all possible dependency trees for a given sentence. The difference in this

method is that it gains its scores, not from specified constraints but rather from

stochastic analyses of marked corpora or treebanks, using machine learning (Nivre,

2010). Scores in Graph-based Dependency Parsing, as can be seen with other

stochastically based methods, can be calculated in many ways. The fundamental

principle for the Graph-based methods score is that it is based on the scores of its

subgraphs, most commonly their sum (Nivre, 2010).

A further method that uses machine learning is Transition-Based Dependency Parsing

(Nivre, 2010). This method uses a state machine that consists of a set of partial analyses

of a sentence, called Configurations and a set of transitions between configurations.

There is also a set of terminal configurations, so that when the transition system ends up

at one of them, it knows that it is finished. Before finishing, the method applies

transitions to move between configurations based on a scoring function. The function

scores possible transitions based on a feature vector of the current configuration, where

the most important features are attributes of the word, for example, its Part-of-Speech,

in relation to its position in the configuration (Bohnet, 2011; Nivre, 2010). By then

combining the scores for a complete sentence, it is possible to treat the parsing as a

search for the sequence of transition that results in the highest score for the sentence,

making it possible to perform in quadratic or linear time (Bohnet, 2011; Nivre, 2010).

15

Bohnet (2011) showed, when comparing Transition-based and Graph-based

Dependency Parsing, that the transition based method could perceive higher level and

subcategorization features while the graph based method showed a slightly higher

tendency to account for long distance relationships. This was something also noted by

McDonald & Nivre (2007) who described it as a trade-off between the graph based,

long distance learning of local features and the local learning of global features from the

Transition-based Parsing. By combining these models, Nivre & McDonald (2008)

managed to improve accuracy for both models, resulting in a significant improvement

over previous state of the art models.

2.3.4 Semantic Role Labelling

With powerful Part-of-Speech tagging and Dependency Parsing, as described earlier, it

was possible to model the grammatical structure of a body of text, but not to directly

analyse “Who did what to Whom and How, When and Where” (Palmer, Gildea & Xue,

2011). It is this particular aspect that is addressed by Semantic Role Labelling.

The concept of Semantic Role Labelling is based on identifying an event and then

assigning semantic roles to different words that relate to that event in different ways. By

evaluating an event as a verb, surrounded by arguments representing the semantic roles

associated with that event, it is possible to model the semantics of the event (Palmer,

Gildea & Xue, 2011). The semantic roles can be structured based on specific verbs as a

Theta-grid where every verb maps to a set of involved semantic roles that are needed to

put the event into a valid context (Palmer, Gildea & Xue, 2011). For example, given the

word give, a giver, a thing to be given as well as the things final position, would be

needed. This would be, using standardized notation, be grouped in a Theta-grid for the

word give. The standardized notations of semantic roles, also called Thematic roles,

found in Table 1, as summarized by Saeed (2015) are widely used in semantic role

labelling. Using this notation, the Theta-grid for give is [Agent (“the giver”), Theme

(“the thing to be given”), Goal (“the things final position”)].

16

Table 1: A set of widely recognized Semantic roles (Saeed, 2015)

Role Description

Agent The initiator of some action, capable of acting with volition.

Patient The entity undergoing the effect of some action, often undergoing

some change in state.

Theme The entity which is moved by an action, or whose location is described.

Experiencer The entity which is aware of the action or state described by the

predicate but which is not in control of the action or state.

Beneficiary The entity for whose benefit the action was performed.

Instrument The means by which an action is performed or something comes about.

Location The place in which something is situated or takes place.

Source The entity from which something moved, either literally or

metaphorically.

Goal The entity toward which something moves, either literally or

metaphorically.

Stimulus The entity causing an effect (usually psychological) in the Experiencer.

Even though there are some agreement over the existence of these roles, the difficulty of

finding out when and where to use them revealed the need for something more than a

simple set of semantic roles (Palmer, Gildea and Xue, 2011). One framework by

Fillmore (1985) elaborated on these roles by putting them into Frame Semantics. He

saw that the assignation of semantic roles was based on a limited set of underlying

semantic representations that created a frame for a verb. By specifying these frames, it

would be easier to find the associated semantic roles. Based on the theory of Frame

Semantics, a lexical resource called FrameNet, and which contains more than 1,200

semantic frames, has been continuously developed since 1997 at the International

Computer Science Institute in Berkeley (FrameNet, 2017).

Another widely recognized labelling system is the verb classes developed by Levin

(1993). He recognized that the behaviour of a verb with respect to the context and

interpretation of its argument was, to a large extent, based on the semantic meaning of

the verb. These behaviours were documented in the form of the Levin classes. The

Levin classes are a systematic way of labelling verbs based on their existence in pairs of

17

syntactic frames that closely relate to the meaning of the verb in that particular context.

These verbs can then be grouped into classes based on similar meaning and similar

syntactic frames. Such a class could be, for example Avoid Verbs (Levin, 1993).

Members of this class include avoid, dodge, duck, elude, evade etc. and a syntactic

frame, or “Property”, could be “We avoided the area”.

Additional lexical resources popular in semantic role labelling, described as being

created for different purposes, but “surprisingly compatible” by Palmer, Gildea and Xue

(2011) are VerbNet and PropBank. VerbNet is the largest online verb lexicon for the

English language (VerbNet, 2017). The verbs are classified according to an extension of

the Levin classes, with 274 first level classes (VerbNet, 2017) compared with the 240

original Levin classes (Palmer, Gildea & Xue, 2011). Each class is labelled with

thematic roles, selectional restrictions on the arguments and syntactic frames with

intention.

PropBank, or Proposition Bank, was, in contrast to FrameNet and VerbNet, not

developed as a lexical resource but as an annotated corpus to be used for training

machine learning models (PropBank, 2017). In later years, it evolved to incorporate

semantic roles on a verb by verb basis, where each verb has a numbered set of semantic

arguments labelled with non-theory-specific labels; Arg0, Arg1 etc. (Palmer, Gildea &

Xue, 2011). According to Palmer, Gildea and Xue (2011) this verb specific approach,

with verb specific role labels, has several limitations, namely that it makes it more

difficult to compare role labels to define generalizations, which in turn makes it harder

to automatically train semantic role labelling models.

In later years, these three lexical resources have been combined in several ways, and

initiatives such as SemLink (SemLink, 2013) and Unified Verb Index (PropBank, 2017)

take advantage of their combined strengths. Among other things, mapping PropBank

annotated instances to relevant VerbNet classes, creating a larger lexical resource to

train Semantic Role Labelling models on (Palmer, Gildea & Xue, 2011).

2.4 Related work

Apart from the work done in Natural Language Programming, there has also been some

research done that looked at the combination of natural language and code as well as

natural language and instruction interpretation. In the case of Natural Language

Processing and code, research such as Falleri et al (2010), Kim and Kim (2016),

Shepherd, Pollock and Vijay-Shanker (2007), Alsuhaibani et al (2015), Pollock et al

(2007), Abebe and Tonella (2010) and Kuhn, Ducasse and Gîrba (2007) has been done

on using Natural Language Processing techniques for analysing source code. The focus

of most of this research was on extracting names of program elements and concepts

using machine learning and different natural language parsers and taggers. Alsuhaibani

et al (2015) have the same goal, to analyse the source code but does not use traditional

Part-of-Speech taggers that are based on sentence structure but rather the structure of

18

the code itself, for example tagging a word as a verb if it is found to be the name of a

method.

Other research, in the robotics community, has also looked at understanding instructions

in natural language. Chen and Mooney (2011) developed a system for relaying

navigation instructions to robots based on observations. They used a semantic parser

that they trained on Navigation plans that the authors constructed as a set of word state

descriptors and a set of action sequences. Other work, for example by Stenmark and

Malec (2014), focused on assembly tasks for industrial robots, using a generic semantic

parser to create sets of predicate-arguments, based on a piece of natural language. These

predicate-argument combinations, or PA:s, are formulated as verbs, being the

predicates, and the grammatical arguments according to non-theory-specific labels A0,

A1 etc., labelling them as the actor, the theme, the goal or equivalent to that verb.

2.5 Present work

This thesis has the goal to go from a human intent to code and is, in that regard, the

inverse of source code analytics. It resembles the work of Stenmark and Malec on

industrial robots (2014) but also looks at additional NLP approaches and has the aim of

creating a more general approach that is not limited to one single domain.

3. Methods

To evaluate the possibility of using Natural Language Processing as a tool for

interpreting intention a set of methodical approaches are developed. This chapter starts

off with defining these approaches and the hypotheses that are defined based on them. It

then defines this thesis’ methodical key concepts and technologies, such as Speech to

Text and the game environment used in the user testing in this study. Following that, it

describes the performance evaluation and user testing. Lastly, it describes how these

methodical approaches have been implemented.

3.1 Methodical Approaches

Two approaches were adopted to evaluate how human intent can be interpreted as code,

using the modern tools and techniques in Natural Language Processing (NLP),. Each

approach is based on a set of areas of NLP and their available tools as well as a

hypothesis about how they will translate human intent to code. The intent, given as

individual sentences (s1,...,sn), is mapped to a sequence of objects (o1,...,om) and actions

(a1,..., ak), where each sentence can contain one or several objects and actions. An

action a = (c, P) contains parameters P and a condition c. These parameters P can

contain one or more of the following parameters: “On object”, containing the object that

performs the action as well as “how”, “with”, “target” and “direction”, describing

19

keywords as to how the action should be performed. The two different approaches use

different techniques to do the mapping.

3.1.1 Approach 1: Dependency parsing and Part-of-Speech tagging

This approach is based on the idea of Abbot (1983) that a common noun suggests a data

type, a proper noun or direct reference suggest an object and that a verb, attribute,

predicate or descriptive expression suggest an operator or method. By using Part-of-

Speech tagging, different Part-of-Speech tags, such as verbs and nouns can be

identified. These tags can then be linked in a Dependency Parsing structure to find how

they relate to each other, making it possible to interpret an intent as objects and actions

with related properties.

Hypothesis 1: It is possible to, using Grammatical dependencies and Part-of-Speech

tags, model a sentence of human intent as a set of objects, methods and their

relationships. By structuring these object and methods by their relationships, code can

be created represents the user’s intent.

The Stanford CoreNLP, a suite of NLP tools, implemented in Python with Natural

Language ToolKit (NLTK) is used to test this hypothesis. Stanford CoreNLP uses the

log-linear Part-of-Speech tagger written by Toutanova et al (2003) with a Maximum

Entropy method that is trained on the Penn Treebank corpora. The suite also includes

the transition-based Dependency Parser using Neural Networks, developed by Chen and

Manning (2014), also trained on Penn Treebank.

3.1.2 Approach 2: Semantic Role Labelling and Part-of-Speech tagging

Extending on the first approach with the notion that the grammatical structure of the

sentence can be used to translate and intent to code, this approach is based on mapping

semantic role labels to code structures. By making assumptions that a verb can be

translated into an action with different parameters described by the verb’s connected

semantic roles, it is possible to construct actions and objects based on semantic labels.

To further analyse the meaning of these semantic roles, Part-of-Speech tagging is

implemented.

Hypothesis 2: It is possible to, with Semantic role labels and Part-of-Speech tags,

model a sentence of human intent as a set of objects, methods and their relationships.

By structuring these objects and methods by their relationships, code can be created that

represent the user’s intent.

SENNA, Semantic/syntactic Extraction using a Neural Network Architecture,

(Collobert et al, 2011) implemented in PractNLPTools, a Python library over SENNA

and Stanford Dependency Extractor (PractNLPTools, 2016) is used to test this

hypothesis. SENNA uses a probabilistic Neural network approach described by

20

Collobert et al (2011) and was trained on the entire English Wikipedia in combination

with Reuters’ RCV1 dataset (Collobert et al, 2011).

3.1.3 From speech to text

Speech is described as the most important and the most natural way of human

communication and for conveying one's intent (Iyanda, Adetunmbi & Obe, 2016).

Recently there has been a lot of research focused on gaining higher accuracy in Speech-

To-Text conversion and Automatic Speech Recognition using machine learning

(Iyanda, Adetunmbi & Obe, 2016). Based on this, several implementations of Voice-

To-Text are tested for generating a text representation of the intent, to be used as input

to the different approaches described in this report. These included: The Web Speech

API (Shires & Wennborg, 2012), IBM Speech to Text (IBM, 2017), Bing Speech API

(Microsoft, 2016) and Google Cloud Speech API (Google, 2017).

3.1.4 From code to game

As described by Bromwich, Masoodian and Rogers (2012), a game environment offers

a good way for learning and practise programming concepts and Computational

Thinking. To leverage this, a game environment where the user expresses intent

regarding what they see on the screen and what they want to have happen in the game,

is implemented. The game environment also limits the domain that the intent should be

mapped to and the command diversity, making it easier to generalise intent patterns.

This domain is defined by an environment E = (EO, EA) as a collection of Environment

objects EO = (eo1,...,eon) and Environment actions EA = (ea1,...,eam) that contain

available objects and permitted actions in the environment.

Studies of earlier systems for using natural language for code generation have shown

that a limitation for these systems are their strict syntax with no consideration for word

disambiguation (Good, 2016; Capindale and Craford, 1990; Sammet, 1966). By using

Natural Language Processing to do Word-Sense Disambiguation and Word Similarity

as a less strict mapping method for objects and actions to the environment, a higher

accuracy could potentially be reached. For example, if the user expresses an intent as

“The boy should move forward five times” in an environment consisting of EO =

(character, tree, rock) and EA = (Walk, wave, hit), the system should map “the boy” as

being more semantically similar to “character” than to “tree” or “rock” and “go” as

being more similar to “walk” than to “wave” or “hit”.

3.1.5 Performance evaluation

A framework of different performance measurements is developed to evaluate the

different approaches described in sections 3.1.1 to 3.1.4, and hence the possibility of

interpreting human intent as code. To be able to account for the ease of development

and technical possibilities as well as the ease of use, the framework consists of two

21

parts. The first part, as described in Table 2, evaluates the development process, with

continuous testing and observation of technical limitations.

Table 2: Performance measures for development

Property Evaluation metric

Ease of implementation The perceived ease of use to create an implementation that

turns a sentence of human language that expresses an intent, to

code.

Amount of generalisation The perceived amount of domain specific solutions that is

needed to be implemented and the possibility to include

concepts from the framework of Brennan and Resnick (2012).

The first part is based on how easy it is to implement the different approaches in code,

something that is partially affected by the available implementations of parsers, lexical

resources etc. Since this gives different conditions for the implementation of the

different approaches, making them difficult to compare quantitatively, a personal

qualitative evaluation is performed. The goal of this evaluation is measuring the

perceived ease of use as well as the correctness, accuracy and the perceived possibility

to make generalisations in each implementation. The second part focuses on user testing

of the implementation and the impact of Computational Thinking and is described in

Table 3.

22

Table 3: Usability properties and evaluation metrics

Property Description Evaluation metric

Learnability The approach should be easy to learn so that

it doesn’t require lots of training.

Amount of information that is

needed to be given to the user

beforehand and if additional

information is required.

Efficiency The approach should be efficient resulting

in a high productivity from the user.

Time to complete a

predefined task using the

system.

Memorability The approach should be easy to remember

how to use so that minimal additional

training is needed when returning to the

system.

This property will not be

considered in this study.

Errors The approach should not result in a high

amount of errors. Errors that do occur

should be easily corrected.

Amount of commands given

by the user that can not be

interpreted or are

misinterpreted by the system

and how easy they are to

correct.

Satisfaction The approach should be pleasant for the user

to use. The user should like using it.

An interview after using the

system to determine the users

subjective feelings about the

system in general.

It is based on Usefulness as a combination of Usability and Utility, defined by Grudin

(1992). Usefulness is the measurement of a system’s possibility to achieve a desired

goal (Nielsen, 1993). Nielsen (1993) then define usefulness as the overarching structure

of the two subcategories; utility and usability, where utility is the question of whether

the functionality of the system, in principle, can fulfil its purpose, and usability is the

question of how well a user can use that functionality. Usability can then be divided into

several properties: Learnability, Efficiency, Memorability, Errors and Satisfaction

(Nielsen, 1993). These are evaluated according to Table 3. Due to the relative

infrequency of use of the system in combination with the limited scope of the project,

Memorability is not evaluated.

23

3.2 User testing

A set of test subjects are chosen to evaluate the usability of the system as well as its

relationship to Computational Thinking. These test subjects are selected according to

their different levels of programming experience with a minimum requirement that the

participants should be fluent in the English language. Even though Computational

Thinking is much more than just programming; programming can be seen as a

concretisation of Computational Thinking. This makes prior programming experience a

reasonably good measurement of the test subjects’ initial level of Computational

Thinking.

Programming experience is classified into three levels: novice, intermediate and expert.

The participants in the study are assigned to these groups based on their own estimate of

their programming experience. From each experience level two candidates are selected,

one for each Natural Language Processing approach; Dependency Parsing and Semantic

Role Labelling. Each participant is first given instructions on how to interact with the

implementations and what objects and actions that are implemented in the environment.

They are then instructed to complete a task consisting of moving the character object to

the goal object in the game. To complete this task, the character additionally must

traverse an obstacle; a river, where the only river crossing is blocked by a tree.

During this task, evaluation metrics are recorded in accordance with Table 3. On

completion of the task, the participants are invited to further explore the system for a

short period of time. Data on every interaction with the system is automatically

collected in digital log-files; logging the user input, the labelling done by the NLP

models and the generated code. After the user has used the system, they are asked a

series of questions to determine their feelings on using the system.

3.3 Limitations

Due to the large number of tools, models, lexical resources and tagged corpus

exclusively related to the English language, this thesis limits its scope to translating

intent expressed in English. This said, it is fair to assume that, given enough data and

time training models on that data, the same or similar techniques to those used in this

thesis could be used on other languages. A limitation in all languages, English included,

that affects the accuracy of the approaches in this thesis, is the low number of

imperatives in the data that these tools and models have been trained on. Most Natural

Language Processing tools and models have traditionally been developed and evaluated

on news articles and other descriptive texts that contains a low number of imperative

sentences.

Based on the goal of this thesis, to evaluate the described approaches in the context of

novices learning Computational Thinking, the domain of programming concepts is

limited to the framework of concepts described by Brennan and Resnick (2012).

Because of the difficulties in separating strings from instructions in natural language as

24

described by Good (2016), strings are not considered in this thesis and are left for future

work.

3.4 Implementation

3.4.1 Testing interface

The described approaches and methods are implemented in a web interface with a

predetermined environment of available actions and objects as described in Table 4.

 Table 4: Testing environment

Actions and parameters Objects

▪ Walk (*direction* / *target*)

▪ Jump (*how*)

▪ Cut (*target*, *with*)

▪ Eat (*target*)

▪ Character

▪ Tree

▪ Axe

▪ Cow

▪ Goal

The web interface, as shown in Figure 3, is divided into three sections; A, B and C.

Figure 3: Web interface.

In section A, the user is given instructions of how to use the system. In section B, a code

editor is inserted where the code generated by the system is shown. The code editor is

also equipped with controls for executing the input code. The last section, section C,

holds a simple game where objects could move around in a grid, performing actions on

each other.

25

3.5 Speech to Text Implementation

The first solution tested for translating voice to text was is the Web Speech API, a

JavaScript library built into modern web browsers. Its initial testing yielded poor results

with low accuracy and this solution was therefore abandoned. Following Web Speech

API, several commercially available voice-to-text solutions were tested using their

respective demo versions. In these initial tests, Google Cloud Speech API Beta showed

the most promising results and was selected for further testing and implementation.

Further testing showed good results but due to the time constraints and the fact that this

solution implements new and not widely adapted technologies and standards, there was

not enough time to implement it in the web interface.

3.6 Study 1: Dependency Parsing

The Dependency parsing implementation is based on the Stanford Dependency Parser

which takes a string of text and, in this implementation, returns a triples data structure

for all dependencies with the word and Part-of-Speech tag for the connected words as

well as an identifier of the type of dependency. These are then mapped to objects and

actions. Actions are extracted firstly based on them being POS-tagged as verbs, after

which it gets its attributes, such as which object performs this action, based on what

condition etc. Objects are extracted in two ways. First, they are found by them

performing an action, as defined by having a Nominal Subject dependency to a verb.

The second extraction of objects is done using the Determiner dependency, describing a

relation between a noun and its determiner. The object of an action and the object that

performs the action is established by analysing the Nominal Subject dependency

between the verb that represents the action and a dependent Noun or a Proper Noun in

the case of that object being, for example, a name.

To model additional information on how an action should be performed, parameters are

implemented. The parameters considered here are “how”, “with”, “target” and

“direction”. A parameter is labelled as “how”, defining how an action is performed, if it

is in an Open Clausal Complement dependency and are POS-tagged as an adjective.

Both the “with” and “direction” parameters are found in Nominal Modifier

dependencies, with the To POS-tag indicating direction and the Preposition or

Subordinating Conjunction POS-tag indicating a “with” parameter. The “target”

parameter is found in Direct Object dependencies where the target is a noun.

Direction is also found in Phrasal Verb Particle dependencies, together with loop

identifiers such as “twice”. In this case, a list of loop identifiers; “once”, “twice” and

“thrice” are used to match against to find loop identifiers while a list of directions such

as “upward”, “west”, “forward” etc. are used to find directions. The directions are then

normalized to “up”, “right”, “down” and “left”.

In this implementation, repeat-actions, or Loops, are handled on an individual action

level. This is due to the difficulty of understanding sentences such as “Walk forward

26

and dance seven times”. Should both these actions be performed seven times or just the

last one? In addition to finding loop identifiers as Multiplicative Adverbs, Direct

Object dependencies with Plural Nouns that also have a Numeric Modifier dependency

to a Cardinal Number POS-tag are used. This is based on instructions such as “Walk

forward seven times” where “times” would be a plural noun that also has the numerical

modifier “seven”. This would also pick up sentences like "Greg should eat seven

potatoes." and "Greg should eat a potato seven bananas." as “eat” being the action that

should be performed seven times. To take into consideration numbers such as “two

hundred”, a check is also made to see if the cardinal number have a compound

dependency to another cardinal number, in that case, these two are concatenated.

Actions also hold conditional statements. These can be in the form of While statements,

Until statements, Unless statements and If statements and are found using the Adverbial

Clause Modifier dependency while also matching these with Marker and Nominal

Subject dependencies.

3.7 Study 2: Semantic Role Labelling

Semantic role labelling is based around verbs and the semantic roles connected to that

verb. With the assumption discussed earlier in the method section, that verbs can be

interpreted as actions, this approach builds its actions systematically from these verb-

structures. The implementation used in this study labels these roles according to the

PropBank standard, with numbered and unnumbered arguments representing their

impact or relation to a specific verb. The specific meaning of these numbered arguments

depends on the specific verb, or rather a specific semantic meaning of a verb, but some

generalisations can be made. Looking at many of the verbs that would represent likely

actions in this study, Argument 0, Arg0, often represent the Agent, the executor of that

action. This is, in this approach, used to identify the object that performs the action.

Argument 1, Arg1, is often the Patient, or the target of the action in our case. The rest of

the numbered arguments often have more verb-specific semantic meanings, but initial

testing has shown that Arg2 often represent the Instrument and A4 often indicates a

goal. By then looking for noun POS-tags in this argument this model can find the

actions “with” and “target” parameters respectively.

The unnumbered argument ArgM-MNR describes how the verb is executed, and is

mapped to the “how” argument of the action. The ArgM-DIR that describes some

directional property of a verb is passed through a function that tries to map it to one of

four directions: up, right, down and left. If it fails, it is assumed that the directional

property is a sentence of type “to an object”. In this sentence, it then looks for a noun

and if one is found, it is assigned as the “target” property of the action. To find loops,

more specifically for-loops and until-loops, the ArgM-TMP role is used.

The for-loops are found through Cardinal Numbers as well as Multiplicative Adverbs

by running them through a mapping function that tries to map them to integers, if it

succeeds that integer is assigned as the loop iteration counter. The until-loops are found

27

by looking at the POS-tags trying to find a prepositional tag in conjunction with a noun

and an adjective or verb of the type non-3rd person singular. These are then structured

into a conditional statement for the action. Other conditional statements, such as if-

statements are found using the ArgM-ADV role, that initial tests showed, in the context

of this study, accurately represented conditional statements of actions.

For example, in the sentence “the character should walk forward twice”, “walk” is the

central verb. To this verb, “the character” is labelled as the semantic role Arg0, or the

Agent, “forward” as ArgM-DIR and “twice” as ArgM-TMP. This results in the action

“walk” containing “character” as the “On object” parameter, two as a loop indicator and

“right” as the “direction” parameter.

A difference in this approach to approach one is that Semantic Role Labelling can label

chunks of several words as an argument, while Dependency Parsing uses a single-word-

resolution. To address this, Part-of-Speech tagging is used to extrapolate the relevant

words in these chunks as well as for identifying specific action parameters, for example

for separating ArgM-DIR into the “direction” or “target” parameter.

3.8 Semantic matching

According to the findings of Sammet (1966) and Good (2016), one of the larger

problems of programming with natural language is the conflict of the ambiguity of the

natural language and the strict nature of programming languages. To address this,

following the first design principle of Good (2016), semantic matching is used to map

the natural language to a limited domain of expressions, in this study referred to as the

environment. An overview of the system can be seen in Figure 4.

Figure 4: Implementation flowchart

After the different NLP approaches have generated their Objects and Action, these are

then semantically matched. The semantic matching is done using the lexical resource

WordNet and path similarity as implemented in NLTK. WordNet has, as described

earlier, sets of cognitive synonyms, called Synsets. By finding the Synsets for the

Environment Actions and Environment Objects and for each action and object parsed

28

from the natural language given by the user, it is possible to find what Environment

Action or object is most similar to. This makes it possible for the system to understand

what object or action in the environment the user is referring to and thereby set the

correct name and parameters for each object and action.

A problem that arose during initial testing is that, although WordNet has a vast amount

of Synsets, it does not cover all words. Some verbs, but primarily many proper nouns,

do not have Synsets, making it difficult to use this approach to match them to

environmental actions and objects. Only when the proper noun is explicitly defined as

the name of an environmental object will WordNet find a match. Defining an

environmental object with a proper noun not found in WordNet makes it unable to

semantically matched with other words, rendering this function redundant in those

cases.

During this stage, to account for the incompleteness of natural language instructions

discussed by Good (2016) and Miller (1978), additional, non-semantic matching is

made. This matching consisted of finding potentially missing mandatory attributes of

actions and updating attributes of object based on actions and objects specified in the

environment.

3.9 Code generation

After the semantic matching the code is generated from the resulting final objects and

final actions. In this implementation, the code generated follows JavaScript standard to

be able to run in a web browser, but because of its modularity this function could be

replaced to generate code in any programming language with an object-method based

structure.

As the goal of this implementation is to relay intentions, the main focus of the code is

the actions that should be performed. The code generation in this implementation goes

through the list of final actions and one by one generates a block of code based on that

action. First it identifies if the action has any conditions, and if so, they are formatted to

match the code language standards. Secondly the loop-parameter is formatted. As

described earlier, due to the problem of accurately parsing if several actions should be

performed in the same loop, the generated loops only contain a single action, as does the

conditional statement.

As the surrounding code is generated, it identifies the object that is performing the

action and, together with the actions parameters, formats the code for calling that action.

The action parameters for a specific action are defined in the environment action along

with the default values that are overridden if they are also defined by the user. To

maintain consistency, these parameters are listed in a specific order where each

parameter is optional if not defined in the environment. This order is; “target”, “with”,

“direction” and “how”.

29

4. Results and Discussion

4.1 Ease of implementation

The first part of the implementation for both approaches is the analysis of how human

users would describe their intent and how the different Natural Language Processing

models would interpret them. With this information, models of how the output from the

NLP models could be mapped to a structure that would represent the intent of the user.

As described earlier, the implementations of the two different Natural Language

Processing approaches used in this thesis are based on different pre-trained models and

NLP frameworks as well as wrapped in different interfaces, making it difficult to

compare them side by side. With that said, several generalisations regarding the data

returned from the different models and how this data can be structured and combined

can be made independently from framework or interface.

The first approach, implementing the Stanford Dependency Parser, returns a data

structure containing the dependencies as a dependency label and the two words

connected by that dependency and their respective Part-of-Speech tag. Due to the

hypothesis of this approach, that the individual dependencies or combinations of

dependencies represent the intent of the user, without a higher-level structure, these

dependencies become the basis for modelling the user intent to a data structure. Finding

objects, actions and how they relate to each other is then a matter of finding patterns in

the POS-tags and dependencies that relate to different programming concepts. This

gives a greater control, making it possible to find pattern dependent on combinations of

several dependencies and tags. It is however, when these patterns become complex,

sometimes problematic to find what verb, or action, that the dependencies are

originating from. These chains of dependencies also make this approach prone to errors.

If one dependency in these complex patterns is missing or mislabelled, this breaks the

whole chain.

The models used in the second approach, the Semantic Role Labelling, return the verbs

and their semantic roles as a data structure based on the central verb. This, in contrast to

the first approach, takes care of relating the patterns to the affected verb. Since this

thesis is based on the hypothesis that verbs represent actions, that in turn are dependent

on the context of that verb, such as what entity performs that verb, this makes for a

well-suited structure of objects and actions. One thing that the Semantic Role Labelling

model does not take into consideration is the Part-of-Speech tags. These are added using

a separate POS-tagger and can be used to both identify objects mentioned in the text but

also give more clarity to the semantic roles, that in many cases can consist of several

words. With the combined Semantic Role Labelling and POS-labelling combined, it is

possible to find patterns that both rely on the semantic roles related to the verbs but also

the relationship between different POS-tags within these roles. Due to the similarity

between the output of the NLP models used in this approach and the action-object

30

structure implemented in this study, this approach seems better suited for implementing

intent to code translation.

4.2 Amount of generalisation

The framework developed by Brennan and Resnick (2012) to describe the different

programming concepts is the basis for the different approaches developed in this thesis.

These concepts are: Sequences, Loops, Events, Parallelism, Conditionals, Operators and

Data. Some of these concepts are not implemented due to time constraints and are left

for future research, such as Events. Other concepts that are in themselves not directly

related to giving instructions, such as the Data, Operators and Parallelism concept have

also not been implemented.

One concept that is successfully implemented is Sequences, that one instruction should

be executed after another. In the case of Semantic Role Labelling, this is easy to

implement due to the verb structures generated from the NLP model that structures the

actions together with their roles, regardless of if there are one or several instructions

given by the user. In the case of Dependency Parsing, this is done by first finding the

verbs from POS-tags and then observing the chains of dependencies that connect to that

specific verb. The issue mentioned in previous section, to track dependencies back to a

specific word, become increasingly difficult with an increasing amount of instructions

given per sentence. This results in that Semantic Role Labelling is a more flexible

solution for implementing this programming concept.

The concept of Conditionals is partially successfully implemented; if-statements are

implemented for both NLP approaches with similar results. Else and “else-if”

statements are not. These concepts cannot consistently be expressed as a pattern of

either grammatical dependencies or semantic roles with current NLP models. The if-

statements in themselves are structured in the form of an object that either does or does

not have a certain property to either perform or not a certain action at that time.

Conditionals are also used as a part of Loop-statements.

Loops, being “repeating an action during some condition” are, according to the initial

testing, successfully implemented in the case of for-loops, while-loops and until-

statements. For-loops represent an action that should be executed a given number of

times, often expressed as, for example “walk forward twice” or “jump forward seven

times”. While-statements, and its counterpart until-statements, will perform an action

while, or until, a condition is met. These conditions follow the same structures as the

previously mentioned Conditionals.

Apart from the limitations of the implementation of different programming concepts,

other limitations of the NLP approaches have been found. One limitation, is inherent to

both NLP approaches, is that they can only handle actions that consist of one word, a

verb. Even though the semantic role labelling occasionally can find semantic verb

frames for word combinations, such as “pick up”, these appear inconsistently, are

31

seldom found in WordNet and are therefore chosen to be limited to the verb, “pick” in

this example, for consistency. An alternative approach could be to save the verb as a

separate structure in the action to, in the semantic matching, try to find both the

combined verb as well as the individual verb action in the environment, with a priority

to the combination. The combinations of NLP approaches studied in this thesis also

have a limited understanding of the context within the sentence. For example,

occurrences of “it” and “itself”, as references to an object mentioned earlier in the

sentence, cannot, using these NLP models, be correctly correlated to these objects.

Table 5: Result of qualitative implementation analysis

 Dependency Parsing Semantic Role Labelling

Ease of implementation Intermediate Good

Amount of generalisation Intermediate Intermediate

4.3 Learnability

During the user testing, learnability was assessed via the amount of additional

instructions that were needed during the test. All users were initially given the same

information about how to use the system, what objects and actions were available and

the task they were supposed to complete. Generally, from observing the participants,

they could all quickly get started using the system without any additional information.

Most users however had to be reminded, after they had written an instruction or two, to

use full, grammatically correct, sentences. Otherwise they tended to shorten their input

to the minimal amount of words. For example, one user ended up writing instructions

such as “walk tree” when their intention was for the character to walk to the tree. The

same user, who had intermediate programming experience, also noted that experience

writing instructions in the form of code heavily influenced the way this user gave

instructions in natural language. The user said that, by reading the code generated from

writing instructions in natural language, the user tended to adapt their instructions to the

structure of the code, rather than natural language grammar. The users with novice

programming experience showed similar tendencies, to use minimal instructions. The

expert users in this study, on the other hand, surprisingly tended to use correct grammar,

not adapting to “programming grammar”. The system could interpret most of the

shortened sentences but, as was shown by the difference in misinterpreted instructions,

giving grammatically correct sentences resulted in higher accuracy. Additionally, one

user had to be informed not to use digits, and instead write the name of the number

when describing the action they wanted to be performed several times, since digits are

not supported in the current implementation.

32

In the survey following using the system, most users responded that they thought that

the instructions on how to use the system were easy to understand.

Table 6: Result of qualitative analysis of Learnability

 Dependency Parsing Semantic Role Labelling

Novice users Intermediate Intermediate

Intermediate users Intermediate Intermediate

Expert users Good Good

4.4 Efficiency

By measuring the time, it took for the users to complete the task of moving the character

object to the goal in the game environment and then observing while the users later

experimented with alternative solutions, it was possible to get a measurement of the

efficiency of using the system. All users were increasingly efficient as they got more

familiar with the system and all users managed to complete the task faster after

experimenting with different approaches for a while. When it came to the initial

performance, there was little difference between the novice and intermediate users,

where both groups had longer times to completion, ranging from three minutes up to

four and a half minutes. The expert users on the other hand showed good initial

performance with time to completion close to one minute. This could potentially be

because of their tendency to, to a higher degree, use grammatically correct sentences but

also their ability to understand the generated code and find patterns in the mapping

between expressed commands and generated code. Between the two NLP approaches;

Semantic Role Labelling and Dependency Parsing, there were no detectable difference

in efficiency. Because of the limited number of test subjects and because of the time

constraints of this study, it is not possible to say how strong the correlations between the

programming experience, NLP approaches and efficiency are. The results found here

could possibly be seen an indication of that the different NLP approaches are equivalent

when it comes to efficiency and that higher level of programming experience does, to

some degree, have an influence on the efficiency of using the system.

33

Table 7: Result of qualitative analysis of Efficiency

 Dependency Parsing Semantic Role Labelling

Novice users Bad Bad

Intermediate users Bad Bad

Expert users Good Good

4.5 Errors

During the time the users solved the task of moving the character past the obstacles and

to the goal, the number of commands that the system either did not understand or

misinterpreted were recorded. From this data, a strong inverse correlation could be

found between the amount of programming experience and the number of total errors.

The novice users had a high amount of total errors but the type of errors they had

differed, depending on the NLP approach. The novice user using Semantic Role

Labelling had only a few instructions that could not be interpreted but a high amount of

instructions that were misinterpreted. The other user in the novice category, using

Dependency Parsing, had a high amount of instructions that could not be interpreted but

fewer that were misinterpreted. From observing these users, the total amount of errors

can be seen as partially coming from their inability to understand the code that is

generated and its correctness in regard to their given instruction. The system has been

shown to not have hundred percent accuracy and flexibility. This makes the user’s the

ability to understand the correlation between natural language input and code output,

have a great impact on the amount of errors the users encountered in this study.

Between the two different NLP approaches Dependency Parsing resulted in more errors

overall, across all levels of programming experience with a higher rate of instructions

that could not be interpreted by the system.

When reviewing the log-files after each user test, it was possible to understand the cause

of many of the system errors that occurred during the test. The most common cause of

instructions that could not be interpreted was that the described action was not labelled

as a verb by the Part-of-Speech tagger, breaking the assumption that an instruction

consists of an action with related objects. This happened frequently when the user gave

incomplete or grammatically incorrect sentences but was also observed when the user

input was seemingly correct. In the case of Dependency Parsing this happened often

when one user gave the instructions in present tense. For example, when the user gave

the instruction “The character walks to the tree”, the system labelled “walks” as a plural

noun rather than a verb, making the system unable to process the instruction. In the case

of another user, also using Dependency Parsing, “jump” and “move”, was also

34

mislabelled as a noun rather than a verb, even though used in grammatically correct

sentences. Looking at the results from user tests with users using Semantic Role

Labelling, they had lower occurrences of these types of mislabelling. The system

showed a larger flexibility when using Semantic Role Labelling by accurately handling

instructions in present tense as well as descriptions of what should happen, such as “the

character should walk to the tree” or “walk to the tree”.

One thing that both approaches struggled with was correctly interpreting directions of

actions. The direction “left”, as in the instruction “the character should walk left”, was

mislabelled with high frequency as a verb, while many of the other directions, such as

“downwards”, were often mislabelled as nouns. In the Semantic Role Labeller used in

this thesis there exists a specialised label for direction, ArgM-DIR. During this study,

this label was, unfortunately, not consistently assigned to the directions mentioned in

the instructions, possibly because of the discussed mislabelling of POS-tags. Semantic

Role Labelling also tended to, but not consistently, as discussed earlier, use combined

verbs. These combined verbs have been shown to sometimes be a verb-direction

combination, such in the case of “jump down” or “walk down”. As described earlier in

this thesis, to maintain consistency without overfitting, these combined verbs were

reduced to their single verb word. In the case of directions, this has occasionally been

shown to, unfortunately, discard valuable information.

Another issue that was discovered during the user tests was during the implementation

of loops. As described in the Amount of generalisation chapter, the results from the

initial testing during the development phase showed great promise for implementation

of the loop concept. During the user testing however, it was apparent that the

implementation of the loop concept did not cover all cases. Not all users took advantage

of this concept and those who did, more often than not, had errors associated with it.

These users primarily used the loop concept, together with the actions “walk” and

“jump”, as a measurement of the distance rather than an indication of how many times

the action should be performed. For example, “walk two steps forward” or “jump four

squares to the right” rather than “walk forward two times” and “jump right two times”

(as the jump action moves the object two squares). Due to the nature of the specified

domain, the accurate representation of these intents would most likely be in the form of

loops. But since the part of the system that turns the intent into actions and objects, by

design, is decoupled from the application, there is no correlation between actions and

measurement of distance. This also does not follow the assumptions of loop usage

considered in this thesis and its possibility to be interpreted by the different NLP models

has therefore not been studied.

Sequences, the ability to give instructions containing several actions that should be

performed in a specific order, also showed great promise during the development phase.

This concept was used by most participants, ranging across all levels of programming

experience, with more experienced users tending to express a larger amount of

instructions in the same sentence. The system could handle most instructions with two

35

actions per sentence but with three or more actions per sentence, the accuracy decreased

rapidly. Dependency Parsing had some issues relating parameters, such as who

performed an action or how that action should be performed, to the correct action, even

in sentences containing only one or two actions. Semantic Role Labelling showed better

results in this regard, with the verb frames creating separate data structures for each

action. It did however suffer from a decline in accuracy with three or more actions per

instruction. One user, who had an expert level of programming experience, tried using

five instructions in one sentence; “Character walk to tree and cow walk to tree and cow

eat tree and cow walk up and character walk to goal”. In the case of this sentence, the

system showed a high amount of mislabelling such as two of the instances of “walk”

being labelled as nouns. The lowering accuracy of the NLP models with increasing

amount of actions per sentence could potentially be due to the data they are trained on.

As sentences in the data sets used for these models, Penn Treebank, English Wikipedia

and RCV1, as in the English language in general, include only a few verb phrases per

sentence, it can be assumed to influence the accuracy. It is therefore possible to theorize

that, given enough data, higher accuracy for the parser could be achieved even with a

higher amount of actions per instruction.

It was also observed that the user referred to each object explicitly in each action in the

five instructions in one sentence example given above. Other users tended to often refer

to “it” or “itself” as in the sentences “Character should move to the tree and eat it” and

“the cow should eat itself”. Using the implementation used in this thesis, “it” or “itself”

could be identified as being the target of the action but it was not possible to find a

pattern in the data from the NLP models that would indicate what they referred to.

One key feature for errors in usability is the possibility to be able to easily correct them.

In this study it was clear that, to be able to correct errors in the implementation, an

understanding of programming is required. From the three different levels of

programming experience in this study; novice, intermediate and expert, the novice users

had a lot of problems understanding and correcting the errors that occurred. These users

showed no, or very limited, understanding of the code that was generated from their

natural language instructions. They were only able to judge the correctness of the

system by executing the code in the game environment and observing what happened.

Since the system is trying to correct semantic differences by running the objects and

actions through Semantic Matching, if the output of the NLP model is incorrect, these

incorrect objects and actions will then be semantically matched, often creating more

confusion. The users with more programming experience could detect errors in the

generated code before executing it and therefore use alternative wording, or correct

grammar and/or spelling in their given instruction. These users did, however, have the

same problem as the novice users when it came to incorrect NLP output being

semantically matched, creating confusing output.

36

Table 8: Result of qualitative analysis of Errors

 Dependency Parsing Semantic Role Labelling

Novice users Poor Poor

Intermediate users Poor Intermediate

Expert users Intermediate Good

4.6 Satisfaction

After the users completed the predefined task and were given some time to experiment

with the system, they responded to a series of questions regarding their thoughts on

using the system. These questions were on a disagree-agree scale ranging from one to

five. When asked if they found the system fun to use, most users responded positively,

with a mean value of four. This could potentially be due to the game aspect of the

interface, as described by Bromwich, Masoodian & Rogers (2012), making it engaging

and fun to use.

Another aspect that the users agreed on was that the system could not accurately

interpret their intentions, with a mean score of two out of five. This confirms the low

accuracy found in the data from the user tests of the system. As one user commented; “I

think [this approach to programming] could work, but the system is very fragile,

misunderstandings can feel very frustrating”. The user also mentioned the concept of

Uncanny valley in robotics, the theory that robots must look and behave very close to,

or very different from real humans or humans will have strong negative emotions

towards them. “Almost human” is not good enough. Much in the same way,

programming by intent, as in this thesis, according to this user, will need to have an

almost hundred percent accuracy and a great deal of flexibility to make it pleasant and

natural to use. This can possibly have some impact on the perceived influence on the

Computational Thinking of the users. When asked about if the system contributed to

their understanding of how to instruct a computer to solve problems, the general opinion

was divided with a slight majority towards the no side, resulting in a mean score of two

point five. When instead asked if the system had contributed to their understanding of

programming, the mean value was slightly higher with a score of three. One user

commented that “When programming I am used to write short commands and often try

to keep the code as short as possible. Therefore, it was a bit difficult getting used to

writing longer commands“. This might indicate that, with already established

knowledge of programming, writing code might be a more efficient way of

communicating intent to the computer. This might also have influenced that users

overall did not feel that the system was easy to use, with a mean value score of two

point sixty-seven.

37

Table 9: Result of qualitative analysis of Satisfaction

 Dependency Parsing Semantic Role Labelling

Novice users Intermediate Intermediate

Intermediate users Intermediate Poor

Expert users Poor Intermediate

5. Conclusions and future work

In this thesis, the possibility of using Natural Language Processing techniques to

translate human intent to code, making programming more accessible, has been studied.

Two different approaches have been implemented, based on combinations of the NLP

techniques: Part-of-Speech tagging, Semantic Role Labelling and Dependency Parsing.

Based on these two approaches, two hypotheses were formed regarding how these

techniques could be used to extract the intent of instructions given in natural language.

Hypothesis 1: It is possible to, using Part-of-Speech tags and grammatical

dependencies, model a sentence of human intent as a set of objects, methods and their

relations. By structuring these object and methods by their relations, code can be

created, representing the user’s intent.

From the study done in this thesis, the findings indicate that this hypothesis is the

weakest of the two proposed. The user tests using this approach had a higher amount of

instructions that could not be interpreted. This was partly due to the overall slightly

lower labelling accuracy observed by the models implemented in this approach and a

lower observed flexibility when it comes to tenses. Regarding the generalisation of

using grammatical dependencies and Part-of-Speech tags to model intent, this was

tightly coupled with the models themselves, making it difficult to assess its feasibility

without further research. Given the low accuracy of the models, the assumptions made

in this hypothesis can neither be confirmed or rejected.

Hypothesis 2: It is possible to, with Semantic role labels and Part-of-Speech tags,

model a sentence of human intent as a set of objects, methods and their relations. By

structuring these object and methods by their relations, code can be created,

representing the user’s intent.

38

The NLP models applied in this hypothesis had slightly higher accuracy and flexibility.

Using Semantic Role Labelling, the NLP models also returned data in a structure that

was highly compatible with the action-object data structure implemented in this thesis,

making implementation of these models more efficient. This approach also showed

more promising results with multiple actions mentioned in one sentence, even though,

looking at the results in this study, additional data and training of these models would

be needed. As with the first hypothesis, the close relation between the labelling

accuracy of the models and the general approach of using semantic role labels to model

intent, makes it difficult to determine its feasibility. Additional research is therefore

needed to confirm or reject this hypothesis.

The accuracy of the models used in both approaches have shown to be of great

importance. Low accuracy caused frustration and confusion among the users in this

study. The observed low accuracy has a large impact on the possibility to apply this way

of programming to improve Computational Thinking. According to the findings in this

study, many users experienced problems with the system not interpreting their intent

correctly and that the system did not, to any larger extent, contribute to their

understanding of Computational Thinking or programming. As described one user; for

this way of turning intent to code to be successful, close to a hundred percent accuracy

is most likely needed to be reached. Given that the system could reach a hundred

percent accuracy and a great deal of flexibility, it could then be possible for novice users

to use the system. In its current state, initial knowledge about programming is more or

less required to use the system. The low accuracy also made the user experience of the

system troublesome even for experienced programmers.

One assumption made in this thesis, that programming with intent expressed in natural

language would benefit from Semantic Matching, was in many occurrences confirmed

but in the cases where labelling errors occurred in the NLP models, this caused an extra

level of confusion. A solution to this might be to query the user regarding the

assumptions that the system makes instead of feeding the results to the user

immediately. However, in accordance with the design principles of Good (2016), it is

important so avoid giving a sense of the system being more capable than it is when

interacting with the user.

This thesis, due to the time limitations, was not able to conduct large scale studies on

the effect on Computational Thinking. The user testing in this study was conducted with

adult users. Additional studies would have to be made with larger test groups and a

variety of age groups to more accurately determine the effect this type of programming

have on the possibility to learn Computational Thinking at different ages. As this thesis

has shown, the low accuracy of the NLP models would first be addressed, as it strongly

affects the usage of the system and especially makes it troublesome for those without

prior programming knowledge.

39

The work in this thesis lays a broad foundation and aims at a great impact on further

research on how Natural Language Processing can help make technology more

accessible to everyone. The current findings about the performance of different NLP

methods in this study are hoped to be a solid starting point for research and

development into intent extraction from natural language.

As for other future work on the subject, but beyond the scope of this project, there are

several things that could be focused on. In this thesis, the English language was used as

a basis for finding correlations in the form of semantic roles and dependencies. Even

though it is hypothesized in this thesis that these techniques, given similar tools, models

and lexical resources, could be applied to other languages, this is something that needs

to be studied. Additionally, some of the errors that occur in the system developed in this

thesis were due to inaccuracy in the Natural Language Processing models. By training

models on more data, specific to this use case, the overall accuracy of the system could

potentially be increased.

A shortcoming in both the NLP approaches studied in this thesis is their inability to

fully account for context, for example mentions of “it” and “itself”. This could

potentially be addressed using additional Natural Language Processing techniques,

making it also subject for further research.

Future work could also be done on the form of alternative implementations of these

techniques. For example, by studying alternative representations of intent other than

objects and actions, but also by studying how the techniques could be applied in other

domains, other than a game interface. Additionally, implementing a voice interface for

expressing intent to the computer could be studied to assess if this would have an

impact on how the users expressed their intent, possibly being more verbose than in the

text interface implemented in this thesis. Further, this thesis did not include all the

programming concepts discussed by Brennan and Resnick (2012); Sequences, Loops,

Events, Parallelism, Conditionals, Operators and Data. By having an alternative domain,

the implementation of all the concepts or another subgroup of the concepts could be

studied.

Additional research and development in the area of Natural Language Processing is

needed to create models with higher accuracy to determine the potential for translating

human intent to code. If higher accuracy could be achieved, systems like the one

developed in this thesis could further be the subject of further research to determine

their impact on Computational Thinking and programming. If higher accuracy cannot

be achieved, the system will most likely create confusion and frustration, being

especially difficult to use for novice users as observed in this study. Although the

research presented in this thesis can be only considered exploratory, it does give some

exciting insights into how natural language may eventually be translated into fully

functional code. Such an advance should be able to address the anticipated future

shortfall in the number of people with programming skills.

40

References

Abbott, R. J. (1983), “Program design by informal English descriptions”,

Communications of the ACM CACM Homepage Archive Volume 26 Issue 11,

ACM: New York, NY, USA.

Abebe, S.L. & Tonella, P. (2010), "Natural Language Parsing of Program Element

Names for Concept Extraction", page 156.

Adams Becker, S., Cummins, M., Freeman, A., and Rose, K. (2017), 2017 NMC

Technology Outlook for Nordic Schools: A Horizon Project Regional Report.

Austin, Texas: The New Media Consortium.

Adetunmbi, O.A., Obe, O.O. & Iyanda, J.N. (2016), Int J Speech Technol (2016) 19:

929.

AlSuhaibani, R.S., Newman, C.D., Collard, M.L. & Maletic, J.I. (2015), "Heuristic-

based Part-of-Speech tagging of source code identifiers and comments", IEEE, page

1.

Ayetiran, E. F., Boella, G., Di Caro, L. & Robaldo, L. (2015), “Enhancing Word Sense

Disambiguation Using a Hybrid Knowledge-Based Technique”, Natural Language

Processing and Cognitive Science, edited by Olga Acosta, et al., De Gruyter, 2015.

ProQuest EBook Central.

Biermann, A.W., Ballard, B.W. & Sigmon, A.H. (1983), "An experimental study of

Natural Language Programming", International Journal of Man-Machine Studies,

vol. 18, no. 1, pp. 71-87.

Bohnet, B. (2011), “Comparing Advanced Graph-based and Transition-based

Dependency Parsers”, International Conference on Dependency Linguistics, Depling

2011, Barcelona, September 5-7, 2011.

Brennan, K. & Resnick, M. (2012), “Using artifact-based interviews to study the

development of Computational Thinking in interactive media design”, American

Educational Research Association Meeting. Vancouver, BC: Canada.

Bromwich, K., Masoodian, M. & Rogers, B. (2012), “Crossing the Game Threshold: A

System for Teaching Basic Programming Constructs”, CHINZ '12 Proceedings of the

13th International Conference of the NZ Chapter of the ACM's Special Interest

Group on Human-Computer Interaction, Pages 56-63.

Brill, E. (1995), “Transformation-Based Error-Driven Learning and Natural Language

Processing: A Case Study in Part-of-Speech Tagging”, Computational Linguistics:

Volume 21 Issue 4, December 1995, page 543.

Capindale, R. & Crawford, R. (1990), “Using a natural language interface with casual

users”, International Journal of Man-Machine Studies, Volume 32, Issue 3, Pages

341-361.

41

Carreras, X. (2007), “Experiments with a Higher-Order Projective Dependency Parser“,

Conference: EMNLP-CoNLL 2007, Proceedings of the 2007 Joint Conference on

Empirical Methods in Natural Language Processing and Computational Natural

Language Learning, June 28-30, 2007, Prague, Czech Republic.

Chen, D.L. & Mooney, R.J. (2011), "Learning to Interpret Natural Language Navigation

Instructions from Observations", Proceedings of the 25th AAAI Conference on

Artificial Intelligence, San Francisco, CA, USA.

Chen, D. & Manning, C. (2014), “A Fast and Accurate Dependency Parser Using

Neural Networks.”, Proceedings of EMNLP 2014.

Code.org, (2014), “Code.org Overview”, available online:

https://code.org/files/Code.orgOverview.pdf (2017-04-20).

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K. & Kuksa, P. (2011),

“Natural Language Processing (Almost) from Scratch”, Journal of Machine Learning

Research (JMLR).

Falleri, J., Huchard, M., Lafourcade, M., Nebut, C., Prince, V. & Dao, M. (2010),

"Automatic Extraction of a WordNet-Like Identifier Network from Software", page

4.

Foth, K., Daum M., & Menzel W. (2005), “Parsing Unrestricted German Text with

Defeasible Constraints.” In: Christiansen H., Skadhauge P.R., Villadsen J. (eds)

Constraint Solving and Language Processing. CSLP 2004. Lecture Notes in

Computer Science, vol 3438. Springer, Berlin, Heidelberg.

FrameNet, (2017), “What is FrameNet?”, Berkeley University of California, available

online: https://framenet.icsi.berkeley.edu/fndrupal/WhatIsFrameNet (2017-02-14).

Gales, M.J.F., Kim, D.Y., Woodland, P.C., Chan, H.Y., Mrva, D., Sinha, R. & Tranter,

S.E., (2006), "Progress in the CU-HTK broadcast news transcription system," in

IEEE Transactions on Audio, Speech, and Language Processing, vol. 14, no. 5, pp.

1513-1525, Sept. 2006.

Galliano, S., Geoffrois, E., Mostefa, D., Choukri, K., Bonastre, J-F., & Gravier, G.

(2005), “The ESTER phase II evaluation campaign for the rich transcription of

French broadcast news”, Proceedings of the 9th European Conference on Speech

Communication and Technology (INTERSPEECH’05), pp. 1149– 1152, 2005.

Good, J., (2011), “Learners at the wheel: novice programming environments come of

age.”, International Journal of People-Oriented Programming, 1(1), 1e24.

Good, J., (2016), “Programming language, natural language? Supporting the diverse

computational activities of novice programmers”, Journal of Visual Languages and

Computing.

https://code.org/files/Code.orgOverview.pdf
https://framenet.icsi.berkeley.edu/fndrupal/WhatIsFrameNet

42

Google (2017), “Cloud Speech API - Speech to text conversion powered by machine

learning”, Google website, available online: https://cloud.google.com/speech/ (2017-

04-03).

Grudin, J. (1992), “Utility and usability: research issues and development contexts”,

Interacting with Computers, Volume 4, Issue 2, August 1992, Pages 209-217.

Hirschberg, J. & Manning C. (2015), “Advances in natural language processing”,

Science, American Association for the Advancement of Science, volume 349,

number 6245, pages 261-266.

IBM (2017), “Speech to Text - Convert human voice into written word”, IBM Website,

available online: https://www.ibm.com/watson/developercloud/speech-to-text.html

(2017-03-29).

Kalelioğlu, F. (2015), ”A new way of teaching programming skills to K-12 students:

Code.org”, Computers in Human Behavior, Volume 52, November 2015, Pages 200–

210.

Kelleher, C. & Pausch, R. (2005), “Lowering the Barriers to Programming: A

Taxonomy of Programming Environments and Languages for Novice Programmers”,

ACM Computing Surveys (CSUR), Volume 37 Issue 2, June 2005, ACM: New

York, NY, USA.

Kim, S. & Kim, D. (2016), "Automatic identifier inconsistency detection using code

dictionary", Empirical Software Engineering, vol. 21, no. 2, page 565-604.

Kuhn, A., Ducasse, S. & Gîrba, T. (2007), "Semantic clustering: Identifying topics in

source code", Information and Software Technology, vol. 49, no. 3, page 230-243.

Levin, B. (1993), “English Verb Classes and Alternations: A Preliminary

Investigation”, University of Chicago Press.

Lifelong Kindergarten Group, MIT Media Lab (2017), Scratch. Available online:

https://scratch.mit.edu/ (2017-02-15).

Manning, C. & Schütze, H. (1999), “Foundations of statistical natural language

processing”, Book, Cambridge, Mass. MIT Press, cop. 1999.

Matinez, A. R. (2012) “Part-of-speech tagging”, Wiley interdisciplinary reviews.

Computational statistics, 2012, 4 pages 107–113.

Marcus, M. (1995). New trends in natural language processing: statistical natural

language processing. Proceedings of the National Academy of Sciences of the United

States of America, 92(22), 10052–10059.

Maruyama, H. (1990), “Structural disambiguation with constraint propagation.” In

Proceedings of the 28th annual meeting on Association for Computational

Linguistics (ACL '90). Association for Computational Linguistics, Stroudsburg, PA,

USA, page 31-38.

https://cloud.google.com/speech/
https://www.ibm.com/watson/developercloud/speech-to-text.html
https://scratch.mit.edu/developers

43

McDonald, R., Crammer, K. & Pereira, F. (2005a), “Online Large-Margin Training of

Dependency Parsers”, Conference: ACL 2005, 43rd Annual Meeting of the

Association for Computational Linguistics, Proceedings of the Conference, 25-30

June 2005, University of Michigan, USA .

McDonald, R. Pereira, F., Ribarov, K. & Hajič, J. (2005b), “Non-projective dependency

parsing using spanning tree algorithms”. In Proceedings of the conference on Human

Language Technology and Empirical Methods in Natural Language Processing (HLT

'05). Association for Computational Linguistics, Stroudsburg, PA, USA, 523-530.

Mcdonald, R. & Pereira, F. (2006), “Online Learning of Approximate Dependency

Parsing Algorithms”, Conference: EACL 2006, 11st Conference of the European

Chapter of the Association for Computational Linguistics, Proceedings of the

Conference, April 3-7, 2006, Trento, Italy.

Menzel, W. & Schröder, I. (1998), “Decision procedures for dependency parsing using

graded constraints.” Proceedings of the workshop on processing of dependency-

based grammars (ACL-COLING), page 78–87.

Microsoft (2016), “Bing Speech API - Convert audio to text, understand intent, and

convert text back to speech for natural responsiveness.”, Microsoft website, available

online: https://www.microsoft.com/cognitive-services/en-us/speech-api (2017-03-

29).

Miller, L.A. (1978), “Behavioral studies of the programming process”, Tech. Rep., IBM

Thomas J Watson Research Center, Yorktown Heights, NY.

Navigli, R. (2009), “Word Sense Disambiguation: A Survey”, ACM Comput. Surv. 41,

2, Article 10, ACM: New York, NY, USA.

Nielsen, J. (1993), “Usability Engineering”, Morgan Kaufmann Publishers Inc. San

Francisco, CA, USA.

Nivre, J. & McDonald, R. (2008) “Integrating Graph-Based and Transition-Based

Dependency Parsers”, Proceedings of ACL-08: HLT, pages 950–958, Columbus,

Ohio, USA, June 2008.

Nivre, J (2010), “Dependency Parsing”, Language and Linguistics Compass 4/3 (2010):

138–152.

Nouvel, D., Ehrmann, M. & Rosset, S. (2016), “Named Entities for Computational

Linguistics”, John Wiley & Sons, Incorporated, 2016. ProQuest EBook Central.

Palmer, M., Gildea, D. & Xue, N. (2011), 'Semantic Role Labelling', 1st edn, San

Rafael, Calif., 1537 Fourth Street, San Rafael, CA 94901 USA, Morgan & Claypool

Publishers, 2011.

Pollock, L., Vijay-Shanker, K., Shepherd, D., Hill, E., Fry, Z. & Maloor, K. (2007),

"Introducing natural language program analysis", ACM, page 15.

https://www.microsoft.com/cognitive-services/en-us/speech-api

44

PractNLPTools (2016), PractNLPTools, Available online: https://github.com/biplab-

iitb/practNLPTools (2017-02-22).

Princeton University (2010), "About WordNet." WordNet. Princeton University.

Available online: http://wordnet.princeton.edu (2017-02-15).

PropBank, (2017), “The Proposition Bank (PropBank)”, available online:

http://propbank.github.io/ (2017-02-14).

Ratnaparkhi, A., (1996), “A maximum entropy model for Part-of-Speech tagging”.

EMNLP 1, pages 133–142.

Regeringskansliet (2017), “Stärkt digital kompetens i läroplaner och kursplaner”,

available online: http://www.regeringen.se/pressmeddelanden/2017/03/starkt-digital-

kompetens-i-laroplaner-och-kursplaner/ (2017-04-20).

Saeed, J., (2015), “Semantics”, Wiley, ProQuest EBook Central.

Sáez-López, J.-M., Román-González, M. & Vázquez-Cano, E., (2016), “Visual

programming languages integrated across the curriculum in elementary school: A

two year case study using “Scratch” in five schools”, Computers & Education,

Volume 97, June 2016, Pages 129–141.

Sammet, J.E., (1966), “The use of English as a programming language”,

Communications of the ACM CACM Homepage archive, Volume 9 Issue 3, ACM:

New York, NY, USA http://dl.acm.org.ezproxy.its.uu.se/citation.cfm?id=365274.

Sampson, G. (1980), “Schools of Linguistics”, London: Hutchinson & Co.

Scheinberg, S. (1960) “Note on the Boolean properties of context free languages”,

Information and Control, Volume 3, Issue 4, 1960, Pages 372-375.

Sekine, S. & Ranchhod, E., (2009) “Named Entities”, John Benjamins Publishing

Company, 2009. ProQuest EBook Central.

SemLink, (2013), “SemLink”, University of Colorado, Available online:

https://verbs.colorado.edu/semlink/ (2017-02-15).

Shepherd, D., Pollock, L. & Vijay-Shanker, K. (2007), "Case study: supplementing

program analysis with natural language analysis to improve a reverse engineering

task", ACM, page. 49.

Shires, G. & Wennborg, H. (2012), “Web speech API Specification”, Speech API

Community Group, available online: https://dvcs.w3.org/hg/speech-api/raw-

file/tip/speechapi.html (2017-03-28).

Stenmark, M. & Malec, J., (2014), “Describing constraint-based assembly tasks in

unstructured natural language”, IFAC Proceedings Volumes, Volume 47, Issue 3,

2014, Pages 3056-3061.

https://github.com/biplab-iitb/practNLPTools
https://github.com/biplab-iitb/practNLPTools
http://wordnet.princeton.edu/
http://propbank.github.io/
http://www.regeringen.se/pressmeddelanden/2017/03/starkt-digital-kompetens-i-laroplaner-och-kursplaner/
http://www.regeringen.se/pressmeddelanden/2017/03/starkt-digital-kompetens-i-laroplaner-och-kursplaner/
http://dl.acm.org.ezproxy.its.uu.se/citation.cfm?id=365274
https://verbs.colorado.edu/semlink/
https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html
https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html

45

Toutanova, K., Klein, D., Manning C. and Singer, Y. (2003), “Feature-Rich Part-of-

Speech Tagging with a Cyclic Dependency Network”. In Proceedings of HLT-

NAACL 2003, page 252-259.

VerbNet, (2017), “A Class-Based Verb Lexicon”, University of Colorado, available

online: https://verbs.colorado.edu/~mpalmer/projects/verbnet.html (2017-02-14).

Wing, J.M. (2008), “Computational Thinking and thinking about computing”,

Philosophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences, 10/2008, Volume 366, Number 1881.

Yle (2015), “Coding soon to be part of Finnish schoolchildren’s core curriculum”,

available online:

http://yle.fi/uutiset/osasto/news/coding_soon_to_be_part_of_finnish_schoolchildrens

_core_curriculum/7818567 (2017-04-20).

https://verbs.colorado.edu/~mpalmer/projects/verbnet.html
http://yle.fi/uutiset/osasto/news/coding_soon_to_be_part_of_finnish_schoolchildrens_core_curriculum/7818567
http://yle.fi/uutiset/osasto/news/coding_soon_to_be_part_of_finnish_schoolchildrens_core_curriculum/7818567

	Exjobbsframsida
	Abstractsida
	Adam_report_FINAL_v4
	1. Introduction
	2. Background
	2.1 Computational Thinking
	2.2 Alternative means of programming
	2.2.1 Learning programming
	2.2.2 Natural Language Programming
	2.3 Natural Language Processing
	2.3.1 Part-of-Speech Tagging
	2.3.2 Word-Sense disambiguation and similarity
	2.3.3 Dependency Parsing
	2.3.4 Semantic Role Labelling
	2.4 Related work
	2.5 Present work
	3. Methods
	3.1 Methodical Approaches
	3.1.1 Approach 1: Dependency parsing and Part-of-Speech tagging
	3.1.2 Approach 2: Semantic Role Labelling and Part-of-Speech tagging
	3.1.3 From speech to text
	3.1.4 From code to game
	3.1.5 Performance evaluation
	3.2 User testing
	3.3 Limitations
	3.4 Implementation
	3.4.1 Testing interface
	3.5 Speech to Text Implementation
	3.6 Study 1: Dependency Parsing
	3.7 Study 2: Semantic Role Labelling
	3.8 Semantic matching
	3.9 Code generation
	4. Results and Discussion
	4.1 Ease of implementation
	4.2 Amount of generalisation
	4.3 Learnability
	4.4 Efficiency
	4.5 Errors
	4.6 Satisfaction
	5. Conclusions and future work
	References

