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Abstract

From Intent to Code using Natural Language
Processing

Adam Byström

Programming and the possibility to express one’s intent to a machine is becoming a 
very important skill in our digitalizing society. Today, instructing a machine, such as 
a computer to perform actions is done through programming. What if this could be 
done with human language? This thesis examines how new technologies and 
methods in the form of Natural Language Processing can be used to make 
programming more accessible by translating intent expressed in natural language 
into code that a computer can execute. Related research has studied using natural 
language as a programming language and using natural language to instruct robots. 
These studies have shown promising results but are hindered by strict syntaxes, 
limited domains and inability to handle ambiguity. Studies have also been made 
using Natural Language Processing to analyse source code, turning code into 
natural language. This thesis has the reversed approach. By utilizing Natural 
Language Processing techniques, an intent can be translated into code containing 
concepts such as sequential execution, loops and conditional statements. In this 
study, a system for converting intent, expressed in English sentences, into code is 
developed. To analyse this approach to programming, an evaluation framework is 
developed, evaluating the system during the development process as well as usage 
of the final system. The results show that this way of programming might have 
potential but conclude that the Natural Language Processing models still have too 
low accuracy. Further research is required to increase this accuracy to further 
assess the potential of this way of programming.
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Populärvetenskaplig sammanfattning 

Programmering och förståelsen för hur man interagerar med en dator blir allt viktigare i 

vårt alltmer digitaliserade samhälle. Programmering blir ett verktyg för att ta till sig och 

kontrollera den nya tekniken. Detta skapar ett stort behov av personer med denna 

specifika kompetens men också frågeställningar om tekniken verkligen är tillgänglig för 

alla.  

Ny teknik kan vara lösningen på detta. Idag har de flesta människor en dator i fickan 

och behöver bara säga “Siri” eller “Okej Google” för att denna dator ska kunna göra allt 

från att svara på deras frågor till att skicka ett SMS eller boka en restaurang. Det har 

under senare år gjorts stora framsteg inom maskininlärning; att en dator kan lära sig 

saker genom att kolla på stora mängder data och Natural Language Processing; en 

dators förmåga att förstå mänskligt språk. Denna teknik gör det möjligt att få en dator 

att tolka en människas avsikt med högre säkerhet och flexibilitet än tidigare.  

Denna studie undersöker möjligheten att använda nya tekniker inom Natural Language 

Processing som ett hjälpmedel att skapa förståelse för hur man interagerar med en dator 

och som ett verktyg att lära sig programmering. Under studien utvecklas ett system som 

omvandlar användarens avsikt, uttryckt i mänskligt språk, till kodspråk som sedan kan 

exekveras av datorn. Detta system implementeras i ett spel där användaren beskriver 

vad hen önskar ska hända i spelet, i form av spelpjäser som utför handlingar. Denna 

vilja översätts därefter till kod som visas för användaren och sedan exekveras för att 

styra spelet.  

För att utvärdera dessa teknikers framtida möjlighet att användas för att översätta 

mänsklig avsikt till kod utvecklas ett testramverk. Ramverket utvärderar såväl teknikens 

begränsningar som användarupplevelsen av att programmera genom att beskriva sin 

avsikt i mänskligt språk.  

Resultaten av studien pekar på att denna typ av programmering potentiellt skulle kunna 

bidra till att föra mänskligt språk och programmering närmare varandra. Studien visar 

dock att det krävs vidare forskning och utveckling inom Natural Language Processing 

för att öka noggrannheten av modellerna. Det krävs också vidare utveckling för att 

kunna modellera ytterligare delar av kontexten av användarens avsikt. I dagsläget håller 

dessa modeller låg noggrannhet. Detta medför att framförallt personer utan, eller med 

begränsad, programmeringserfarenhet har svårt att använda systemet. Med ökad 

noggrannhet hos dessa modeller skulle system, likt det som utvecklas i denna studie, på 

ett mer korrekt sätt kunna representera användarens avsikt, oavsett användarens tidigare 

programmeringserfarenhet. Detta skulle bana väg för mer forskning för att vidare 

undersöka dessa systems påverkan på förståelse för programmering och hur en dator 

fungerar.  
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1. Introduction  

With a society that is becoming increasingly integrated with IT and technology, the 

need to understand and interface with computers is becoming more and more important. 

With programming being a core skill for doing this, the need for programmers will only 

increase. According to Code.org, a non-profit organisation dedicated to expanding 

access to computer science and programming, in 2020 there will be 1.4 million 

computing jobs in the United States alone, but only 400 000 computer science students 

to fill them (Code.org, 2013). In a newly published report on the technology outlook for 

Nordic schools, one of the key trends observed was an increased importance of coding 

and Computational Thinking: “the skills required to learn coding combine deep 

computer science knowledge with creativity and problem-solving” (Adams Becker et al, 

2017). According to the report, many make the case that coding should be embedded as 

a part of primary and secondary education curricula, something that is now done in 

Finland (Yle, 2015) and will be done in Sweden, starting from 2018 (Regeringskansliet, 

2017).  

Parallel to this, a lot of progress has been made in the field of Natural Language 

Processing, the possibility for a computer to learn, understand and produce human 

language. This progress is primarily made possible by four different factors; increased 

computing resources, increased availability of data, improved machine learning 

methods and finally; improvements in the field of linguistics (Hirschberg & Manning, 

2015). These improvements have made it possible for computers to, with a much higher 

accuracy than before, understand human language and humanity over all. With virtual 

assistants like Apple’s Siri, Cortana and Google Assistant, we humans can interact with 

a computer in a whole new way, asking it to handle interactions with our smartphone 

apps or answering questions. What if this technology could be used to develop new 

ways of interacting with a computer? What if it could replace programming, making 

technology accessible for everyone? 

This thesis studies how a computer can, using the available tools for Natural Language 

Processing, translate an intent, expressed in human language, into code, making 

Computational Thinking and programming more accessible.   

To do this, two different approaches are developed based on Part-of-Speech tagging and 

either Dependency Parsing or Semantic Role Labelling. As a testing framework, a 

system that takes an intent, expressed in natural language, applies one of the approaches 

and generates Actions, Objects and their relations, is developed. These are then 

semantically matched using the lexical resource WordNet to handle ambiguity. Finally, 

code is generated that is executed to control a game environment. To evaluate the two 

approaches, an evaluation framework consisting of two parts is developed. The first part 

evaluates the technical challenges of implementing the approaches and their limitations. 

The second part is aimed at evaluating the user experience of the system and its 
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potential for giving a greater understanding of programming and Computational 

Thinking. 

This study can conclude that this way of programming might have potential, especially 

using Semantic Role Labelling. But due to the low accuracy and flexibility of the 

Natural Language Processing models, it is difficult to evaluate its future potential. This 

study shows that the errors that occur in the Natural Language Processing models 

creates confusion and frustration to a degree where the system’s purpose becomes 

almost impossible to evaluate. Further research and development of Natural Language 

Processing models with higher accuracy is required to be able to further research similar 

approaches to programming as studied in this thesis.     

2. Background  

As a basis for this thesis, the background covers three main areas of research. First, to 

analyse the underlying reasoning involved in programming, Computational Thinking is 

explored; what it is and how abstractions help with solving problems in a structured 

way. Second, the thesis gives a brief overview of alternative methods of programming. 

The overall goal of this thesis is to make learning programming more accessible. This 

background section explores many attempts to do so, with everything from games to 

Natural Language Programming, and the lessons learned from that. Third, a range of 

Natural Language Processing techniques are explored, with the goal of extracting the 

intent from natural language sentences; Part-of-Speech tagging, Word-Sense 

Disambiguation and Similarity, Dependency Parsing and Semantic Role Labelling.  

2.1 Computational Thinking 

Computational Thinking is using the concept of abstraction to solve problems, design 

systems and understand human nature in a way that is derived from computing. Wing 

(2008) describes the abstractions of Computational Thinking as richer and more 

complex than the ones found in other fields, such as mathematics or physical sciences. 

They are often abstractions “beyond the physical dimensions of time and space”, but at 

the same time being limited by them (Wing, 2008). Wing (2008) also predicts that this 

way of thinking will be a central part of everything in the future and that this introduces 

new educational challenges; how and when should people learn Computational 

Thinking?  

One basis for Computational Thinking is the selection process of which details to 

highlight and which to hide with abstraction (Wing, 2008). Another is the concept of 

working with several layers at the same time, with standardised connections between 

them. Examples of this in computing are for example the network stack or different 

components in a larger system that interfaces with API calls, making it possible to 

interact with other layers without deeper knowledge of them (Wing, 2008).  
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From the perspective of Computational Thinking, a computer program is a list of step-

by-step instructions that tell the computer what to do in a very precise manner. Sáez-

López et al (2015) wrote that the creation of such a computer program does not require 

a special expertise, just a structured way of thinking. It all boils down to how a 

computer, either a computer in the classical sense or a computing human, can solve a 

problem by choosing the right abstractions and computer for the task at hand (Wing, 

2008). According to, among others, Wing (2008) and Sáez-López et al (2015); to ensure 

a broad understanding and use of Computational Thinking, as needed in the digitalizing 

society, Computational Thinking should be taught to everyone in the early years of 

childhood.  

2.2 Alternative means of programming 

To make it easier for children as well as adults to learn and practise Computational 

Thinking and programming, alternative means of programming have been developed. 

Many of them use abstractions for the underlying computer instructions, such as 

graphical elements or natural language.  

2.2.1 Learning programming 

Since the early 1960’s, there has been a substantial amount of research in developing 

tools to make it easier for people to learn programming. New programming languages 

and environments have been developed. They focus on different aspects of 

programming and how these can be learnt: how to structure a solution to a problem and 

how to write unnatural syntax and commands (Kelleher & Pausch, 2005). 

Kelleher and Pausch (2005) divide the different aspects of programming into two 

different categories based on what they conclude are the biggest obstacles in learning 

programming. These are expressing the intention of the program to the computer and 

understanding how the computer executes this intention in the form of instructions. 

Several languages have been developed to make it easier for a user to express intentions 

in a syntax that the computer can understand. According to Kelleher and Pausch (2005), 

novice programmers often have problem with translating intention to code. 

Programming languages in this category primarily focus on either making the syntaxes 

easier to learn or by using alternative ways in which a user can express intention to the 

computer.  

Several different approaches to making the syntax easier have been taken. These 

include: simplifying the language, limiting the domain of problems to be solved by 

programming and preventing syntax errors. As Kelleher and Pausch (2005) conclude: 

many general-purpose languages use syntaxes and names of commands that feel 

unfamiliar to users since they originate from the computer rather from the human 

language. Languages like BASIC, Blue and Junior Java tackle this by adopting the 

programing languages vocabulary to English, as well as deriving syntaxes and concepts 

from everyday life. By doing this, the scope of solvable problems is limited, as 



6 
 

described by Wing (2008), but this makes the language look and function like a 

traditional programming language. This in turn, according to Kelleher and Pausch 

(2005), makes the transition to a general-purpose language easier.  

To prevent syntax errors, the most common method is to use a programming synthesizer 

with a finite set of predefined building blocks or templates with blank sections with 

space for a specific statement, condition or phrase. By limiting the combinations of 

these templates, syntactic errors can be avoided (Kelleher & Pausch, 2005). This 

concept is also used in programming languages that focus on expressing intention in 

alternative ways to the computer.  

Several ways to express intention to the computer have been developed with great 

success. One approach in which programming languages try to abstract out the syntaxes 

is using user actions, such as button presses in a game, within a digital environment, to 

define a program. Another approach is to create objects that in some sense represent 

units of code that can be moved around and combined in different ways (Kelleher & 

Pausch, 2005). These objects can be in the form of graphical elements on a computer 

screen but also in the form of physical building blocks, such as in Electronic Blocks 

from Wyeth and Purchase (2000). Environments for learning programming especially 

targeted at children have increased in popularity the last couple of years. Some of the 

most popular of these are graphical, object based programming languages like Alice, 

Scratch and the website Code.org, and where the last two are based on the block-based 

programming language Google Blockly (Good, 2011; Kalelioğlu, 2015).  

Scratch is a block based programming language created by the Lifelong Kindergarten 

group at the MIT Media Lab, as an extension on Google Blockly. The Scratch-blocks, 

that focus on creating interactive stories, games and simulations fall into seven different 

categories. These are: motion, looks, sound, pen, control, sensing operators and 

variables (Sáez-López et al, 2015; Lifelong Kindergarten Group, 2017). Results from 

studies performed by Sáez-López et al. (2015) show that, because of the playfulness and 

the graphical nature of the language, coding in this interface is much easier than 

traditional general-purpose programming languages. Brennan and Resnick (2012) have 

developed a framework of concepts used in many programming languages and that are 

also implemented in Scratch using different sets of blocks. These are Sequences, Loops, 

Events, Parallelism, Conditionals, Operators and Data.  

Sequences are described as dividing an activity or task into a series of smaller steps or 

instructions that each do one thing. Loops are described as executing several of these 

instructions several times without repeating the instructions themselves. Events are 

“one thing causing another thing to happen” (Brennan & Resnick, 2012); for example, 

when a button on the keyboard is pressed or when an object on screen is clicked. 

Parallelism is when several sets of instructions are executed simultaneously, or in 

parallel. Conditionals are the concept of making decisions based on if a condition is 

fulfilled or not. Operators are instructions that perform numerical or string 

manipulations using mathematical, logical and string expressions, or operations. Lastly, 
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the Data concept involves storing, retrieving and updating values, and which in Scratch 

are represented by variables and lists. Variables can hold one value, a number or a 

string, while lists can hold a collection of numbers and strings.  

Studies on how games can be used in education and to teach programming show that 

teaching concepts of programming and Computational Thinking through a game can 

make it easier to learn as well as be more fun and engaging (Bromwich, Masoodian & 

Rogers, 2012). Bromwich, Masoodian & Rogers (2012) conducted a study where they 

developed a game for learning and practising the basic concepts of programming in an 

engaging way, without using traditional syntax. They saw that students who learn 

programming traditionally are taught syntax first and then rushed into more complex 

projects without practising the basic concepts, like loops. Their game environment 

consisted of a 2D word with a visual programming editor where commands, conditional 

statements and loops were represented by circles with text. These circles are then 

connected to control an avatar. The goal was to, for each level in the game, navigate it 

through a maze with an increasing level of complexity. The study showed that a game 

environment is both a fun and inspiring way of learning and practicing fundamental 

programming concepts.  

2.2.2 Natural Language Programming 

What if we could use human language, or “natural language”, for programming? Could 

that make it easier for novice programmers to get into coding? Up to date, several 

attempts to create such a programming language have been made. Languages such as 

HyperTalk, Cobol or Inform 7 all are based on this notion, writing code that is as close 

to the human language as possible, making programming more accessible. But there 

have also been other attempts with less noble intent. LOLCode is a programming 

language that its creators call “An esoteric programming language” (LOLCode, 2017). 

It is based around internet slang and so called memes, a set of culturally significant 

references, primarily the internet's obsession with cats.  

Several studies into the use of natural language as means of programming, both in the 

context of code generation, but also for comprehension, debugging and collaboration 

have also been made. As early as 1966, Sammet (1966) was discussing the potential of 

using the human language as a programming language. Sammet (1966) describe that the 

challenge of using English or any other human language for programming will always 

be for the computer to accurately resolve any ambiguity. For example, by querying the 

user. It is also important that the computer can determine the correct interpretation of a 

sentence where a number of possible syntactic interpretations could be made. She 

speculates that there could be patterns to these ambiguities and syntactic variations that 

the computer potentially could learn and thereby reduce the amount of query-interaction 

with the user (Sammet, 1966).  

Empirical studies on the feasibility of programming in natural language have, over the 

years, yielded varying results. Biermann et al (1983) showed promising results in their 
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study using the Natural Language Programming system NLC on a limited domain of 

operations on data tables and matrixes. As concluded in the study, students in a first 

course in programming could quickly learn and get started programming with the subset 

of the English language implemented in the system. They also concluded that the 

vagueness and ambiguity of natural language did not significantly affect performance 

when used with the limited domain of NLC (Biermann et al, 1983). Capindale and 

Crawford (1990), in another study, found that another natural language system, 

Intellect, could be used successfully in limited querying of databases in the case when 

the stored data is known to the user. Although successful, this study found that one of 

most potent limitations to the system was its inability to handle context and grammatical 

variations as well as the systems limited vocabulary and functionality (Capindale and 

Crawford, 1990). Another, more sceptical approach comes from Miller (1978). In his 

study, he found that descriptions of programs from the users are often incomplete in 

relation to the code of the program. His study also showed that the users’ descriptions 

state the actions first and then the conditions in which the action is performed, and 

which is the opposite to how a computer handles conditions (Miller, 1978). 

Among the more recent publications on the subject, Good (2016) performed several 

studies on game development as a basis for Natural Language Programming. First 

Inform 7, a programming language primarily focused on developing interactive stories 

with a ‘read like English’-syntax was studied (Good, 2016). The goal of this study was 

to identify potential problems that arose when adults with no prior programming 

experience were faced with the programming language. Two major groups of problems 

were discovered. First, the differentiation between what natural language should be 

interpreted as programming language and what should be interpreted as strings. Second, 

problems related to using natural language as a programming language in general, such 

as the use of synonyms of syntactic keywords or the use of incorrect Inform 7 syntax 

(Good, 2016).   

In the second study, Good analysed how children, aged 11 – 12 years, would naturally 

describe events and behaviours in a game by letting them play a game that embodied 

one of several programming elements (conditions, Booleans etc.). The results of this 

study showed poor performance for code generation, primarily because of problems 

with incomplete descriptions, much like the findings of Miller (1978). A third study 

found that the children showed great improvement when using laminated cards with 

different programming elements that should be paired together in a non-digital setting. 

Good (2016) could confirm the findings of Miller (1978), that incomplete statements 

result in a large portion of encountered errors. Good (2016) also confirmed the 

ambiguity discussed by Sammet (1966) and her own findings regarding strings in 

contrast to natural language “code”. Based on these findings, Good (2016) developed 

seven design principles for developing a Natural Language Programming language. 

They are divided into two categories; the first one code generation and the second is 

comprehension, debugging and collaboration. 
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Code generation  

1) Constraint expression during program generation. Good suggests that, in 

order to prevent novice programmers from running into syntax errors, the 

domain of expressions should be limited. This could also be combined with an 

autocomplete feature in the case of a text-based language.  

2) Clearly distinguish ‘code’ from free-text. When using natural language as a 

programming language it should be clear to the user when natural language 

should be interpreted as ‘code’ and when it should be interpreted as strings. 

3) Highlight distinctions between different computational categories. It is, 

according to Good, important to differentiate between different programming 

constructs, such as states and actions, so that they don’t get mixed up.  

4) Make underlying structure visible to avoid errors of omission or 

commission. It should be clear how different programming constructs go 

together, and, when there are missing constructs, what they are.  

 

Comprehension, debugging and collaboration  

5) Provide a full-sentence natural language description of the code. Good found 

in her studies that it was vital that the user easily could understand and review 

the code they have just written. She suggests that a description of the code in 

natural language could solve this.  

6) Use ‘natural’ natural language. The studies also found that full-sentence, 

everyday language should, as far as possible, be used for both syntax and in 

error messages to the user.   

7) Do not suggest the system can engage in dialogue when it cannot. In one of 

the studies, using the programing language Inform 7, the error messages were 

verbose and “pseudo-conversational”. In the study, Good found that this was 

confusing rather than helpful and so suggests to not portray the system as more 

capable than it is.  

 

2.3 Natural Language Processing  

Human language, or natural language, is complex and ever evolving. One of the first 

recognized attempts to, in the tradition of scientific theory, create theorems and rules for 

understanding and generating language was made by Chomsky (1957). He found that 

grammatical structure, or Grammatical sequences and Ungrammatical sequences, could 

be described in terms of logical rules, as opposed to the semantic meaningfulness of the 

sequence. The classical example of this is the sequence ”colourless green ideas sleep 
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furiously” (Chomsky, 1957) that does not hold any valid semantic meaning but, 

according to Chomsky (1957), is still grammatically valid.  

Even though there have been debate and criticism of these theories, Chomsky has been 

renowned for the scientific approach he brought to linguistics (Sampson, 1980; Markus, 

1995). This scientific approach has made a great impact in the field of Natural 

Language Processing, NLP. NLP is the technique for making a computer understand 

natural language. The Natural Language Processing community has grown since the 

1960s and has focused on a set of tasks. Some of these are Machine Translation, Named 

Entity Recognition, Part-of-Speech Tagging, Parsing, Question Answering, 

Relationship Extraction, Speech Recognition and Word Sense Disambiguation. In the 

following sections some of these techniques, related to this thesis, are explained in more 

detail. 

2.3.1 Part-of-Speech Tagging 

Part-of-Speech tagging is the process of labelling a word in a sentence with what part of 

language it belongs to, such as verbs, adverbs and nouns. A lot of research and work in 

general has been done in this area of Natural Language Processing. This is mostly 

thanks to the development of large corpora, structured set of texts (Martinez, 2012).  

The two major challenges for Part-of-Speech tagging are ambiguous words; words that, 

depending on context, are part of different parts of speech and words that are unknown. 

Since the Part-of-Speech taggers are trained on a limited set of corpora (a finite amount 

of text), if that word does not occur in the training data, it is harder for the tagger to 

label the word correctly (Martinez, 2012). Several methods for Part-of-Speech tagging 

and trying to address these problems have been made using different approaches. These 

can be divided in two categories; rule-based and probabilistic methods.  

Rule-Based methods use, as the name suggests, rules, in the form of rule sets of allowed 

sequences of tags. In most cases these are created manually by experts in linguistics, 

something that Martinez (2012) describes as “too inefficient to be practical”. Due to this 

inefficiency, Brill (1995) developed a method, where a model can learn rules from 

corpora using Transformation-based learning, as depicted in Figure 1.  

 

 

Figure 1: Transformation-based learning, (Brill, 1995) 
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The method starts off with an unannotated set of texts that it gives an initial annotation. 

This is then processed by a learner that compares it with a pre-labelled text, referred to 

as truth. By doing this iteratively the learner automatically creates new set of rules 

(Brill, 1995). 

In the early 1990s, a different approach to Part-of-Speech tagging started replacing the 

rule-based methods with probabilistic methods, and primarily Markov model taggers. 

The Markov models, in combination with increased access to structured data, 

transformed the whole field of Natural Language Processing altogether (Martinez, 

2012). By not needing to write rules that tended to be extremely complex and often had 

a low amount of flexibility they could reach a higher effectiveness with the same or 

higher accuracy (Markus, 1995).  

Modern Part-of-Speech taggers are often based on Hidden Markov Models (HMM:s), a 

variant of the Markov models (Martines, 2012). Markov models, or Markov chains are 

based on the notion that, for a sequence of random variables that can take on one, out of 

a finite set of states, a variable is only dependent on the immediately preceding variable, 

independent of time. In the case of Part-of-Speech (POS) tagging, the POS-tag of a 

word is only dependent on the POS-tag of the preceding word, independently of where 

in a sentence these words are.  

A Markov chain can also be envisioned as stochastic transitions between states where 

the transition probabilities to the next state are based on the current state. In a standard 

Markov model these states are observable and it is therefore possible to compute these 

transitions. In a HMM the sequence of states is not observable. It is only the output 

from these states that is visible; the words, in the case of POS-tagging, that can be 

observed. By training the POS-tagger model on a pre-tagged corpus that is treated as a 

visible Markov model where the states are observable and probabilities can be 

computed, it is then possible to apply this model to a new set of words, but as a HMM, 

observing the word we wish to tag (Manning & Schütze, 1999).  

Another probabilistic technique used for Part-of-Speech tagging is the Maximum 

Entropy method, MaxEnt. In contrast to Markov chains, MaxEnt models assume that 

the unknown POS-tags are conditionally independent of each other. The MaxEnt model 

is based on maximizing the entropy of a probability distribution subject to certain 

constraints. These constraints are based on contextual features observed in the training 

data, such as number of occurrences of a tag. By doing this, these models have shown to 

be able to tag words with the correct tag with high accuracy (Ratnaparkhi, 1996). 

2.3.2 Word-Sense disambiguation and similarity  

One word can have different meanings, fire could for example refer to flames and 

smoke, to shoot or to terminate employment. The way humans can tell the difference is 

often from the context the word is used in. Word-Sense Disambiguation (WSD) is a task 
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in Natural Language Processing that focuses on finding the correct semantic meaning of 

a word given its context (Navigli, 2009).   

At its core, a WSD system works by, given a set of words, using some technique to 

apply one or several sources of knowledge, for example corpora, dictionaries or other 

lexical resources, to find the most likely semantic meaning of the analysed word 

(Navigli, 2009). One of the most used sources of word meaning knowledge is WordNet, 

a lexical database for the English language, created and maintained at Princeton 

University (Princeton University, 2010). It uses sets of cognitive synonyms, called 

Synsets, representing words with approximately the same meaning. Since a word can 

have different meanings, several Synsets can exist that contain a given word. WordNet 

also include semantic relationships between words, for example, if one word is a 

superset of another, and, relationships between adjective antonyms (Princeton 

University, 2010). The paths formed by these relationships can be used to measure the 

semantic similarity between two words.  

To find the most likely meaning of a word, a set of features is chosen for that word to 

represent the word’s context, for example from Part-of-Speech tagging and Parsing 

(Navigli, 2009). These features are then used in different ways to classify the word as 

one of the potential meanings. The two main approaches in which models for this 

classification are trained are, as is the case for many of the Natural Language Processing 

tasks; supervised and unsupervised (Navigli, 2009). Supervised approaches use 

manually pre-labelled data, labelled with their syntactic meaning, to create classifier 

models. These models are then used to classify new words with syntactic meaning. The 

unsupervised approaches on the other hand, are not able to classify a word with a 

specific meaning but rather clusters words with similar meaning, based on them 

occurring in similar contexts.  

2.3.3 Dependency Parsing  

Dependency Parsing is a type of parsing based on syntactic dependency grammar. It is 

based on the notion that the syntactic structure of language consists of words that are 

linked by dependencies, or “binary, asymmetrical relations” (Nivre, 2010). A 

dependency consists of a Head and its subordinate words, called the Dependents. These 

dependents can have different syntactic relationships to the Head based on the 

grammatical context; subject (SBJ), object (OBJ), attribute (ATT) etc. The head and the 

dependents are often structured as a tree structure where every word has a single 

syntactic head and each branch is dependent on the word on the top of the branch. 

Often, the head of the top of the tree is labelled ROOT, so that every real word in the 

sentence can be assigned to a head.  

Within the tree structure, the task of Dependency Parsing becomes mapping the input 

sentence to one or more tree structures where every word is linked to a head with a 

dependency label (Nivre, 2010). As discussed by Nivre (2010), there are several 

approaches to dependency parsing: Context-free Dependency Parsing, Constraint 
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Dependency Parsing, Graph-based Dependency Parsing and Transition-based 

Dependency Parsing. An example of a Context-free dependency tree is shown in Figure 

2.  

 

 

Figure 2: Context-free dependency parsing. 

 

Context-free Dependency Parsing is based on non-terminal nodes, labelled with words, 

that indicate the top of a subtree, indicated with an “X” in Figure 2, followed by the 

word label. For example, in the sentence “The Ozzy barked at the moon.”, “Xbarked” 

would be the node dependent of ROOT and would in itself be the head of “barked” as 

well as the subtrees branching from “XOzzy”, “Xat” and “X.” (containing the 

punctuation). This parsing is based on the notion of context-free grammar, CFG, a finite 

set of rules of binary relations for each non-terminal symbol to a finite string of symbols 

(Scheinberg, 1960). In their example, a rule could be that a sentence should contain a 

noun phase and a verb phrase, another that a noun phrase can contain a noun and a 

determiner. The nodes starting with X would be the different phrases, called non-

terminal symbols. Nouns, verbs etc. would be the terminal symbols.  

According to Nivre, Context-free Dependency Parsing, holds two important restrictions. 

Firstly, the grammar is lexicalized, as the non-terminal symbols are indexed by lexical 

items, or terminal symbols. Secondly, every branch in the tree not connected to ROOT 

has exactly one word, or a terminal symbol in it. By satisfying these restrictions, it can 

be classified as a Context-free Dependency Grammar (Nivre, 2010). One issue 

discussed by Nivre (2010) is the restriction of the Context-free Dependency Parsing, 

that is limited to strictly projective dependency trees, where each head word represent 

itself and all the dependents of the word. Another issue is that algorithms for computing 

this type of lexicalized grammar structures have high complexity; O(n3), or in worst 

case O(n5), with a large set of rules (McDonald et al, 2005a; Nivre, 2010).  

Another approach to Dependency Parsing is the Constraint Dependency Parsing, as 

defined by Maruyama (1990). It is based on a set of Boolean constraints, rather than 
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binary relationship rules, set on well-formed dependency trees called Constraint 

Networks. These Constraint Networks then control the branching of the Dependency 

Tree. Such a Boolean constraint can be, for example, that a noun in singular form must 

have a determinant. By evaluating every possible dependency tree with these constraints 

and successively eliminating those where the constraints are violated, when there is only 

one left, it is known that it is valid (Maruyama, 1990). This makes Constraint 

Dependency Parsing to be not, in theory, limited to projective dependency trees as is the 

case with context-free dependency parsing. In practice this is a computationally 

demanding task, as it is a NP-complete problem and which has, at best, an exponential 

complexity (Menzel and Schröder, 1998; Nivre, 2010).  

The original version of the constraint dependency parsing by Maruyama (1990) was 

subsequently evolved to take into concern the different importance of these constraints, 

in order to account for the possibility that no dependency tree was valid (Menzel and 

Schröder, 1998). As Menzel and Shröder (1998) suggested, instead of giving the 

assessment function map a constraint of zero or one, give it a weight based on how 

serious the violation of that constraint is. By then summing up these weights for a 

dependency tree, the tree with the highest score can be chosen (Menzel and Schröder, 

1998). More recent implementation of these concepts have used transformation-based 

methods, making it possible to have complex constraints other than binary and still 

maintain efficiency (Foth et al, 2004).  

A similar dependency parsing method is Graph-based Dependency Parsing, which also 

uses scoring of all possible dependency trees for a given sentence. The difference in this 

method is that it gains its scores, not from specified constraints but rather from 

stochastic analyses of marked corpora or treebanks, using machine learning (Nivre, 

2010). Scores in Graph-based Dependency Parsing, as can be seen with other 

stochastically based methods, can be calculated in many ways. The fundamental 

principle for the Graph-based methods score is that it is based on the scores of its 

subgraphs, most commonly their sum (Nivre, 2010).  

A further method that uses machine learning is Transition-Based Dependency Parsing 

(Nivre, 2010). This method uses a state machine that consists of a set of partial analyses 

of a sentence, called Configurations and a set of transitions between configurations. 

There is also a set of terminal configurations, so that when the transition system ends up 

at one of them, it knows that it is finished. Before finishing, the method applies 

transitions to move between configurations based on a scoring function. The function 

scores possible transitions based on a feature vector of the current configuration, where 

the most important features are attributes of the word, for example, its Part-of-Speech, 

in relation to its position in the configuration (Bohnet, 2011; Nivre, 2010). By then 

combining the scores for a complete sentence, it is possible to treat the parsing as a 

search for the sequence of transition that results in the highest score for the sentence, 

making it possible to perform in quadratic or linear time (Bohnet, 2011; Nivre, 2010).  
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Bohnet (2011) showed, when comparing Transition-based and Graph-based 

Dependency Parsing, that the transition based method could perceive higher level and 

subcategorization features while the graph based method showed a slightly higher 

tendency to account for long distance relationships. This was something also noted by 

McDonald & Nivre (2007) who described it as a trade-off between the graph based, 

long distance learning of local features and the local learning of global features from the 

Transition-based Parsing. By combining these models, Nivre & McDonald (2008) 

managed to improve accuracy for both models, resulting in a significant improvement 

over previous state of the art models.  

2.3.4 Semantic Role Labelling  

With powerful Part-of-Speech tagging and Dependency Parsing, as described earlier, it 

was possible to model the grammatical structure of a body of text, but not to directly 

analyse “Who did what to Whom and How, When and Where” (Palmer, Gildea & Xue, 

2011). It is this particular aspect that is addressed by Semantic Role Labelling.  

The concept of Semantic Role Labelling is based on identifying an event and then 

assigning semantic roles to different words that relate to that event in different ways. By 

evaluating an event as a verb, surrounded by arguments representing the semantic roles 

associated with that event, it is possible to model the semantics of the event (Palmer, 

Gildea & Xue, 2011). The semantic roles can be structured based on specific verbs as a 

Theta-grid where every verb maps to a set of involved semantic roles that are needed to 

put the event into a valid context (Palmer, Gildea & Xue, 2011). For example, given the 

word give, a giver, a thing to be given as well as the things final position, would be 

needed. This would be, using standardized notation, be grouped in a Theta-grid for the 

word give. The standardized notations of semantic roles, also called Thematic roles, 

found in Table 1, as summarized by Saeed (2015) are widely used in semantic role 

labelling. Using this notation, the Theta-grid for give is [Agent (“the giver”), Theme 

(“the thing to be given”), Goal (“the things final position”)].  
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Table 1: A set of widely recognized Semantic roles (Saeed, 2015) 

Role Description 

Agent The initiator of some action, capable of acting with volition. 

Patient The entity undergoing the effect of some action, often undergoing 

some change in state.  

Theme The entity which is moved by an action, or whose location is described. 

Experiencer  The entity which is aware of the action or state described by the 

predicate but which is not in control of the action or state.  

Beneficiary  The entity for whose benefit the action was performed. 

Instrument The means by which an action is performed or something comes about. 

Location The place in which something is situated or takes place.  

Source The entity from which something moved, either literally or 

metaphorically.  

Goal  The entity toward which something moves, either literally or 

metaphorically.  

Stimulus The entity causing an effect (usually psychological) in the Experiencer.  

 

 

Even though there are some agreement over the existence of these roles, the difficulty of 

finding out when and where to use them revealed the need for something more than a 

simple set of semantic roles (Palmer, Gildea and Xue, 2011). One framework by 

Fillmore (1985) elaborated on these roles by putting them into Frame Semantics. He 

saw that the assignation of semantic roles was based on a limited set of underlying 

semantic representations that created a frame for a verb. By specifying these frames, it 

would be easier to find the associated semantic roles. Based on the theory of Frame 

Semantics, a lexical resource called FrameNet, and which contains more than 1,200 

semantic frames, has been continuously developed since 1997 at the International 

Computer Science Institute in Berkeley (FrameNet, 2017).  

Another widely recognized labelling system is the verb classes developed by Levin 

(1993). He recognized that the behaviour of a verb with respect to the context and 

interpretation of its argument was, to a large extent, based on the semantic meaning of 

the verb. These behaviours were documented in the form of the Levin classes. The 

Levin classes are a systematic way of labelling verbs based on their existence in pairs of 
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syntactic frames that closely relate to the meaning of the verb in that particular context. 

These verbs can then be grouped into classes based on similar meaning and similar 

syntactic frames. Such a class could be, for example Avoid Verbs (Levin, 1993). 

Members of this class include avoid, dodge, duck, elude, evade etc. and a syntactic 

frame, or “Property”, could be “We avoided the area”. 

Additional lexical resources popular in semantic role labelling, described as being 

created for different purposes, but “surprisingly compatible” by Palmer, Gildea and Xue 

(2011) are VerbNet and PropBank. VerbNet is the largest online verb lexicon for the 

English language (VerbNet, 2017). The verbs are classified according to an extension of 

the Levin classes, with 274 first level classes (VerbNet, 2017) compared with the 240 

original Levin classes (Palmer, Gildea & Xue, 2011). Each class is labelled with 

thematic roles, selectional restrictions on the arguments and syntactic frames with 

intention.  

PropBank, or Proposition Bank, was, in contrast to FrameNet and VerbNet, not 

developed as a lexical resource but as an annotated corpus to be used for training 

machine learning models (PropBank, 2017). In later years, it evolved to incorporate 

semantic roles on a verb by verb basis, where each verb has a numbered set of semantic 

arguments labelled with non-theory-specific labels; Arg0, Arg1 etc. (Palmer, Gildea & 

Xue, 2011). According to Palmer, Gildea and Xue (2011) this verb specific approach, 

with verb specific role labels, has several limitations, namely that it makes it more 

difficult to compare role labels to define generalizations, which in turn makes it harder 

to automatically train semantic role labelling models.  

In later years, these three lexical resources have been combined in several ways, and 

initiatives such as SemLink (SemLink, 2013) and Unified Verb Index (PropBank, 2017) 

take advantage of their combined strengths. Among other things, mapping PropBank 

annotated instances to relevant VerbNet classes, creating a larger lexical resource to 

train Semantic Role Labelling models on (Palmer, Gildea & Xue, 2011).  

2.4 Related work  

Apart from the work done in Natural Language Programming, there has also been some 

research done that looked at the combination of natural language and code as well as 

natural language and instruction interpretation. In the case of Natural Language 

Processing and code, research such as Falleri et al (2010), Kim and Kim (2016), 

Shepherd, Pollock and Vijay-Shanker (2007), Alsuhaibani et al (2015), Pollock et al 

(2007), Abebe and Tonella (2010) and Kuhn, Ducasse and Gîrba (2007) has been done 

on using Natural Language Processing techniques for analysing source code. The focus 

of most of this research was on extracting names of program elements and concepts 

using machine learning and different natural language parsers and taggers. Alsuhaibani 

et al (2015) have the same goal, to analyse the source code but does not use traditional 

Part-of-Speech taggers that are based on sentence structure but rather the structure of 
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the code itself, for example tagging a word as a verb if it is found to be the name of a 

method.  

Other research, in the robotics community, has also looked at understanding instructions 

in natural language. Chen and Mooney (2011) developed a system for relaying 

navigation instructions to robots based on observations. They used a semantic parser 

that they trained on Navigation plans that the authors constructed as a set of word state 

descriptors and a set of action sequences. Other work, for example by Stenmark and 

Malec (2014), focused on assembly tasks for industrial robots, using a generic semantic 

parser to create sets of predicate-arguments, based on a piece of natural language. These 

predicate-argument combinations, or PA:s, are formulated as verbs, being the 

predicates, and the grammatical arguments according to non-theory-specific labels A0, 

A1 etc., labelling them as the actor, the theme, the goal or equivalent to that verb.  

2.5 Present work  

This thesis has the goal to go from a human intent to code and is, in that regard, the 

inverse of source code analytics. It resembles the work of Stenmark and Malec on 

industrial robots (2014) but also looks at additional NLP approaches and has the aim of 

creating a more general approach that is not limited to one single domain.    

3. Methods 

To evaluate the possibility of using Natural Language Processing as a tool for 

interpreting intention a set of methodical approaches are developed. This chapter starts 

off with defining these approaches and the hypotheses that are defined based on them. It 

then defines this thesis’ methodical key concepts and technologies, such as Speech to 

Text and the game environment used in the user testing in this study. Following that, it 

describes the performance evaluation and user testing. Lastly, it describes how these 

methodical approaches have been implemented.        

3.1 Methodical Approaches  

Two approaches were adopted to evaluate how human intent can be interpreted as code, 

using the modern tools and techniques in Natural Language Processing (NLP),. Each 

approach is based on a set of areas of NLP and their available tools as well as a 

hypothesis about how they will translate human intent to code. The intent, given as 

individual sentences (s1,...,sn), is mapped to a sequence of objects (o1,...,om) and actions 

(a1,..., ak), where each sentence can contain one or several objects and actions. An 

action a = (c, P) contains parameters P and a condition c. These parameters P can 

contain one or more of the following parameters: “On object”, containing the object that 

performs the action as well as “how”, “with”, “target” and “direction”, describing 



19 
 

keywords as to how the action should be performed. The two different approaches use 

different techniques to do the mapping.  

3.1.1 Approach 1: Dependency parsing and Part-of-Speech tagging 

This approach is based on the idea of Abbot (1983) that a common noun suggests a data 

type, a proper noun or direct reference suggest an object and that a verb, attribute, 

predicate or descriptive expression suggest an operator or method. By using Part-of-

Speech tagging, different Part-of-Speech tags, such as verbs and nouns can be 

identified. These tags can then be linked in a Dependency Parsing structure to find how 

they relate to each other, making it possible to interpret an intent as objects and actions 

with related properties.  

Hypothesis 1: It is possible to, using Grammatical dependencies and Part-of-Speech 

tags, model a sentence of human intent as a set of objects, methods and their 

relationships. By structuring these object and methods by their relationships, code can 

be created represents the user’s intent.  

The Stanford CoreNLP, a suite of NLP tools, implemented in Python with Natural 

Language ToolKit (NLTK) is used to test this hypothesis. Stanford CoreNLP uses the 

log-linear Part-of-Speech tagger written by Toutanova et al (2003) with a Maximum 

Entropy method that is trained on the Penn Treebank corpora. The suite also includes 

the transition-based Dependency Parser using Neural Networks, developed by Chen and 

Manning (2014), also trained on Penn Treebank.  

3.1.2 Approach 2: Semantic Role Labelling and Part-of-Speech tagging 

Extending on the first approach with the notion that the grammatical structure of the 

sentence can be used to translate and intent to code, this approach is based on mapping 

semantic role labels to code structures. By making assumptions that a verb can be 

translated into an action with different parameters described by the verb’s connected 

semantic roles, it is possible to construct actions and objects based on semantic labels. 

To further analyse the meaning of these semantic roles, Part-of-Speech tagging is 

implemented.  

Hypothesis 2: It is possible to, with Semantic role labels and Part-of-Speech tags, 

model a sentence of human intent as a set of objects, methods and their relationships. 

By structuring these objects and methods by their relationships, code can be created that 

represent the user’s intent.  

SENNA, Semantic/syntactic Extraction using a Neural Network Architecture, 

(Collobert et al, 2011) implemented in PractNLPTools, a Python library over SENNA 

and Stanford Dependency Extractor (PractNLPTools, 2016) is used to test this 

hypothesis. SENNA uses a probabilistic Neural network approach described by 
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Collobert et al (2011) and was trained on the entire English Wikipedia in combination 

with Reuters’ RCV1 dataset (Collobert et al, 2011).   

3.1.3 From speech to text  

Speech is described as the most important and the most natural way of human 

communication and for conveying one's intent (Iyanda, Adetunmbi & Obe, 2016). 

Recently there has been a lot of research focused on gaining higher accuracy in Speech-

To-Text conversion and Automatic Speech Recognition using machine learning 

(Iyanda, Adetunmbi & Obe, 2016). Based on this, several implementations of Voice-

To-Text are tested for generating a text representation of the intent, to be used as input 

to the different approaches described in this report. These included: The Web Speech 

API (Shires & Wennborg, 2012), IBM Speech to Text (IBM, 2017), Bing Speech API 

(Microsoft, 2016) and Google Cloud Speech API (Google, 2017).  

3.1.4 From code to game 

As described by Bromwich, Masoodian and Rogers (2012), a game environment offers 

a good way for learning and practise programming concepts and Computational 

Thinking. To leverage this, a game environment where the user expresses intent 

regarding what they see on the screen and what they want to have happen in the game, 

is implemented. The game environment also limits the domain that the intent should be 

mapped to and the command diversity, making it easier to generalise intent patterns. 

This domain is defined by an environment E = (EO, EA) as a collection of Environment 

objects EO = (eo1,...,eon) and Environment actions EA = (ea1,...,eam) that contain 

available objects and permitted actions in the environment.   

Studies of earlier systems for using natural language for code generation have shown 

that a limitation for these systems are their strict syntax with no consideration for word 

disambiguation (Good, 2016; Capindale and Craford, 1990; Sammet, 1966). By using 

Natural Language Processing to do Word-Sense Disambiguation and Word Similarity 

as a less strict mapping method for objects and actions to the environment, a higher 

accuracy could potentially be reached. For example, if the user expresses an intent as 

“The boy should move forward five times” in an environment consisting of EO = 

(character, tree, rock) and EA = (Walk, wave, hit), the system should map “the boy” as 

being more semantically similar to “character” than to “tree” or “rock” and “go” as 

being more similar to “walk” than to “wave” or “hit”. 

3.1.5 Performance evaluation  

A framework of different performance measurements is developed to evaluate the 

different approaches described in sections 3.1.1 to 3.1.4, and hence the possibility of 

interpreting human intent as code. To be able to account for the ease of development 

and technical possibilities as well as the ease of use, the framework consists of two 
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parts. The first part, as described in Table 2, evaluates the development process, with 

continuous testing and observation of technical limitations.  

 

Table 2: Performance measures for development 

Property Evaluation metric 

Ease of implementation The perceived ease of use to create an implementation that 

turns a sentence of human language that expresses an intent, to 

code.  

Amount of generalisation The perceived amount of domain specific solutions that is 

needed to be implemented and the possibility to include 

concepts from the framework of Brennan and Resnick (2012).  

 

The first part is based on how easy it is to implement the different approaches in code, 

something that is partially affected by the available implementations of parsers, lexical 

resources etc. Since this gives different conditions for the implementation of the 

different approaches, making them difficult to compare quantitatively, a personal 

qualitative evaluation is performed. The goal of this evaluation is measuring the 

perceived ease of use as well as the correctness, accuracy and the perceived possibility 

to make generalisations in each implementation. The second part focuses on user testing 

of the implementation and the impact of Computational Thinking and is described in 

Table 3.  
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Table 3: Usability properties and evaluation metrics 

Property  Description Evaluation metric 

Learnability  The approach should be easy to learn so that 

it doesn’t require lots of training. 

Amount of information that is 

needed to be given to the user 

beforehand and if additional 

information is required.  

Efficiency The approach should be efficient resulting 

in a high productivity from the user.  

Time to complete a 

predefined task using the 

system. 

Memorability The approach should be easy to remember 

how to use so that minimal additional 

training is needed when returning to the 

system.  

This property will not be 

considered in this study.  

Errors The approach should not result in a high 

amount of errors. Errors that do occur 

should be easily corrected. 

Amount of commands given 

by the user that can not be 

interpreted or are 

misinterpreted by the system 

and how easy they are to 

correct.  

Satisfaction The approach should be pleasant for the user 

to use. The user should like using it.  

An interview after using the 

system to determine the users 

subjective feelings about the 

system in general. 

 

It is based on Usefulness as a combination of Usability and Utility, defined by Grudin 

(1992). Usefulness is the measurement of a system’s possibility to achieve a desired 

goal (Nielsen, 1993). Nielsen (1993) then define usefulness as the overarching structure 

of the two subcategories; utility and usability, where utility is the question of whether 

the functionality of the system, in principle, can fulfil its purpose, and usability is the 

question of how well a user can use that functionality. Usability can then be divided into 

several properties: Learnability, Efficiency, Memorability, Errors and Satisfaction 

(Nielsen, 1993). These are evaluated according to Table 3. Due to the relative 

infrequency of use of the system in combination with the limited scope of the project, 

Memorability is not evaluated.   
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3.2 User testing   

A set of test subjects are chosen to evaluate the usability of the system as well as its 

relationship to Computational Thinking. These test subjects are selected according to 

their different levels of programming experience with a minimum requirement that the 

participants should be fluent in the English language. Even though Computational 

Thinking is much more than just programming; programming can be seen as a 

concretisation of Computational Thinking. This makes prior programming experience a 

reasonably good measurement of the test subjects’ initial level of Computational 

Thinking.  

Programming experience is classified into three levels: novice, intermediate and expert. 

The participants in the study are assigned to these groups based on their own estimate of 

their programming experience. From each experience level two candidates are selected, 

one for each Natural Language Processing approach; Dependency Parsing and Semantic 

Role Labelling. Each participant is first given instructions on how to interact with the 

implementations and what objects and actions that are implemented in the environment. 

They are then instructed to complete a task consisting of moving the character object to 

the goal object in the game. To complete this task, the character additionally must 

traverse an obstacle; a river, where the only river crossing is blocked by a tree.  

During this task, evaluation metrics are recorded in accordance with Table 3. On 

completion of the task, the participants are invited to further explore the system for a 

short period of time. Data on every interaction with the system is automatically 

collected in digital log-files; logging the user input, the labelling done by the NLP 

models and the generated code. After the user has used the system, they are asked a 

series of questions to determine their feelings on using the system.      

3.3 Limitations  

Due to the large number of tools, models, lexical resources and tagged corpus 

exclusively related to the English language, this thesis limits its scope to translating 

intent expressed in English. This said, it is fair to assume that, given enough data and 

time training models on that data, the same or similar techniques to those used in this 

thesis could be used on other languages. A limitation in all languages, English included, 

that affects the accuracy of the approaches in this thesis, is the low number of 

imperatives in the data that these tools and models have been trained on. Most Natural 

Language Processing tools and models have traditionally been developed and evaluated 

on news articles and other descriptive texts that contains a low number of imperative 

sentences.  

Based on the goal of this thesis, to evaluate the described approaches in the context of 

novices learning Computational Thinking, the domain of programming concepts is 

limited to the framework of concepts described by Brennan and Resnick (2012). 

Because of the difficulties in separating strings from instructions in natural language as 
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described by Good (2016), strings are not considered in this thesis and are left for future 

work.  

3.4 Implementation 

3.4.1 Testing interface 

The described approaches and methods are implemented in a web interface with a 

predetermined environment of available actions and objects as described in Table 4.  

 Table 4: Testing environment 

Actions and parameters Objects 

▪ Walk (*direction* / *target*) 

▪ Jump (*how*) 

▪ Cut (*target*, *with*) 

▪ Eat (*target*) 

 

▪ Character 

▪ Tree 

▪ Axe 

▪ Cow 

▪ Goal 

 

The web interface, as shown in Figure 3, is divided into three sections; A, B and C. 

 

Figure 3: Web interface. 

In section A, the user is given instructions of how to use the system. In section B, a code 

editor is inserted where the code generated by the system is shown. The code editor is 

also equipped with controls for executing the input code. The last section, section C, 

holds a simple game where objects could move around in a grid, performing actions on 

each other.  
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3.5 Speech to Text Implementation 

The first solution tested for translating voice to text was is the Web Speech API, a 

JavaScript library built into modern web browsers. Its initial testing yielded poor results 

with low accuracy and this solution was therefore abandoned. Following Web Speech 

API, several commercially available voice-to-text solutions were tested using their 

respective demo versions. In these initial tests, Google Cloud Speech API Beta showed 

the most promising results and was selected for further testing and implementation. 

Further testing showed good results but due to the time constraints and the fact that this 

solution implements new and not widely adapted technologies and standards, there was 

not enough time to implement it in the web interface.   

3.6 Study 1: Dependency Parsing   

The Dependency parsing implementation is based on the Stanford Dependency Parser 

which takes a string of text and, in this implementation, returns a triples data structure 

for all dependencies with the word and Part-of-Speech tag for the connected words as 

well as an identifier of the type of dependency. These are then mapped to objects and 

actions. Actions are extracted firstly based on them being POS-tagged as verbs, after 

which it gets its attributes, such as which object performs this action, based on what 

condition etc. Objects are extracted in two ways. First, they are found by them 

performing an action, as defined by having a Nominal Subject dependency to a verb. 

The second extraction of objects is done using the Determiner dependency, describing a 

relation between a noun and its determiner. The object of an action and the object that 

performs the action is established by analysing the Nominal Subject dependency 

between the verb that represents the action and a dependent Noun or a Proper Noun in 

the case of that object being, for example, a name. 

To model additional information on how an action should be performed, parameters are 

implemented. The parameters considered here are “how”, “with”, “target” and 

“direction”. A parameter is labelled as “how”, defining how an action is performed, if it 

is in an Open Clausal Complement dependency and are POS-tagged as an adjective. 

Both the “with” and “direction” parameters are found in Nominal Modifier 

dependencies, with the To POS-tag indicating direction and the Preposition or 

Subordinating Conjunction POS-tag indicating a “with” parameter. The “target” 

parameter is found in Direct Object dependencies where the target is a noun.  

Direction is also found in Phrasal Verb Particle dependencies, together with loop 

identifiers such as “twice”. In this case, a list of loop identifiers; “once”, “twice” and 

“thrice” are used to match against to find loop identifiers while a list of directions such 

as “upward”, “west”, “forward” etc. are used to find directions. The directions are then 

normalized to “up”, “right”, “down” and “left”.  

In this implementation, repeat-actions, or Loops, are handled on an individual action 

level. This is due to the difficulty of understanding sentences such as “Walk forward 
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and dance seven times”. Should both these actions be performed seven times or just the 

last one?  In addition to finding loop identifiers as Multiplicative Adverbs, Direct 

Object dependencies with Plural Nouns that also have a Numeric Modifier dependency 

to a Cardinal Number POS-tag are used. This is based on instructions such as “Walk 

forward seven times” where “times” would be a plural noun that also has the numerical 

modifier “seven”. This would also pick up sentences like "Greg should eat seven 

potatoes." and "Greg should eat a potato seven bananas." as “eat” being the action that 

should be performed seven times. To take into consideration numbers such as “two 

hundred”, a check is also made to see if the cardinal number have a compound 

dependency to another cardinal number, in that case, these two are concatenated.  

Actions also hold conditional statements. These can be in the form of While statements, 

Until statements, Unless statements and If statements and are found using the Adverbial 

Clause Modifier dependency while also matching these with Marker and Nominal 

Subject dependencies.   

3.7 Study 2: Semantic Role Labelling 

Semantic role labelling is based around verbs and the semantic roles connected to that 

verb. With the assumption discussed earlier in the method section, that verbs can be 

interpreted as actions, this approach builds its actions systematically from these verb-

structures. The implementation used in this study labels these roles according to the 

PropBank standard, with numbered and unnumbered arguments representing their 

impact or relation to a specific verb. The specific meaning of these numbered arguments 

depends on the specific verb, or rather a specific semantic meaning of a verb, but some 

generalisations can be made. Looking at many of the verbs that would represent likely 

actions in this study, Argument 0, Arg0, often represent the Agent, the executor of that 

action. This is, in this approach, used to identify the object that performs the action. 

Argument 1, Arg1, is often the Patient, or the target of the action in our case. The rest of 

the numbered arguments often have more verb-specific semantic meanings, but initial 

testing has shown that Arg2 often represent the Instrument and A4 often indicates a 

goal. By then looking for noun POS-tags in this argument this model can find the 

actions “with” and “target” parameters respectively.   

The unnumbered argument ArgM-MNR describes how the verb is executed, and is 

mapped to the “how” argument of the action. The ArgM-DIR that describes some 

directional property of a verb is passed through a function that tries to map it to one of 

four directions: up, right, down and left. If it fails, it is assumed that the directional 

property is a sentence of type “to an object”. In this sentence, it then looks for a noun 

and if one is found, it is assigned as the “target” property of the action. To find loops, 

more specifically for-loops and until-loops, the ArgM-TMP role is used.  

The for-loops are found through Cardinal Numbers as well as Multiplicative Adverbs 

by running them through a mapping function that tries to map them to integers, if it 

succeeds that integer is assigned as the loop iteration counter. The until-loops are found 
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by looking at the POS-tags trying to find a prepositional tag in conjunction with a noun 

and an adjective or verb of the type non-3rd person singular. These are then structured 

into a conditional statement for the action. Other conditional statements, such as if-

statements are found using the ArgM-ADV role, that initial tests showed, in the context 

of this study, accurately represented conditional statements of actions.  

For example, in the sentence “the character should walk forward twice”, “walk” is the 

central verb. To this verb, “the character” is labelled as the semantic role Arg0, or the 

Agent, “forward” as ArgM-DIR and “twice” as ArgM-TMP. This results in the action 

“walk” containing “character” as the “On object” parameter, two as a loop indicator and 

“right” as the “direction” parameter.  

A difference in this approach to approach one is that Semantic Role Labelling can label 

chunks of several words as an argument, while Dependency Parsing uses a single-word-

resolution. To address this, Part-of-Speech tagging is used to extrapolate the relevant 

words in these chunks as well as for identifying specific action parameters, for example 

for separating ArgM-DIR into the “direction” or “target” parameter.   

3.8 Semantic matching  

According to the findings of Sammet (1966) and Good (2016), one of the larger 

problems of programming with natural language is the conflict of the ambiguity of the 

natural language and the strict nature of programming languages. To address this, 

following the first design principle of Good (2016), semantic matching is used to map 

the natural language to a limited domain of expressions, in this study referred to as the 

environment. An overview of the system can be seen in Figure 4.  

 

 

Figure 4: Implementation flowchart 

After the different NLP approaches have generated their Objects and Action, these are 

then semantically matched. The semantic matching is done using the lexical resource 

WordNet and path similarity as implemented in NLTK. WordNet has, as described 

earlier, sets of cognitive synonyms, called Synsets. By finding the Synsets for the 

Environment Actions and Environment Objects and for each action and object parsed 
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from the natural language given by the user, it is possible to find what Environment 

Action or object is most similar to. This makes it possible for the system to understand 

what object or action in the environment the user is referring to and thereby set the 

correct name and parameters for each object and action.  

A problem that arose during initial testing is that, although WordNet has a vast amount 

of Synsets, it does not cover all words. Some verbs, but primarily many proper nouns, 

do not have Synsets, making it difficult to use this approach to match them to 

environmental actions and objects. Only when the proper noun is explicitly defined as 

the name of an environmental object will WordNet find a match. Defining an 

environmental object with a proper noun not found in WordNet makes it unable to 

semantically matched with other words, rendering this function redundant in those 

cases.   

During this stage, to account for the incompleteness of natural language instructions 

discussed by Good (2016) and Miller (1978), additional, non-semantic matching is 

made. This matching consisted of finding potentially missing mandatory attributes of 

actions and updating attributes of object based on actions and objects specified in the 

environment.  

3.9 Code generation  

After the semantic matching the code is generated from the resulting final objects and 

final actions. In this implementation, the code generated follows JavaScript standard to 

be able to run in a web browser, but because of its modularity this function could be 

replaced to generate code in any programming language with an object-method based 

structure.  

As the goal of this implementation is to relay intentions, the main focus of the code is 

the actions that should be performed. The code generation in this implementation goes 

through the list of final actions and one by one generates a block of code based on that 

action. First it identifies if the action has any conditions, and if so, they are formatted to 

match the code language standards. Secondly the loop-parameter is formatted. As 

described earlier, due to the problem of accurately parsing if several actions should be 

performed in the same loop, the generated loops only contain a single action, as does the 

conditional statement.  

As the surrounding code is generated, it identifies the object that is performing the 

action and, together with the actions parameters, formats the code for calling that action. 

The action parameters for a specific action are defined in the environment action along 

with the default values that are overridden if they are also defined by the user. To 

maintain consistency, these parameters are listed in a specific order where each 

parameter is optional if not defined in the environment. This order is; “target”, “with”, 

“direction” and “how”.   
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4. Results and Discussion 

4.1 Ease of implementation 

The first part of the implementation for both approaches is the analysis of how human 

users would describe their intent and how the different Natural Language Processing 

models would interpret them. With this information, models of how the output from the 

NLP models could be mapped to a structure that would represent the intent of the user.  

As described earlier, the implementations of the two different Natural Language 

Processing approaches used in this thesis are based on different pre-trained models and 

NLP frameworks as well as wrapped in different interfaces, making it difficult to 

compare them side by side. With that said, several generalisations regarding the data 

returned from the different models and how this data can be structured and combined 

can be made independently from framework or interface.  

The first approach, implementing the Stanford Dependency Parser, returns a data 

structure containing the dependencies as a dependency label and the two words 

connected by that dependency and their respective Part-of-Speech tag. Due to the 

hypothesis of this approach, that the individual dependencies or combinations of 

dependencies represent the intent of the user, without a higher-level structure, these 

dependencies become the basis for modelling the user intent to a data structure. Finding 

objects, actions and how they relate to each other is then a matter of finding patterns in 

the POS-tags and dependencies that relate to different programming concepts. This 

gives a greater control, making it possible to find pattern dependent on combinations of 

several dependencies and tags. It is however, when these patterns become complex, 

sometimes problematic to find what verb, or action, that the dependencies are 

originating from. These chains of dependencies also make this approach prone to errors. 

If one dependency in these complex patterns is missing or mislabelled, this breaks the 

whole chain.  

The models used in the second approach, the Semantic Role Labelling, return the verbs 

and their semantic roles as a data structure based on the central verb. This, in contrast to 

the first approach, takes care of relating the patterns to the affected verb. Since this 

thesis is based on the hypothesis that verbs represent actions, that in turn are dependent 

on the context of that verb, such as what entity performs that verb, this makes for a 

well-suited structure of objects and actions. One thing that the Semantic Role Labelling 

model does not take into consideration is the Part-of-Speech tags. These are added using 

a separate POS-tagger and can be used to both identify objects mentioned in the text but 

also give more clarity to the semantic roles, that in many cases can consist of several 

words. With the combined Semantic Role Labelling and POS-labelling combined, it is 

possible to find patterns that both rely on the semantic roles related to the verbs but also 

the relationship between different POS-tags within these roles. Due to the similarity 

between the output of the NLP models used in this approach and the action-object 
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structure implemented in this study, this approach seems better suited for implementing 

intent to code translation.  

4.2 Amount of generalisation 

The framework developed by Brennan and Resnick (2012) to describe the different 

programming concepts is the basis for the different approaches developed in this thesis. 

These concepts are: Sequences, Loops, Events, Parallelism, Conditionals, Operators and 

Data. Some of these concepts are not implemented due to time constraints and are left 

for future research, such as Events. Other concepts that are in themselves not directly 

related to giving instructions, such as the Data, Operators and Parallelism concept have 

also not been implemented.   

One concept that is successfully implemented is Sequences, that one instruction should 

be executed after another. In the case of Semantic Role Labelling, this is easy to 

implement due to the verb structures generated from the NLP model that structures the 

actions together with their roles, regardless of if there are one or several instructions 

given by the user. In the case of Dependency Parsing, this is done by first finding the 

verbs from POS-tags and then observing the chains of dependencies that connect to that 

specific verb. The issue mentioned in previous section, to track dependencies back to a 

specific word, become increasingly difficult with an increasing amount of instructions 

given per sentence. This results in that Semantic Role Labelling is a more flexible 

solution for implementing this programming concept.  

The concept of Conditionals is partially successfully implemented; if-statements are 

implemented for both NLP approaches with similar results. Else and “else-if” 

statements are not. These concepts cannot consistently be expressed as a pattern of 

either grammatical dependencies or semantic roles with current NLP models. The if-

statements in themselves are structured in the form of an object that either does or does 

not have a certain property to either perform or not a certain action at that time. 

Conditionals are also used as a part of Loop-statements.  

Loops, being “repeating an action during some condition” are, according to the initial 

testing, successfully implemented in the case of for-loops, while-loops and until-

statements. For-loops represent an action that should be executed a given number of 

times, often expressed as, for example “walk forward twice” or “jump forward seven 

times”. While-statements, and its counterpart until-statements, will perform an action 

while, or until, a condition is met. These conditions follow the same structures as the 

previously mentioned Conditionals.  

Apart from the limitations of the implementation of different programming concepts, 

other limitations of the NLP approaches have been found. One limitation, is inherent to 

both NLP approaches, is that they can only handle actions that consist of one word, a 

verb. Even though the semantic role labelling occasionally can find semantic verb 

frames for word combinations, such as “pick up”, these appear inconsistently, are 
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seldom found in WordNet and are therefore chosen to be limited to the verb, “pick” in 

this example, for consistency. An alternative approach could be to save the verb as a 

separate structure in the action to, in the semantic matching, try to find both the 

combined verb as well as the individual verb action in the environment, with a priority 

to the combination. The combinations of NLP approaches studied in this thesis also 

have a limited understanding of the context within the sentence. For example, 

occurrences of “it” and “itself”, as references to an object mentioned earlier in the 

sentence, cannot, using these NLP models, be correctly correlated to these objects.    

 

Table 5: Result of qualitative implementation analysis  

 Dependency Parsing Semantic Role Labelling 

Ease of implementation Intermediate Good 

Amount of generalisation  Intermediate Intermediate 

 

 

4.3 Learnability  

During the user testing, learnability was assessed via the amount of additional 

instructions that were needed during the test. All users were initially given the same 

information about how to use the system, what objects and actions were available and 

the task they were supposed to complete. Generally, from observing the participants, 

they could all quickly get started using the system without any additional information. 

Most users however had to be reminded, after they had written an instruction or two, to 

use full, grammatically correct, sentences. Otherwise they tended to shorten their input 

to the minimal amount of words. For example, one user ended up writing instructions 

such as “walk tree” when their intention was for the character to walk to the tree. The 

same user, who had intermediate programming experience, also noted that experience 

writing instructions in the form of code heavily influenced the way this user gave 

instructions in natural language. The user said that, by reading the code generated from 

writing instructions in natural language, the user tended to adapt their instructions to the 

structure of the code, rather than natural language grammar. The users with novice 

programming experience showed similar tendencies, to use minimal instructions. The 

expert users in this study, on the other hand, surprisingly tended to use correct grammar, 

not adapting to “programming grammar”. The system could interpret most of the 

shortened sentences but, as was shown by the difference in misinterpreted instructions, 

giving grammatically correct sentences resulted in higher accuracy. Additionally, one 

user had to be informed not to use digits, and instead write the name of the number 

when describing the action they wanted to be performed several times, since digits are 

not supported in the current implementation.  
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In the survey following using the system, most users responded that they thought that 

the instructions on how to use the system were easy to understand. 

 

Table 6: Result of qualitative analysis of Learnability  

 Dependency Parsing Semantic Role Labelling 

Novice users Intermediate Intermediate 

Intermediate users Intermediate Intermediate 

Expert users Good Good 

 

 

4.4 Efficiency  

By measuring the time, it took for the users to complete the task of moving the character 

object to the goal in the game environment and then observing while the users later 

experimented with alternative solutions, it was possible to get a measurement of the 

efficiency of using the system. All users were increasingly efficient as they got more 

familiar with the system and all users managed to complete the task faster after 

experimenting with different approaches for a while. When it came to the initial 

performance, there was little difference between the novice and intermediate users, 

where both groups had longer times to completion, ranging from three minutes up to 

four and a half minutes. The expert users on the other hand showed good initial 

performance with time to completion close to one minute. This could potentially be 

because of their tendency to, to a higher degree, use grammatically correct sentences but 

also their ability to understand the generated code and find patterns in the mapping 

between expressed commands and generated code. Between the two NLP approaches; 

Semantic Role Labelling and Dependency Parsing, there were no detectable difference 

in efficiency. Because of the limited number of test subjects and because of the time 

constraints of this study, it is not possible to say how strong the correlations between the 

programming experience, NLP approaches and efficiency are. The results found here 

could possibly be seen an indication of that the different NLP approaches are equivalent 

when it comes to efficiency and that higher level of programming experience does, to 

some degree, have an influence on the efficiency of using the system.   
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Table 7: Result of qualitative analysis of Efficiency 

 Dependency Parsing Semantic Role Labelling 

Novice users Bad Bad 

Intermediate users Bad Bad 

Expert users Good Good 

 

 

4.5 Errors  

During the time the users solved the task of moving the character past the obstacles and 

to the goal, the number of commands that the system either did not understand or 

misinterpreted were recorded. From this data, a strong inverse correlation could be 

found between the amount of programming experience and the number of total errors. 

The novice users had a high amount of total errors but the type of errors they had 

differed, depending on the NLP approach. The novice user using Semantic Role 

Labelling had only a few instructions that could not be interpreted but a high amount of 

instructions that were misinterpreted. The other user in the novice category, using 

Dependency Parsing, had a high amount of instructions that could not be interpreted but 

fewer that were misinterpreted. From observing these users, the total amount of errors 

can be seen as partially coming from their inability to understand the code that is 

generated and its correctness in regard to their given instruction. The system has been 

shown to not have hundred percent accuracy and flexibility. This makes the user’s the 

ability to understand the correlation between natural language input and code output, 

have a great impact on the amount of errors the users encountered in this study.   

Between the two different NLP approaches Dependency Parsing resulted in more errors 

overall, across all levels of programming experience with a higher rate of instructions 

that could not be interpreted by the system.  

When reviewing the log-files after each user test, it was possible to understand the cause 

of many of the system errors that occurred during the test. The most common cause of 

instructions that could not be interpreted was that the described action was not labelled 

as a verb by the Part-of-Speech tagger, breaking the assumption that an instruction 

consists of an action with related objects. This happened frequently when the user gave 

incomplete or grammatically incorrect sentences but was also observed when the user 

input was seemingly correct. In the case of Dependency Parsing this happened often 

when one user gave the instructions in present tense. For example, when the user gave 

the instruction “The character walks to the tree”, the system labelled “walks” as a plural 

noun rather than a verb, making the system unable to process the instruction. In the case 

of another user, also using Dependency Parsing, “jump” and “move”, was also 
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mislabelled as a noun rather than a verb, even though used in grammatically correct 

sentences. Looking at the results from user tests with users using Semantic Role 

Labelling, they had lower occurrences of these types of mislabelling. The system 

showed a larger flexibility when using Semantic Role Labelling by accurately handling 

instructions in present tense as well as descriptions of what should happen, such as “the 

character should walk to the tree” or “walk to the tree”.  

One thing that both approaches struggled with was correctly interpreting directions of 

actions. The direction “left”, as in the instruction “the character should walk left”, was 

mislabelled with high frequency as a verb, while many of the other directions, such as 

“downwards”, were often mislabelled as nouns. In the Semantic Role Labeller used in 

this thesis there exists a specialised label for direction, ArgM-DIR. During this study, 

this label was, unfortunately, not consistently assigned to the directions mentioned in 

the instructions, possibly because of the discussed mislabelling of POS-tags. Semantic 

Role Labelling also tended to, but not consistently, as discussed earlier, use combined 

verbs. These combined verbs have been shown to sometimes be a verb-direction 

combination, such in the case of “jump down” or “walk down”. As described earlier in 

this thesis, to maintain consistency without overfitting, these combined verbs were 

reduced to their single verb word. In the case of directions, this has occasionally been 

shown to, unfortunately, discard valuable information.  

Another issue that was discovered during the user tests was during the implementation 

of loops. As described in the Amount of generalisation chapter, the results from the 

initial testing during the development phase showed great promise for implementation 

of the loop concept. During the user testing however, it was apparent that the 

implementation of the loop concept did not cover all cases. Not all users took advantage 

of this concept and those who did, more often than not, had errors associated with it. 

These users primarily used the loop concept, together with the actions “walk” and 

“jump”, as a measurement of the distance rather than an indication of how many times 

the action should be performed. For example, “walk two steps forward” or “jump four 

squares to the right” rather than “walk forward two times” and “jump right two times” 

(as the jump action moves the object two squares). Due to the nature of the specified 

domain, the accurate representation of these intents would most likely be in the form of 

loops. But since the part of the system that turns the intent into actions and objects, by 

design, is decoupled from the application, there is no correlation between actions and 

measurement of distance. This also does not follow the assumptions of loop usage 

considered in this thesis and its possibility to be interpreted by the different NLP models 

has therefore not been studied.  

Sequences, the ability to give instructions containing several actions that should be 

performed in a specific order, also showed great promise during the development phase. 

This concept was used by most participants, ranging across all levels of programming 

experience, with more experienced users tending to express a larger amount of 

instructions in the same sentence. The system could handle most instructions with two 
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actions per sentence but with three or more actions per sentence, the accuracy decreased 

rapidly. Dependency Parsing had some issues relating parameters, such as who 

performed an action or how that action should be performed, to the correct action, even 

in sentences containing only one or two actions. Semantic Role Labelling showed better 

results in this regard, with the verb frames creating separate data structures for each 

action. It did however suffer from a decline in accuracy with three or more actions per 

instruction. One user, who had an expert level of programming experience, tried using 

five instructions in one sentence; “Character walk to tree and cow walk to tree and cow 

eat tree and cow walk up and character walk to goal”. In the case of this sentence, the 

system showed a high amount of mislabelling such as two of the instances of “walk” 

being labelled as nouns. The lowering accuracy of the NLP models with increasing 

amount of actions per sentence could potentially be due to the data they are trained on. 

As sentences in the data sets used for these models, Penn Treebank, English Wikipedia 

and RCV1, as in the English language in general, include only a few verb phrases per 

sentence, it can be assumed to influence the accuracy. It is therefore possible to theorize 

that, given enough data, higher accuracy for the parser could be achieved even with a 

higher amount of actions per instruction.  

It was also observed that the user referred to each object explicitly in each action in the 

five instructions in one sentence example given above. Other users tended to often refer 

to “it” or “itself” as in the sentences “Character should move to the tree and eat it” and 

“the cow should eat itself”. Using the implementation used in this thesis, “it” or “itself” 

could be identified as being the target of the action but it was not possible to find a 

pattern in the data from the NLP models that would indicate what they referred to.  

One key feature for errors in usability is the possibility to be able to easily correct them. 

In this study it was clear that, to be able to correct errors in the implementation, an 

understanding of programming is required. From the three different levels of 

programming experience in this study; novice, intermediate and expert, the novice users 

had a lot of problems understanding and correcting the errors that occurred. These users 

showed no, or very limited, understanding of the code that was generated from their 

natural language instructions. They were only able to judge the correctness of the 

system by executing the code in the game environment and observing what happened. 

Since the system is trying to correct semantic differences by running the objects and 

actions through Semantic Matching, if the output of the NLP model is incorrect, these 

incorrect objects and actions will then be semantically matched, often creating more 

confusion. The users with more programming experience could detect errors in the 

generated code before executing it and therefore use alternative wording, or correct 

grammar and/or spelling in their given instruction. These users did, however, have the 

same problem as the novice users when it came to incorrect NLP output being 

semantically matched, creating confusing output.      
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Table 8: Result of qualitative analysis of Errors 

 Dependency Parsing Semantic Role Labelling 

Novice users Poor Poor 

Intermediate users Poor Intermediate 

Expert users Intermediate Good 

 

 

4.6 Satisfaction  

After the users completed the predefined task and were given some time to experiment 

with the system, they responded to a series of questions regarding their thoughts on 

using the system. These questions were on a disagree-agree scale ranging from one to 

five. When asked if they found the system fun to use, most users responded positively, 

with a mean value of four. This could potentially be due to the game aspect of the 

interface, as described by Bromwich, Masoodian & Rogers (2012), making it engaging 

and fun to use.  

Another aspect that the users agreed on was that the system could not accurately 

interpret their intentions, with a mean score of two out of five. This confirms the low 

accuracy found in the data from the user tests of the system. As one user commented; “I 

think [this approach to programming] could work, but the system is very fragile, 

misunderstandings can feel very frustrating”. The user also mentioned the concept of 

Uncanny valley in robotics, the theory that robots must look and behave very close to, 

or very different from real humans or humans will have strong negative emotions 

towards them. “Almost human” is not good enough. Much in the same way, 

programming by intent, as in this thesis, according to this user, will need to have an 

almost hundred percent accuracy and a great deal of flexibility to make it pleasant and 

natural to use. This can possibly have some impact on the perceived influence on the 

Computational Thinking of the users. When asked about if the system contributed to 

their understanding of how to instruct a computer to solve problems, the general opinion 

was divided with a slight majority towards the no side, resulting in a mean score of two 

point five. When instead asked if the system had contributed to their understanding of 

programming, the mean value was slightly higher with a score of three. One user 

commented that “When programming I am used to write short commands and often try 

to keep the code as short as possible. Therefore, it was a bit difficult getting used to 

writing longer commands“. This might indicate that, with already established 

knowledge of programming, writing code might be a more efficient way of 

communicating intent to the computer. This might also have influenced that users 

overall did not feel that the system was easy to use, with a mean value score of two 

point sixty-seven. 
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Table 9: Result of qualitative analysis of Satisfaction 

 Dependency Parsing Semantic Role Labelling 

Novice users Intermediate Intermediate 

Intermediate users Intermediate Poor 

Expert users Poor Intermediate 

 

5. Conclusions and future work 

In this thesis, the possibility of using Natural Language Processing techniques to 

translate human intent to code, making programming more accessible, has been studied. 

Two different approaches have been implemented, based on combinations of the NLP 

techniques: Part-of-Speech tagging, Semantic Role Labelling and Dependency Parsing. 

Based on these two approaches, two hypotheses were formed regarding how these 

techniques could be used to extract the intent of instructions given in natural language.  

 

Hypothesis 1: It is possible to, using Part-of-Speech tags and grammatical 

dependencies, model a sentence of human intent as a set of objects, methods and their 

relations. By structuring these object and methods by their relations, code can be 

created, representing the user’s intent.  

 

From the study done in this thesis, the findings indicate that this hypothesis is the 

weakest of the two proposed. The user tests using this approach had a higher amount of 

instructions that could not be interpreted. This was partly due to the overall slightly 

lower labelling accuracy observed by the models implemented in this approach and a 

lower observed flexibility when it comes to tenses. Regarding the generalisation of 

using grammatical dependencies and Part-of-Speech tags to model intent, this was 

tightly coupled with the models themselves, making it difficult to assess its feasibility 

without further research. Given the low accuracy of the models, the assumptions made 

in this hypothesis can neither be confirmed or rejected.  

 

Hypothesis 2: It is possible to, with Semantic role labels and Part-of-Speech tags, 

model a sentence of human intent as a set of objects, methods and their relations. By 

structuring these object and methods by their relations, code can be created, 

representing the user’s intent. 
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The NLP models applied in this hypothesis had slightly higher accuracy and flexibility. 

Using Semantic Role Labelling, the NLP models also returned data in a structure that 

was highly compatible with the action-object data structure implemented in this thesis, 

making implementation of these models more efficient. This approach also showed 

more promising results with multiple actions mentioned in one sentence, even though, 

looking at the results in this study, additional data and training of these models would 

be needed. As with the first hypothesis, the close relation between the labelling 

accuracy of the models and the general approach of using semantic role labels to model 

intent, makes it difficult to determine its feasibility. Additional research is therefore 

needed to confirm or reject this hypothesis.   

The accuracy of the models used in both approaches have shown to be of great 

importance. Low accuracy caused frustration and confusion among the users in this 

study. The observed low accuracy has a large impact on the possibility to apply this way 

of programming to improve Computational Thinking. According to the findings in this 

study, many users experienced problems with the system not interpreting their intent 

correctly and that the system did not, to any larger extent, contribute to their 

understanding of Computational Thinking or programming. As described one user; for 

this way of turning intent to code to be successful, close to a hundred percent accuracy 

is most likely needed to be reached. Given that the system could reach a hundred 

percent accuracy and a great deal of flexibility, it could then be possible for novice users 

to use the system. In its current state, initial knowledge about programming is more or 

less required to use the system. The low accuracy also made the user experience of the 

system troublesome even for experienced programmers.  

One assumption made in this thesis, that programming with intent expressed in natural 

language would benefit from Semantic Matching, was in many occurrences confirmed 

but in the cases where labelling errors occurred in the NLP models, this caused an extra 

level of confusion. A solution to this might be to query the user regarding the 

assumptions that the system makes instead of feeding the results to the user 

immediately. However, in accordance with the design principles of Good (2016), it is 

important so avoid giving a sense of the system being more capable than it is when 

interacting with the user.   

This thesis, due to the time limitations, was not able to conduct large scale studies on 

the effect on Computational Thinking. The user testing in this study was conducted with 

adult users. Additional studies would have to be made with larger test groups and a 

variety of age groups to more accurately determine the effect this type of programming 

have on the possibility to learn Computational Thinking at different ages. As this thesis 

has shown, the low accuracy of the NLP models would first be addressed, as it strongly 

affects the usage of the system and especially makes it troublesome for those without 

prior programming knowledge.  
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The work in this thesis lays a broad foundation and aims at a great impact on further 

research on how Natural Language Processing can help make technology more 

accessible to everyone. The current findings about the performance of different NLP 

methods in this study are hoped to be a solid starting point for research and 

development into intent extraction from natural language.  

As for other future work on the subject, but beyond the scope of this project, there are 

several things that could be focused on. In this thesis, the English language was used as 

a basis for finding correlations in the form of semantic roles and dependencies. Even 

though it is hypothesized in this thesis that these techniques, given similar tools, models 

and lexical resources, could be applied to other languages, this is something that needs 

to be studied. Additionally, some of the errors that occur in the system developed in this 

thesis were due to inaccuracy in the Natural Language Processing models. By training 

models on more data, specific to this use case, the overall accuracy of the system could 

potentially be increased.  

A shortcoming in both the NLP approaches studied in this thesis is their inability to 

fully account for context, for example mentions of “it” and “itself”. This could 

potentially be addressed using additional Natural Language Processing techniques, 

making it also subject for further research.  

Future work could also be done on the form of alternative implementations of these 

techniques. For example, by studying alternative representations of intent other than 

objects and actions, but also by studying how the techniques could be applied in other 

domains, other than a game interface. Additionally, implementing a voice interface for 

expressing intent to the computer could be studied to assess if this would have an 

impact on how the users expressed their intent, possibly being more verbose than in the 

text interface implemented in this thesis. Further, this thesis did not include all the 

programming concepts discussed by Brennan and Resnick (2012); Sequences, Loops, 

Events, Parallelism, Conditionals, Operators and Data. By having an alternative domain, 

the implementation of all the concepts or another subgroup of the concepts could be 

studied. 

Additional research and development in the area of Natural Language Processing is 

needed to create models with higher accuracy to determine the potential for translating 

human intent to code. If higher accuracy could be achieved, systems like the one 

developed in this thesis could further be the subject of further research to determine 

their impact on Computational Thinking and programming. If higher accuracy cannot 

be achieved, the system will most likely create confusion and frustration, being 

especially difficult to use for novice users as observed in this study. Although the 

research presented in this thesis can be only considered exploratory, it does give some 

exciting insights into how natural language may eventually be translated into fully 

functional code. Such an advance should be able to address the anticipated future 

shortfall in the number of people with programming skills. 
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